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Abstract 

 

In this thesis a novel classification model framework to predict Alzheimer’s Disease 

is described. In this work a novel brain age feature is proposed, which estimates the 

biological age of parts of the brain affected by Alzheimer’s Disease. This feature 

can act as a biomarker for medical professionals which together with age, can make 

an Alzheimer’s Disease  prediction with high performance. In addition to this 

feature, a novel interpretable classification framework is proposed for prediction of 

AD which can achieve high classification performance. Also, a novel 

interpretability index is also proposed which indicates to the medical professionals 

why such prediction has been made and which input features had the greatest impact 

on the final output.  The brain age Alzheimer’s Disease prediction model is also 

applied to other type and stages of dementia in a multi-class classification setting 

as an extension of the work. The results achieved in this thesis in both binary and 

multi-class classification are comparable to the baseline and relevant previous 

literature. The binary classification accuracy achieved are 92.84% and 89.74% for 

female and male subjects respectively. 
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Chapter 1 

1. Introduction 

1.1. Motivation 

1.1.1.Introduction to Alzheimer’s Disease 

Dementia is a neurodegenerative disease with several symptoms such as 

linguistic dysfunctions, problems in memory, difficulty performing simple every-

day tasks and changes to psychiatric and psychological state [1]. 

Main types of dementia include Alzheimer’s disease (AD), Frontotemporal 

dementia (FTD), Vascular dementia (VD) and Lewy body dementia (LBD).  

Definitive diagnosis of dementia is only possible at the brain autopsy after 

death and this makes the diagnosis in living subjects very challenging [2]. 

Alzheimer’s disease (AD) is a chronic and terminal neurodegenerative 

disease currently affecting approximately 6% of people aged 65 and older 
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worldwide. AD is the most common type of dementia and affects the memory of 

the people affected [1].  

At the early stages of AD, patients suffer from a condition referred to as mild 

cognitive impairment (MCI). This condition can be viewed as a mild case of AD 

and could get worse and convert to AD or it could get better and disappear [3].  

Clinical diagnosis of AD is a time consuming, costly and challenging process 

involving different types of examinations such as mental and neuropsychological 

tests, lab tests using blood, urine and cerebrospinal fluid and brain imaging tests 

such as MRI, CT and PET. This process also involves ruling out other diseases with 

similar symptoms, in order to avoid misdiagnosis. Although, multiple tests are 

carried out and different specialists are involved in reviewing the test results, it is 

reported that in the year 2017/18 only 66% of subjects with AD in the UK were 

diagnosed with AD and the complexity of the diagnosis process can often be the 

cause for missed diagnosis [4]. 

It is important for AD to be diagnosed correctly and in a timely manner [4]. 

With a large cost involved and limited treatment options, the aim should be to 

diagnose AD as early as possible in order to slow down the progression of the 

disease [4]. 

1.1.2. Benefits of early diagnosis 

Early diagnosis of AD has great positive influences on the patients, their 

carers and the economy in which [4] has studied and reported about these effects. 
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To name a few advantages of early diagnosis of AD it can be said that when the 

patients are noticing the very early signs and are unsure of the reason behind them, 

early diagnosis can stop any doubts the patients may have and give a clear 

justification and reason behind those early signs.  

Not only early diagnosis can provide an answer, but it can also give patients 

the right to use correct healthcare and medication. This will then enable them to 

manage the condition and have a longer independent life where they can live on 

their own while performing everyday tasks unaided. As the result they will preserve 

a life with good condition and quality for themselves and their family and carers.  

At the early stages of the disease life with good condition and quality can be 

preserved for a few years. Patients who have had the diagnosis at the early stages 

of the disease and have been advised about their condition, can decide their own 

futures when they still are capable of making decisions about issues such as the 

prospective medical care, healthcare and support arrangements, legal matters such 

as will and financial matters such as properties and investments, and whether the 

patients want to get the relatives and members of the family involved or make them 

aware of those decisions. 

In healthcare services, the only way to get admission to health and medical 

care and have access to the medications for AD to improve the life condition and 

quality is through getting diagnosed. A study was performed on 8995 recently-

diagnosed patients with AD from a database in the US. This study divided the 

patients into two groups of patients with treatment and patients without treatment. 
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Those patients who received treatment for AD showed a higher survival rate and 

20% less chance of being hospitalised and institutionalised [4]. 

In most cases members of the family or spouses are the ones who care for 

patients who have been diagnosed with AD and as this disease could last for a long 

time there could be high pressure on the carers. The care the family members are 

providing is most of the time unpaid. To estimate the value of unpaid work carried 

out by 16 million Americans who cared for member of the family with AD the 

Alzheimer’s Association made a report. In this report it is estimated that in the year 

2017, unpaid work totalling 18.4 billion hours including different types of support 

such as emotional, financial and physical, comes to a national value of $232.1 

billion [4]. 

In addition to the benefits of early diagnosis of AD mentioned above, it is 

worth mentioning that early diagnosis also gives plenty of time to the family 

members who will be potential carers to adapt to the forthcoming changes as the 

result of AD in the behaviour and characteristics of the patient and also to adjust to 

the change in their role from a family member to a supportive carer. Those carers 

who have resilience and can adjust to their new role have shown to suffer less 

psychological issues and conditions such as depression and anxiety. 

There are great costs associated with the care for AD. These costs could 

generally be grouped into 3 categories of care; informal care, social care and health 

care. The first category is informal care which involves caring for the patient with 

AD by a member of the family. This type of care incurs direct and indirect costs to 
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the family members. The second category is the social care which includes the care 

and nursing homes, and respite care and home care. The third category is the health 

care which includes the hospitalisation and institutionalisation of the patient with 

AD. Second and third categories have indirect costs both to families and 

government.  The cost from all 3 categories combined associated with dementia in 

the UK is over £26 billion annually. To give a cost per category: health care, social 

care and informal care cost £4.3 billion, £10.3bn and £11.6bn respectively. Out of 

these total costs which are estimated for dementia, 65% are related to AD [4]. 

Early diagnosis of AD could cost a large amount of money at the beginning 

but in the long run there will be a reduction in total costs associated with the disease 

and caring for the patient will be as a result of less need for hospitalisation and care. 

Early intervention in diagnosis of AD is the best and most favoured approach 

to dealing with the disease as it helps the patient maintain independence and 

function normally for a longer period. 

There are no medications to reverse the effect of AD on the brain but early 

diagnosis can help people related to the patient to adjust to the situation 

psychologically and mentally and also gives time to the patient to manage all their 

financial and legal affairs themselves and making decisions for themselves. There 

are many people who after an early diagnosis carry on living a high-quality life for 

a number of years while making the use of medications and treatment plans. 
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1.2. Problem definition and challenges of AD 

prediction 

Although early diagnosis of AD should be the option for every patient, it is 

not always possible considering the challenges that exist. One of the challenges is 

that as AD is affecting a large number of people and there are not enough medical 

professionals to make early diagnoses for all patients. Another challenge is that in 

order to clearly identify AD symptoms and avoid misdiagnosis specialist 

knowledge is required but often medical professionals dealing with AD do not have 

that knowledge therefore there will be a lack of confidence in the correct and timely 

diagnosis.  

Another challenge facing the early diagnosis of AD is that other diseases 

which are mostly physical are often prioritised before other mental diseases. These 

challenges were some of the challenges of early diagnosis of AD and these are the 

reasons why early diagnosis is so hard to achieve. [5] Also, diagnosing AD is a 

lengthy process involving long waiting times which means the right treatment plans 

may not always be put in place in time to slow the disease down. 

In order to help with the diagnosis of AD so that a novel prediction model is 

proposed in this thesis. This model can be used by the medical professionals as an 

indicator to presence of AD while providing an explanation for that indication. This 

can reduce the overall diagnosis process resulting in an earlier diagnosis. 
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1.3. Key assumptions and the scope of 

research 

This thesis focuses on prediction of AD using the medical imaging data of the 

brain belonging to healthy subjects and those with the disease. As AD is a 

neurodegenerative disease the assumption is that AD will cause faster degeneration 

and atrophy in the brain. This will cause the age of the brain of subjects with AD to 

look older than their real age due to this degeneration. This difference between the 

real age and the age of the brain in the subjects with AD will be used to predict AD 

in this thesis.  

The scope of this research covers analysing brain imaging data for subjects 

who have voluntarily gone through the scanning process. The data used are 

downloaded from public repositories which will be explained in the next chapter. 

The method proposed in this thesis is designed to give an indication to the medical 

professionals as to whether a subject is suffering from AD while providing an 

explanation of how such indication is made. 

1.4. Aim and Objectives 

The ultimate aim and the goal of the research in this thesis is to improve the 

prediction of AD and have a better understanding of that prediction which is made 

by machine learning (ML) models. The specific problem that this research is 

attempting to solve is to improve the detection of AD while maintaining the 

interpretability of the model. Therefore, following objectives are set out for this 

research: 
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- Creation of a descriptive and interpretable linear ML model using brain 

structural MRI scans for prediction of AD which can achieve comparable 

predictive performance to the black-box state-of-the-art models.  

- Creation of a linear ML model to eliminate the complexity of black-box 

models. 

- Achieving ML model interpretability through combining linear models 

by defining a linear index while keeping the predictive performance high. 

- Application of ML algorithms to create a brain age feature which acts as 

a biomarker to help in diagnosis of AD. 

- Creation of a feature selection model which selects the minimal number 

of features with maximal performance which are most helpful in 

predicting AD. 

- Application of AD prediction model using brain age feature in a multi-

class setting to predict multiple types and stages of dementia while 

achieving a comparable accuracy to state-of-the-art model. 

1.5. Contributions 

- A novel feature selection method to identify the most predictive brain 

regions for prediction of AD.  
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- A novel brain age feature which is used as a biomarker to AD by showing 

the difference between real age and brain age in subjects with AD. 

- A novel prediction framework for classification of AD. 

- A novel interpretability index which explains about the decision making 

behind AD prediction. 

1.6. Introduction to thesis and the proposed 

method 

This thesis focuses mainly on detection of AD as it is the main type of 

dementia and affects more people than other types and for completeness and as a 

logical progression of the research, in addition to AD, the proposed framework will 

be applied to another type of dementia i.e., FTD and three stages of dementia i.e., 

mild cognitive impairment (MCI), early MCI (EMCI) and late MCI (LMCI). 

Considering the impact that AD has on the world population, the importance 

of correct and timely diagnosis of it and to help with the complex process of AD 

diagnosis, as discussed previously, the aim of this thesis is to improve the prediction 

of AD, and to improve the understanding and reasoning behind the that prediction 

made by machine learning models. This thesis also aims to improve the timely 

detection of AD by proposing an automatic CAD method with high accuracy. 

In [6] a framework is proposed to model the aging of the brain of healthy 

subjects. This framework aims to estimate the age of subjects which will be referred 
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to as brain age and for this estimation a regression model is built on selected brain 

features from all parts of the brain with target variable as real age. This regression 

model is built using healthy subjects and the aim is to get the estimated (brain) age 

as close as possible to real age. This way, when the model is applied to subjects 

with AD, the estimated (brain) age is expected to be higher than real age due to 

faster aging and atrophy in the brain. 

In the proposed method, following the selection of a minimal set of features 

which are highly affected by AD, a regression model is built on those selected 

features with target variable as real age. This is to estimate the brain age of those 

selected features, which will be referred to as Apparent Brain Age (ABA). The aim 

of ABA-Com method is not to predict the age of the subjects but to estimate age of 

a subspace of brain features.  

For the estimation of ABA, the target variable in regression model should be 

the age of those selected features when subject is healthy. In order to estimate the 

age of those features, it is assumed that brain age of a healthy subjects is the same 

as their real age, so we can use the real age instead. The ABA therefore builds a 

framework to estimate the age of specific parts of the brain which are affected by 

AD. 

For BrainAGE approach [6] age of subjects is aimed to be estimated and then 

referred to as brain age (target variable is real age). We however predict the brain 

age of specific parts of the brain with target variable as brain age (assumed to be as 

real age). 
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A journal paper has been published as part of this PhD project on the ABA-

Com model which presents the interpretable prediction framework for binary 

classification of AD [7].  

1.7. How this thesis is organised 

Chapter 2 explains about the data used in this thesis which includes the 

description of structural MRI scans and how they are preprocessed to extract 

numerical measurements from those scans. This chapter also explains about the 

outlier detection method used to filter out a limited number of images identified as 

outliers before applying the proposed model. 

Chapter 3 provides an overview of the previous work done in the field of 

automatic CAD of AD. The studies reviewed in this chapter have all used the MRI 

scans to predict AD. The reason for this selection is to have a similar criterion to 

what is analysed in this thesis. The prediction of AD using MRI scans are performed 

using the brain regions directly as features in the machine learning models or 

indirectly by creating a biomarker and use that as a feature in machine learning 

models to predict AD. The results reported in this thesis are compared to both types 

of studies using direct and indirect predictions. 

Chapter 4 introduces the proposed novel Apparent Brain Age (ABA) feature. 

This feature will be used as a biomarker which can be used in a machine learning 

model as a feature to predict AD. This chapter explains how ABA is different to 

other brain age features suggested by other previous studies and compares the 

performance of ABA with previously suggested brain age models. Although ABA 
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performs worse than other models in predicting age, it has a superior performance 

to other models when classifying AD. This will be explained in chapter 5. 

Chapter 5 introduces the ability of ABA to classify AD. Whilst ABA was 

introduced in chapter 4 and the regression performance of the feature was analysed, 

in this chapter a novel classification workflow is proposed where ABA is used as a 

biomarker or feature in addition to real age (2 features in total) in a classification 

algorithm in order to predict AD. This chapter shows that the superior performance 

of ABA in CN vs. AD classification task compared with the baseline method where 

state-of-the-art SVM algorithm is used. 

Chapter 6 provides the details about interpretability and descriptiveness of the 

proposed workflow. In this chapter a novel feature score is proposed where it will 

be used to show the contribution of each brain region on the classification of AD. 

Using this score it is clear that which brain features have been selected and how 

much they contribute to the classification task. 

Chapter 7 presents a multi-class classification of dementia types and stages 

using the ABA workflow. Up to chapter 7, the ABA model was focused on binary 

classification of AD vs. CN. A logical extension of that work was to apply the ABA 

classification workflow to more than two classes therefore a 6-class multi-class 

classification of CN, EMCI, LMCI, MCI, AD and FTD is proposed in chapter 7.  

Chapter 8 provides a conclusion on the results reported in the thesis and 

outlines the future works identified. 
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1.8. Summary 

This chapter provided an introduction into this thesis including an 

introduction into the dementia prediction, the challenges involved and the 

motivation to propose a novel method in this domain. It is also discussed what the 

research objectives and the original contributions are in this thesis. In the next 

chapter the data and the preprocessing the data will be discussed. 
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Chapter 2 

2. Data and experiments 

2.1. Subjects ROIs data 

 

This chapter explains the data used in this thesis. To perform the analysis and 

model building process a type of neuroimaging scan of human brain is selected 

which can be used to detect patterns caused by AD in the brain. The type of scans 

selected is Magnetic Resonance Imaging (MRI). MRI itself has different types such 

as functional and structural and as this thesis focuses on detection of patterns from 

anatomical and morphological changes in the brain, Structural MRI (sMRI) is 

selected as the data type.  

The sMRI scans can be acquired using two weightings: T1 and T2. T1 is used 

to show fat in tissues (brain structures) and T2 to show fat and water (CSF). As this 

thesis focuses on analyses of brain structures (white and grey matter) T1 weighting 

is selected. 
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Table 2.1 | Distribution of the 3,170 subjects adopted in this study. 1,567 female 

and 1,603 male. 

Gender Source Group 
Number 
of 
subjects 

Age 
Mean 

Age 
Std 

Age 
Min 

Age 
Max 

M ADNI AD 213 75.82 7.86 55.30 90.40 

M ADNI CN 317 74.20 6.36 56.20 90.30 

M ADNI EMCI 179 71.88 7.21 55.00 89.00 

M ADNI LMCI 97 73.48 7.19 56.00 91.00 

M ADNI MCI 227 75.35 7.28 54.60 89.80 

M AIBL AD 32 74.83 8.65 60.40 89.40 

M AIBL CN 199 74.30 7.85 54.60 89.80 

M AIBL MCI 52 74.42 6.30 57.80 85.50 

M IXI CN 90 65.50 7.27 55.09 86.20 

M NIFD FTD 116 64.42 5.88 55.00 85.00 

M PPMI CN 81 65.98 7.43 55.00 83.00 

F ADNI AD 177 74.29 8.07 55.20 91.00 

F ADNI CN 398 72.10 6.24 55.60 89.90 

F ADNI EMCI 152 70.26 7.75 56.00 88.00 

F ADNI LMCI 79 70.57 7.55 55.00 85.00 

F ADNI MCI 132 73.48 7.64 55.20 86.20 

F AIBL AD 44 75.34 7.88 56.30 88.40 

F AIBL CN 272 74.39 7.34 55.20 88.00 

F AIBL MCI 48 75.62 6.12 60.20 86.60 

F IXI CN 143 65.10 6.31 55.22 86.32 

F NIFD FTD 86 65.51 5.63 56.00 79.00 

F PPMI CN 36 64.86 7.09 55.00 82.00 

 

To acquire sMRI data, there are several public directories of which the 

following five datasets were selected: Alzheimer's Disease Neuroimaging Initiative 

(ADNI), Information eXtraction from Images (IXI), The Australian Imaging, 

Biomarker & Lifestyle Flagship Study of Ageing (AIBL), Neuroimaging in 

Frontotemporal Dementia (NIFD) which is the nickname for the frontotemporal 

lobar degeneration neuroimaging initiative (FTLDNI) and Parkinson's Progression 
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Markers Initiative (PPMI). The distribution of sMRI data acquired from these five 

datasets are provided in Table 2.1. 

