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Abstract
In this paper we prove that the space of homogeneous probability measures on the
maximal Satake compactification of an arithmetic locally symmetric space is compact.
As an application,we explain some consequences for the distribution ofweakly special
subvarieties of Shimura varieties.
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1 Introduction

In this paper, we study the behaviour of sequences of homogeneous measures. More
specifically, given a sequence of such measures, we will be interested in describing
its limit points. This problem has been studied by Eskin, Mozes, and Shah [9, 10, 15],
who showed that, under certain conditions, any limit point is either a homogeneous
measure itself or a zero measure. The later case amounts to the existence of a sub-
sequence of measures diverging to infinity and, in [10], a non-divergence condition
was established. Such results concerning the convergence of measures have found
several remarkable applications in arithmetic geometry (see, for instance, [6, 9, 11]).
However, the applicability of these tools have so far been limited to the case in which
divergence to infinity can be ruled out. The goal of the present paper is to investigate
limits of divergent sequences by considering them inside a Satake compactification.
Ultimately, we show that any limit point is also a homogeneous measure supported on
precisely one of the boundary components of the compactification.

We conjectured this result in our previous paper [8], wherein we developed several
tools with which to study it and also proved some particular cases, including the
locally symmetric space associated with SL3(R). We refer to the introduction of [8]
for some further historical background in homogeneous dynamics. We simply recall
here the importance, for our purposes, of the seminal works of Ratner [21, 22] on the
dynamics of unipotent flows, and of some of its developments by Dani–Margulis [7]
and Eskin–Mozes–Shah, as alluded to above.

Formulating themain result

LetG be a semisimple algebraic group defined overQ and let G denote the connected
component of G(R) containing the identity. Let K be a maximal compact subgroup
of G and let � ⊂ G(Q) ∩ G be an arithmetic lattice. Denote by X the associated
Riemannian symmetric space G/K , denote by x0 the point in X with stabilizer equal
to K , and denote by S the associated arithmetic locally symmetric space �\X . Let
P(S) denote the set of Borel probability measures on S.

A Q-algebraic subgroup H ⊂ G is said to be of type H if the radical RH of H
is unipotent and the real Lie groups underlying the Q-simple factors of H are not
compact. With an algebraic subgroup H ⊂ G of type H and some g ∈ G we can
associate a probability measure μH,g ∈ P(S) with support equal to �\�Hgx0 ⊂ S.
Such a measure is called homogeneous and we denote by

Q(S) := {μH,g, H of type H, g ∈ G} ⊂ P(S)

the set of homogeneous probability measures on S.
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The space of homogeneous probability measures... 989

The maximal Satake compactification of S has a decomposition

�\XS
max = �\X

∐ ∐

P∈E
�XP \XP (1)

where P varies among a (finite) set of representatives E of the �-conjugacy classes
of proper Q-parabolic subgroups of G and the boundary component �XP \XP is the
arithmetic locally symmetric space associated with P. As a consequence, for any

boundary component �XP \XP of �\XS
max, we can define the set Q(�XP \XP ) of

homogeneous probability measures on �XP \XP as we defined Q(S) for the open

boundary component S = �\X of �\XS
max. A probability measure μ on �\XS

max is
said to be homogeneous if μ is homogeneous on S or on one of the proper boundary
components �XP \XP . In other words, the set of homogeneous probability measures

Q(�\XS
max) on �\XS

max is the subset

Q(S)
∐ ∐

P∈E
Q(�XP \XP )

of the (compact) set P(�\XS
max) of all Borel probability measures on �\XS

max.
Our main result is the following, which establishes [8, Conjecture 1.1].

Theorem 1.1

(i) The setQ(�\XS
max ) of homogeneous probabilitymeasures on�\XS

max is compact.
(ii) Let (Hn)n∈N be a sequence of algebraic subgroups ofG of typeH and let (gn)n∈N

be a sequence of elements of G. Let μ ∈ P(�\XS
max) be a weak limit of the

associated sequence (μHn ,gn )n∈N of homogeneous measures on S = �\X. Then
μ is a homogeneous measure on �\XS

max.

In (ii), if μHn ,gn → μ and μ is supported on the boundary component �XP \XP, then
there exists a connected algebraic subgroup H of P of type H and an element g ∈ P
such that μ = μH,g and Hn is contained in H for n large enough.

Note that, in Theorem 1.1, (ii) is an immediate consequence of (i), but (ii) (for any
G) implies (i) by simple properties of Satake compactifications (see Proposition 2.3
(ii)).

Sequences of weakly special subvarieties

If we assume, moreover, that X is hermitian, then, by a fundamental result of Baily–
Borel [1], the hermitian locally symmetric space S = �\X has the structure of a
quasi-projective algebraic variety. Such varieties have been studied extensively by
Shimura andDeligne as a generalization of themodular curve. As such they are usually
called Shimura varieties and they now play a central role in the theory of automorphic
forms (in particular, the Langlands program), the study of Galois representations,
and Diophantine geometry. The main examples of Shimura varieties are given by the
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990 C. Daw et al.

moduli spaces Ag of principally polarized abelian varieties of dimension g, in which
case G = Sp2g and � = Sp2g(Z). In general, Shimura varieties are moduli spaces of
Hodge structures of a restricted type. They are endowed with special points, special
subvarieties, and weakly special subvarieties that play a central role in their theory and
are the central objects in the André–Oort and Zilber–Pink conjectures [19, 20, 29].

Special points of S parametrize ‘maximally symmetric’ Hodge structures (more
precisely, Hodge structures whose Mumford–Tate groups are tori). In the case ofAg ,
they correspond to abelian varieties with complex multiplication. The weakly special
subvarieties of S are the totally geodesic subvarieties, and a special subvariety is a
weakly special subvariety containing a special point. A special subvariety can also
be described in Hodge theoretic terms as a certain locus of ‘non-generic’ Hodge
structures. The relevance of these notions for our purposes is due to the fact that any
weakly special subvariety of S is the support of a homogeneous measure.

The equidistribution of sequences of homogeneous measures associated with spe-
cial subvarieties of Shimura varieties (in situations where there is no escape of mass)
has been studied by Clozel and the third author [6, 25], and played a central role in
the proof of the André–Oort conjecture under the Generalized Riemann Hypothesis
[14, 26]. The very successful strategy of Pila–Zannier [16, 18], which has yielded
unconditional cases of the André–Oort and Zilber–Pink conjectures, has highlighted
the importance of understanding the distribution of weakly special varieties. The Ax–
Lindemann conjecture [13, 17, 27], at the heart of their strategy, asserts that the Zariski
closure of an algebraic flow is weakly special.

The main result of this paper has implications on the equidistribution properties of
sequences of weakly special subvarieties, even in the situation when there is escape of

mass. In the Shimura case, the Baily–Borel compactification S
BB

of S has the form

S
BB = S

∐ ∐

P∈Emax

�Xh,P \Xh,P

where Emax is a set of representatives for the �-conjugacy classes of maximal Q-
parabolic subgroups of G and each boundary component �Xh,P \Xh,P is hermitian

locally symmetric. As before, we say that a measure μ on S
BB

is homogeneous if μ

is supported on the open boundary component S or on one of the proper boundary
components and is homogeneous. In this situation, we have the following theorem
(which is a consequence of Theorem 1.1 by [8, Theorem 3.4]).

Theorem 1.2 Let (Zn)n∈N be a sequence of weakly special subvarieties of S. Let
(μn)n∈N be the associated sequence of homogeneous measures. Then in the space

P(S
BB

) of probability measures on S
BB

any weak limitμ of (μn)n∈N is homogeneous.

