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A B S T R A C T   

Urban schemes for numerical weather prediction (NWP) often assume an infinite street canyon 
with constant height and width, impacting turbulent and radiative fluxes. We develop parame-
terisations for urban morphology profiles, with five complexity levels, using data from six cities at 
2 km × 2 km resolution. Comparisons of parameterised building plan area to these ‘true’ data 
show that 90% of building fraction profiles have bias errors (BE) at any height of <0.03. An 
effective building diameter (D) is used to characterise the proportionality between building plan 
area and building normalised perimeter length. The six-city mean D is 21 m. Relations for D have 
normalised BE (nBE) < 16%, increasing to 26% when total wall area is assumed to be unknown. 
Impacts from using these new morphology relations are tested with SPARTACUS-Urban radiative 
transfer simulations. The effective shortwave albedo has a nBE 2–10% (cf. ‘true’). Within-canyon 
absorption have larger nBEs, suggesting the bulk albedo hides within-canopy errors. Overall, nBE 
increase as less morphology data are provided, notably when omitting total wall area. We 
conclude that urban vertical variability using the proposed relations are acceptable for NWP, 
requiring only: surface building plan area, mean building height, and effective building diameter.   

1. Introduction 

High population densities in cities can expose large numbers of people to extreme weather events such as heatwaves, whose effects 
can be exacerbated by poor air quality and the impacts of climate change. With urban areas being home to 54% of the world's pop-
ulation and rising (> 60% by 2030) (United Nations, 2018), these extreme events threaten public health and may cause severe eco-
nomic loss. Because of this, there is a need for increasing accuracy and spatial resolution in weather forecasting and climate projections 
for urban areas (Grimmond et al., 2020). 

Cities contain a heterogenous mix of buildings and trees with varying heights and densities. The material properties vary between 
and within the impervious (e.g., buildings, roads, sidewalks) and pervious (vegetated) areas. These characteristics influence the ab-
sorption and loss of shortwave and longwave radiation, while also impacting ventilation within the urban canopy (Guo et al., 2016; 
Kent et al., 2019). These effects cause trapping of heat (impacting local temperatures), influence the surface energy balance, and can 
affect precipitation and thunderstorm intensities (Collier, 2006; Liang, 2018; Shepherd, 2005). 

Therefore, the 3D structure of cities should be treated with appropriate assumptions in order to understand the impacts of urban 
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areas on the shortwave and longwave radiation (Arnfield, 1982; Masson, 2000; Martilli et al., 2003). Within numerical weather 
prediction (NWP) models, surface obstacles (e.g., buildings, vegetation) and the interactions between them need to be parameterised, 
due to computational and data constraints (among others) that limit surface schemes. NWP urban morphology often assumes an ‘urban 
canyon’, consisting of flat roofed buildings of the same height with constant width, that are characterised by the building height to 
canyon width (H/W) ratio (e.g. Arnfield and Grimmond, 1998; Kusaka et al., 2001; Porson et al., 2010). 

Morphometric parameters are key for accurate modelling of urban weather and climate, and include: building heights (Masson, 
2020; Zhu et al., 2019) and their probability distribution (e.g., Temperatures of Urban Facets (TUF), Krayenhoff et al. (2014)), building 
plan area, wall area, and H/W (e.g., Town Energy Balance (TEB), Masson (2000); Lemonsu et al. (2012)) with vertical structure of 
cities additionally vital (Wentz et al., 2018). One reason why urban NWP schemes remain simple is a lack of global data to describe this 
vertical structure of cities. If global data for all buildings were available, the required parameters for modelling (e.g., building fraction, 
wall area) could be derived at any NWP grid resolution without parameterisations. 