The five datasets may contain multiple scans for the same subject taken on 

the same or different date, or the scan could be taken as different phases such as 

screening, baseline, month 6, month 12 etc. The scans selected and downloaded for 

this thesis are the earliest scans taken for given subjects as the aim of this thesis is 

to improve the AD diagnosis at the earliest stage of the disease. Also, if there are 

scans taken on the same date (within the same phase), the scan with the highest 

contrast-to-noise ratio (CNR) is selected. 

Following the selection of the subset of data from the five datasets by 

selecting the earliest scan and the one with the highest CNR in case of multiple 

scans in the same phase, data containing 3,170 sMRI scans (each scan belonging to 

a single subject) were downloaded. 

The sMRI scan provide a 3D view of the brain showing the morphological 

structures of different parts including the cortical and subcortical regions. 
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Figure 2.1 | Structural MRI scan of two subjects. The top row represents a CN 

subject with a typical brain cortical volume and the bottoms row represents an AD 

subject with atrophy in the hippocampus and gyri. Source: Mary Ellen Koran, MD, 

PhD https://practicalneurology.com/articles/2019-nov-dec/neuroimaging-and-

alzheimers-disease 

 

In Figure 2.1 the hippocampus and gyri region of the brain of two subjects 

are compared. The three images on the top row belong to a healthy subject with 
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typical brain cortical volume and the three images on the bottom belong to a subject 

with AD which show loss of volume and atrophy in the hippocampus and gyri areas. 

The grey matter thickness on the images on the bottom are significantly thinner than 

those of images on the top. This shows the atrophy in the brain caused by AD which 

gives an indication to medical professionals when diagnosing AD.  

In this thesis, numerical measurements such as thickness, volume and area of 

different regions of the brain are extracted and used as features in the analyses. In 

order to extract those numerical measurements of different regions of the brain, the 

sMRI data which are 3D scans of the brain are preprocessed using FreeSurfer v.6.0 

[8] where processes like image registration, skull stripping, brain segmentation and 

parcellation and estimation of cortical measurements such as surface area, volume 

and thickness. Examples of different features could be the thickness of right HATA 

and the volume of right Hippocampus, each as a numerical value. 

Following the preprocessing step, each scan of an individual subject would 

produce a set of 446 features (or numerical measurements of the brain regions). In 

the data cleaning stage 45 features were eliminated from the feature set as they were 

duplicates of other features or had errors. These could be caused by the head 

movement at the time of scan or the preprocessing of the images using FreeSurfer. 

The preprocessed data represents a tabular dataset with 3,170 rows 

(subjects/scans) and 403 columns (features) which include 401 brain features 

extracted and produced by FreeSurfer v.6.0 plus age and gender. 
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ADNI is among the most popular datasets used in automatic CAD for AD and 

in this study is the primary dataset with greatest number of subjects with AD. The 

age range of the participants selected to take part in ADNI study is 55-90 therefore 

any datasets selected and used in addition to ADNI, in order to keep the age 

consistency among all datasets, subjects with the same age range, 55-90, are 

selected. As an example, the age range of the participants taken part in IXI study is 

19-90 but for consistency only subjects above and including the age of 55 are 

selected, downloaded and used for this thesis. The reason for selecting all the 

subjects with the same age range is due to the effect of age on the size of the brain.  

2.2. Outlier detection 

Among the images downloaded and preprocessed a few could have a 

significantly different feature distributions compared to the majority of the imaged, 

which could be the result of a technical error or head movement when taken the 

MRI scan, or preprocessing of the image using FreeSurfer v.6. These few images 

are considered to be outliers to rest of the data and should be removed as they will 

adversely affect the analyses. Therefore, an outlier detection step is performed in 

order to identify and remove these few outliers before building the proposed model. 

Outliers are data points which are unexplainable and different from the rest 

of the data. Cause of outlier existence can be head movements of the subject or 

malfunctions of the medical equipment such as MRI machines. One challenge is 

that on one hand, having outliers in our data can produce a skewed and biased model 

and it is better if outliers are removed from the data [10] and on the other hand we 
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cannot afford to lose data by eliminating a great number of instances as outliers. 

Therefore, there should be a trade-off between the probabilities that some instances 

are outliers (how different the outliers are from the rest of data) and the number of 

outliers to remove from the data.  

In selection of the outlier detection technique, the number of 

attributes/dimensions in the data is an important factor as some methods such as 

Local Outlier Filter (LOF) [11] are only efficient at detection of outliers in a low 

dimensional dataset. To apply outlier detection (OD) to these data, a high 

dimensional OD method should be selected. Among high dimensional OD methods, 

Isolation Forest (iForest) [9] and Angle-based Outlier Detection (ABOD) [12] are 

regarded as two of the best OD methods [13] where iForest has a much lower 

computational complexity and therefore is selected as the OD method in this thesis.  

 

iForest is a tree-based outlier detection technique which uses random forests 

to identify outliers. The intuition behind creation of iForest is handling outliers in 

high dimensional data with low computational complexity and avoiding profiling 

normal instances or inliers in order to avoid false alarms (identifying normal 

instances as outliers). In iForest outliers are detected based on the fact that they are 

"few and different" therefore iForest isolates outliers rather than profiling inliers. 

The process of iForest is explained below as presented by the original paper 

[9]. 
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To initialise an iForest tree, iTree, one feature q, one split point p in feature q 

and one sub-sample of ψ instances (referred to as X) are randomly selected. Starting 

from the root of the iTree, instances X are partitioned into 2 nodes using the split 

point p; X with q < p are placed into the left child node and instances with q >= p 

are placed into the right child node. The partitioning of instances into 2 child nodes 

is performed recursively on all nodes until a termination node is reached. A node 

will be regarded as a termination node if any of the following criteria occurs: 1- the 

iTree reaches the height limit l (which is explained in the next paragraph), or 2- all 

instances in a node have the same values or 3- node contains only 1 instance.  

 

Following the generation of an iTree, every instance x has a path length h(x), 

which is given by the number of edges an instance x traverses through to reach the 

termination node. The maximum limit on h(x) is given by height limit l. iForest 

original paper [9] considers the approximate average tree height to be 

ceiling(𝑙𝑜𝑔2 ψ) as suggested by [14] and selects this as the height limit l as 

demonstrated in the equation below:   

 𝑙 =  ceiling(𝑙𝑜𝑔2 ψ) (E2.1) 

 

where l is the height limit and ψ is the number of instances in the sub-sample. 

 

To create an iForest, multiple iTrees are generated. The number of iTrees in 

an iForest will be referred to as t. After the creation of iForest, the outlier score is 

estimated using the following equation: 
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𝑠(𝑥, 𝜓)  =  2

−
𝐸(ℎ(𝑥))

𝑐(𝜓)  
(E2.2) 

 

where x is an instance, ψ is the number of instances in the sub-sample, h(x) 

is the path length, E(h(x)) is the average h(x) over a number of iTrees and c(ψ) = 

2H(ψ − 1) − (2(ψ − 1)/ψ) where H(i) is the harmonic number and is equal to ln(i) + 

0.5772156649  (Euler–Mascheroni constant).  

In equation E2.2, s has the following properties: 

• when E(h(x)) → 0, s → 1 

• when E(h(x)) → ψ - 1, s → 0 

• when E(h(x)) → c(ψ), s → 0.5 

and therefore, the following conclusions are made: 

• an instance x with s very close to 1 is definitely an outlier, 

• an instance x with s much smaller than 0.5 is most likely an inlier, 

• if all instances have s ≈ 0.5, then there are not any noticeable outliers in 

the data. 

In iForest model, there are three main hyper-parameters, sub-sampling size 

ψ, height limit l and number of iTrees t.  
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Following the empirical analysis in [9] the number of 256 instances in the 

sub-sample (ψ = 256) is shown to be sufficient in isolating the outliers where any 

increase from 256 will not have any improvements on the detection performance 

and will be less computationally efficient, therefore 256 is selected as the default 

value for ψ. 

 

Also, as part their preliminary analysis outliers and inliers have proven to 

have average path lengths h(x) of 4 and 12 respectively when sub-sample of 135 

instances were used where ceiling(log2 135) = 8. This has indicated that outliers are 

isolated well before the iTree height/depth has reached the average tree height of 8. 

Therefore the default height limit l is selected as ceiling(log2 256) = 8.  

It is demonstrated in the same paper that the average path lengths h(x) starts 

to converge well before the number of iTrees t is reaching 100. Therefore, the 

default value for t = 100. 

 

In iForest outliers are isolated sooner than inliers being profiled. This means 

outliers are isolated before the iTree is fully grown and hence the iTree model used 

is a partial model however, since the aim is isolation of outliers in a time-efficient 

and computationally-efficient manner, partial model is sufficient to detect outliers.  

 

iForest outlier detection model in this thesis used the default hyper-

parameters recommended by the original iForest paper [9] as changing the values 

do not help the performance of iForest. This could be seen as an advantage, as 



24 
 

iForest could be used as a model with no need for hyper-parameter optimisation. 

Also, iForest can indicate if all data points are inliers and there are no outliers in 

our data (when all instances have outlier score s ≈ 0.5). And although selecting 

outliers based on their scores can be challenging, by having a balance between the 

number of outliers and the degree that they are different from the rest of the data, 

outliers can be identified and removed. 

 

To apply iForest to our data, sklearn.ensemble.IsolationForest module from 

scikit-learn Python library [15] is used.  

 

iForest creates a probability or outlier score for each datapoint after being 

applied to the data. To visualise the result of iForest on the data and outlier score of 

each data point, the iForest outlier detection technique [9] is applied to all data (on 

each gender separately), in the unsupervised approach and since the class labels are 

not used at this stage, this will not cause any overfitting [16].  

 

Figure 2.2 | Isolation Forest outlier score distribution for Male group (on the left) 

and Female group (on the right). The red line represents the cutoff point. Data points 

on the right of the red line are considered as outliers. 
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After application of iForest to all data for each gender, the distribution of the 

generated outlier score for each gender is produced separately and shown in Figure 

2.2. On both plots of this figure show positively-skewed distributions presenting a 

very few data points on the right which can be identified as outliers. To find the cut-

off point on x-axis for selecting the outliers, Tukey’s method [10] is used: 

 𝑐𝑢𝑡𝑜𝑓𝑓 =  Q3 + 3 . IQR (E2.3) 

In the box plot, IQR represents inter-quartile range and Q3 represents the third 

quartile. Any data point with an iForest outlier score greater than the cutoff would 

be classed as an outlier and deleted. 

In the exploratory data analysis using all data, iForest identified 15 male 

subjects and 14 female subjects to be outliers in their gender groups, as shown in 

the two plots in Figure 2.2.  

The model building in this thesis is performed using a cross-validation. At 

each fold of the cross-validation a separate iForest model is built and applied. For 

this purpose, at each fold, both iForest model building and the cutoff point 

calculation are performed on the training set and applied to both training and test 

sets. 
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2.3. Experiments 

 

This section explains about the experiments performed in this thesis. The 

significant and unique characteristic of the proposed approach is the greedy feature 

selection of the disease specific features for creation of ABA. However, to show 

that the effect of feature selection on the performance of ABA, the workflow is also 

performed without the feature selection as an initial stage. Also, as the proposed 

approach is data driven and the hypothesis is that more data will result in more 

accurate performance, in addition to having the initial stage without feature 

selection and the main proposed method with feature selection the effect of 

additional data is also investigated by a further stage where additional data is added 

to the initial stage. Therefore, not only to evaluate the performance of the proposed 

method but also to compare the effect of adding each component of the additional 

data and feature selection, the proposed system contains 3 experiments named M1, 

M2 and M3. 

M1 is the initial experiment where the ABA-Com model is built without the 

proposed feature selection method using single data source (ADNI). The 

experiment M2 has the same setting as M1 but with additional data sources (ADNI, 

AIBL, IXI and PPMI) in order to show the effect of data on the ABA-Com 

performance. M3 is the final experiment which contains the proposed ABA-Com 

model and the proposed feature selection method in this thesis to classify AD vs. 

CN in a binary classification setting. M3 uses the same data as M2 but the ABA 

feature is built on selected features which were selected using the proposed feature 
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selection method. Therefore, the difference between the results of M3 and M2 

shows the effect of the proposed feature selection method on the ABA-Com model 

performance.  

In order to compare the performance of the proposed approach with the 

performance of a black-box state-of-the-art classification algorithm, two more 

baseline experiments are performed: B1 and B2. In B1 experiment all features are 

used to classify AD where only ADNI data is used. The B2 method is also 

performed with same setup as B1 but with additional data sources (ADNI, AIBL, 

IXI and PPMI); this is to show the effect of additional data on the result of the SVM 

classification where no feature selection and regression are used. The change from 

B1 to B2 can then be compared to the change from M1 to M2 to show that the 

proposed method is more affected by additional data than when SVM is used. 

State-of-the-art could refer to the latest technology or development in a fields 

but even though the SVM is not a new algorithm, it is still considered a popular 

state-of-an-art technique which has been extensively used in AD prediction 

research [17]. Although SVM is considered one of the most powerful machine 

learning algorithms, the process of how it works is hard to comprehend. These types 

of algorithms are often referred to as black-box where the user cannot see the inner 

workings of the algorithms and the output is hard to interpret [18].  

In the published journal paper [7] ABA-Com model was evaluated using 1901 

subjects acquired from 3 sources of ADNI, AIBL and IXI containing CN and AD 

subjects, which were at the time of publishing preprocessed using FreeSurfer v.6 
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and ready for analysis. As the ABA-Com model is a data-driven approach and the 

performance of the model improves by adding more data, for the purpose of this 

thesis further CN data were acquired from PPMI and preprocessed using FreeSurfer 

v.6. Although the PPMI data only contained 81 male and 36 female subjects but the 

analysis in this thesis confirmed the results achieved in the journal paper. In fact, 

the performance of ABA-Com model has improved in this thesis compared to the 

results reported in the paper, due to having more data available. This confirms the 

fact that ABA-Com model is a data-driven model and by having more data the 

model performance can improve.   

The study proposing the original ABA-Com model [7] was focused on binary 

classification of AD vs. CN. In this thesis, in addition to the binary classification, 

multi-classification is also performed where ABA model predicts CN, AD, MCI, 

EMCI, LMCI and FTD in a 6-class classification setting. 

For the purpose of the multi-class classification performance evaluation of 

ABA-Com model, 12 experiments are performed in chapter 7. These 12 

experiments are split into 3 groups of 4 experiments of which refer to different 

classes being used for that any one experiment.  

The 4 experiments are 3-class where CN, MCI and AD are classified, 4-Class 

where CN, MCI, AD and FTD are classified, 4-Class (E/LMCI as MCI) where 

EMCI and LMCI are used in the classification as MCI and the 4 classes of CN, 

MCI, AD and FTD are classified and 6-class is where CN, EMCI, LMCI, MCI, AD 

and FTD are classified. 
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Among the 3 groups, Baseline SVM is the first group where all brain features 

and age are used as input in SVM algorithm to make a classification. SVM in this 

experiment is used as the state-of-the-art black-box algorithm to provide a baseline 

classification performance for the proposed method. This experiment is equivalent 

to B1 in binary classification. 

The second group of experiments is 𝐴𝐵𝐴𝑤𝑜𝐹𝑆 where the proposed ABA-Com 

model classification performance is evaluated while the proposed feature selection 

method is not used. This experiment is equivalent to M2 experiment in binary 

classification. 

The third group of experiments is 𝐴𝐵𝐴𝑤𝐹𝑆𝑥
 where the proposed ABA-Com 

model classification performance is evaluated while using the proposed feature 

selection method. This experiment is equivalent to M3 experiment in binary 

classification. 

 
Figure 2.3 | ML models created in this thesis. BFFS: Biased Forward Feature 

Selection which is a novel method proposed in this thesis, F: all input features, F1: 

feature subspace selected by BFFS, F2: selected features by LASSO. 
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The diagram in Figure 2.3 shows a high-view of the models built in this thesis 

in order to perform the binary classification analyses. SVM-AllF is the baseline 

model where all brain features and age are used as input features in SVM algorithm 

to classify AD vs. CN. The proposed dementia prediction model is the Combined 

linear ABA classifier (ABA-Com) which consists of two ML models; ABA-Reg 

which is the LASSO regression model to estimate ABA feature and ABA-Clf which 

is the logistic regression model built on two features of ABA and age to make a 

binary classification of AD vs. CN.  

In a multi-class classification setting in Figure 2.3, SVM-AllF model uses 

multi-class classification SVM algorithm in order to classify dementia types and 

stages and for the ABA-Com model, multiple ABA-Reg and ABA-Clf are built, 

each representing a dementia type/stage. 