One can show that the weak limits in Theorem 1.2 need not be supported on a
weakly special subvariety.
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The space of homogeneous probability measures... 991

Applications and developments

The main construction of the paper, Theorem 5.3 (which, via Theorem 4.2, yields
Theorem 1.1), has recently been applied in a new proof (due to Richard and the third
author) of the so-called géométrique André–Oort conjecture (see [23, Théorème 1.3]).
The proof passes through the following “dynamic alter ego” of the aforementioned
conjecture.

Theorem 1.3 [23, Théorème 1.6] Let V be an irreducible algebraic subvariety of
S containing a sequence (Zn)n∈N of weakly special subvarieties Zn = �\�Hnxn
for some semisimple Q-algebraic subgroups Hn of G. There exists a Q-algebraic
subgroup H∞ of G such that, after possibly replacing (Zn)n∈N with a subsequence,
Hn is contained in H∞ and V contains the spaces �\�H∞xn for all n ∈ N.

In fact, the authors obtain the natural generalization of Theorem 1.3 in the setting
for which S is replaced by a general arithmetic quotient and V is a real analytic
subvariety definable in an o-minimal structure (see [23, Théorème 1.8]). This allows
the authors, in an appendix with Chen, to complete the work of the latter author
[5] on the geometric André–Oort conjecture for variations of Z-Hodge structures (a
conjecture due to Klingler [12]).

In a recent preprint, Zhang has announced an extension of Theorem1.1 in theBorel–
Serre compactification, in which the typeH assumption on theHn , forHn = H fixed,
is relaxed (see [30, Theorem 1.2]).

Organisation of the paper

In Sect. 2, we give the necessary preliminaries to clarify the statement of the main
result. In particular, we explain why Theorem 1.1 (ii) implies Theorem 1.1 (i). In
Sect. 3, we give some further definitions and prove some useful results on parabolic
subgroups. In Sect. 4, we state the three main tools used in the proof of Theorem 1.1,
namely, two criteria for convergence proved in [8], and an inequality between simple
roots and dual weights due to Li. In Sect. 5, we explain an algorithm combining these
three tools, which proves Theorem 1.1 and, in the process, determines the boundary
component supporting the limit of a convergent sequence of homogeneous measures.
The appendix, due to Li, contains a proof of the aforementioned result regarding root
systems.

2 Preliminaries

In this section, we collect the definitions required in order to explain the main results.
We repeat several definitions established in [8].
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992 C. Daw et al.

2.1 Borel probability measures

Let S be a metrizable topological space and let � be its Borel σ -algebra. By a Borel
probability measure on S, we mean a probability measure on �. We let P(S) denote
the space of all Borel probability measures on S. We say that a sequence (μn)n∈N in
P(S) converges (weakly) to μ ∈ P(S) if we have

∫

S
f dμn →

∫

S
f dμ, as n → ∞,

for all bounded continuous functions f on S.

2.2 Algebraic groups

By an algebraic groupG, we refer to a linear algebraic group defined overQ and by an
algebraic subgroup of G we again refer to an algebraic subgroup defined overQ. We
will use boldface letters to denote algebraic groups (which, again, are always defined
over Q). By convention, semisimple and reductive algebraic groups are connected.

IfG is an algebraic group, we will denote its radical byRG and its unipotent radical
by NG. We will write G◦ for the (Zariski) connected component of G containing the
identity. We will denote the Lie algebra of G by the corresponding mathfrak letter
g, and we will denote the (topological) connected component of G(R) containing
the identity by the corresponding Roman letter G. We will retain any subscripts or
superscripts in these notations.

If M and A are algebraic subgroups of G, we will write ZM(A) for the centralizer
of A in M and NM(A) for the normalizer of A in M. We will denote by GQ the
intersection G(Q) ∩ G and we will refer to an arithmetic group of G(Q) contained in
GQ as an arithmetic subgroup of GQ.

2.3 Groups of typeH

We say that an algebraic group G is of type H if RG is unipotent and the quotient of
G by RG is an almost direct product of almost (Q-simple) algebraic groups whose
underlying real Lie groups are non-compact. In particular, an algebraic group of type
H has no rational characters. Note that the image under a morphism of algebraic
groups of any group of type H is a group of type H.

2.4 Homogeneous probability measures on 0\G

LetG denote an algebraic group and let � denote an arithmetic subgroup of GQ. IfH
is a connected algebraic subgroup of G possessing no rational characters, then there
is a unique Haar measure supported on H whose pushforward μ to �\G is a Borel
probability measure on �\G. For g ∈ G, we refer to the pushforward of μ under
the right multiplication-by-g map as the homogeneous probability measure on �\G
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The space of homogeneous probability measures... 993

associated with H and g. More explicitly, this is the g−1Hg-invariant probability
measure supported on �Hg.

2.5 Parabolic subgroups

A parabolic subgroup P of a connected algebraic group G is an algebraic subgroup
such that the quotient of G by P is a projective algebraic variety. In particular, G is a
parabolic subgroup of itself. However, by a maximal parabolic subgroup, we refer to
a maximal proper parabolic subgroup. Note that RG is contained in every parabolic
subgroup of G.

2.6 Cartan involutions

Let G be a reductive algebraic group and let K be a maximal compact subgroup of
G. Then there exists a unique involution θ on G such that K is the fixed point set of
θ . We refer to θ as the Cartan involution of G associated with K .

2.7 Boundary symmetric spaces

Let G be a semisimple algebraic group and let K be a maximal compact subgroup of
G. Let P be a parabolic subgroup ofG. As in [2, (I.1.10)], we have the real Langlands
decomposition (with respect to K )

P = NPMP AP ,

where LP := MP AP is the unique Levi subgroup of P such that KP := LP ∩ K =
MP ∩ K is a maximal compact subgroup of LP , and AP is the maximal split torus in
the centre of LP . We denote by XP the boundary symmetric space MP/KP , on which
P acts through its projection on to MP .

2.8 Maximal Satake compactifications

Let G be a semisimple algebraic group and let K be a maximal compact subgroup of
G. Denote by X the symmetric space G/K and let � denote an arithmetic subgroup
of GQ. We let

QX
S
max :=

∐

P

XP ,

where P varies over the (rational) parabolic subgroups of G. We endow QX
S
max with

the topology defined in [2, III.11.2]. This topology is defined by a convergence class
of sequences, from which one obtains a closure operator, which in turn induces a
topology; see [2, p 113–114]. By [2, Proposition III.11.7], the action of GQ on X

extends to a continuous action on QX
S
max and, by [2, Theorem III.11.9], the quotient

123



994 C. Daw et al.

�\XS
max := �\QXS

max,

endowed with the quotient topology, is a compact Hausdorff space, inside of which

�\X is a dense open subset. We refer to �\XS
max as the maximal Satake compactifi-

cation of �\X .
If E is any set of representatives for the proper (rational) parabolic subgroup of G

modulo �-conjugation, the maximal Satake compactification �\XS
max is equal to the

disjoint union

�\X
∐ ∐

P∈E
�XP \XP , (2)

where �XP is the projection of �P = � ∩ P to MP .

2.9 Homogeneous probability measures on 0\XSmax

Consider the situation described in Sect. 2.8 (in particular, X denotes the symmetric
space G/K , where K is a maximal compact subgroup of G). If H is a connected
algebraic subgroup ofG of typeH and g ∈ G, the homogeneous probability measure

on �\G associated with H and g pushes forward to �\XS
max under the natural maps

�\G → �\X → �\XS
max.

We refer to this probability measure as the homogeneous probability measure on

�\XS
max associated with H and g.

Similarly, if P is a parabolic subgroup of G, H is a subgroup of P of type H and

g ∈ P , we can define the homogeneous probability measure on �\XS
max associated

with P, H and g in precisely the same way via the natural maps

�P\P → �XP \XP → �\XS
max.