An additional reason for NWP urban schemes simplicity is a lack of accurate but computationally efficient methods to represent 
vertically resolved energy exchanges within urban canopies. Model developments, such as the SPARTACUS-Urban radiation scheme 
(Hogan, 2019a), the Building Effect Parameterization scheme for turbulent fluxes (Martilli et al., 2002; Salamanca et al., 2011; 
Schubert et al., 2012), Seoul National University Urban Canopy Model (Ryu and Baik, 2012; Ryu et al., 2013), and NJUC-UM-M 
(Kondo et al., 2005), have potential use in NWP. These consider a multi-layer approach, resolving multi-layer fluxes within the 
urban canyon, taking into account varying building heights and often vegetation. 

Often building footprints, sometimes with height information, are available from municipal sources. Airborne stereophotography, 
photogrammetry or LiDAR data are used to develop digital elevation models (DEMs) and digital surface models (DSMs) (Gamba and 
Houshmand, 2002; Xu et al., 2017). These allow high resolution (< 1 m) characterisation of individual cities (Gage and Cooper, 2017; 
Goodwin et al., 2009; Holland et al., 2008; Lindberg et al., 2011; Lindberg and Grimmond, 2011). However, these data are unavailable 
for all cities worldwide due to the expense of data collection, storage and processing (Kent et al., 2019). Community volunteer projects 
(e.g., OpenStreetMap) collect building footprints, which may also have building height attributes provided (e.g., Microsoft providing 
U.S. cities, Heris et al. (2020)), or derived from other new techniques (e.g., using surrounding building information (Bernard et al., 
2022)). 

Building heights can be derived from remote sensing observations (Rao, 1972; Champeaux et al., 2005) but few satellite missions 
have both the coverage and sufficient resolution to provide individual building heights for large areas (Frantz et al., 2021). Datasets 
have also been derived from combining multiple satellite sources (e.g., Frantz et al. (2021)), and additionally with local building 
footprint data (e.g., Milojevic-Dupont et al., 2020), but studies such as these may only cover a single continent, or a few cities, and/or 
rely on the availability of open-source building footprints. 

Across the range of current morphology dataset creation studies, methodologies are inconsistent and need to be standardised before 
building information (e.g., height) can be provided across large areas. Hence, providing parameterisations that use publicly available 
data to estimate the vertical structure of cities at resolutions suitable for NWP would be beneficial, until better datasets become 
available globally. Such relations have been developed for urban areas (e.g., plan area fraction of buildings, mean building height, 
frontal area index) and are used operationally, e.g., UK Met Office use the Bohnenstengel et al. (2011) within the UKV (Hertwig et al., 
2020). These parameterisations often require inputs that are not widely available (e.g., urban land cover), are derived from a single 
city but applied globally, and/or assume very limited variability e.g., one mean building height per built (‘urban’) fraction with 
saturation (i.e., tall dense city centres are the same as other areas). Intra-city urban form variability has been included using the 
Stewart and Oke (2012) local climate zones (LCZ) which provide representative ranges of values of parameters (e.g. plan area fraction 
of buildings or paved surfaces, roughness element height, and frontal area index) for each class, with datasets available to use as urban 
model inputs (Demuzere et al., 2022), and integration with models, e.g., within the Weather Research and Forecasting model with a 
single layer urban canopy model (Brousse et al., 2016; Molnár et al., 2019) with analysis on urban air temperatures. 

Given the importance of radiation to surface energy exchange, this work, and multi-layer modelling generally, is motivated by the 
need to reduce the sources of error in urban radiation calculations, which are from:  

(1) the radiation scheme, even if the urban morphology is known exactly  
(2) approximating the morphology from a few parameters (e.g. plan area or building cover fraction, mean building height and total 

building wall area)  
(3) incomplete knowledge of the parameters in any given city. 

Stretton et al. (2022) address the first of these, evaluating the SPARTACUS-Urban shortwave radiation scheme. They demonstrate 
that SPARTACUS-Urban accurately predicts profiles of absorption into urban facets (mean absolute error < 16%), and the effective 
albedo at the top of the canopy (normalised bias error < 6%) for real-world scenes. Overall, errors for all variables are largest when the 
sun is low in the sky, when the impact of the underlying assumptions on building geometry are largest. 