2.4. Summary 

This chapter explained about the data used in this thesis and also the selection, 

cleaning and preprocessing the data including outlier detection. It is also show in 

this chapter that what MRI data of the brain are how AD can affect different parts 

of the brain which helps the prediction of AD. In the next chapter the previous 

relevant studies are reviewed where MRI data were used to make an AD prediction. 
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Chapter 3 

3. Literature Review 

3.1. Computer-Aided Diagnosis of AD using 

MRI with ML methods 

There has been extensive research in the field of machine learning to diagnose 

AD using automatic computer aided diagnosis (CAD). One approach for CAD is to 

analyse brain images to find patterns associated with AD in order to help with the 

diagnosis. Different neuroimaging techniques and modalities which are used for 

CAD include Positron Emission Tomography (PET), Single Photon Emission 

Computed Tomography (SPECT) and Magnetic Resonance Imaging (MRI). The 

MRI scans can include both Functional MRI (fMRI), Structural MRI (sMRI). In 

this thesis, sMRI is analysed and focused on. sMRI is a non-invasive 3D-imaging 

of the brain to aid with diagnosis of AD. In this thesis sMRI scans are used to build 

the machine learning models, therefore this chapter will focus only on the review 

of the literature on methods using sMRI data, as opposed to fMRI or any other 

neuroimaging techniques. Hereinafter throughout the thesis, MRI will refer to 

sMRI. 
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The MRI scans provide a 3D view of the whole brain but AD does not affect 

the whole brain equally; it affects some parts much more than the others. In order 

to analyse MRI scans, most of the times, studies segment the whole brain into 

smaller parts, in order to identify the parts of the brain which had the highest effect 

from AD. The segmentation of the brain into smaller parts can be carried out using 

two main approaches: voxel-wise and region-wise segmentations.  

In voxel-wise, the whole brain is uniformly segmented into n equal-sized 

smaller cubes also referred to as voxels, regardless of which structures of the brain 

the voxels belong to. The extraction of these voxels from the images are referred to 

as voxel-based morphometry (VBM) and the type of analysis performed on these 

voxels is referred to as VBM-based analysis where the voxels are used as features 

in the ML model. 

The region-wise segmentation is when the whole brain is segmented into 

predefined semantic structures of the brain also referred to as regions. In this 

analysis, each region may have a different size to other regions and represent a 

structure such as Hippocampus or Amygdala, and each region has multiple 

measurements of which are extracted as numerical data at image preprocessing 

stage.  Each of those measurements is referred to as a region of interest (ROI) and 

the type of analysis performed on those ROIs is referred to as ROI-based analysis 

where ROIs are used as features in the ML model. 

The next two sections, provide a literature review on studies using VBM-

based and ROI-based features extraction for classification of AD. 
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3.2. VBM-based classification of AD 

This section contains an overview of some of the relevant previous studies 

involving VBM-based analysis of MRI data in the context of AD diagnosis. These 

studies use the raw images, after voxel-wise segmentation and preprocessing, to 

find patterns associated with AD, as opposed to region-wise numerical 

measurements of different parts of the brain which will be reviewed in next section. 

[6] uses all voxels of the MRI scans as individual features or dimensions in a 

high dimensional space. SVM and subspace clustering is then applied to find 

images which are similar to each other and subsequently classify AD from CN. The 

highest classification accuracy, recall and specificity achieved by this study are all 

reported to be 95%, using the leave-one-out validation approach. Although the 

performance metrics of 95% is relatively high for binary classification of AD vs. 

CN, this study has used a very limited sample, containing 68 subjects with the same 

proportion of subjects for both classes of CN and AD. This number is relatively 

small compared to other literature in this field and the size of our dataset used in 

this thesis. This study has used several datasets from multiple different scanners 

with different protocols however due to having a small sample size, investigating 

the effect of different cohorts of data on the results cannot be tested with high 

confidence. 

In [19] voxels in medial temporal lobe are considered, where dense 

deformation fields and scaled grey-level intensity are used to derive the Jacobian 

determinants. SVM is then used for the binary classification of AD vs. CN. The 
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results report the accuracy of 92%, which is also relatively high, however, similarly 

to [6] the dataset used in this study is of a small size: 150 subjects with the same 

proportion of AD to CN. Therefore, the high accuracy reported may lack sufficient 

generalisation. Also, as SVM is a black-box approach, it does not provide any 

description as to why such accuracy was achieved. Similarly, to [6], this study has 

used several datasets in order to show the generalisability of the model however as 

the dataset is a small one, this generalisability test may not be robust. The study 

also shows that the pre-processing of the MRI data can be adjusted in order to 

improve the classification outcome. 

In [20] three different classification methods are used to separate AD from 

CN using clustered voxels from the MRI scans. The three classifiers used are 

Voting Feature Intervals (VFI), Bayes statistics and SVM. The accuracy reported 

in this study for the binary classification of AD vs. CN is 92%. Similarly to [6] and 

[19] this accuracy is relatively high but is based on a small dataset of 50 subjects, 

of which 18 are CN and 32 are AD. In this study by applying density-based spatial 

clustering to the voxels, a feature is generated that can separate the 2 classes of AD 

from CN by showing that the brain structure in CN subjects vary greatly from the 

brain structures in AD subjects.   

[21] uses a graph-based method where MRI scans are represented as graphs 

and subjects are classified to AD vs. CN by SVM using the three factors of gender, 

level of education and level of cognitive impairment in subjects. The graph-based 

method adopted in this study represents the shape of the ventricular systems in the 

brain and also relative to the skull. It is found by this study that AD can greatly 
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influence the ventricles shape. This work reported 90.9% accuracy for the binary 

classification of AD vs. CN. This study demonstrated that assessment of the brain 

could identify small parts of the brain which can be related to an occurrence of life 

events and the brain functions. Although these small parts of the brain can be 

identified, there is still a need for a medical professional to review those brain parts 

to find out what they could be, therefore this can be viewed as a drawback of this 

study. 

[22] is a recent study on binary classification of CN vs. AD where SVM with 

cubic kernel is used. This study has proposed a novel image preprocessing 

technique and the dataset obtained from ADNI contains 250 CN and 250 AD. In 

addition to SVM with cubic kernel, other methods such as Naïve Bayes, 

Discriminant Analysis, SVM with linear, quadratic and medium Gaussian kernels 

and K-nearest neighbours have been used but the reported accuracy for SVM with 

cubic kernel is the highest among all methods, which is 93%. For the validation of 

the method, 10-fold cross-validation is used. However, as the classifier is a black-

box approach, the model lacks descriptiveness and interpretability.  

[23] uses VBM analysis to perform binary classification of CN vs. AD using 

genetic algorithm and SVM. Subjects in this study have been obtained from ADNI 

which include 162 CN and 160 AD. The proposed method in this paper achieves 

93.01% accuracy using SVM. The validation of the method is carried out using 10-

fold cross validation.  
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[24] is among the latest studies suggesting an SVM-based machine learning 

method to predict AD using MRI scans with VBM analysis in addition to results of 

neuropsychological tests. The subjects in this study include 353 CN subjects and 

296 AD subjects, obtained from ADNI. This study has achieved 93% accuracy for 

CN vs. AD binary classification using holdout validation and the accuracy is 

computed using a single test set (20% of all data). Although the study has used a 

relatively large dataset, as the holdout method is used for validation the 

performance estimation method is not adequate to provide guarantees of 

generalisation.  

3.3. ROI-Based classification of AD 

This section provides an overview of past studies involving the analysis of 

numerical measurements of brain regions using MRI data. The MRI scans are first 

preprocessed into numerical data representing multiple measurements such as 

volume, area and average thickness of different parts or regions inside the brain. 

[25] proposes a sparse Bayesian multi-task learning algorithm to help predict 

AD. In this study MRI scans are pre-processed using FreeSurfer v.4 for image 

segmentation and for the generation of ROI measurements have been extracted 

from the scans. This work investigates the connection between the patterns in the 

brain measurements and the cognitive state of the brain, to see how the physical 

change in the brain and its structures can affect the cognitive state. This work has 

reported 73.5% accuracy in classification of AD by prediction of cognitive scores, 

using 393 subjects, of which 171 are AD and 222 are CN. Multiple biomarkers were 
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identified in this study that can help determine the cognitive state of the brain and 

the AD progression in it, which can be an indication that the biomarkers suggested 

in this thesis, in addition to being able to predict AD, they can also show the 

progression of AD. 

[26] uses SVM to perform binary classification of CN vs. AD. This study has 

used FreeSurfer v.4 to preprocess the MRI scans. The number of subjects used 

include 226 CN and 182 AD from ADNI. The 10-fold cross-validated classification 

accuracy achieved by SVM is 90.5%.  

[27] applies SVM-based recursive feature elimination for feature selection 

and Extreme Learning Machine (ELM) for binary classification of CN vs. AD. The 

subjects used were obtained from ADNI including 229 CN and 193 AD subjects. 

FreeSurfer v.4.5 is used to preprocess the images and extract the measurements of 

different regions of the brain. The accuracy achieved using 10-fold cross-validation, 

repeated 10 times, is 92.84% using ELM although standard deviation is not reported 

in the study. The neural network model is complex and black-box. This approach 

also achieved a similarly high accuracy than other methods, and lacks 

descriptiveness and interpretability too.  

3.4. Brain Age prediction for classification of 

AD 

The studies presented so far in this chapter were related to classification of 

AD directly from brain features, VBM-based or ROI-based. An alternative to these 

types of analyses is to generate biomarkers to help with diagnosis of AD. One type 
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of biomarker which has helped in classification of AD is “brain age”. Brain age is 

ML-based estimation of the age of the brain in contrast to the subject age to indicate 

an accelerated age process in the brain possibly caused by a neurodegenerative 

disease. Brain age can act as a biomarker to provide an indication of presence of 

AD.  The logic behind brain age is that if the biological age of the brain is higher 

(older) than the real anagraphical age of the subject then it can be concluded that 

the brain has been affected by AD, as one of the effects of AD is causing brain 

atrophy and degeneration in a way that the brain would age at a higher pace than 

real age. 

This section reviews the studies where the brain age of the subject is estimated 

in order to aid with the classification of AD from CN. Using either VBM-based or 

ROI-based, previous literature have attempted to use the whole or particular parts 

of the brain to estimate the age of the brain so it can be compared to the 

chronological age of the subject. The gap between the brain age and real age is then 

used to indicate the presence of AD where a bigger positive gap (brain age minus 

the age) means a higher possibility of presence of AD. 

One of the early and main studies on brain age in the context of AD is [6] 

where a novel feature based on the difference between estimated age of the subjects 

and their real age is proposed, referred to as brain age gap estimation (BrainAGE) 

score.  

Originally 550 CN subjects from IXI were selected with 3 subjects excluded 

from the study due to missing age information. Therefore, the analysis was applied 
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to 497 subjects of age 20-86. The MRI scans were split into 410 training set and 

137 test set, using random sampling with stratification on age. In this study VBM 

analysis was used, where the MRI data were preprocessed using SPM8 package 

[28] to generate 3700 voxels per image. PCA is then applied to the voxels to reduce 

their dimensionality to 410 principal components to equal the size of the training 

set. Following the dimensionality reduction, support vector regression (SVR) and 

relevance vector regression (RVR) are applied to the voxels data in training set 

(containing only CN subjects) to generate the suggested model, the BrainAGE score 

model, where it is also used to generate the BrainAGE score for 2 test samples from 

ADNI: a sample of 102 AD subjects with age range of 55-88 and a sample of 232 

CN subjects with age range 60-90.  

The results presented in this study show that BrainAGE score of the 2 samples 

from ADNI, have a different distribution with mean score for subjects with AD 

aimed to be plus 10 and for CN subjects aimed to be 0 or under.  

The logic behind this score is that a greater score shows a greater pace in the 

brain degeneration which is an indication of AD and when the score is 10 it means 

the brain age of the subjects is 10 years older than their real age which is a sign of 

acceleration in the brain atrophy associated with AD. Subjects with CN on the other 

hands are expected to have the same brain age as their chronological age as their 

brain should be aging the same as their real age.  

This study uses regression models on a truncated projected space of all voxels 

(after the dimensionality reduction), from all parts of the brain to predict the brain 
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age using the real age as the target variable. This means all regions of the brain are 

used in the model building. Also, to optimise the model, the mean absolute error 

(MAE) is minimised and the correlation coefficient r is maximised. In other words, 

the BrainAGE score model is aiming to be as close as possible to the real age by 

minimising the regression error between BrainAGE score and age, and maximising 

the correlation between the two, which is in fact the aim of regression models. This 

study has used a relatively large dataset which makes their method robust. The 

MAE and r of the test set reported in this study are 4.98 and 0.92 respectively for 

CN subjects. 

There have been several studies on BrainAGE score being used as a 

biomarker to detect neurodegenerative diseases [29] and one study which provides 

an accuracy of the BrainAGE score in the binary classification of AD vs. CN is 

[30], where the BrainAGE score model is built on 561 CN subjects from IXI and 

applied to the training sample of the CAD Dementia challenge containing 30 

subjects. The resulting accuracy of this holdout validation method is 90%, however, 

as this is a holdout method its generalisation is arguable. 

[31] proposes a novel feature estimating the difference between the real age 

of the CN subjects and their brain age, referred to as brain estimated age difference 

(Brain-EAD). In this study MRI data for 1128 subjects from four sources of IXI, 

Open Access Series of Imaging Studies (OASIS), ADNI and PPMI are acquired. 

The subjects are 839 CN with age range 35-90, 129 AD and 160 PD. This study 

uses VBM analysis where SPM v12 package is used to generate 3747 voxels for 

each scan.  



41 
 

A support vector regression (SVR) model is then trained on all voxels of CN 

subjects to generate Brain-EAD model. This model is then applied to the subjects 

with AD and PD. Although no accuracy is given in this study, similar to other brain 

age estimation methods, MAE and r were considered as the metric to estimate the 

performance of the model, and the aim is to minimise the MAE and maximise r in 

Brain-EAD model. The MAE and r of the training set reported in this study are 4.38 

and 0.92 respectively for CN subjects. The MAE is lower than that of reported in 

[6] with the same r. 

[32] proposes a novel brain age model referred to as DeepBrainNet. In this 

study 11729 subjects have been acquired from multiple sources, with the aim to 

create a brain age model with minimal preprocessing using DNN to have an 

optimum performance in predicting multiple neurodegenerative diseases such as 

AD, MCI, SCZ (Schizophrenia) and major depression.  

This paper is among the very few papers that in addition to MAE and r on 

brain age model, reported the accuracy. The MAE and r of the training set reported 

in this study are 3.702 and 0.978 respectively for CN subjects. The accuracy 

reported for AD vs. CN binary classification is 86%. The possible improvements to 

this study could be improving the accuracy and descriptiveness, and making the 

DeepBrainNet model more specific to one neurodegenerative disease. 

Multiple studies were reviewed where morphological or numerical features 

of brain MRI scans were directly used in the machine learning model to classify 

CN vs. AD. This classification can be viewed as complex and a large number of 
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features were used in the model. In addition to the complexity of the models 

generated by these approaches they did not allow for any interpretability as most of 

the studies used black-box algorithms such as SVM or deep networks. Using a 

complex machine learning model with many input features and without any 

description makes the interpretation of the results very difficult if not impossible.  

To improve the descriptiveness of the model biomarkers can be used such as 

brain age where it is used in order to provide a meaningful explanation offering the 

domain expert the motivation for the classification decision as well as the 

opportunity to learn useful insights. The concept of brain age could be viewed as a 

dimensionality reduction approach such as PCA but the difference is that despite 

principal components brain age has a strong semantic meaning as it is a feature 

generated using all or particular parts of the brain to represent the effect of AD.  

The studies involving generation of brain age as a feature to aid with the 

prediction of AD are reviewed but the drawback with the methods used in those 

earlier literature to model brain age is the lack of specificity. Although all methods 

have been used in the context of AD, but in building the model the characteristics 

of AD have not been used, therefore the models are generic brain age models, built 

based on brain of healthy subjects with no information or relation about any specific 

diseases.  

Table 3.1 provides an overview of the results reported in the previous 

literature. In studies where brain features are directly used in ML model (VBM-

based or ROI-based) the consensus shows that most studies using relatively medium 
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to large-sized datasets, SVM algorithm and cross-validation methods have achieved 

accuracies of between 92% and 93%. This could be viewed as a baseline 

performance for such studies. The studies involving the generation and use of brain 

age are also presented in Table 3.1 but, not all of these studies report accuracy as a 

measure of performance; instead, they provide MAE and r to show the performance 

of their brain age regression model. The studies involving brain age used relatively 

large datasets to generate their models using SVR or DNN and the accuracy for the 

ones which have reported it is between 86% and 90%.  

The models proposed in methods 11-14 in Table 3.1 generate brain age 

features which can be used by medical professional as biomarkers in detection of 

AD and could be part of the diagnosis process. But the lack interpretability in the 

models prevents those using these brain age features from understanding why such 

features were estimated for a particular subject. This could result in a decreased 

confidence while using such biomarkers. The work in this thesis therefore proposes 

a novel brain age estimation model which is also inherently interpretable.  