(Recall that XP = MP/KP and the first map is induced by the projection from P

to MP .) We say that a Borel probability measure on �\XS
max is homogeneous if is a

homogeneous probability measure.

2.10 Properties of Satake compactifications

Consider the situation described in Sect. 2.8. We first make two elementary remarks.

Remark 2.1 Consider another maximal compact subgroup gKg−1 of G, for some
g ∈ G (recall that all maximal compact subgroups ofG are of this form). Themaximal
Satake compactifications of �\X corresponding to K and gKg−1 are homeomorphic.
It follows that Theorem 1.1 is equivalent to the same statement in which K is replaced
with gKg−1 and the gn are replaced with gng−1.
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The space of homogeneous probability measures... 995

Remark 2.2 Similarly, for any c ∈ GQ, we obtain a homeomorphism

�\QXS
max → (c−1�c)\QXS

max

of compactifications induced by the homeomorphism x �→ cx on QX
S
max (recall

that the action is continuous). It follows that Theorem 1.1 is equivalent to the same
statement in which we replace � with c−1�c and we replace theHn with c−1Hnc and
the gn with c−1gn .

Next we prove a result regarding the structure of the Satake compactifications that
is presumably well-known to experts.

Proposition 2.3

(i) Let �XQ\XQ ⊂ �\XS
max be a boundary component as above for some Q ∈ E .

Then the closure of �XQ\XQ in �\XS
max with respect to the above topology is

homeomorphic to the maximal Satake compactification of �XQ\XQ.
(ii) Theorem 1.1 (ii) implies Theorem 1.1 (i).

Proof (i) By Remark 2.1, we may assume that MQ corresponds to a group MQ
defined over Q. Note that XQ is equal to Mder

Q /K der
Q , where Mder

Q is the derived

subgroup ofMQ and K der
Q is K ∩ Mder

Q . Therefore, to define the maximal Satake
compactification, we consider the disjoint union

QXQ
S
max =

∐

P′⊂Mder
Q

XP ′ ,

whereP′ varies over the (rational) parabolic subgroups ofMder
Q , XP ′ = MP ′/KP ′ ,

and KP ′ = K der
Q ∩ MP ′ . Note that for each parabolic P′ of Mder

Q we have a
correspondingparabolic subgroupP ofG contained inQ (see [2, p 276, (III.1.13)])

and XP = XP ′ . In particular, QXQ
S
max is a subset of QX

S
max and it follows from

[2, III.11.2] that it is set-theoretically equal to the closure XQ of XQ in QX
S
max.

Furthermore, from the description of convergent sequences given in [2, III.11.2],

theSatake topologyonQXQ
S
max coincideswith the induced topology fromQX

S
max.

Replace �XQ with its intersection with Mder
Q . Then we have

�XQ\XQ ⊂ �XQ\XQ
S
max =

∐

P′⊂Mder
Q

�XQ\�XQ XP ′ =
∐

P⊂Q

�\�XP ⊂ �\XS
max.

It follows from the definition of the Satake topology that �XQ\XQ is dense in
∐

P⊂Q �\�XP and that
∐

P⊂Q �\�XP is closed in �\XS
max. This proves the

result.
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996 C. Daw et al.

(ii) Let (μn)n∈N be a convergent sequence of homogeneous probability measures in

P(�\XS
max) supported on a boundary component�XQ\XQ .Wewant to prove that

the limit of (μn)n∈N is homogeneous. By definition, there exist sequences (Hn)n∈N
and (gn)n∈N withHn a connected algebraic subgroup ofQ of typeH and gn ∈ Q

such that μn is the homogeneous probability measure on �\XS
max associated with

Q, Hn , and gn . By Remark 2.1, we may assume that MQ corresponds to a group
MQ defined overQ. Since XQ is equal to Mder

Q /K der
Q , as in (i), we may replaceHn

with its image in Mder
Q and gn with its image in Mder

Q and then the result follows
from (i).


�

3 Further preliminaries

In this section, we collect preliminaries used in the proof of Theorem 1.1. Many of
these also appeared in [8].

3.1 Rational Langlands decomposition

Let G be a connected algebraic group and let K be a maximal compact subgroup
of G. Let P be a parabolic subgroup of G. As in [2, (III.1.3)], we have the rational
Langlands decomposition (with respect to K )

P = NPMPAP.

Since G = PK , the rational Langlands decomposition of P yields

G = NPMPAPK .

In particular, if g ∈ G, we can write g as

g = nmak ∈ NPMPAPK .

Note that the product NPMP is always associated with a connected algebraic group
over Q, which we denote HP (see [8, Section 2.6]).

3.2 Standard parabolic subgroups

Let G be a reductive algebraic group and let A be a maximal split subtorus of G. The
non-trivial characters of A that occur in the adjoint representation ofG restricted to A
are known as the Q-roots of G with respect to A.

LetP0 be aminimal parabolic subgroup ofG containingA. We let�(P0,A) denote
the set of characters of A occurring in its action on n, where N = NP0 . (Recall our
convention that n = Lie(N).) As explained in [2, III.1.7], �(P0,A) contains a unique
subset � = �(P0,A) such that every element of �(P0,A) is a linear combination,
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The space of homogeneous probability measures... 997

with non-negative integer coefficients, of elements belonging to�. On the other hand,
P0 is determined by A and �. We refer to � as a set of simple Q-roots of G with
respect to A.

For a subset I ⊂ �, we define the subtorus

AI = (∩α∈I ker α)◦

of A. Then the subgroup PI ofG generated by ZG(AI ) and N is a parabolic subgroup
ofG. We refer to PI as a standard parabolic subgroup ofG. Every parabolic subgroup
of G containing P0 is equal to PI for some uniquely determined subset I ⊂ �.

Let K be a maximal compact subgroup of G such that A is invariant under the
Cartan involution of G associated with K . Then, as in [7, Section 1], ZG(AI ) is the
Levi subgroup of P appearing in the rational Langlands decomposition of P with
respect to K . Note that AI is the maximal split subtorus of the centre of ZG(AI ) and
we can write ZG(AI ) as an almost direct product MIAI , where MI is a reductive
group with no rational characters. The rational Langlands decomposition with respect
to K is then

PI = NI MI AI ,

where NI = NPI . We will also write HI = NIMI . For ease of notation, when
I = � \ {α} for some α ∈ �, we will write Pα , Aα , Nα , Mα , and Hα instead of PI ,
AI , NI ,MI , and HI , respectively.

The set I restricts to a set of simple roots of MI for its maximal split torus
AI = (A ∩ MI )

◦. Therefore, for any subset J ⊂ I , we obtain, as before, a stan-
dard parabolic subgroup of MI , which we denote PI

J . We let KI denote the maximal
compact subgroup K ∩ MI of MI and we obtain a rational Langlands decomposition
with respect to KI :

P I
J = N I

J M
I
J A

I
J = H I

J A
I
J ,

whereNI
J = NPI

J
,AI

J = AJ ∩AI is the maximal split torus in the center of ZMI (A
I
J ),

ZMI (A
I
J ) is the almost direct product of AI

J and MI
J , and HI

J = NI
JM

I
J . We will

require several elementary lemmas.

Lemma 3.1 Let J ⊂ I ⊂ �. Then AI ⊂ AJ , ZG(AJ ) ⊂ ZG(AJ ), and PJ ⊂ PI

Proof The claim AI ⊂ AJ is immediate from the definition. From this we obtain
ZG(AJ ) ⊂ ZG(AI ). Then PJ ⊂ PI follows immediately.

Lemma 3.2 Let J ⊂ I ⊂ �. Then NJ = NINI
J ,MJ = MI

J , and AJ = AI
JAI .