The specific objective of this paper is to address (2) by identifying and parameterising key vertical profiles of the urban form, using 
methods and coefficients that can be used globally, while retaining some of the realistic intra-city variability. Given the range of urban 
forms (within and between cities) and the sparsity of data, the relations developed here ideally need to be both simple and universal. 
We focus on input parameters including building: height, plan area fraction (with height), and wall area (with height), as they define 
the area of roof and walls exposed for energy exchange with height. Problem (3) is partially addressed here by giving a range of typical 
values of parameters for six cities. However, the parameterisations developed in this paper will become more applicable once datasets 
of building cover and mean building height are available globally. 
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The parameters to describe the urban form are selected and defined (section 2) and used within this study's various methods 
(section 3). The proposed parameterisations are assessed with ‘true’ urban morphology (section 4), combined (section 4.4), and used 
with SPARTACUS-Urban (Hogan, 2019b; Stretton et al., 2022) to simulate absorbed shortwave radiation into the three facets (walls, 
roof, and ground) (section 5). The conclusions drawn are given in section 6. 

2. Definitions of multi-layer urban form parameters 

2.1. Plan area fraction (λp) 

The plan area fraction of buildings (λp) is the ratio of the total area covered by buildings to the ‘grid-cell’ or total horizontal area of 
interest. Typically, λp is assumed to be constant with height, (λp(z)), from the surface (λp(z = 0)), unlike real buildings which rarely have 
equal heights in an area or an individual model grid-cell. Whilst we often model arrays of regular cubes (Kanda et al., 2005a; Kanda 
et al., 2005b; Morrison et al., 2018; Stretton et al., 2022)). Rather, λp(z) varies (Fig. 1a) resulting in variations in sunlit and shaded 
surfaces (e.g., roofs) at any given height, allowing interception of radiation reflected from higher surfaces, increasing the radiation 
trapping with a canopy. 

λp(z) can be related to λp(z = 0) if the area-weighted mean building height (H̄) is known (e.g., determined from building data in real 
cities), assuming: 

λp(z) = λp(z = 0)y(z/H̄), (1)  

where y(z/H̄) is a universal function with the properties: y(0) = 1, y(∞) = 0, and the vertical integral of y must equal 1. A functional 
form for y is proposed in section 3.2. 

2.2. Wall area: building perimeter length (L) 

The wall area relates to the normalised building perimeter length, L, at any given height (L(z)) (Stretton et al., 2022). L is the total 
building perimeter (m) normalised by the total area of the grid-cell (m2). Thus, if the canopy is divided into n layers and layer i has 
thickness Δzi, then: 

λW =
∑n

i
LiΔzi, (2)  

with λW the total wall area divided by the grid-cell area (Masson et al., 2020). If all wall orientations are assumed to be equally probable 
within a grid-cell, then λw = λf π (Hogan and Shonk, 2013), where λf is the frontal area index – the total projected wall area for a 
particular wind (or azimuth) direction, relative to the grid-cell area. λf is often used to parameterise aerodynamic drag of roughness 
elements (Raupach, 1992; Grimmond and Oke, 1999; Sützl et al., 2020). 

2.3. Effective building diameter (D) 

Assuming both narrow and wide buildings have an equal probability of extending to any height (Fig. 1a), L is proportional to λp. We 
use this to define an effective building diameter (D) that is independent of height: 

L(z) =
4λp(z)

D
. (3) 

Fig. 1. Effective building diameter (D): (a) assumption it is constant with height (Eq. 3) implies an equal probability of both large and small 
buildings extending to different heights (cross section); and (b) plan view of two equivalent areas with buildings that are either cuboids of width D 
or cylinders of diameter D. 
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This is analogous to the relations used between perimeter length and area of clouds and trees (Jensen et al., 2008; Hogan et al., 2018). 
The D parameter can be thought of as the diameter (or width) of buildings in an equivalent idealized city, with the same properties (λp 
and L) as a real city (Fig. 1b), where all buildings are identical cylinders (or cubes). Note that we neither assume buildings have a 
particular shape, nor that they are all the same size in a real city. Rather, D quantifies the assumed proportionality between L and λp in 
Eq. 3, while having a simple physical interpretation. 