The proposed work in this thesis uses linear regression algorithms to generate 

a brain age feature which acts as a biomarker and a classification model which can 

assist medical professionals in predicting AD while providing descriptions of why 

such prediction has been made. 

As a biomarker in a medical setting the interpretability of the brain age 

estimation model is crucial as it can affect the outcome of the diagnosis.  



44 
 

In the methods 11-14 in Table 3.1 which involve using brain age in the 

prediction of AD the chronological age of the subject is estimated using the 

suggested “age estimation framework” to be then compared to subject’s real age. 

Therefore, the objective is to predict the subject’s age from brain features.  

The difference between this method and the proposed method in this thesis is 

that in the proposed method the objective is to estimate the biological age of the 

brain with specific reference to a particular neurodegenerative disease, e.g., AD. 

This means that in the proposed method brain age is actually the estimation of the 

biological age of particular parts of the brain which are highly affected by a 

particular neurodegenerative disease, e.g., AD. The classification performance 

results produced by the proposed model is therefore expected to be better than those 

models which are based on all parts of the brain which lack specificity to a particular 

pathology. 

3.5. Summary 

This chapter provided an overview of the relevant previous literature in the 

field of brain age and AD prediction using MRI scans. Different methods have been 

utilised by different studies however the consensus shows that SVR and SVM were 

the most used methods for the brain age prediction and the AD classification 

respectively. The next chapter will explain about the proposed brain age model 

which will be used in the prediction of AD. 
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Table 3.1 | Summary of results reported in previous studies using VBM-based and 

ROI-based AD/CN binary classification. Results from previous studies using the 

“brain age” as biomarker to detection of AD are also reported. Methods have used 

n-fold (nf) cross-validation (CV), with some repeated (rep) multiple times, leave-

one-out cross-validation (LOO) and Hold-out (HO). MAE: mean absolute error; r: 

Pearson’s correlation r; SVM: support vector machine; SVR: support vector 

regression; ELM: extreme learning machine; DNN: deep neural network. Hyphen 

is used when the metric was not reported or not applicable. 

ID Ref Category Number 
of 
Subjects 

Algorithm Validation Accuracy MAE r 

1 [33] VBM 68 SVM LOO 95.00 - - 

2 [19] VBM 150 SVM LOO 92.00 - - 

3 [20] VBM 50 Bayes LOO 92.00 - - 

4 [21] VBM 186 SVM 10f CV 90.90 - - 

5 [22] VBM 500 SVM 10f CV 93.00 - - 

6 [23] VBM 322 SVM 10f CV 93.01 - - 

7 [24] VBM 649 SVM HO 93.00 - - 

8 [25] ROI 393 Bayes 5f CV 73.50 - - 

9 [26] ROI 408 SVM 10f CV 90.50 - - 

10 [27] ROI 422 ELM 10f CV 
rep 10 

92.84 - - 

11 [6] Brain Age 550 SVR HO - 4.98 0.92 

12 [30] Brain Age 591 SVR HO 90.00 5.10 0.92 

13 [31] Brain Age 1128 SVR HO - 4.38 0.92 

14 [32] Brain Age 11729 DNN 5f CV 86.00 3.70 0.98 
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Chapter 4 

4. Apparent Brain Age 

This chapter explains in detail the proposed feature in this thesis, referred to 

as Apparent Brain Age (ABA) which can be used as a biomarker in identifying AD. 

The brain age is the estimation of the age of the brain using a machine learning 

algorithm based on selected brain features in order to show the acceleration of aging 

of the brain as the result of a neurodegenerative disease. The proposed ABA is the 

estimation of age of parts of the brain which are highly affected by a 

neurodegenerative disease i.e., AD. 

4.1. Brain Age and AD 

The brain age can be used as a biomarker in prediction of Alzheimer’s 

Disease. Several studies have studied brain age to help predict Alzheimer’s Disease 

[6] [31] [32]. In these studies, the biological age of the brain is predicted using MRI 

scans, where the whole brain and the ROIs from all regions of the brain contribute 

to the prediction of AD. The deviation between the brain age and the chronological 

age could be used as an indication to presence of AD. The use of whole brain 
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morphometry creates a uniformed model for predicting the subject’s brain age, 

regardless of their health, therefore this model lacks specificity to a particular 

disease.   

In previous studies on brain age prediction for prediction of AD [6] [31] [32] 

a regression model is built on the morphological features of the whole brain. The 

features are then used in PCA to reduce the dimensionality of the features.  

Following the application of PCA, brain age model is built on the those 

features outputted by PCA of cognitive normal (CN) subjects only. This is to model 

the morphological brain structure of the healthy subjects and assign different brain 

ages to those healthy brains. The brain age model is then applied to subjects with 

AD with the aim of identifying the difference to CN brain and predict the right age 

for the brain. The brain age for CN subjects is assumed to be the same as the 

subject’s biological age whereas for AD subjects, due to the atrophy in parts of the 

brain caused by AD, the brain age is expected to be older than the biological age 

and therefore the brain is expected to be predicted by the brain age model to be 

older.  

Those studies have a general-purpose brain age based on the whole brain 

morphometry which may not be the most effective way to classify AD from CN. 

Therefore, by adding the specificity to a particular disease and building the brain 

age model in the context of a specific disease, the performance on the classification 

task could be improved.  
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Those approaches also suffer from lack of descriptiveness by using non-linear 

models such as PCA and black-box models such as support vector regression 

(SVR). The descriptiveness of the brain age model could also be improved by using 

linear and interpretable models. The challenge is to build such linear models in a 

way that does not affect their accuracy with regards to more complex models. 

To add specificity and improve the prediction performance of the brain age 

models suggested in previous studies [6] [31] [32], in this chapter a novel brain age 

model is suggested that is specific to a particular neurodegenerative disease (mainly 

AD in this study), referred to as Apparent Brain Age (ABA). This model uses only 

those brain ROIs that are highly affected by the particular neurodegenerative 

disease to estimate ABA, as opposed to all ROIs. 

The studies mentioned above, use regression models to predict the 

chronological age of the subject in order to build the brain age model from the 

whole brain and the metric used to maximise the performance of the model is the 

Mean Squared Error (MSE) or the Mean Absolute Error (MAE). In those models, 

the target of the regression task is to predict the brain age to be very similar to the 

chronological age of the subject.  

On the contrary, in the proposed ABA model the aim of the regression model 

is not to predict the chronological age, nor the biological age of the entire brain, but 

to estimate the biological age of the brain regions specifically affected by the target 

disease. In other words, in this study ABA represents the brain age as predicted by 

only those parts of the brain highly affected by AD. Therefore, the performance of 
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the ABA regression model is optimised not by minimising the regression error but 

by maximising the classification ability of the model in combination with a greedy 

and aggressive feature selection method. 

4.2. Apparent Brain Age Model 

To estimate ABA, a regression model is required to be built with target 

variable being age and independent variables being the brain features. Linear 

regression is a non-complex form of regression algorithm, but if there are 

multicollinearity in data and the feature space contain highly correlated features the 

consistency and stability of the model is reduced due to high variance in the resulted 

regression model coefficients. To handle this issue a Least Absolute Shrinkage and 

Selection Operator (LASSO) regression model is used. LASSO is an 𝐿1 penalised 

regression method which can reduce the coefficient of a feature to zero (and 

therefore discards the feature from the model) if that feature has no effect on the 

model, therefore in the case of highly correlated features, it only keeps one of those 

features and discards the rest. 

To estimate ABA a set of features are selected which represent parts of the 

brain which are morphologically different between CN and AD subjects. These 

differences are due to morphological changes to those parts due to pathological 

effects of AD and the neurodegeneration which has caused the atrophy. Those 

particular parts of the brain are assumed not to have neurodegeneration in CN 

subjects. Therefore, to model the ABA, only CN subjects are used in order to 

represent the brain structures with typical/normal measurements which are free 
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from brain atrophy caused by AD. This way, when ABA model is applied to 

subjects with AD difference of brain structure pattern will be used to differentiate 

between ABA for CN and AD. To build the ABA model LASSO is used.  

The following is the equation of ABA regression model: 

 

𝐴𝐵𝐴 =   𝑎0 +  ∑ 𝑎𝑖

𝑘

𝑖=1

 ∙  𝑓𝑖 

(E4.1)   

where 𝑎0 is the LASSO intercept, k is the number of features, 𝑓𝑖 is a single feature 

value and 𝑎𝑖 is the LASSO coefficient for 𝑓𝑖.    

As mentioned in chapter 2, there are 401 ROIs extracted from the MRI scans, 

each representing a regional measurement in the brain. To select the ROIs which 

are highly indicative of AD, a feature selection method is applied. To estimate 

ABA, no expert knowledge has been used, therefore the suggested feature selection 

method should be a machine learning method. 

The ABA-Reg model is built on a feature subspace of healthy subjects and to 

maximise the classification capability of ABA, CN subjects from multiple sources 

are used in building of the ABA-Reg model. Large dataset of CN subjects, from 

multiple sources ensures the robustness and generalisability of the model.  

To analyse the performance of ABA-Reg model, three different experiments 

are performed. The proposed ABA-Reg model contains the explicit proposed 

feature selection method, where the LASSO regression model is built on a small 
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subspace of features which is selected by the proposed feature selection method. 

This experiment is referred to as M3 and uses AD and CN data from ADNI, AIBL, 

IXI and PPMI. 

In order to assess the effect of different components of the ABA-Reg model 

building process on the performance, two more experiments are performed. One 

experiment referred to as M2 is performed where the proposed feature selection is 

not used in the workflow to build the ABA-Reg model therefore, the ABA-Reg 

(LASSO regression) model in M2 is built on 402 features (401 ROIs and age), using 

AD and CN data from all sources (ADNI, AIBL, IXI and PPMI). M2 therefore 

highlights the effect of the proposed feature selection method on the model 

performance and uses the same data as M3. 

Another experiment performed is M1 where the effect of the additional data 

on building of the ABA-Reg model is assessed. In M1 the data used is AD and CN 

subjects from ADNI only. Also, in this experiment the proposed feature selection 

method is not used the ABA-Reg model is built on 402 features. Therefore, M1 and 

M2 share the characteristic of not using the proposed feature selection method but 

with the difference that M1 uses data only from ADNI and M2 uses data from all 

available sources. Also, the experiments in M1 and M2 resembles the brain age 

model building frameworks used in previous literature [6] [31] [32] where features 

from whole brain are used in the model without any explicit feature selection to 

make the model specific to one pathology. 
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These three experiments are designed specifically to highlight not only the 

performance of the proposed model but also the effect of each component of 

additional data and proposed feature selection method on the performance. 

Therefore, M1 is performed first to showcase the ability of the ABA-Reg model 

using single data source (ADNI) and without the use of proposed feature selection. 

Then, M2 is performed with same setting as M1 but with additional data and finally 

M3 is performed with the same data as M2 but with the addition of proposed feature 

selection.   

As explained in this section, ABA gives a disease specific brain age which 

can be compared to real age of the person. ABA higher than the real age shows that 

the specific parts of the brain which are affected by the disease i.e., AD are showing 

an older age compared to the subject’s real age. To show the difference between 

ABA and real age, another feature can be used referred to as Age Deviation Score 

(ADS) with the following equation: 

 𝐴𝐷𝑆 =  𝐴𝐵𝐴 −  𝑎𝑔𝑒 (E4.2)   

Positive ADS shows an older ABA which could indicate a higher probability 

in having AD whereas ADS with negative value or closer to zero indicates a healthy 

brain. The concept of ADS is also used in the [6] [31] [32] where the greater the 

value of ADS or the gap between brain age and chronological age, the more likely 

the subjects suffers from AD. 

To select the ROIs highly affected by AD, a wrapper forward selection 

approach is suggested, referred to as Biased Forward Feature Selection, and 
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explained in the next section and the pseudocode for this method in provided in 

Pseudocode 1. 

To build the ABA-Reg model two feature selection methods are performed. 

The first method which is an explicit feature selection method is the proposed BFFS 

which is applied to features in order to select a small subset of features (F1). The 

second one is the embedded feature selection performed by LASSO when it is 

applied to F1. The selected feature set by LASSO is referred to as F2. 

4.3. Biased Forward Feature Selection 

Selecting the ROIs which are highly affected by AD without any prior expert 

knowledge is a challenging task. In this section a feature selection method is 

suggested, referred to as Biased Forward Feature Selection (BFFS), where the 

features selected are the ones which introduce an inductive bias towards the 

classification of AD. 

In the proposed wrapper method, a forward feature selection approach is used. 

First, a feature ranking is performed based on the correlation of the features to the 

target variable, where features with higher absolute correlation will have higher 

rank. The features are sorted by rank and iteratively added to a target feature set, 

where in each iteration, an ABA LASSO regression model is built and used to 

classify AD using logistic regression. The criterion for retaining/removing the 

feature is the classification accuracy. Following this wrapper approach, a target 

feature set is identified, providing the feature subspace which yields the highest 

classification accuracy for predicting AD with the minimal number of features. The 
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feature subspace will then be used in LASSO regression, which performs an 

additional and embedded feature selection, to estimate ABA, which will 

subsequently be used to classify AD. This is explained in detail in the next chapter.  

4.4. Apparent Brain Age results and 

discussion 

In this chapter ABA-Reg is suggested which is a LASSO regression model to 

estimate ABA. One way to estimate the performance of this proposed regression 

model is to use metrics such as MAE and Pearson’s correlation r. These two metrics 

assess the quality of the regression task as used by previous literature in [6] [31] 

[32] to assess the brain age model performance.  

In these three literatures [6] [31] [32], as discussed before, the aim is to 

minimise the error and maximise the correlation when brain age is compared with 

age. As the proposed ABA-Reg model is built on only the very few brain features 

which reflect the impact of the disease, it only estimates the age of those few brain 

features. This is why ABA could be very different to age and minimising the MAE 

and maximising the r will not improve the classification performance, which will 

be discussed in next chapter.  

As the results, it is shown in this section that when BFFS is used in M3, the 

MAE increases and r decreases as the ABA-Reg will be built on only a small subset 

of the features, as opposed to the features from the whole brain. 



55 
 

The evaluation of the performance of the ABA-Reg model is carried out 

through a 10-fold cross-validation, with classification accuracy used as the metric. 

The 10-fold cross-validation is repeated 10 times and the results are averaged in 

order to validate the robustness of the model performance estimation.  

The F1 resulted from BFFS from each fold of each repeat are collected in 

order to show which brain features are selected by BFFS in each fold. It is expected 

to see brain features which are highly affected by AD to be present frequently in 

F1. The results of this analysis are presented in Table 4.1 

Table 4.1 | ROIs selected over 100 BFFS runs through a 10-time repeated 10-fold 

cross-validation, relating to both genders. The ROIs presented in the table below 

are those with presence frequency of at least 10% over all 100 BFFS runs, in either 

Right Hemisphere (RH) or Left Hemisphere (LH). ROIs are ordered in a descending 

order based on the both RH and LH for both genders combined. The frequencies 

above 50% are shown in bold. 