Proof We recall that (as in [2, (I.1.21)]) PJ ⊂ PI is obtained from PI by writing
PI = NIMIAI and replacingMI by its parabolic subgroup PI

J = NI
JM

I
JA

I
J . That is,

PJ = NINI
JM

I
JA

I
JAI , from which the claims follow. 
�

The following corollaries are now immediate.
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Corollary 3.3 Let J ⊂ I ⊂ �. Then MJ ⊂ MI and NI ⊂ NJ .

Corollary 3.4 Let J ⊂ I ⊂ �. Then NIHI
J = NINI

JM
I
J = NJMJ = HJ ⊂ HI .

(Note that the outer equalities are simply the definitions.)

Lemma 3.5 Let I3 ⊂ I2 ⊂ I1 ⊂ �. Then

AI1
I3

= AI2
I3
AI1

I2
.

Proof It is immediate that AI2 and AI1
I2
are contained in AI1 . Furthermore, it is easy to

show that AI2 ∩ AI1
I2
is finite. Therefore, comparing dimensions, we conclude AI1 =

AI2AI1
I2
. Since AI1

I3
= AI1 ∩ AI3 and I3 ⊂ I2, the claim follows. 
�

Lemma 3.6 Let J ⊂ I ⊂ � and J ′ ⊂ I ′ ⊂ � such that I ⊂ I ′ and J ⊂ J ′. Then

NIPI
J ⊂ NI ′PI ′

J ′ .

Proof First observe that, by Lemma 3.5,

AI ′
J = AJ ′

J A
I ′
J ′ = AI

JA
I ′
I .

Now, we have

NI ′PI ′
J ′ = NI ′NI ′

J ′MI ′
J ′AI ′

J ′ = HJ ′AI ′
J ′ = HJ ′AJ ′

J A
I ′
J ′ = HJ ′AI ′

J ,

where the second equality is Corollary 3.4 and the third equality follows from the fact
that AJ ′ ⊂ HJ ′ . Therefore, since HJ ⊂ HJ ′ (by Corollary 3.4) and AI

J ⊂ AI ′
J , we

obtain

NIPI
J = NINI

JM
I
JA

I
J = HJAI

J ⊂ NI ′PI ′
J ′

as claimed (using Corollary 3.4 for the second equality). 
�

3.3 The dP,K functions

Let G be a reductive algebraic group and let K be a maximal compact subgroup
of G. Let P be a proper parabolic subgroup of G and let nP denote the dimension
of nP. Consider the nthP exterior product VP = ∧nPg of g and let LP denote the
one-dimensional subspace given by ∧nPnP. Then the adjoint representation induces
a linear representation of G on VP and, since P normalizes NP, we obtain a linear
representation of P on LP. That is, P acts on LP via a character χP.

Fix a K -invariant norm ‖ · ‖P on VP ⊗Q R and let vP ∈ LP ⊗Q R be such that
‖vP‖P = 1. We obtain a function dP,K on G defined by

dP,K (g) = ‖g · vp‖P.
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Note that, for any g ∈ G, we can write g = kp, where k ∈ K and p ∈ P . Therefore,

dP,K (g) = ‖g · vp‖P = ‖p · vp‖P = χP(p) · ‖vp‖P = χP(p)

(note that χP is necessarily positive on the connected component P). In particular,
dP,K is a function on G of type (P, χP), as defined in [3, Section 14.1]. Furthermore,
it does not depend on the choices of ‖ · ‖P and vP.

Remark 3.7 Suppose that � ⊂ G(Q) is an arithmetic subgroup. Let �P denote � ∩ P
and let �HP denote � ∩ HP. We claim that �P = �HP . To see this, write P as the
product of HP with a maximal split subtorus SP of the centre of a Levi subgroup of P
(defined overQ but not necessarily arising from the rational Langlands decomposition
associated with K ). Let �(SP) denote a basis for the character group of SP and, for
each χ ∈ �(SP), let χ̃ denote the morphism P → Gm defined by (h, s) �→ χ(s)n for
some sufficiently large n ∈ N such that the morphism is well-defined. By [3, Section
8.11], χ̃(�P ) is an arithmetic subgroup ofQ× for any χ ∈ �(SP). On the other hand,
it is contained in R>0 and, therefore, it is trivial. Hence, �P is contained in

G�(SP) = ∩χ∈�(SP) ker χ̃

and, since G�(SP) = HP, the claim follows.

3.4 The ı-functions

Let G be a connected algebraic group with no rational characters and let L be a Levi
subgroup of G. Then G is the semidirect product of L and N = NG. We denote by π

the natural (surjective) morphism from G to L.
Let P0 be a minimal parabolic subgroup of L and let A be a maximal split subtorus

of L contained in P0. Let K denote a maximal compact subgroup of L such that A is
invariant under the Cartan involution ofG associated with K . For any proper parabolic
subgroup P of L, we obtain a function dP,K on L , as defined in Sect. 3.3, and, for each
α ∈ � = �(P0,A), we write dα = dPα,K .

Let � be an arithmetic subgroup of GQ and let �L = π(�), which is arithmetic
subgroup of LQ. By [3, Théorème 13.1], there exists a finite subset F of LQ and a
t > 0 such that L = K AtωF−1�L , where ω is a compact subset of HP0 and

At = {a ∈ A : α(a) ≤ t for all α ∈ �}.

As in [8], we refer to a set F as above as a �L -set for L.
For any connected algebraic subgroup H of G and any g ∈ G,

we define δ(G, K ,�, F)(H, g) to be

inf{dα(π(g)−1λ) : λ ∈ �L F, α ∈ �, H ⊂ NλPαλ−1

= λNPαλ−1}
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(where we take the value to be ∞ if the infimum is varying over the empty set). By
[8, Lemma 4.3], we have δ(G, K ,�, F)(H, g) > 0.

4 Main tools

In this section, we describe the three main tools used in the proof of Theorem 1.1.

4.1 The criterion for convergence in 0\G

Consider the situation described in Sect. 3.4. Let δ = δ(G, K ,�, F). The following
result is the combination of [8, Theorem 4.6] and [8, Theorem 2.9]. However, it should
be emphasized that it is a very modest generalization of a result of Eskin–Mozes–Shah
[9], making similar use of the same tools, namely, those of Dani–Margulis, Eskin–
Mozes–Shah, Mozes–Shah, and Ratner (see [7, 9, 10, 15, 21]).

Theorem 4.1 For each n ∈ N, let Hn be a connected algebraic subgroup of G of type
H, let gn ∈ G and letμn be the homogeneous probability measure on �\G associated
with Hn and gn. Assume that

lim inf
n→∞ δ(Hn, gn) > 0.

Then the set {μn}n∈N is sequentially compact in P(�\G).
Furthermore, ifμ is a limit point in {μn}n∈N, thenμ is the homogeneous probability

measure on �\G associated with a connected algebraic subgroup H of G of type H
and an element g ∈ G, and Hn is contained in H for all n large enough.

4.2 The criterion for convergence in 0\XSmax

Consider the situation described in Sect. 2.8. For a subgroup H of G, we set �H =
� ∩ H . The following result is [8, Theorem 5.1].

Theorem 4.2 For each n ∈ N, let Hn denote a connected algebraic subgroup of G of
typeH, let gn denote an element of G and let μn denote the homogeneous probability

measure on �\XS
max associated with Hn and gn.

Suppose that there exists a parabolic subgroup P of G such that,

(i) for all n ∈ N, Hn is contained in HP,
(ii) we can write

gn = hnankn ∈ HPAPK ,

such that

α(an) → ∞, as n → ∞, for all α ∈ �(P, AP),

and,
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(iii) if we denote by νn the homogeneous probability measure on �HP\HP associated
with Hn and hn, then (νn)n∈N converges to ν ∈ P(�HP\HP).