3. Methods 

3.1. Deriving λp(z) and L(z) from high resolution reference data 

Profiles of λp and L are derived from high resolution reference data from six cities with differing characteristics (e.g., morphology, 
city layout) (Table 1). The cities chosen are Auckland, New Zealand; Berlin, Germany; Birmingham, UK; London, UK; New York City 
(NYC), US; and Sao Paulo, Brazil. Multiple global cities are used to capture the variation in building and land-use types seen exhibited 
across urban areas. 

For London, Berlin, and Birmingham, building footprints (Umweltatlas Berlin, 2010; EMU Analytics, 2018)1 are used to create a 1 
m × 1 m raster with mean height assigned to each building. Therefore, buildings have flat roofs and non-tapering vertical walls without 
building features (e.g., pitched roofs) above the mean height. During rasterization, “false walls” between adjoining (e.g., terraced) and 
overlapping buildings are removed. Building information for Auckland, NYC, and Sao Paulo are LiDAR datasets provided as 4 m × 4 m 
raster (Kent et al., 2019). Although some differences in building morphology may arise from the raster resolution chosen (Fig. SM 1, 
Table SM 1), by using the highest resolution available (i.e., not coarsening to the 4 m × 4 m resolution of some datasets) allows the 
parameterisations to be closer to ‘true’ data. Buildings/pixels with height values below 2.5 m (mean storey height in the UK (OPDC, 
2018)) or without height information are discarded for consistency across all datasets. For all grid-cells in all cities, the topography is 
assumed to be flat. 

Each city dataset is split into 2 km × 2 km grid-cells, to have a similar resolution to operational limited-area NWP models (e.g. Met 
Office 1.5 km UKV model (Tang et al., 2013), DWD 2.8 km COSMO-DE model (Baldauf et al., 2011)). At this scale, most grid-cells will 
have many buildings with different heights, but are less likely to contain multiple neighbourhoods with very different characteristics. 
Grid-cells with incomplete (i.e., missing) building data (determined from visual inspection of aerial imagery) and/or any areas with 
extremely small building coverage (λp(z = 0) < 0.001) are removed. Profiles are calculated using a height interval (Δz) of 0.5 m. 

3.2. Deriving globally obtainable parameterisations for λp(z) and L(z) 

The profiles of λp and L are parameterised for the six cities (Table 1). The parameterisations developed for λp(z) and L(z) are used in 
five combinations of increasing complexity, with differing input data requirements. These are evaluated against the high-resolution 
reference datasets (P0). The parameterisations (P#) of λp(z) and L(z) are given increasing numbers (#, 1 → 5) as the input re-
quirements decrease (i.e., with the intention they are more globally applicable) (Table 2): 

Table 1 
Cities and high-resolution reference data used to evaluate urban form parameterisations. City area (Acity) from Demographia World Urban Areas 
(2020), US Gazetteer (2021) as basis for the whole city area, an area can be >100% if it contains areas outside of the city, or areas of water. The 2 km 
× 2 km parameters are derived from either raster (rDSM) or vector (vDSM) digital surface models with the horizontal resolution (Δx) indicated.  

City City Whole city mean building Data 

Number of grid- 
cells 

Fraction of 
Acity 

Edge 
length 
L(z = 0) 
(m− 1) 

Surface 
fraction  
λp(z = 0) 

Building  
height H̄ 
(m) 

Date Type Δx 
(m) 

Source 

Auckland 59 0.45 0.051 0.21 5.98 Jul-Nov 2013 rDSM 4 Kent et al. (2019) 
Berlin 198 0.58 0.022 0.10 8.86 2009–2010 vDSM 1 Umweltatlas Berlin (2010) 
Birmingham 177 1.18 0.020 0.082 5.87 Jan-1998 – Sep- 

2014 
vDSM 1 EMU Analytics (2018) 