 F&M F M 

ROI 
LH& 
RH LH RH 

LH& 
RH LH RH 

LH& 
RH LH RH 

Amygdala 53% 73% 33% 66% 78% 54% 40% 68% 12% 

Hippocampal_tail 44% 57% 30% 42% 50% 34% 45% 64% 26% 

Subiculum 43% 43% 43% 86% 86% 86% 0% 0% 0% 

Whole_hippocampus 41% 57% 24% 8% 16% 0% 73% 98% 48% 

Inferiorparietal_thickness 31% 13% 48% 38% 26% 50% 23% 0% 46% 

Middletemporal_thickness 26% 33% 19% 16% 14% 18% 36% 52% 20% 

CA1 24% 35% 13% 0% 0% 0% 48% 70% 26% 

Inferiorparietal_thickness 19% 13% 25% 38% 26% 50% 0% 0% 0% 

Entorhinal_thickness 18% 35% 0% 0% 0% 0% 35% 70% 0% 

Inferiortemporal_thickness 17% 6% 27% 22% 0% 44% 11% 12% 10% 

Precuneus_thickness 16% 20% 12% 32% 40% 24% 0% 0% 0% 

Precentral_volume 13% 18% 8% 14% 12% 16% 12% 24% 0% 

Middletemporal_volume 13% 17% 9% 17% 16% 18% 9% 18% 0% 

Molecular_layer_HP 12% 14% 10% 0% 0% 0% 24% 28% 20% 

Bankssts_thickness 10% 8% 11% 19% 16% 22% 0% 0% 0% 
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Table 4.2 presents the results of Mean Absolute Error (MAE) and Pearson’s 

correlation r, performed for both genders, and both holdout and cross-validation 

variations of all methods of M1, M2 and M3. The general trend in results across 

 F&M F M 

ROI 
LH& 
RH LH RH 

LH& 
RH LH RH 

LH& 
RH LH RH 

Superiortemporal_meancurv 8% 10% 5% 0% 0% 0% 15% 20% 10% 

Inferiorparietal_volume 8% 7% 8% 7% 14% 0% 8% 0% 16% 

Supramarginal_thickness 7% 14% 0% 0% 0% 0% 14% 28% 0% 

Paracentral_volume 7% 6% 8% 14% 12% 16% 0% 0% 0% 

Parsopercularis_thicknes_std 7% 7% 6% 0% 0% 0% 13% 14% 12% 

Superiorparietal_volume 7% 0% 13% 13% 0% 26% 0% 0% 0% 

Lateraloccipital_thickness 5% 5% 5% 0% 0% 0% 10% 10% 10% 

Lingual_volume 5% 9% 0% 0% 0% 0% 9% 18% 0% 

Right_Pallidum 5% 0% 9% 9% 0% 18% 0% 0% 0% 

Superiorfrontal_thicknes_std 4% 8% 0% 0% 0% 0% 8% 16% 0% 

Paracentral_thicknes_std 4% 0% 8% 0% 0% 0% 8% 0% 16% 

Brain_Stem 4% 0% 8% 8% 0% 16% 0% 0% 0% 

Inferiorparietal_volume 4% 7% 0% 7% 14% 0% 0% 0% 0% 

Postcentral_thickness 4% 7% 0% 7% 14% 0% 0% 0% 0% 

Lateralorbitofrontal_volume 3% 6% 0% 0% 0% 0% 6% 12% 0% 

Parsopercularis_volume 3% 0% 6% 0% 0% 0% 6% 0% 12% 

Bankssts_thicknes_std 3% 6% 0% 6% 12% 0% 0% 0% 0% 

Insula_volume 3% 6% 0% 6% 12% 0% 0% 0% 0% 

Precuneus_volume 3% 6% 0% 6% 12% 0% 0% 0% 0% 

Lateraloccipital_volume 3% 0% 6% 6% 0% 12% 0% 0% 0% 

Temporalpole_volume 3% 5% 0% 0% 0% 0% 5% 10% 0% 

Cuneus_volume 3% 5% 0% 0% 0% 0% 5% 10% 0% 

Inferiortemporal_volume 3% 5% 0% 0% 0% 0% 5% 10% 0% 

Optic_Chiasm 3% 0% 5% 0% 0% 0% 5% 0% 10% 

Paracentral_thickness 3% 0% 5% 0% 0% 0% 5% 0% 10% 

Posteriorcingulate_thickness 3% 0% 5% 0% 0% 0% 5% 0% 10% 

CA3 3% 0% 5% 0% 0% 0% 5% 0% 10% 

CA4 3% 0% 5% 0% 0% 0% 5% 0% 10% 

Bankssts_volume 3% 5% 0% 5% 10% 0% 0% 0% 0% 

Fusiform_thickness 3% 5% 0% 5% 10% 0% 0% 0% 0% 
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both genders and validation methods show that there is an increase in the MAE and 

decrease in r, from M1/M2 to M3 when BFFS is added. This is because BFFS 

improves the AD classification results whereas it worsens the regression results and 

the regression line quality.  

Table 4.2 | Overview of regression results (MAE, r) for both genders: three 

incremental variants of the proposed method using distinct settings in order to show 

the effect of multiple factors. The information about Mean Absolute Error (MAE) 

and Pearson’s correlation coefficient (r) for LASSO ABA regression model are 

presented. The reported results show the performance related to different data 

partitions (training and test sets) based on different validation methods used; 10-

fold cross-validation (10f CV) and holdout. 

  MAE r 

Data Partition Group M1 M2 M3 M1 M2 M3 

(M) 10f CV test CN 4.05 5.25 5.81 0.60 0.55 0.40 

(M) 10f CV test AD 6.33 5.72 6.78 0.55 0.56 0.25 

(F) 10f CV test CN 3.61 5.03 5.69 0.68 0.54 0.33 

F) 10f CV test AD 6.69 5.90 6.81 0.49 0.51 0.09 

M) holdout training CN 3.65 4.60 5.86 0.70 0.69 0.39 

(M) holdout test CN 4.13 5.19 5.79 0.63 0.57 0.38 

(M) holdout test AD 6.22 5.82 6.25 0.42 0.41 0.22 

(F) holdout training CN 2.95 4.69 5.77 0.82 0.65 0.33 

(F) holdout test CN 3.46 4.69 5.38 0.59 0.54 0.37 

(F) holdout test AD 7.12 4.92 5.65 0.51 0.45 0.13 

 

 

The effect of the feature selection method in M3 on MAE and r is the opposite 

of the objectives achieved in previous studies on brain age for prediction of AD [6] 

[31] [32], this is because to create the brain age model in those studies the aim is to 

minimise the error (MAE) between chronological age and the predicted brain age 

and maximise the correlation (r) between the two. Using the proposed BFFS in M3 

worsens the quality of the regression task by increasing the error and decreasing the 
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correlation between chronological age and the ABA but this is in the expense of 

improving the performance of the classification task. The ABA in M3 therefore is 

not a good prediction of the biological age of the subjects but an indication to 

subject’s brain age in the context of the neurodegenerative disease i.e., AD.  

In method M3, for each fold of the 10-fold cross-validation of each of the 10 

repeats, the BFFS method is performed and an ABA model is built. The BFFS 

method selects a feature subspace 𝐹1 from the full feature space 𝐹 . The subspace 

𝐹1 will then be used as the input features to LASSO model. Due to possible 

multicollinearity and in order to avoid redundancy among the input feature 

subspace 𝐹1 , LASSO performs its own regularisation and penalisation system in 

order to remove those features with great correlation to each other.  Among the 

correlated features, one feature is selected and the rest will be discarded by having 

coefficients of zero. The feature subspace 𝐹2 are then selected by LASSO as the 

features with coefficients above zero, which are also used to estimate ABA. The 

relationship between the three feature spaces can be demonstrated as 𝐹2  ⊆  𝐹1  ⊆

𝐹 . After repeating the 10-fold cross-validation 10 times, there will be 100 sets of 

𝐹1 and 𝐹2 .  

According to minimum description length (MDL) principle although the 

feature subspace 𝐹2 could be the right choice for the classification task due 

providing the minimum number of features which are efficient and necessary in the 

prediction, the feature subspace 𝐹1  can provide a richer level of details and 

information. While the LASSO generated feature subspace 𝐹2 provides enough 

details to support the optimal classification decision making using a model built on 
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a particular training set, the BFFS generated feature subspace 𝐹1 holds information 

with a greater level of useful details in order to advise a domain expert.  

Over the all 100 folds, in the feature subspace 𝐹1 the average number of 

features for females is 15 with 9 ≤  |𝐹1|  ≤ 20 , and the average number of features 

for males is 16 with 10 ≤  |𝐹1|  ≤ 23 . Similarly, for 𝐹2 , over the 100 folds, in the 

feature subspace 𝐹2 the average number of features for females is 12 with 5 ≤

 |𝐹2|  ≤ 19 , and the average number of features for males is 12 with 4 ≤  |𝐹2|  ≤

22 . 

The results presented in Table 4.1 demonstrate the frequencies of the presence 

of ROIs in the selected feature subspace over 10 folds of the cross-validation, over 

10 repeats. The features which are present in the selected feature set in most folds 

are regarded as important for our model. The frequency of presence of a feature in 

the feature subspace 𝐹1 , provides an important insight into the significance and 

relevance of the feature when it is used in a particular classification task. These 

features have also been identified by previous studies to be effective in predicting 

AD; most of the top features are comprised of the hippocampal parts of the brain 

[33] where the morphological change and decay in those parts are of characteristics 

of AD. Other features which are selected many times and are also those connected 

to AD include amygdala [34], entorhinal cortex [36], cortical regions surrounding 

the superior temporal sulcus (bankssts) [37] and medial temporal lobe [24]. This 

proves that the feature selection method suggested, BFFS, has correctly identified 

multiple ROIs which are affected by AD, without any prior or expert knowledge. 
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The efficiency of the biased forward feature selection method (BFFS) is 

verified by automatically recognising and determining the ROIs and brain regions 

which are affected as the early symptoms of AD [27], such as amygdala, 

hippocampal regions, entorhinal cortex and temporal lobe regions. 

Figures 4.1 and 4.2 provide distributions of ABA vs. Age and ADS vs. Age 

for methods M2 and M3 respectively for female subjects. Method M2 could be 

viewed as having the same logic as BrainAGE method [6] when no feature selection 

is used and all ROIs have been used in LASSO model to estimate ABA, whereas 

method M3 has the addition of the proposed feature selection method BFFS and 

ABA LASSO model is built on the features which are highly significant and 

important to AD prediction. In the left plots, ABA vs. Age, the slope on the plot for 

M2 has a slightly sharper angle that that of M3 where the distribution is more 

horizontal. This is the effect of the BFFS on the distribution in order to improve the 

classification capability of ABA. In Method M3, there is a better separation 

between AD and CN in both plots of Figure 4.2, when compared to the ones in 

Figure 4.1. This is also due to the presence of the BFFS method, when although the 

quality of the regression task is worsened, the classification task performance is 

improved in favour of the AD prediction. 
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Figure 4.1 | Method M2 – Female subjects: Plot on the left shows ABA vs. Age 

distribution with dashed line representing y = x and the one on the right shows the 

ADS vs. Age distribution with dashed line representing y = 0. Both plots used the 

same data and method. The ABA and ADS used in these plots have been produced 

using aggregated results on test sets of single run of 10-fold cross-validation. BFFS 

is not used in M2. 

 

Figure 4.2 | Experiment M3 – Female subjects: Plot on the left shows ABA vs. Age 

distribution with dashed line representing y = x and the one on the right shows the 

ADS vs. Age distribution with dashed line representing y = 0. Both plots used the 

same data and method. The ABA and ADS used in these plots have been produced 

using aggregated results on test sets of single run of 10-fold cross-validation. BFFS 

has been used in M3. 
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In Pseudocode 1 the proposed method of BFFS is outlined. For simplicity of 

demonstration and easier reading of the pseudocode, validation methods such as 

holdout and cross-validation are omitted and the models are built and applied to 

whole dataset available for the method (𝐷) without data partitioning, as a 

resubstituting method. Also, when 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒𝑓 contains only one feature, linear 

regression is used instead of LASSO in line 6 to estimate ABA. This is due to the 

fact that for LASSO algorithms there must be at least two features present in the 

input features. 

 

4.5. Summary 

This chapter explained about how the proposed brain age feature, ABA, was 

built and how the feature space was selected using the proposed BFFS method. It 

was shown in this chapter that for building the ABA model the classification ability 
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was optimised rather than the regression quality of ABA model. In the next chapter, 

the ABA will be used to predict AD in a binary classification setting. 
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Chapter 5 

5. Classification/prediction of 

AD 

5.1. ABA in classification of AD 

In the previous chapter a brain age model, ABA, was proposed, which was 

built on the features selected to be highly indicative of and affected by AD. The 

ABA LASSO regression model was not optimised to improve quality of the 

regression task, but to enhance the subsequent classification task. The metrics such 

as MAE and r were shown to be worsened as the result of adding the classification-

biased feature selection component BFFS: the ABA model is designed not to 

optimise the age regression accuracy, but rather the AD classification accuracy. In 

this chapter the effect of the ABA model in the AD classification task will be 

investigated. 
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Previous studies have proposed using the brain age as generated feature for 

the classification of AD [6] [31] [32], however in all the cases brain age was 

estimated using the whole brain, with the intention to optimise the quality of the 

regression model and improve its metrics (MAE/MSE and r). Those methods which 

were used to estimate the brain age, lack specificity to the disease, i.e. AD.  

What was proposed in the previous literature on brain age model is that 

regardless of the specific neurodegenerative disorders to be predicted (Alzheimer's 

disease, Lewy body dementia, frontotemporal dementia, Huntington's disease, 

Parkinson's disease, ataxia, etc.), the estimated brain age is the same, as no subjects 

with the disease are used to train the age model. In other words, in a multinominal 

classification problem, for neurodegenerative diseases, the same brain age model 

would be generated and used to estimate the gap with regards to the real age to 

predict the presence of one of the diseases.  

This lack of specificity to the disease makes brain age as biomarker arguable 

or at least less effective in the prediction task for any neurodegenerative disease. 

This challenge may not be as apparent when brain age biomarker is used in a binary 

classification task with a single target disease, e.g., for discriminating patients with 

AD from healthy subjects (CN). But in a multi-class classification task, which 

includes multiple positive labels (diseases) and one negative label (healthy) it 

becomes apparent that using the same brain age model may not be effective at all 

in distinguishing between types of positive labels. While this chapter focuses 

mainly on the binary classification, chapter 7 presents the benefits of the proposed 

ABA model for multinominal classification tasks. 
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As explained in the previous chapter ABA is the estimation the biological age 

of the brain with specific reference to a particular neurodegenerative disease, in this 

case AD. In other words, ABA is the biological age of a subset of regions (features) 

in the brain (measurements of different parts of the brain) which are selected to be 

typically affected by AD. Since the proposed approach is meant to be based on 

machine learning, no expert knowledge was used to select these regions, but rather 

an automatic feature selection method was specifically designed for this task. This 

way the proposed approach can be easily applied to other neurodegenerative 

diseases and, potentially, to other domains directly.  

In this chapter, the estimated ABA is used together with the real chronological 

age to predict and classify AD. The logic behind this approach is that for subjects 

with AD, the estimated ABA is expected to be higher than the subject age because 

AD caused faster aging and degeneration in the selected subspace of features: these 

particular features show a more advanced aging than other features not affected by 

AD. For healthy subjects the estimated ABA is expected to be similar to the subject 

age as the selected subspace of features were subject to a normal aging process. 

In order to classify AD using ABA and age, a linear logistic regression model 

is used, where the variable ‘Group’ (diagnosis) is selected as the target/dependent 

variable and ABA and age are selected as independent variables. The reason for the 

selection of logistic regression is to maintain linearity of the model to enable the 

model to be intrinsically interpretable. This linearity will help to create a feature 

score which shows the direct impact of a single input feature on the classification 

outcome. The interpretability aspect of the model will be outlined in detail in 
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Chapter 6. The combination of the ABA linear regression model and the logistic 

regression model results in an overall model that is also linear with an intrinsic 

interpretability. This property is exploited in chapter 6, where a feature score 

definition is derived and used to provide interpretability to the classification model. 

As mentioned in chapter 1, three different variants of the main method M 

(M1, M2 and M3) were tested to show the effect of the different components, such 

as additional data sources and the feature selection method. Moreover, two methods 

are tested to provide some baseline performance (B1 and B2). In all experiments 

discussed in this chapter the aim is the classification of AD; while the three main 

experiments (M1, M2 and M3) classify AD using the two features ABA and age, 

the two baseline methods classify AD using all 401 brain features extracted using 

FreeSurfer v.6 plus age. As the two baseline methods use high-dimensional data 

(402 features) in the classification task, the SVM algorithm is particularly selected 

as baseline classifier for its ability to handle a large number of features and for its 

known excellent performance as shown in [24,22, 27,23 and 26] for this particular 

classification task.  

Experiments performed as part of the preliminary analysis confirmed that 

selection of linear kernel for the SVM algorithm resulted in the best classification 

for SVM. This is also confirmed in a similar study on AD classification where 

Gaussian, cubic, quadratic and linear kernels were tested for SVM and the linear 

kernel provided the best classification results [38]. 
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In order to evaluate the performance of the classification task in this chapter 

various metrics are utilised. The goal of a classification task is to predict the label 

for unseen data and to optimise the classification task, the number of correctly 

classified data should be maximised. To measure how well each instance in the data 

is predicted the confusion matrix is used.  

The confusion matrix provides an overview of how the data label was 

predicted in comparison to the original label. As shown in Table 5.1, the confusion 

matrix is a table with rows and columns representing the actual and predicted labels 

respectively. These two axes help to identify the number of True Positive (TP), True 

Negative (TN), False Positive (FP) and False Negative (FN) cases in the 

classification task. In this chapter, for the classification task of CN vs. AD, the AD 

label is the positive label and the CN is the negative label. TP is when a person with 

AD is correctly classified as AD. TN is when a healthy (CN) person is correctly 

classified as CN. FP is when a healthy (CN) person is misclassified as AD. FN is 

when a person with AD is misclassified as CN. 
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Table 5.1 | Confusion matrix. 

  Predicted label 

  Positive 

(AD) 

Negative 

(CN) 

A
ct

u
al

 l
ab

el
 

Positive 

(AD) 

TP FN 

Negative 

(CN) 

FP TN 

 

Accuracy is a metric which provides an indication of how many instances of 

the data were correctly classified compared to all predicted data. This is a popular 

metric to show how well the classifier predicted the correct labels. Equation 5.1 

below gives the formula for accuracy: 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(E5.1)   

While accuracy provides a measure to evaluate classification performance by 

setting a threshold, area under the curve (AUC) provides an aggregate evaluation 

measure across all thresholds. AUC is the area under the receiver operating 

characteristic (ROC) curve, which is visualised by plotting true positive rate (TPR) 

against false positive rate (FPR) across all thresholds. 
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Recall, sensitivity or true positive rate, as the name suggests is a metric that 

provides an overview of the proportion of correctly predicted positive instances 

over all correctly classified and misclassified positive instances. This metric can 

show how successful has the classifier been in detecting and identifying the disease 

cases. Equation 5.2 below gives the formula for recall: 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(E5.2)   

Precision or positive predictive value is a metric that shows the proportion of 

correctly classified positive cases compared to all instances which were predicted 

as positive (correctly or incorrectly). This metric can show how well the classifier 

distinguished between positive and negative cases. Equation 5.3 below gives the 

formula for precision: 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(E5.3) 

 

Specificity or true negative rate is a metric that shows the proportion of 

correctly classified negative cases compared to all negative cases. This metric can 

show how well the classifier correctly classified the negative cases. Equation 5.4 

below gives the formula for specificity: 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(E5.4)   
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The metrics used mainly in previous studies include accuracy, recall and 

precision. In order to produce results which can be compared to previous literature, 

those three metrics are reported for the classifiers proposed in main methods M1, 

M2 and M3 and for the two baseline methods the accuracy is reported. 