Then there exists a connected algebraic subgroupH of P of typeH and an element
g ∈ P such that (μn)n∈N converges to the homogeneous probability measure on

�\XS
max associated with P, H and g, and, furthermore, Hn is contained in H for n

large enough.

Note that, by the results of Mozes–Shah [15] and Ratner [21] condition (iii) is
equivalent to the stronger statement that ν not only exists but is also homogeneous
(see [8, Theorem 2.9]). This is used crucially in the proof of Theorem 4.2 (see [8]).

4.3 A key result on root systems

Let G be reductive algebraic group, let P0 be a minimal parabolic subgroup of G,
and let A be a maximal split subtorus of G contained in P0. Let X∗(A) denote the
character module of A and let X∗(A)Q denote the Q-vector space X∗(A) ⊗Z Q. Fix
a non-degenerate scalar product (·, ·) on X∗(A)Q that is invariant under the action of
NG(A)(Q). Then the Q-roots of G with respect to A equipped with the inner product
(·, ·) constitute a root system in X∗(A)Q. We refer the reader to [24, Section 3.5] for
further details.

Let � = �(P0,A) and, for each α ∈ �, let wα ∈ X∗(A)Q be the unique element
such that (wα, β) = δαβ for any β ∈ �. These elements are usually called dual
weights. They are a particular choice of quasi-fundamental weights, as defined in [8,
Section 2.9]. It follows from [8, Lemma 4.1] that wα is a positive rational multiple
of the character χα defined therein (namely, the restriction of χPα to A). We therefore
deduce the following fact.

Lemma 4.3 Let α ∈ � and I = � \ {α}. Then wα is trivial on AI .

Proof SinceHI has no rational characters andAI is contained inHI , the result follows
from the fact that χα is the restriction of a character on PI . 
�

Notice that � and {wα}α∈� constitute two bases of X∗(A)Q. By construction, we
have

wα =
∑

β∈�

(wα,wβ)β and α =
∑

β∈�

(α, β)wβ,

and it is a simple calculation to see that the matrices with coefficients (wα,wβ) and
(α, β), respectively, are inverse to one another. It follows from [28, Chapter 3, Propo-
sition 1.16] that (wα,wβ) ≥ 0 for all α, β ∈ � (see also the paragraph following
Lemma 6.5 in the appendix). We define tα = ∑

β∈�(wα,wβ). In particular, tα > 0.

Definition 4.4 For each α ∈ �, we write w̄α = 1
tα

wα . We refer to the set {w̄α}α∈� as
a set of weighted dual weights ofG with respect toA. From the above and [8, Section
4.1 (3)], we see that w̄α is a positive rational combination of positive roots.
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The key result we need is the following. A proof (due to Jialun Li) is provided in
the appendix (see Corollary 6.2).

Theorem 4.5 (Li) Let α ∈ � and let I ⊂ � \ {α} be such that α is connected to
� \ (I ∪ {α}) in the Dynkin diagram. For each n ∈ N, let an ∈ AI and suppose that

β(an) → ∞, as n → ∞

for all β ∈ � \ (I ∪ {α}). Furthermore, suppose that

w̄α(an) ≥ w̄β(an) for all β ∈ � \ I and w̄α(an) ≥ 1.

Then

α(an) → ∞, as n → ∞.

Note that, in the appendix, the condition w̄α(an) ≥ 0 appears. The calculations
there take place in the Lie algebra aI of AI . Passing to AI is via the exponential map,
hence the condition w̄α(an) ≥ 1 above.

The condition “α is connected to � \ (I ∪ {α}) in the Dynkin diagram” is to say
that if we write � as the disjoint union �1 ∪ · · · ∪�m according to the decomposition
of the root system into irreducible root systems, and α ∈ �k , then, among the roots
in � \ (I ∪ {α}), there exists at least one root that also belongs to �k . In other words,
I ∪ {α} does not contain �k .

Lemma 4.6 Let α ∈ � and let I ⊂ � \ {α} be such that α is not connected to
� \ (I ∪ {α}) in the Dynkin diagram. Let J ⊂ �. Then

AJ
(I∪{α})∩J ⊂ ker α.

Proof Let Gad denote the quotient of G by its center, and let ad : G → Gad denote
the natural morphism. Recall that the adjoint representation factors through ad. Fur-
thermore,Gad is equal to a productG1 ×· · ·×Gm ofQ-simple groups, Pad

0 = ad(P0)

is a product P1 × · · · × Pm of minimal parabolic subgroups, and Aad = ad(A) is a
product A1 × · · ·×Am of maximal split tori. The decomposition � = �1 ∪ · · · ∪�m

above is

� = �(Pad
0 ,Aad) = �(P1,A1) ∪ · · · ∪ �(Pm,Am).

The image of AJ in Aad is therefore equal to the product AJ1
1 × · · · × AJm

m , where
Ji = J ∩ �i . The assumption that α is not connected to � \ (I ∪ {α}) in the Dynkin
diagram is equivalent to the statement that I ∪ {α} contains �k . Therefore, the image
of AJ

(I∪{α})∩J in Aad is also a product and its kth component is AJk
k,Jk

= {1}. Since
α ∈ �k is trivial outside of Ak , we conclude that it is trivial on AJ

(I∪{α})∩J . 
�
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5 The proof

In this section, we will give the proof of Theorem 1.1. First we will define a useful
notion.

5.1 Maximal couples

Consider the situation described in Sect. 3.4. For each n ∈ N, let Hn be a connected
algebraic subgroup of G of type H and let gn ∈ G.

Definition 5.1 A maximal couple for (Hn)n∈N and (gn)n∈N with respect to G, K , �,
and F is a couple (α, (λn)n∈N) for some α ∈ � and λn ∈ �L F such that

Hn ⊂ NλnPα(λn)
−1

for every n ∈ N and, whenever Hn ⊂ Nλ′
nPβ(λ′

n)
−1 for some β ∈ � and λ′

n ∈ �L F
and we write

λ−1
n gn = hnankn ∈ NHαAαK and (λ′

n)
−1gn = h′

na
′
nk

′
n ∈ NHβ AβK

according to the rational Langlands decompositions, then

w̄α(an) ≥ w̄β(a′
n),

where w̄α and w̄β are weighted dual weights for L, as in Definition 4.4.

We have the following important properties of maximal couples.

Proposition 5.2 (i) Suppose that lim infn→∞ δ(Hn, gn) < ∞. After possibly
extracting subsequences, a maximal couple for (Hn)n∈N and (gn)n∈N with respect
to G, K , �, and F exists.

(ii) Suppose that lim infn→∞ δ(Hn, gn) = 0. If (α, (λn)n∈N) is a maximal couple for
(Hn)n∈N and (gn)n∈N with respect to G, K , �, and F and we write

λ−1
n gn = hnankn ∈ NHαAαK

according to the rational Langlands decomposition, then

α(an) → ∞, as n → ∞.

Proof

(i) As explained in Sect. 4.3, each w̄β is a positive rational multiple of the corre-
sponding χβ . Since there are only finitely many of them, the claim follows from
[8, Lemma 4.3].
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(ii) Since lim infn→∞ δ(Hn, gn) = 0, after possibly extracting a subsequence, there
exists β ∈ � and (λ′

n)n∈N with λ′
n ∈ �L F such that Hn ⊂ Nλ′

nPβ(λ′
n)

−1 and

dβ(g−1
n λ′

n) → 0, as n → ∞.

Therefore, by [8, Lemma 4.2], if we write

(λ′
n)

−1gn = h′
na

′
nk

′
n ∈ NHβ AβK ,

according to the rational Langlands decomposition, we have

β(a′
n) → ∞, as n → ∞.