In the previous chapter it was explained in addition to implicit feature 

selection in LASSO, the novel proposed ABA-Reg model uses a novel greedy and 

aggressive feature selection method to select a small number of features which 

gives the maximum information about the target disease in order to be used in the 

classification task. Therefore, to build the ABA-Reg two feature selections are 

performed: proposed BFFS and implicit feature section by LASSO. Although the 

performance of this method can be achieved by reporting the performance metrics 

such as accuracy, the individual effect of the feature selection method is not shown 

when the overall performance is reported. Therefore, in order to evaluate the effect 

of the proposed feature selection method on the classification performance, ABA-

Reg model is built without the BFFS method (using all 402 features).  

The proposed method uses data from multiple sources to build the ABA 

model and perform a classification. It is considered that having data from multiple 

sources improves the generalisability of the model and ABA is a data driven feature 

which will perform better in the classification task when more data is used to train 

the ABA model. But to show that more data improves the classification task, a 

method is performed where only single source of data i.e., ADNI is used. This 

method and settings are set up as the initial setting which used ABA in the 

classification task. As the aim is to evaluate the effect of additional data and feature 
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selection on the classification performance, these initial settings will be using ADNI 

data without the proposed feature selection. This setting will be referred to as M1. 

To view the effect of additional data, other sources are added and this setting will 

be referred to as M2. And as the final addition, the proposed feature selection is 

added and this setting will be referred to as M3.  

Three setting or experiments have been suggested to not only show the 

classification performance of ABA feature but also show the effect of data and 

feature selection on it. Although these three settings show a comparison among 

different settings using ABA, there should be a setting where classification is 

performed without ABA using all features in a state-of-the-art classifier. This 

setting will then be used as a baseline to the proposed method. In this baseline 

method all (401) brain features and real age (402 feature combined) will be used in 

SVM to build a model to classify AD vs. CN.  

In addition to the baseline settings, it is investigated that how data affects the 

performance of the classification task, similar to transition from M1 to M2. As the 

result there will be two baseline settings; B1 where 402 features used in SVM 

classifier using ADNI data only and B2 where data from other sources are added 

with the same setup as B1. The transition from B1 to B2 is like that of M1 to M2, 

where the only difference is data used and the effect of additional data is 

investigated. 

To evaluate the performance of the classification task three performance 

metrics have been used: accuracy, recall and precision. These three performance 
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metrics have been selected to compare the three experiments in this thesis (M1, M2 

and M3) and also to compare the proposed method to previous relevant literature. 

In order to compare the proposed method to baseline methods (B1 and B2) accuracy 

is used. 

5.2. Classification results and discussion 

Multiple settings (M1, M2 and M3) have been used in order to show the effect 

of addition of data and the suggested feature selection method (BFFS) on the AD 

classification workflow. Also, to have a baseline method for the workflow, SVM is 

used, where all ROIs and age are used in classification of AD, using single and 

multiple sources of data in order to evaluate the effect of additional data on the 

baseline method too.  
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Table 5.2 outlines the classification results of ABA-Clf model in multiple 

experiments as well as the baseline experiments. Method IDs starting with B are 

baseline experiments whereas the ones stating with M are main or ABA 

experiments. All experiments are performed using 10-time repeated 10-fold cross-

validation.  

In B1 an SVM is used to classify AD using all (401) ROIs and age (402 

feature combined), with only ADNI data. This has achieved accuracies of 91.26% 

(0.28) and 87.81% (1.01) for females and males respectively. In B2 while the 

workflow is exactly the same as B1, more data from different sources are added in 

order to assess the effect the data on the baseline method. The results achieved in 

B2 has had a decrease in accuracy of 1.08% in male subjects and in increase in 

accuracy of 1.09% for female subjects. This shows that the additional data from 

multiple sources has had a mixed effect on the baseline, while it has only changed 

the accuracy by approximately 1%, it caused an improvement to performance of 

female subjects and worsened the performance for male subjects.  

In M1 a LASSO model (ABA-Reg) is built on healthy subjects of ADNI 

where the estimated ABA and age are used in a logistic regression model (ABA-

Clf) to classify AD in ADNI. Although only 2 features are used in the classification 

task, the accuracies achieved were 85.05% (0.22) and 82.99% (0.10), for females 

and males respectively. To further our analysis and experiments, more data sources 

are added in M2. The analysis performed in M2 is identical to M1, with the 

difference of additional data sources. By adding more data, the accuracies of our 

model improve by 2.26% and 2.23% for females and males respectively. These 
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increases are greater than those from B1 to B2. This shows that our model is greatly 

data driven and more affected by the change in amount of data than the baseline 

method which uses SVM. In M3 method, the suggested feature selection method, 

BFFS, is added. This causes substantial increases of 5.53% and 4.52% in the 

accuracies for females and males respectively compared to M2. These results show 

that the proposed ABA-Com model, using two features, achieved better or similar 

results to the state-of-the-art classification methods using all the 402 features.  

The proposed method not only simplifies and eliminates the curse of 

dimensionality posed by high-dimensional data used in the classification task but 

by using linear models the descriptiveness of the model is maintained throughout 

the whole classification workflow. The interpretability of the model is explained in 

detail in the next chapter. 

Figure 5.1 also shows the results of the model evaluation, by plotting 

accuracies of each method on a bar chart for each gender separately. This is to 

enable easier comparison between accuracies achieved among different methods. 

The y-axis is showing the accuracies between 75-95% as all reported accuracies are 

in that range. As can be seen in this figure, the effect of data is greater on the 

proposed method than the baseline method. It can also be seen that for both genders, 

the proposed method has achieved comparable accuracies to the baselines. 

  



77 
 

  

   

 

F
ig

u
r
e
 5

.1
 | 

O
v
er

v
ie

w
 o

f 
th

e 
cl

as
si

fi
ca

ti
o
n
 a

cc
u
ra

ci
es

 r
ep

o
rt

ed
 f

o
r 

ea
ch

 g
en

d
er

 s
ep

ar
at

el
y

 i
n
 a

 b
ar

 c
h
ar

t 
fo

rm
at

. 
A

ll
 t

h
e 

ac
cu

ra
cy

 

d
et

ai
ls

 a
re

 t
h
e 

sa
m

e 
as

 t
h
e 

o
n

es
 p

ro
v
id

ed
 i
n
 t
ab

u
la

r 
fo

rm
at

 i
n
 T

ab
le

 5
.2

. 
T

h
is

 i
s 

to
 g

iv
e 

an
 e

as
ie

r 
co

m
p
ar

is
o
n

 b
et

w
ee

n
 t
h
e 

ac
cu

ra
ci

es
 

ac
h
ie

v
ed

 b
y
 e

ac
h
 o

f 
th

e 
5
 e

x
p

er
im

en
ts

. 
 

  



78 
 

Figures 5.2 and 5.3 show the ABA vs. age and ADS vs. age for female and 

male subjects respectively, using the aggregated validation sets of 1 run of 10-fold 

cross-validation from M3 method. In these figures, the plot on the left, ABA vs. age 

plot, subjects with AD (represented in red dots) are placed mainly on top of the 

healthy subjects (represented in blue dots), this shows that ABA is correctly 

estimated to be higher than age for subjects with AD. The green solid lines represent 

the logistic regression boundaries from each fold of the cross-validation, whereas 

the solid black line is the boundary of a logistic regression model built on all data. 

The solid lines show that how logistic regression can classify AD from CN, using 

only the two features of ABA and age. As these two figures are produced for the 

method M3, the proposed features selection method is also applied before the 

classification.  

A similar plot to those in Figures 5.2 and 5.3 is presented in Figure 5.4. In 

this figure, the left plot represents the ABA vs. age and ADS vs. age for female 

subjects, using the aggregated validation sets of 1 run of 10-fold cross-validation 

from M2 method. It can be seen that the distribution in left plots in Figures 5.2 and 

5.3 are more horizontal than the distribution in left plot of Figure 5.4. This shows 

the effect of the proposed feature selection method on the classification.  
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Figure 5.2 | Female M3: The two plots presented in this figure show the ABA vs. 

age (left) and ADS vs. age (right). Both plots were produced using the aggregated 

validation sets of one run of 10-fold cross-validation from M3 method using data 

from female subjects. AD subjects are shown in red dots and CN subjects are shown 

in green dots. Green solid lines are the logistic regression boundaries from 10 folds 

of the cross-validation. The Black solid line is the logistic regression boundary 

using the final model which has been trained on all the data. The black dashed line 

is y = x and is used to reference. 
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Figure 5.3 | Male M3: The two plots presented in this figure show the ABA vs. age 

(left) and ADS vs. age (right). Both plots were produced using the aggregated 

validation sets of one run of 10-fold cross-validation from M3 method using data 

from male subjects. AD subjects are shown in red dots and CN subjects are shown 

in green dots. Green solid lines are the logistic regression boundaries from 10 folds 

of the cross-validation. The Black solid line is the logistic regression boundary 

using the final model which has been trained on all the data. The black dashed line 

is y = x and is used to reference. 
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Figure 5.4 | Female and Male M2: The two plots presented in this figure show the 

ABA vs. age (left) and ADS vs. age (right). Both plots were produced using the 

aggregated validation sets of one run of 10-fold cross-validation from M3 method 

using data from male subjects. AD subjects are shown in red dots and CN subjects 

are shown in green dots. Green solid lines are the logistic regression boundaries 

from 10 folds of the cross-validation. The black dashed line is y = x and is used to 

reference. 

 

5.3. Summary 

In this chapter the classification ability of the proposed method is presented 

and the performance of this method is evaluated in a binary (CN vs. AD) 

classification setting. In order to provide an explanation as to why a prediction 

decision has been made an interpretability index is proposed in the next chapter. 
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Chapter 6 

6. Interpretability 

There has been a focus in the field of AI to make the output of the machine 

learning models more explainable in a way that it is understandable to the human 

mind. This has led to the emergence of the concept of Explainable Artificial 

Intelligence (XAI) where explainability of the model is improved and focused on.  

In the field of machine learning, the two terms of explainability and 

interpretability are used interchangeably and there isn’t any clear definition for 

them. However, some authors have suggested that there are clear distinctions; [39] 

explains that interpretability refers to intrinsic characteristics of the machine 

learning model when it is clear and understandable to human mind why and how 

such output has been produced. However, the concept of explainability applies 

when the model is black box and not intrinsically interpretable, so there is an 

attempt to explain the output of the model for the human minds to comprehend.  

There are explainability frameworks such as SHAP [40] or LIME [41] which 

are used to explain what the output of the machine learning model means and 
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provide an explanation on those outputs generated by black-box and non-linear 

approaches such as DNN. [39] also advises that when the machine learning models 

are used in high stake decision makings in criminal justice and healthcare fields, it 

is better to make the models intrinsically interpretable rather than providing an 

extrinsic explanation on the output of the models which are intrinsically black-box. 

This factor has been part of the motivation in making the proposed method 

intrinsically interpretable as it can be used in a healthcare domain as a biomarker 

where human lives are at stake.  

Although it is challenging to have a model with interpretability and high 

predictability performance at the same time [42] the proposed method in this thesis 

has achieved both. The proposed method is intrinsically interpretable for its specific 

setup and healthcare domain. One improvement to the method would be to make it 

applicable to other domains. Also, the proposed method cannot be applied to other 

black-box approaches to provide an explanation, such as what SHAP and LIME do, 

therefore the method cannot be applied to models such as DNN to explain the 

output. 

6.1. A descriptive feature score for AD 

classification 

The ABA-Clf model has been described and its performance in binary 

classification of AD vs. CN evaluated in the previous two chapters. In this chapter, 

the interpretability of the ABA-Clf model is outlined. The LASSO and logistic 

regression models are both linear models and this helps to have an interpretable 
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model where input features (ROIs) can be directly linked to the classification 

outcome.  

As part of the machine learning model building for a classification task it is 

always good if the reasons behind decision made by the ML model were transparent 

and could be explained and interpreted in a way that the final classification outcome 

is descriptive. The interpretability and descriptiveness of the model is particularly 

important in the field of computer aided diagnosis of AD as this involves health of 

human subjects and the medical professionals need to make sure they understand 

the reasons behind an outcome from an ML model before being able to use the 

prediction. 

Unfortunately, most of the state-of-the-art algorithms, despite achieving high 

performance, have black-box approaches and lack interpretability and 

descriptiveness. This makes the ML model outcome challenging to interpret. In 

previous studies on classification of AD using brain age [6] [31] [32] although state-

of-the-art algorithms have been used, the models proposed lack descriptiveness. In 

the proposed ABA-Com model, one of the main objectives, in addition to achieving 

high accuracy in prediction of AD, is to produce an explanation as to why such 

prediction has been produced. That explanation can then be used by medical 

professionals to help with diagnosis of AD by identifying the specific regions of the 

brain that are affected by AD and by how much. 

In order to make the AD prediction model interpretable, there needs to be a 

linear relationship between the input (brain features and age) and the classification 



85 
 

outcome (class label). In the field of analysis of brain MRI scans for detection of 

patterns in AD patients, there are a large number of regions and therefore features 

present for the ML analysis. This is referred to as high-dimensional data and 

therefore there is the curse of dimensionality. To handle the curse of dimensionality 

and reduce the number of features used in the model different methods can be used.  

In previous studies on classification of AD using brain age [6] [31] [32] 

dimensionality reduction technique, PCA, is used. However, in PCA, by producing 

and replacing the brain features with principal components the descriptiveness is 

removed from the model. In the method proposed in this thesis, a novel feature 

selection approach is used to reduce the dimensions of the feature space to a 

minimal by retaining the maximal classification performance.  

The brain features used in the analysis in this thesis come from the numerical 

measurements such as thickness, volume and area of different regions of the brain 

e.g. the thickness of right HATA and the volume of right Hippocampus. Each of 

the features have direct relationship to a region in the brain and therefore have a 

meaning to medical professionals. The proposed classification workflow ensures 

that there is a direct relationship between those semantic measurements inputted to 

ML model and the outcome. To make that direct relationship transparent and 

identify the features which are most useful in making the prediction, a novel score 

is given to each of the features or brain region measurements which are present in 

classification of AD (selected by both the proposed feature selection method and 

LASSO). This score can then show how much each feature contributed to the final 

ML classification outcome, which can be helpful for medical professionals in 
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decision making on AD diagnosis. As an example, when five features are selected 

to be present for positive AD classification, one those features are Left-

Hippocampus with the highest score, then the professionals know that based on the 

ML analysis Left-Hippocampus has the highest impact on the AD classification and 

AD has possibly affected that region the most compared to other regions of the 

brain. 

As part of the proposed ABA-Com building method (M3) the proposed 

feature selection method (BFFS) is performed followed by the internal feature 

selection by LASSO. As a result a limited number of features are selected for the 

ABA-Reg model to be built on. The ABA feature will then be used in addition to 

age (two features) to classify AD. The features used in building the ABA-Reg 

model all have different impacts on the ABA feature and therefore have indirect 

impacts on the classification task. The extent of the impact each feature has on the 

ABA can demonstrate the impact they have on classification decision.  

The main aims and objectives of the proposed workflow of ABA-Com model 

and AD classification using ABA is to have a linear model and workflow while 

maintaining high performance and high level of descriptiveness and interpretability. 

Having a linear model with reduced complexity helps with the level of 

descriptiveness and interpretability which ultimately gives medical professionals 

more confidence in using this model as an indication to AD diagnosis. 

In order to find the impact of each feature on the building of ABA-Com 

model, LASSO coefficients are used. Those coefficients with larger values have 
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greater impact on determining the value of ABA and ultimately the classification 

decision. In order to use the information provided by LASSO in building a linear 

regression model for ABA (ABA-Reg), a novel feature score 𝑠𝑖 is proposed to 

incorporate the coefficient given by LASSO for a single feature 𝑖.  

A novel feature score 𝑠𝑖 is proposed, where the score of a feature measures 

its relative contribution towards the classification outcome. The feature score can 

be used to rank the input features and determine their importance for a single 

specific subject. 

In this thesis, as explained in previous chapters, ABA is estimated by building 

a LASSO model (ABA-Reg), which is a penalised linear regression model, on a 

selected set of features referred to as F1 and resulted from the BFFS. The equation 

in E4.1 shows the linear relationship between the input feature values and ABA. 