Now, since (α, (λn)n∈N) is amaximal couple for (Hn)n∈N and (gn)n∈Nwith respect
to G, K , �, and F , we have

α(an) = w̄α(an)
1
nα ≥ w̄β(a′

n)
1
nα = β(a′

n)
nβ
nα ,

for some nα, nβ > 0 (see the description of weighted dual weights in Sect. 4.3).
Therefore,

α(an) → ∞, as n → ∞.


�

5.2 Proof of Theorem 1.1

Let P0 be a minimal parabolic subgroup of G and let A be a maximal split subtorus
of G contained in P0. By Remark 2.1, we may assume that A is invariant under the
Cartan involution of G associated with K . Let I0 = � = �(P0,A).

By Proposition 2.3 (ii), it suffices to prove Theorem 1.1 (ii). By Remark 2.2 and
Theorem 4.2, it suffices to prove the following theorem.

Theorem 5.3 Consider the situation described in Theorem 1.1 (ii). After possibly
extracting a subsequence, there exists a parabolic subgroup P of G, an element
c ∈ GQ, and, for each n ∈ N, an element γn ∈ � such that,

(i) for all n ∈ N, c−1γ −1
n Hnγnc is contained in HP,

(ii) we can write

c−1γ −1
n gn = hnankn ∈ HPAPK ,

such that

α(an) → ∞, as n → ∞, for all α ∈ �(P, AP),

and,
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(iii) if we denote by νn the homogeneous probability measure on (c−1�c ∩
HP)\HP associated with c−1γ −1

n Hnγnc and hn, then (νn)n∈N converges to
ν ∈ P((c−1�c ∩ HP)\HP).

5.3 Outline of the proof of Theorem 5.3

The essence of the proof is to select successive maximal couples. At each stage, up to
conjugation and taking subsequences, we haveHn ⊂ HI and hI ,n ∈ HI for some fixed
I .We apply the criterion given byTheorem4.1 and, if it fails, we obtain, by Proposition
5.2, a maximal couple (α, (λn)n∈N). After conjugation and taking a subsequence, we
find Hn ⊂ HI∪α and hI∪α,n ∈ HI∪α and we repeat the procedure. After a finite
number of steps, the criterion given by Theorem 4.1 holds, which guarantees (iii),
namely, convergence of the associated homogeneous measures in a space of the form
�HJ \HJ for some J . The fact that we have chosenmaximal couples allows us to apply
Theorem 4.5, which in turn yields (ii).

5.4 Proof of Theorem 5.3

The proof is via an iterative procedure.

Step 1

Let �0 = � and let F0 denote a �0-set for G. For later, define λ
(0)
n = c−1 = 1 for all

n ∈ N. Let δ = δ(G, K ,�, F0), as defined in Sect. 3.4. Note that, if

lim inf
n→∞ δ(Hn, gn) > 0,

then Theorem5.3 follows fromTheorem4.1 (withP = G and c = γn = 1). Therefore,
assumeotherwise. ByProposition 5.2 (i), after possibly extracting a subsequence, there
exists a maximal couple (αi1 , (λ

(1)
n )n∈N) for (Hn)n∈N and (gn)n∈N with respect to G,

K , I0 = �, and F0, with λ
(1)
n = γ

(1)
n c0 ∈ �0F0.

Therefore, if we write I1 = � \ {αi1}, then

Hn ⊂ λ(1)
n PI1(λ

(1)
n )−1

andH(1)
n = (λ

(1)
n )−1Hnλ

(1)
n ⊂ HI1 becauseH

(1)
n has no rational characters. Moreover,

by Proposition 5.2 (ii), if we write

(λ(1)
n )−1gn = h(1)

n a(1)
n k(1)

n ∈ HI1 AI1K ,

according to the rational Langlands decomposition, we have

αi1(a
(1)
n ) → ∞, as n → ∞.

123



1006 C. Daw et al.

Step r + 1 (for r ≥ 1)

We start with groups

H(r)
n = (λ(1)

n λ(2)
n · · · λ(r)

n )−1Hnλ
(1)
n λ(2)

n · · · λ(r)
n ⊂ HIr

and elements

(λ(r)
n )−1 · · · (λ(1)

n )−1gn = h(r)
n a(r)

n · · · a(1)
n k(r)

n · · · k(1)
n ,

where, for l = 1, . . . , r ,

h(l)
n ∈ HIl ;

a(l)
n ∈ AIl−1

Il
;

k(l)
n ∈ KIl−1 = K ∩ MIl−1;

λ(l)
n = γ (l)

n cl−1 ∈ �l−1Fl−1;
Il = � \ {αi1, . . . , αil },

where (for l ≥ 2),

�l−1 = (λ(1)
n · · · λ(l−1)

n )−1�λ(1)
n · · · λ(l−1)

n ∩ MIl−1 = c−1
l−2 · · · c−1

0 �c0 · · · cl−2 ∩ MIl−1

and Fl−1 is a �l−1-set for MIl−1 . (We have made repeated use of the fact that k(l)
n ∈

MIl−1 and so, for 0 < j < l, it commutes with

a(l− j)
n ∈ A

Il− j−1
Il− j

⊂ AIl− j ⊂ AIl−1

(the latter inclusion justified by Lemma 3.1)).
We let �′

r = πr (�̃r ), where

�̃r = (λ(r)
n )−1 · · · (λ(1)

n )−1�λ(1)
n · · · λ(r)

n ∩ HIr = c−1
r−1 · · · c−1

0 �c0 · · · cr−1 ∩ HIr

and πr : HIr → MIr is the natural projection. We let Fr denote a �′
r -set for MIr and

we let KIr = K ∩ MIr . The set Ir restricts to a set of simple Q-roots for MIr with
respect to AIr and we let δr = δ(HIr , KIr , Ir , Fr ).

Either

lim inf
n→∞ δr (H(r)

n , h(r)
n ) > 0 (3)

or

lim inf
n→∞ δr (H(r)

n , h(r)
n ) = 0. (4)
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If (4) occurs, then, by Proposition 5.2 (i), after possibly extracting a subsequence,
there exists a maximal couple (αir+1 , (λ

(r+1)
n )n∈N) for (H(r)

n )n∈N and (h(r)
n )n∈N with

respect to HIr , KIr , Ir , and Fr . Therefore, if we write Ir+1 = Ir \ {αir+1} = � \
{αi1, . . . , αir+1}, then

H(r)
n ⊂ NIr λ

(r+1)
n PIr

Ir+1
(λ(r+1)

n )−1 (5)

and, by Proposition 5.2 (ii), if we write

(λ(r+1)
n )−1h(r)

n = h(r+1)
n a(r+1)

n k(r+1)
n ∈ NIr H

Ir
Ir+1

AIr
Ir+1

KIr = HIr+1 A
Ir
Ir+1

KIr

(the equality justified by Corollary 3.4), then

αir+1(a
(r+1)) → ∞ as n → ∞.

We define

H(r+1)
n = (λ(r+1)

n )−1H(r)
n λ(r+1)

n ⊂ NIrH
Ir
Ir+1

= HIr+1

and we write λ
(r+1)
n = γ

(r+1)
n cr ∈ �′

r Fr . After possibly enlarging Fr and extracting a
subsequence, we may assume that

γ (r+1)
n ∈ �r = c−1

r−1 · · · c−1
0 �c0 · · · cr−1 ∩ MIr

(this is possible because �r is an arithmetic subgroup of MIr contained, and hence of
finite index, in �′

r ). We now return to the start of Step r + 1.

Completing the proof

Iterating the previous step, we will eventually obtain (3) for some r ∈ N. Indeed, if
Ir = ∅, then δr (H

(r)
n , h(r)

n ) is ∞ by definition. (More intuitively, the maximal split
subtorus ofH∅ is trivial and, as such, �̃∅\H∅ is compact.) We conclude from Theorem
4.1 that the set of homogeneous measures on �̃r\HIr associated with H

(r)
n and h(r)

n is
sequentially compact. Then, Theorem 5.3 follows (with P = PIr , c = c0 · · · cr−1, and
γn = γ

(1)
n · · · γ (r)

n ) from the following proposition.

Proposition 5.4 For j = 1, . . . , r , we have

αi j (a
(r)
n · · · a(1)

n ) → ∞, as n → ∞.

Proof We will prove the proposition by induction. The base case is the following.

Lemma 5.5 We have

αir (a
(r)
n · · · a(1)

n ) → ∞ as n → ∞.
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Proof For j ≥ 1, we have

a(r− j)
n ∈ A

Ir−1− j
Ir− j

⊂ AIr− j ⊂ AIr−1 ⊂ ker αir ,

where the outer inclusions are part of the definitions, and the middle inclusion is
justified by Lemma 3.1. We conclude that

αir (a
(r)
n · · · a(1)

n ) = αir (a
(r)
n )

and so the result follows from the fact that αir (a
(r)
n ) → ∞, as n → ∞ (by Step r ). 
�

The inductive step is given by the following lemma.

Lemma 5.6 Let 0 ≤ l ≤ r − 2 and assume that

αir− j (a
(r)
n · · · a(1)

n ) → ∞, as n → ∞

for j = 0, . . . , l. Then

αir−1−l (a
(r)
n · · · a(1)

n ) → ∞, as n → ∞.

Proof For s ≥ l + 2, we have

a(r−s)
n ∈ AIr−s−1

Ir−s
⊂ AIr−s ⊂ AIr−l−2 ⊂ ker αir−l−1 ,

where the outer inclusions are part of the definitions, and the middle inclusion is
justified by Lemma 3.1. We conclude that

αir−l−1(a
(r)
n · · · a(1)

n ) = αir−l−1(a
(r)
n · · · a(r−l−1)

n ).

and so it suffices to show that

αir−l−1(a
(r)
n · · · a(r−l−1)

n ) → ∞, as n → ∞.

Now we are in the situation of Sect. 4.3, where the ambient group is MIr−l−2 , the
maximal split torus is AIr−l−2 , and the set of simple roots is Ir−l−2. Note that

θn = a(r)
n · · · a(r−l−1)

n = a(r)
n · · · a(r−l)

n · a(r−l−1)
n ∈ AIr−l−1

Ir
· AIr−l−2

Ir−l−1
= AIr−l−2

Ir
.

Therefore, if αir−l−1 is not connected to

Ir−l−2 \ (Ir ∪ {αir−l−1}) = {αir−l , . . . , αir }

in the Dynkin diagram of MIr−l−2 , then we can apply Lemma 4.6 (with I = Ir ,
α = αir−l−1 , and J = Ir−l−1) to conclude that

αir−l−1(a
(r)
n · · · a(r−l−1)

n ) = αir−l−1(a
(r−l−1)
n ).
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(Note that (Ir ∪ {αir−l−1}) ∩ Ir−2 = Ir .) Then the result follows from the fact that

αir−l−1(a
(r−l−1)
n ) → ∞, as n → ∞ (by Step r − l − 1).

Therefore, suppose that αir−l−1 is connected to

Ir−l−2 \ (Ir ∪ {αir−l−1}) = {αir−l , . . . , αir }

in the Dynkin diagram of MIr−l−2 . Therefore, by Theorem 4.5 (with I = Ir , α =
αir−l−1 , and an = θn), Lemma 5.6 follows from the following lemma. Note that

w̄
Ir−l−2
ir−l−1

(θn) = w̄
Ir−l−2
ir−l−1

(a(r−l−1)
n ) = αir−l−1(a

(r−l−1)
n )

nir−l−1 → ∞, as n → ∞,

by Step r − l − 1 (since nir−l−1 > 0). Hence, w̄ Ir−l−2
ir−l−1

(θn) ≥ 1 for n large enough.

Lemma 5.7 For k = r − l, . . . , r , we have

w̄
Ir−l−2
ir−l−1

(θn) ≥ w̄
Ir−l−2
ik

(θn).

Proof Fix a k as in the statement of the lemma.
From (5), we see that H(r−l−2)

n = λ
(r−l−1)
n · · · λ(r−1)

n H(r−1)
n (λ

(r−1)
n )−1 · · ·

(λ
(r−l−1)
n )−1 is contained in

λ(r−l−1)
n · · · λ(r)

n NIr−1P
Ir−1
Ir

(λ(r)
n )−1 · · · (λ(r−l−1)

n )−1.

Applying Lemma 3.6 (with I = Ir−1, J = Ir , I ′ = Ir−l−2, and J ′ = Ir−l−2 \ {αik }),
we then see that

H(r−l−2)
n ⊂ λ(r−l−1)

n · · · λ(r)
n NIr−l−2P

Ir−l−2
Ir−l−2\{αik }(λ

(r)
n )−1 · · · (λ(r−l−1)

n )−1

= NIr−l−2λ
(r−l−1)
n · · · λ(r)

n PIr−l−2
Ir−l−2\{αik }(λ

(r)
n )−1 · · · (λ(r−l−1)

n )−1. (6)

By definition, we have

(λ(r)
n )−1 · · · (λ(r−l−1)

n )−1h(r−l−2)
n = h(r)

n a(r)
n · · · a(r−l−1)

n k(r)
n · · · k(r−l−1)

n . (7)

By Lemma 3.5 (with I1 = Ir−l−2, I3 = Ir , and I2 = Ir−l−2 \ {αik }), we have a direct
product decomposition

AIr−l−2
Ir

= A
Ir−l−2\{αik }
Ir

AIr−l−2
Ir−l−2\{αik },

and so we can write

a(r)
n · · · a(r−l)

n · a(r−l−1)
n ∈ AIr−l−1

Ir
· AIr−l−2

Ir−l−1
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as

b(r−l−2,k)
n · c(r−l−2,k)

n ∈ A
Ir−l−2\{αik }
Ir

· AIr−l−2
Ir−3\{αik }.

Therefore, from (7), we obtain

(λ(r)
n )−1 · · · (λ(r−l−1)

n )−1h(r−l−2)
n = h(r)

n b(r−l−2,k)
n · c(r−l−2,k)

n · k(r)
n · · · k(r−l−1)

n ,

(8)

which is the rational Langlands decomposition in HIr−l−2\{αik } · AIr−l−2
Ir−l−2\{αik } · KIr−l−2 ,

where we use the facts that

h(r)
n ∈ HIr ⊂ HIr−l−2\{αik } and b(r−l−2,k)

n ∈ A
Ir−l−2\{αik }
Ir

⊂ HIr−l−2\{αik }.

Therefore, since (αir−l−1 , (λ
(r−l−1)
n )n∈N) was a maximal couple for (H(r−l−2)

n )n∈N
and (h(r−l−2)

n )n∈N with respect toHIr−l−2 , KIr−l−2 , Ir−l−2, and Fr−l−2, it follows from
(6) and (8) that

w̄
Ir−l−2
ir−l−1

(θn) = w̄
Ir−l−2
ir−l−1

(a(r)
n · · · a(r−l−1)

n ) = w̄
Ir−l−2
ir−l−1

(a(r−l−1)
n )

≥ w̄
Ir−l−2
ik

(c(r−l−2,k)
n )

= w̄
Ir−l−2
ik

(b(r−l−2,k)
n c(r−l−2,k)

n )

= w̄
Ir−l−2
ik

(a(r)
n · · · a(r−l−1)

n ) = w̄
Ir−l−2
ik

(θn),

where the second and third equalities are consequences of Lemma 4.3. 
�
This completes the proof of Lemma 5.6. 
�
This completes the proof of Proposition 5.4. 
�
This completes the proof of Theorem 5.3.
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6 Appendix: An inequality for simple roots and dual weights

Jialun Li

The purpose of this appendix, is to prove Theorem 4.5. The main ingredient is an
inequality between simple roots and dual weights. For this discussion, we refer without
further mention to [4].