Using the estimated ABA and chronological age, a logistic regression model (ABA-

Clf), which is also a linear model, is built to predict the class label (AD vs CN). The 

logistic regression model creates a linear decision boundary to classify AD from 

CN and the inequation of that boundary is given below in E6.1: 

 𝑐0 + 𝑐1  ∙   𝑎𝑔𝑒 + 𝑐2  ∙   𝐴𝐵𝐴 < 0 (E6.1)   

 

where 𝑐0 is the intercept and the 𝑐1 and 𝑐2 are the coefficients. Considering 

the equation given in E4.1 and the decision boundary inequation E6.1 given above 

can be rewritten as: 
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𝑐0 + 𝑐1  ∙   𝑎𝑔𝑒 + 𝑐2  ∙   (𝑎0 +  ∑ 𝑎𝑖

𝑘

𝑖=1

 ∙  𝑓𝑖)  < 0 

 

(E6.2)  

 
 

Assuming 𝑐2  < 0 and  (𝑐0 + 𝑐1  ∙   𝑎𝑔𝑒 + 𝑐2  ∙   𝑎0) < 0 , equation E6.2 can 

be shown as: 
 

 
∑ −

𝑐2  ∙  𝑎𝑖  ∙ 𝑓𝑖

𝑐0 +  𝑐1  ∙   𝑎𝑔𝑒 +  𝑐2  ∙  𝑎0

𝑘

𝑖=1

 > 1 
 

(E6.3) 

 
 

  A feature score 𝑠𝑖 associated to the feature 𝑓𝑖 is introduced in E6.4 as the 

contribution of that feature in the summation of inequation E6.3 and can be used to 

measure the relative contribution made by the feature to the classification outcome. 

The higher the 𝑠𝑖 the more 𝑓𝑖 contributes to an AD classification and, vice versa, 

the lower the 𝑠𝑖 the more 𝑓𝑖 contributes to a CN classification. In other words, for a 

given subject a higher value of 𝑠𝑖 than the average could mean there is an abnormal 

atrophy in 𝑓𝑖.  

 
𝑠𝑖  = −

𝑐2  ∙  𝑎𝑖  ∙ 𝑓𝑖

𝑐0 +  𝑐1  ∙   𝑎𝑔𝑒 + 𝑐2  ∙  𝑎0
 

(E6.4)   

 
 
 

The inequality in equation E6.1, which is used for the classification of AD, 

can be given in the following form, as the summation of all feature scores: 

 
∑ 𝑠𝑖

𝑘

𝑖=1

 > 1 
(E6.5)   
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The summation of all feature scores from those features present in F2 

(features selected by LASSO) would determine the classification outcome. The 

feature scores are designed in a way that the summation greater than 1 would give 

a classification of AD where the summation of below 1 results in classification of 

CN. Although 1 is the boundary for the classification using the aggregate of all 

feature scores, some features may have scores much greater or smaller than 1. For 

example, when an AD patient is diagnosed as AD (TP) it means the summation of 

feature scores has been above 1, in this case features scores of some features may 

be much greater than 1 and some may be close to 1. Those features with score much 

greater than 1 are the ones which are having the highest impact and result in an AD 

classification. These features could also be interpreted as being affected by AD 

more than other features. In fact, the proposed feature score can be a direct 

indication to the brain regions and features which have been highly affected by AD. 

This would help medical professionals in understanding the reasons behind such 

classification which ultimately help with the AD diagnosis. 

6.2. Interpretability results and discussion 

For the interpretability analysis, the ABA-Com model was tested on the 

female subjects using a holdout validation method, where the 80% of the data are 

used for training and 20% for testing. Following the application of the outlier 

detection method, 7 subjects were identified as outliers and removed. Therefore, 

1063 subjects were used in this analysis, where 850 are in the training set and 213 

are in the test set. The accuracy achieved on the test set using this holdout validation 

method is 89.67% (TP = 27, TN = 164, FP = 5, FN = 17). 



90 
 

The reason for using the holdout validation instead of cross-validation is to 

have a single set of selected features for the interpretability visualisation. Using 

cross-validation could result in different feature sets produced in each fold. 

Figure 6.1 provides the ABA vs. age plot for the subjects in the test set for 

the analysis performed in this chapter. In this plot the solid black line is the logistic 

regression boundary separating the two classes of CN and AD, with the points 

below the line classified as CN and points above the line classified as AD. The 

colour of the point in the plot are based on the original class labels (CN as blue and 

AD as red). As the plot shows, 22 subjects are misclassified: 5 CN subjects are 

misclassified as AD and placed above the solid black line and 17 AD subjects 

misclassified as CN and placed below the solid black line. 
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Figure 6.1 | Distribution of age vs. ABA produced from ABA-Reg model in 

experiment M3 using hold-out method (data used for this plot are from the test set). 

Solid black line represents the ABA-Clf model boundary line. The diagonal dashed 

line represents y = x. Female subjects data used. 
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To showcase how the interpretability analysis works and show the level of 

descriptiveness in the feature scores, box plots are used. In these plots the 

distribution of score 𝑠𝑖 for each 𝑓𝑖 present in F2 is plotted separately for each of the 

classes of AD and CN using the subjects in the training set. This is to show where 

the distribution of each class for the training set data are positioned on the plot. The 

𝑠𝑖 for each 𝑓𝑖 present in F2 for a single selected specific subject from the test set is 

then plotted as dots on the box plots in order to be compared to the distribution of 

box plots or data from the training set. Distributions are plotted in red and blue to 

represent AD and CN respectively. 

To perform the plotting and showcase the interpretability and distribution of 

𝑠𝑖 , multiple subjects are selected, one true positive and one true negative, in order 

to show how their feature scores differ. To view the feature scores for the two 

selected cases of TP and TN, Figure 6.2 and Figure 6.3 are provided respectively. 

The features showing in Figure 6.2 and Figure 6.3 are the features selected by 

the LASSO algorithm when building the ABA model, also identified as F2. The 

distribution of feature scores for the features present in F2 are provided in these two 

figures in the form of box plots with 2 colours of blue and red representing CN and 

AD subjects respectively in the training set. Both figures show that the feature 

scores for CN are mainly below 1 while the feature scores for AD are mainly above 

1, as stated in E.6.5. This is in line with the logic behind the feature score, where 

the higher the feature score, the more likely that that feature belongs to an AD 

subject.  
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Figure 6.2 | Distribution of the feature scores for a single case of True Positive 

(TP), selected from test set of hold-out method are plotted using red dots. The box 

plots represent feature scores of all subjects in the training set of hold-out method. 

Female subjects data used. 

 

 

 

 

Figure 6.3 | Distribution of the feature scores for a single case of True Negative 

(TN), selected from test set of hold-out method are plotted using blue dots. The box 

plots represent feature scores of all subjects in the training set of hold-out method. 

Female subjects data used. 
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Figure 6.2 shows a single red point for each feature, representing the feature 

scores for a single selected TP case. For this subject, the feature scores, from left to 

right, are 2.98, 1.00, 0.17, -0.05, and the sum of the scores is 4.10. As this sum is 

greater than 1, the subject is classified correctly as AD. Individual feature score 

distributions and the place of the red dots also show how badly a feature is affected 

by AD. In this figure, Left Whole Hippocampus has the feature score of 2.98, which 

is much higher than 1 and even the distribution of feature scores for this feature for 

subjects with AD. This shows that this feature (region of the brain) has been 

affected greatly by AD. 

In contrast to Figure 6.2 and the distributions of feature scores for a TP case, 

the feature scores of a TN case are also presented as blue points in Figure 6.3. The 

values blue points represent for the features, from left to right are, -2.10, -0.51, -

0.122, 0.00 with the sum of -2.72. As can be seen in this figure, all the individual 

feature scores for this subject (blue points) are below 1 and as the sum of scores is 

also below 1, the subject has correctly been classified as CN.  

In order to provide more examples of the of distributions of feature scores 

eight female subjects and two male subjects are selected. The eight female subjects 

provide two TP, two TN, two FP and two FN cases which are presented each in 

Figures 6.4 to 6.11. To also demonstrate how the feature scores perform in male 

subject group, two cases of TP and TN are presented in Figure 6.12 and 6.13 

respectively. These are provided in Appendix C. 
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6.3. Summary 

In conclusion, this chapter has shown that the proposed framework can 

provide explanations as to why a prediction has been made. These explanations are 

though the interpretability index which shows the presence of each brain feature 

and the extent of impact of each feature on the outcome. This will then help the 

medical professional understand why a person has been predicted to have AD and 

which parts of the brain contributed most to that prediction. This is a significant 

improvement compared to the black-box methods where the decision making 

behind the prediction cannot be easily explained. 

Up to this chapter the focus of the proposed method has been on the binary 

classification. In the next chapter, the proposed method will be applied in a multi-

class classification setting. 
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Chapter 7 

7. Multi-Class classification 

In this thesis the focus has been on binary classification of AD vs. CN. This 

type of classification is what has mainly been studied in the previous literature 

which can ultimately assist the medical professionals in their decision making and 

clinical diagnosis when attempting to decide whether a person has AD or is a 

healthy person. This type of binary classification to detect AD has been most 

researched compared to other types of dementia because AD affects more people 

than other types of dementia and, consequently more data are also available. 

In the previous three chapters, ABA-Com, the full interpretable workflow of 

binary classification of AD vs. CN using the proposed Apparent Brain Age (ABA) 

feature is defined. In those three chapters the ABA-Com was applied to AD and CN 

data and the aim was to choose a minimal number of features while maintaining the 

maximal performance and interpretability when predicting AD from CN. The 

logical progression from this analysis is to apply the same ABA-Com workflow in 

a multi-class setting where in addition to AD, other types and stages of dementia 
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are also classified. This can be particularly helpful when there is a risk of 

misdiagnosis among dementia types due to some shared and similar symptoms. 

Misdiagnosis could result in the prescription of wrong drugs and medical treatment 

plan which does not help with the treatment of the actual disease. Therefore, a multi-

class setting for the workflow is proposed. 

In this chapter the ABA-Com model workflow, which involves LASSO 

regression (ABA-Reg model) and logistic regression classification (ABA-Clf 

model), is applied to the data with healthy subjects and subjects with any of the 

following selected five types and stages of dementia. The dementia types and stages 

selected are Alzheimer’s disease (AD), Frontotemporal dementia (FTD), early mild 

cognitive impairment (EMCI), late mild cognitive impairment (LMCI) and mild 

cognitive impairment (MCI). 

It is worth mentioning that MCI is not considered a type of dementia clinically 

as it is a group of symptoms that could convert to AD or other types of dementia 

overtime or they could get better and disappear without conversion into a dementia 

type. Therefore, MCI could be seen as an initial stage and a biomarker to 

development of a dementia type. The MCI itself has two stages of late MCI (LMCI) 

and early MCI (EMCI). In this chapter, the data from the two types and three stages 

of dementia are utilised so that ABA-Com model can help to explore the relation 

between different types and stages of dementia. 

In the ABA-Com model workflow for the multi-class classification of 

dementia types and stages, the proposed ABA feature will be different and specific 
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to each dementia type/stage and the features selected by the proposed feature 

selection method BFFS are indicative of that particular dementia type/stage. This 

characteristic and specificity to the disease is what makes ABA feature different to 

the brain age features suggested in [6] [31] [32] where the features are not created 

with specificity to a particular disease and therefore may not have a good 

performance in a multi-class setting. 

In this chapter all available data were used which consists of 3,170 subjects 

of which 1,603 are male and 1,567 are female subjects. These data have been 

obtained from ADNI, AIBL, IXI, NIFD and PPMI. 

7.1. Detection of dementia types and stages 

using ABA 

As explained in Chapter 4, the proposed feature selection method BFFS 

aggressively selects minimal number of features which are highly specific to a 

particular disease. In other words, ABA-Reg is built on parts of the brain which had 

the highest effect from the disease. This makes ABA feature specific to a particular 

disease. This means that ABA feature is the biological age of those parts of the 

brain. This specificity to the disease helps ABA achieve a better AD classification 

performance compared to generic whole-brain approaches proposed in previous 

literature [6] [31] [32]. 

Up to this chapter binary classification of AD vs. CN was aimed and therefore 

a single ABA-Reg model was needed to be built for AD patients using the brain 

features (ROIs) which are highly affected by AD. In this chapter five dementia 
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types/stages will be classified in a 6-class classification setting of AD vs. EMCI vs. 

LMCI vs. MCI vs. FTD vs. CN. This is to show the classification performance of 

ABA in a multi-class setting. 

The ABA-Com workflow in this chapter is different to the ABA-Com 

workflow for binary classification. In this multi-class classification workflow, due 

to specificity of the ABA-Reg model to the disease, a separate ABA-Reg model is 

built for each disease and as there are five diseases or types/stages of dementia, five 

ABA-Reg models are built. 

Let 𝐴𝐵𝐴𝑥 be an ABA feature which was created using two groups of subjects 

combined: healthy subjects and subjects with disease 𝑥. The ABA-Reg model is 

always built on healthy subjects only but the proposed feature selection method 

BFFS selects the features using the two groups of subjects. In other words, to 

estimate 𝐴𝐵𝐴𝑥, BFFS is applied to healthy subjects and subjects with disease 𝑥 

combined in order to select the brain features (ROIs) which are highly indicative of 

disease 𝑥. Those selected features are then used to build ABA-Reg for that specific 

disease 𝑥. 

After creation of 𝐴𝐵𝐴𝑥 for each disease 𝑥, the two features of 𝐴𝐵𝐴𝑥 and age 

are used to build a logistic regression binary classification model (ABA-Clf model) 

using the two groups of healthy subjects and subjects with disease 𝑥. This ABA-

Clf model is referred to as 𝐴𝐵𝐴 − 𝐶𝑙𝑓𝑥. The generated logistic regression model 

𝐴𝐵𝐴 − 𝐶𝑙𝑓𝑥 is then applied to all subjects to predict the probability of each subject 

having disease 𝑥.  
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After applying all five 𝐴𝐵𝐴 − 𝐶𝑙𝑓𝑥 models to all subjects, each subject will 

have a set of five probabilities resulted from the logistic regression models referred 

to as 𝑃𝑟𝑜𝑏𝑥 which provides the probability of a subject having disease 𝑥. The 

disease 𝑥 with the highest 𝑃𝑟𝑜𝑏𝑥 will then be selected as the predicted class. If 

probabilities of all diseases are below 0.5, the subject is classified as healthy and 

CN is predicted.  

The five probabilities 𝑃𝑟𝑜𝑏𝑥 resulted from the logistic regression models are 

the result of a binary classification of healthy vs disease 𝑥. Therefore, when the 

probability of a subject having disease 𝑥 is 𝑃𝑟𝑜𝑏𝑥, the probability of that person 

being healthy is worked out as 1 − 𝑃𝑟𝑜𝑏𝑥 . As an example, when there is a 

probability of a person having MCI is 0.65, which is determined by binary logistic 

regression model, the probability of the same person being healthy is 0.35. So, when 

the probabilities of all diseases are below 0.5 it means that there is less than 50% 

chance that the subject will have any of the diseases, which as the result means that 

there is more than 50% chance of the subject being healthy and therefore the 

subjects is classified as CN. 

To show the effect of additional diseases on the classification model, 4 

experiments are proposed. Initially, MCI is added to the two classes of AD and CN 

to create the 3-class model. This combination of classes is what is mainly used in 

previous literature on multi-class classification of dementia. In this experiment CN 

vs. AD vs. MCI classification is performed.  
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To add an additional dementia type, FTD is added and the 4-class model is 

proposed. In this experiment CN vs. AD vs. MCI vs. FTD classification is 

performed. An additional 4-class model is also proposed when all EMCI, LMCI 

and MCI are used as MCI in the model. This is to see the effect of E/LMCI on the 

model. And in the final experiment the 2 labels of EMCI and LMCI are also added 

to create the 6-class classification of CN vs. AD vs. MCI vs. FTD vs. EMCI vs. 

LMCI. 

The four multi-class classification experiments proposed are performed using 

the proposed BFFS and they are reported in Table 7.1 as 𝐴𝐵𝐴𝑤𝐹𝑆𝑥
 . To compare 

these results to scenarios where BFFS is not present, the 4 experiments were 

performed without BFFS and are labelled as 𝐴𝐵𝐴𝑤𝑜𝐹𝑆 in Table 7.1. Also, to have 

a baseline for all 4 experiments where all brain features are used in SVM to make 

classification experiments are performed with the label Baseline SVM Table 7.1. 

The baseline is to compare the multi-class classification ability of the ABA-Com to 

SVM. 

7.2. Results and discussion 

In Table 7.1 for each of the three categories of experiments the accuracy 

reduces as additional classes are added. In 𝐴𝐵𝐴𝑤𝐹𝑆𝑥
 category, for the 3-class 

classification using CN, AD and MCI (W1), the reported accuracy is 69.85% and 

77.3% for males and females respectively. This is an increase of 5.88% and 4.41% 

for males and females respectively compared to that of 𝐴𝐵𝐴𝑤𝑜𝐹𝑆 (WO1). This 

shows that BFFS has had a significant positive impact on the classification 
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performance of ABA-Com in a 3-class setting. To compare these results to the 

baseline, there is an increase of 4.72% and 4.53% in accuracy in from B1 to W1 for 

males and females respectively. This shows that ABA-Com has performed better 

in a 3-class setting in 𝐴𝐵𝐴𝑤𝐹𝑆𝑥
 compared to the baseline. This means two features 

of ABA and age, in addition to providing interpretability, were able to perform 

better in the classification task than all brain features and age combined using SVM 

algorithm. 

In Table 7.1 it can also be seen that for each of the four multi-class 

classification scenarios, 𝐴𝐵𝐴𝑤𝐹𝑆𝑥
 has performed better than 𝐴𝐵𝐴𝑤𝑜𝐹𝑆 and baseline. 

The four scenarios in 𝐴𝐵𝐴𝑤𝑜𝐹𝑆 category on the other hand performed poorly on 

average compared to the baseline. This shows the considerable positive impact of 

BFFS on the classification performance. 

In Table 7.2, the W1 results reported in Table 7.1 were used to be compared 

to the previous literature. This is because previous literature in the field of multi-

class classification of AD mainly used the three classes of AD, MCI and CN. This 

3-class classification is also very challenging as AD and MCI have very similar 

symptoms and affect the same parts of the brain as MCI is viewed as the initial 

stage of AD. This 3-class setting is therefore selected to show the performance of 

ABA-Com in this challenging scenario and also be comparable to previous 

literature. 
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Four previous studies have been selected and presented in Table 7.2 to 

compare to the reported results in this chapter. These past four studies in the multi-

class classification of AD, MCI and CN [43] [44] [45] [46] have been selected based 

on their relevance to the work in this chapter. The data set used by all four is ADNI 

and they are relatively recent studies.  

The past four papers have provided different performance measurement 

metrics such as accuracy, sensitivity, specificity and F1-score; some provided these 

as overall figures for all class labels and some provided these metrics per class in 

addition to overall figure as shown in Table 7.2. To be able to compare the results 

in this chapter to previous literature, the reported metrics used in this chapter 

include both overall accuracy, sensitivity, precision and F1-score, and specificity 

per class.  

To evaluate the performance of multi-class ABA-Com, the four metrics of 

accuracy, sensitivity, precision and F1-score have been selected. While accuracy is 

calculated at dataset level, other three metrics are calculated at class level. To get 

the overall dataset-level results for the three metrics of sensitivity, precision and 

F1-score, an averaging method can be used to average the values for all classes. 

The type of averaging methods can be micro and macro averaging. While micro 

gives different weight to each class based on its size, macro treats all classes the 

same way. The type of averaging that is similar to calculation of dataset-level 

overall accuracy is the micro averaging where different classes with different sizes 

have different effects and importance on the overall average value. Macro 

averaging is calculated for each class label individually and the class imbalance is 



106 
 

ignored. Selecting micro averaging method is consistent to calculation of accuracy. 

Therefore, micro averaging is used in this chapter to get the overall dataset-level 

values for the three metrics of sensitivity, precision and F1-score.  

It should be noted that as explained in [47] when micro averaging used, the 

four overall values of precision, recall (sensitivity), F1-score and accuracy are the 

same, therefore in this study the value of accuracy, represents all four values. 

As shown in Table 7.2, three studies used neural networks [43] [45] [46] and 

one study used random forest [44] to perform 3-class classification of AD, MCI and 

CN, while all four studies used cross-validation in their model performance 

evaluation workflow. Although all four papers used robust methods and algorithms 

the highest accuracy reported is 61.58% which is 15.72% lower than the accuracy 

achieved by ABA-Com, 77.3%, while only the two features of age and ABA were 

used in the classification task. This shows that not only ABA-Com is less complex 

than neural networks but it can achieve superior performance to them. 

As the analysis in past studies may not be identical to what has been 

performed in this chapter, a baseline SVM method is provided to show the 3-class 

classification performance of a state-of-the-art algorithm using all brain features 

and all available data. Table 7.2 shows that SVM has achieved an accuracy of 

72.77%, which is 4.53% below the accuracy achieved by ABA-Com. This confirms 

that the proposed ABA-Com not only had superior performance when compared 

with relevant previous literature but it has better performance compared to the 

baseline method. 



107 
 

7.3. Summary 

In this chapter the evaluation of the ABA-Com model had been performed 

when it was applied to multiple dementia types and stages. The results of the 3-

class classification have shown that the ABA-Com can achieve better results than 

the relevant previous studies. Also, the ABA-Com had performed better than the 

baseline SVM.  
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Chapter 8 

8.Conclusion 

One of the main objectives of this research was to create an ML classification 

model to predict AD using the MRI data while achieving comparable performance 

to black-box state-of-the-art models. This objective has been achieved as shown in 

the results section of Chapter 5. The proposed ABA-Com model framework, which 

is one of the novel contributions of this thesis, used two linear regression models to 

make a classification of AD vs. CN and achieved better predictive performance than 

baseline SVM for both female and male subjects. 

The next objective was to eliminate the complexity in the black-box models 

by proposing a linear ML model. The proposed ABA-Com consists of two linear 

models; ABA-Reg model proposed in Chapter 4 which uses a linear regression 

model (LASSO) and the ABA-Clf model proposed in Chapter 5 which uses linear 

logistic regression model to make the final classification. Therefore, by using only 

linear models in the proposed model the complexity of the model is eliminated and 

the objective is achieved. 
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Using linear models throughout the framework of the proposed model has 

enabled the model to achieve the intrinsic model interpretability by defining a novel 

feature score 𝑠𝑖 outlined in Chapter 6 which is a linear index and links the original 

feature values to the final model outcome by showing how much each feature 

affected the prediction outcome. Defining and using of score 𝑠𝑖 does not affect the 

classification performance of the proposed ABA-Com model and it keeps the high 

performance. The objective of model interpretability has therefore also been 

achieved. 

The ABA feature proposed in Chapter 4, another novel contribution of this 

thesis, could be used as a biomarker by medical professionals as it is specific to a 

pathology and gives the biological age of a part of a brain or a small subspace of 

features in the brain which are highly affected by that pathology. The ABA can 

therefore give representation of that partial specific brain age to show how different 

the biological age of those parts is compared to chronological age. The difference, 

also referred to as ADS is then an indication as to whether those parts of the brain 

have aged faster and there has been an atrophy in those parts which can indicate the 

presence of the pathology i.e., AD. Also, in addition to ABA, the medical 

professionals can use the proposed feature scores to identify which specific brain 

feature contributed to the value of ABA the most. As the result ABA can be used 

by medical professionals as a biomarker and indicator of AD. 

To train the ABA-Reg model a small subspace of features were used. These 

features were selected to represent the subspace which have had the highest impact 

from the pathology. There is therefore a bias introduced in the training of the ABA-
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Reg model where the model is not built on all brain features but a very small and 

specific feature which are indicative of one pathology i.e., AD. This bias 

deteriorates the regression performance of the model by increasing the MAE and 

decreasing the Pearson’s r. However, this bias is intentionally introduced in the 

training process not for the purpose of improving the regression task performance, 

but to maximise the final classification performance of ABA-Clf. Therefore, the 

bias in the training process has been introduced and it has improved the accuracy 

of the classification task. 

In order to select the features which have had the highest effect form AD, a 

feature selection model is proposed, referred to as Biased Forward Feature 

Selection (BFFS), as presented in Chapter 4. BFFS is one of the novel contributions 

of this thesis. This is an aggressive feature selection method which selects the 

minimal number of brain features to achieve the maximal classification 

performance in classifying AD. The ability and the effect of BFFS on the 

classification task has been assessed in Chapter 5 and it is shown that using of BFFS 

has a significant improvement on the ABA-Com model classification performance. 

The objective of creation of a feature selection method has also been achieved.  

The logical continuation of the ABA-Com would be to apply the model in a 

muti-class setting to predict multiple types and stages of dementia. Therefore, in 

Chapter 7 the ABA-Com model has been applied in a 6-class classification setting 

with five different dementia types and stages as well as being applied in 3-class and 

4-class settings. It is shown in the results of this chapter that the proposed method 

has achieved better accuracy than the previous literature and the baseline SVM, and 
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the ABA-Com is successful in being applied in a multi-class classification setting. 

The objective of multi-class classification while achieving a superior performance 

has also been achieved. 

One of the limitations in this thesis could be related to the preprocessing the 

MRI scans using FreeSurfer, which is very time-consuming using ordinary 

computers. Also, FreeSufer segments the brain based on a predefined atlas template 

of the brain, which can introduce artifacts  

Another limitation is the availability of the data. Although the data used in 

this thesis were downloaded from public repositories around the world the size of 

data available is very limited. A potential solution would be if public organisations 

such as the National Health Service (NHS) provided MRI data in anonymised 

format to be used in research. 

Another limitation would be the use of only linear models in the proposed 

framework in order to achieve the interpretability. It would be good if non-linear 

models could be used as part of the framework while attempting to retain 

interpretability. 

8.1. Future work 

The proposed ABA-Com framework considers morphological brain features 

from MRI data to detect AD. This prediction is purely based on the biological and 

morphological characteristics of the brain features and there is no expert 

knowledge, demographical information and other health biomarkers to reinforce 
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and improve this framework. Therefore, a potential future work is to combine ABA-

Com framework with other biomarkers and information which could improve the 

prediction. 

Also, in Chapter 7 the ABA-Com has been applied as a multi-pathology 

prediction approach. The accuracy achieved in this chapter was superior to the 

baseline and relevant other work however, it was significantly lower than the 

accuracy achieved in binary classification of AD. This could be due to the fact that 

dementia types and stages used in the multi-class classification task have very 

similar symptoms especially MCI stages and AD, and they affect similar parts of 

the brain. As this thesis only focuses on morphological features, distinguishing 

between similar diseases is a great challenge. Also, the MRI scans used in this thesis 

are from the initial scans taken from the subject. A possible continuation of this 

work is not only to incorporate information from other biomarkers and cognitive 

tests to the model but to perform longitudinal analysis on multiple scans of the same 

subject at different stages of the disease as the progression of the disease along with 

expert knowledge can narrow down the symptoms to fewer diseases.  

Although some dementia types and stages have been analysed in this thesis 

the proposed framework could be applied to more dementia and other 

neurodegenerative disease types. The reason for not applying the proposed model 

to more diseases is that the data for other diseases are very scarce. A possible 

progression from this work is therefore to apply the proposed model to other 

dementia types such as Huntington's and Parkinson’s diseases and also other 

diseases such as schizophrenia and multiple sclerosis. 
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In this work the data used were Structural MRI scans where morphological 

measurements of the brain were then extracted from those scans. A possible 

addition to this work would be using other types of data such as Functional MRI, 

CT scans, PET scans, in addition to Structural MRI. 

Although the results were compared to previous literature, the findings of this 

thesis such as the classification results and the selected brain features to predict AD 

were not presented to the medical professionals and experts. Therefore, a potential 

future work could involve reviewing the results with a medical experts. 
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Appendix A 

Multi-class classification 

confusion matrices 

In addition to the results provided in Table 7.1, confusion matrices for the 

four experiments of W1 to W4 which are part of the proposed approach, are 

provided in this appendix.  

 

Table A.1F | W1 - Female 

 
 Predicted label 

 
 CN MCI AD 

A
ct

u
al

 

la
b

el
 CN 796 (3) 21 (4) 26 (6) 

MCI 81 (4) 29 (3) 70 (4) 

AD 44 (4) 40 (6) 135 (5) 

 

 

Table A.1M | W1 - Male 

 
 Predicted label 

 
 CN MCI AD 

A
ct

u
al

 

la
b

el
 CN 612 (3) 40 (3) 30 (4) 

MCI 104 (3) 106 (5) 68 (6) 

AD 46 (1) 76 (8) 123 (7) 
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Table A.2F | W2 - Female 

 
 Predicted label 

 
 CN MCI AD FTD 

A
ct

u
al

 la
b

el
 

CN 786 (4) 23 (6) 26 (2) 8 (2) 

MCI 76 (2) 30 (2) 70 (2) 3 (2) 

AD 42 (2) 35 (6) 137 (5) 5 (1) 

FTD 44 (2) 5 (2) 14 (2) 21 (3) 

 

 

Table A.2M | W2 - Male 

 
 Predicted label 

 
 CN MCI AD FTD 

A
ct

u
al

 la
b

el
 

CN 601 (4) 43 (6) 27 (6) 12 (2) 

MCI 104 (5) 103 (7) 66 (7) 6 (1) 

AD 44 (4) 72 (10) 117 (9) 13 (2) 

FTD 45 (3) 5 (2) 27 (5) 37 (6) 

 

 

Table A.3F | W3 - Female 

 
 Predicted label 

 
 CN MCI AD FTD 

A
ct

u
al

 la
b

el
 

CN 751 (2) 63 (3) 21 (4) 9 (3) 

MCI 230 (5) 87 (9) 87 (7) 6 (2) 

AD 32 (2) 48 (5) 133 (6) 6 (2) 

FTD 37 (1) 14 (0) 13 (3) 19 (3) 

 

 

Table A.3M | W3 - Male 

 
 Predicted label 

 
 CN MCI AD FTD 

A
ct

u
al

 la
b

el
 

CN 518 (6) 136 (7) 20 (3) 8 (2) 

MCI 226 (9) 215 (13) 107 (8) 6 (2) 

AD 24 (2) 95 (6) 118 (5) 8 (2) 

FTD 34 (2) 28 (5) 24 (3) 28 (7) 
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Table A.4F | W4 - Female 

 
 Predicted label 

 
 CN MCI EMCI LMCI AD FTD 

A
ct

u
al

 la
b

el
 

CN 782 (4) 21 (5) 3 (2) 3 (2) 25 (5) 9 (2) 

MCI 77 (1) 32 (6) 1 (2) 4 (2) 61 (6) 4 (2) 

EMCI 133 (2) 6 (2) 0 (1) 2 (1) 10 (2) 2 (1) 

LMCI 52 (4) 4 (2) 2 (2) 2 (2) 17 (1) 2 (1) 

AD 40 (4) 34 (4) 2 (0) 11 (3) 125 (2) 6 (1) 

FTD 40 (1) 5 (3) 1 (1) 5 (2) 12 (5) 22 (3) 

 

 

Table A.4M | W4 - Male 

 
 Predicted label 

 
 CN MCI EMCI LMCI AD FTD 

A
ct

u
al

 la
b

el
 

CN 581 (5) 39 (3) 19 (6) 7 (3) 24 (3) 11 (2) 

MCI 98 (2) 98 (10) 7 (3) 9 (4) 62 (9) 4 (2) 

EMCI 126 (6) 12 (1) 17 (3) 6 (2) 15 (2) 3 (2) 

LMCI 49 (2) 9 (1) 10 (2) 3 (1) 23 (3) 3 (2) 

AD 35 (3) 65 (8) 10 (3) 20 (6) 109 (9) 7 (3) 

FTD 41 (3) 3 (1) 13 (5) 6 (2) 23 (2) 28 (5) 
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Appendix B 

Selected hyperparameters 

In this thesis hyperparameter tuning for was not performed for either SVM 

and LASSO algorithms. This was due to limitation of time during the research for 

this thesis and also a fair comparison between the baseline experiment using SVM 

and the proposed framework using LASSO. The value for C in SVM and lambda 

in LASSO were selected as 1. 
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Appendix C 

Interpretability index - further 

examples  

 

 

Figure 6.4 | Distribution of the feature scores for a further case of True Positive 

(TP), selected from test set of hold-out method are plotted using red dots. The box 

plots represent feature scores of all subjects in the training set of hold-out method. 

Female subjects data used. 
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Figure 6.5 | Distribution of the feature scores for a further case of True Positive 

(TP), selected from test set of hold-out method are plotted using red dots. The box 

plots represent feature scores of all subjects in the training set of hold-out method. 

Female subjects data used. 

 

Figure 6.6 | Distribution of the feature scores for a further case of True Negative 

(TN), selected from test set of hold-out method are plotted using blue dots. The box 

plots represent feature scores of all subjects in the training set of hold-out method. 

Female subjects data used. 
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Figure 6.7 | Distribution of the feature scores for a further case of True Negative 

(TN), selected from test set of hold-out method are plotted using blue dots. The box 

plots represent feature scores of all subjects in the training set of hold-out method. 

Female subjects data used. 

 

Figure 6.8 | Distribution of the feature scores for a further case of False Positive 

(FP), selected from test set of hold-out method are plotted using orange dots. The 

box plots represent feature scores of all subjects in the training set of hold-out 

method. Female subjects data used. 
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Figure 6.9 | Distribution of the feature scores for a further case of False Positive 

(FP), selected from test set of hold-out method are plotted using orange dots. The 

box plots represent feature scores of all subjects in the training set of hold-out 

method. Female subjects data used. 

 

Figure 6.10 | Distribution of the feature scores for a further case of False Negative 

(FN), selected from test set of hold-out method are plotted using green dots. The 

box plots represent feature scores of all subjects in the training set of hold-out 

method. Female subjects data used. 
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Figure 6.11 | Distribution of the feature scores for a further case of False Negative 

(FN), selected from test set of hold-out method are plotted using green dots. The 

box plots represent feature scores of all subjects in the training set of hold-out 

method. Female subjects data used. 

 

Figure 6.12 | Distribution of the feature scores for a further case of True Positive 

(TP), selected from test set of hold-out method are plotted using red dots. The box 

plots represent feature scores of all subjects in the training set of hold-out method. 

Female subjects data used. 
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Figure 6.13 | Distribution of the feature scores for a further case of True Negative 

(TN), selected from test set of hold-out method are plotted using red dots. The box 

plots represent feature scores of all subjects in the training set of hold-out method. 

Female subjects data used. 
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