Let E be a linear space. Let � be a root system in E , which generates E , and let
(·, ·) be the inner product on E invariant under the Weyl group. Fix a set � of simple
roots in �. Let {wα}α∈� be the set of dual weights in E , which are defined by the
relations

(wα, β) = δαβ

for β ∈ �, where δαβ is the Kronecker symbol. The set of dual weights and the set of
simple roots � form two bases of E . Using the inner product, we can easily compute
the coefficients in the transition matrix. Then we have a relation between simple roots
and dual weights,

α = (α, α)wα +
∑

β∈�\{α}
(α, β)wβ for α ∈ � (9)

and
wα =

∑

β∈�

(wα,wβ)β for α ∈ �. (10)

For α ∈ �, set

tα =
∑

β∈�

(wα,wβ).

We recall that (wα,wβ) ≥ 0, and (wα,wβ) > 0 if the root system is irreducible. In
particular, it follows that tα > 0. We define the weighted dual weights as

w̄α = wα/tα =
∑

β∈�(wα,wβ)β
∑

β∈�(wα,wβ)
. (11)
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We denote by E∗ the dual space of E and identify E with (E∗)∗. For I ⊂ �, we
define

aI =
⋂

β∈I
ker β ⊂ E∗.

Theorem 6.1 Let α ∈ � and let I ⊂ �\{α}. For every a ∈ aI satisfying

w̄α(a) ≥ w̄γ (a) for all γ ∈ �\I and w̄α(a) ≥ 0,

the estimate α(a) ≥ w̄α(a) also holds.

From this, we deduce the following corollary, which is used in the proof of Theorem
1.1.

Corollary 6.2 Let α ∈ � and let I ⊂ �\{α} such that α is connected to �\(I ∪ {α})
in the Dynkin diagram. For each n ∈ N, let an ∈ aI and suppose that

β(an) → ∞, as n → ∞

for all β ∈ �\(I ∪ {α}). Furthermore, suppose that

w̄α(an) ≥ w̄β(an) for all β ∈ �\I and w̄α(an) ≥ 0.

Then

α(an) → ∞, as n → ∞.

Proof of Corollary 6.2 Using Theorem 6.1 and (10), we obtain

α(an) ≥ w̄α(an) = 1

tα

∑

β∈�\I
(wα,wβ)β(an),

and

(
1 − (wα,wα)

tα

)
α(an) ≥ 1

tα

∑

β∈�\(I∪{α})
(wα,wβ)β(an).

Here (wα,wβ) ≥ 0 and, moreover, it follows from our connectedness assumption that
(wα,wβ) > 0 for at least one β ∈ �\(I ∪ {α}). In particular, (wα,wα) < tα . Hence,
the last estimate implies the corollary. 
�

Now we proceed with the proof of Theorem 6.1. We first prove the case when
I = ∅.
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Proof of Theorem 6.1 for I = ∅. By (9) and (11), we know

α = (α, α)tαw̄α +
∑

β �=α

(α, β)tβw̄β . (12)

The set of simple roots forms a basis of E . By (11), the term w̄β is a linear combination
of simple roots, and the sum of the coefficients in the expression equals 1. Therefore
by computing the coefficients of simple roots, (12) implies that

(α, α)tα +
∑

β �=α

(α, β)tβ = 1. (13)

Due to properties of simple roots, we know that (α, β) ≤ 0 for α �= β. Hence, (12),
(13), and the hypothesis imply

α(a) = w̄α(a) +
∑

β �=α

(−(α, β))tβ(w̄α(a) − w̄β(a)) ≥ w̄α(a).

The proof is complete. 
�
To prove the general case of the theorem, we need the following lemma.

Lemma 6.3 For I ⊂ �, the set I ∪ {
wγ : γ ∈ �\I} forms a basis of E. Moreover,

for every α ∈ �, we have

α =
∑

β∈I
cββ +

∑

γ∈�\I
cγ wγ ,

where cδ ≤ 0 for δ ∈ �\{α}.
Proof for the general case of Theorem 6.1 Using the expression in the Lemma 6.3 and
(10), by the same argument as for the special case I = ∅, we see that

1 =
∑

β∈I
cβ +

∑

γ∈�\I
cγ tγ ≤

∑

γ∈�\I
cγ tγ ,

where the last inequality is due to Lemma 6.3. Therefore, by the definition of aI and
Lemma 6.3, for any a ∈ aI ,

α(a) =
∑

γ∈�\I
cγ tγ w̄γ (a).

Hence, using that cγ ≤ 0 for γ �= α, we deduce that

α(a) ≥
⎛

⎝
∑

γ∈�\I
cγ tγ

⎞

⎠ w̄α(a) ≥ w̄α(a),
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since w̄α(a) ≥ 0. The proof is complete. 
�
It remains to prove Lemma 6.3. We first recall two facts.

Lemma 6.4 A connected subgraph of a Dynkin diagram is a Dynkin diagram.

Lemma 6.5 The inverse of the Gramm matrix
(
(α, β)

)
α,β∈�

of an irreducible root
system � is a matrix with positive entries.

Lemma 6.5 is usually formulated in terms of the Cartan matrix of the root system
that has entries 2(α,β)

(β,β)
with α, β ∈ �. Since the Cartan matrix is the product of the

Grammmatrix and the diagonal matrix with the positive entries 2
(β,β)

with β ∈ �, the
claim is also true for the Gramm matrix as well.

Proof of Lemma 6.3 We index the simple roots � = {α1, . . . , αn} so that I =
{α1, . . . , αm} and so that

{α1, . . . , αk1}, {αk1+1, . . . , αk1+k2}, . . . , {αk1+···+kl−1+1, . . . , αk1+···+kl = αm}

are nonadjacent connected subgraphs in the Dynkin diagram of �. We observe that

t (α1, . . . , αn) = A · t (wα1 , . . . , wαn )

where A = (
(αi , α j )

)
1≤i, j≤n , and

t (α1, . . . , αm, wαm+1 , . . . , wαn ) =
(
B C
0 Idn−m

)
· t (wα1 , . . . , wαn ),

where B = (
(αi , α j )

)
1≤i, j≤m and C = (

(αi , α j )
)
1≤i≤m,m+1≤ j≤n . We note that B is

invertible by Lemma 6.4. Therefore,

t (α1, . . . , αn) = D · t (α1, . . . , αm, wαm+1 , . . . , wαn ),

where

D = A

(
B C
0 Idn−m

)−1

= A

(
B−1 −B−1C
0 Idn−m

)
.

By our assumption, the matrix B is block-diagonal consisting of l blocks. By Lemma
6.4, each block is the Grammmatrix of a Dynkin diagram. In particular, it follows that
B is invertible and, by Lemma 6.5, the inverse of B has non-negative entries. Since
(αi , α j ) ≤ 0 for all i �= j , the entries of the matrix C are non-positive. Hence, the
matrix −B−1C also has non-negative entries.

Now we can compute the coefficients in Lemma 6.3. When α ∈ I , cβ = δαβ

and, in particular, cβ = 0 for α �= β. We suppose that α /∈ I , so that α = αp
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with some p > m. Then the coefficients in the expression of αp with respect to
(α1, . . . , αm, wαm+1 , . . . , wαn ) are given by

(
(αp, α j )

)
1≤ j≤n

(
B−1 −B−1C
0 Idn−m

)
.

Here the matrices B−1 and−B−1C have non-negative entries and (αp, α j ) ≤ 0 for all
j �= p. Hence, performing matrix multiplication, we deduce that all the coefficients
except the pth one are non-positive. 
�
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