London 415 0.96 0.029 0.13 7.32 vDSM 1 EMU Analytics (2018) 
New York City 251 1.29 0.033 0.17 12.68 2014 rDSM 4 Kent et al. (2019) 
Sao Paulo 329 0.41 0.046 0.24 5.97 2007 rDSM 4 Kent et al. (2019)  

1 EMU Analytics data combine building polygons from Ordnance Survey Open Map and heights from Environment Agency LiDAR data from 2014 
and 2015. 
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P1 the most data demanding (e.g., from high-resolution raster data, Section 3.1) parameterisation, uses non-globally available (yet) 
λW and λp(z). An effective building diameter, D, is used to predict L(z) to ensure the latter satisfies Eq. 2 (Table 2). This can be 
achieved if λw is known, by: 

D =
4

λW

∑i

z=0
λp,iΔz =

4
λW

V, (4)  

where the normalised building volume, V, is the ratio of building volume and grid-cell area, related to building plan area and 
mean building height (H̄) by V = λp(z = 0)H̄ (parameterisation: Wall area conserved (CWA) D, Table 2).  

P2 uses λW as in P1 but parameterises λp(z) from λp(z = 0), and mean building height (H̄) using Eq. 1, with: 

y(x) =
[
1 + (ax)b

]− 1
, (5)  

where x = z/H̄, a is a function of b that ensures the integral of y from zero to infinity is one. Fig. SM 2 demonstrates that this 
functional form is a good fit to the median building-fraction profile from real cities worldwide. Value of the best-fit parameter, b, 
derived from the high-resolution reference data have smaller values when there is larger variation in building heights within a 
grid-cell. To determine b, we take λp(z), and normalise each axis by H̄ and λp(z = 0), such that the resultant curve represents the 
y(x) function from Eq. 4 (Fig. SM 2). The normalised curves are interpolated using a common vertical normalised height interval 
of 0.05, prior to determining the median profile (Fig. SM 2a, b). 

For the λp(z) variable b parameterisation (Table 2), grid-cells are categorised in H̄ intervals. Values of b are derived using 
median normalised profiles for each H̄ interval calculated from all cities.  

P3 is P2 but for λp(z) the fixed b parameterisation (Table 2) is used with b = 4.7 (Eq. 4) across all H̄ for all grid-cells. This value is 
derived from the multi-city median y(x). Using one b value allows assessment of cities similarity, and if parameterisations 
perform better (less error in radiation fluxes) if more data are included.  

P4 requires only grid-cell values of λp(z = 0) and H̄. λp(z) is obtained as in P2 and derives L from calculating an effective building 
diameter (D) from: 

D = pH̄ + qλp(z = 0) + r, (6)  

where the constants p, q, and r (p = 0.847, q = 5.17, r = 11.96) are derived by fitting D to λp(z = 0) and H̄ across all cities 
(Table 1, Table 2). This is referred to as linear-fit D (Table 2).  

P5 the simplest case uses only λp(z = 0) and H̄, so requires the least data. It parameterises λp(z) as in P3. To obtain L, with D set to 
20.93 m for all cities (fixed D, Table 2) and λw is assumed proportional to V (Eq. 4). 

All the 2 km × 2 km grid-cells available are used to derive parameters for the L(z) and fixed b parameterisations. For the variable b 
parameterisations (P2, P4), for each height interval a bootstrapped random sample (Padiyedath Gopalan et al., 2019) of 1000 is used to 
ensure all intervals have the same sample size. 

3.3. SPARTACUS-urban radiative transfer model 

The original SPARTACUS (Speedy Algorithm for Radiative Transfer through Cloud Sides) 3D radiative exchange model for complex 
cloud fields simulates lateral radiative exchange between clear and cloudy regions in proportion to the cloud edge length per unit area 
of a NWP grid-cell, using cloud fraction and cloud edge length (Hogan et al., 2016). A similar approach has been applied to forest 
vegetation (Hogan et al., 2018) and city buildings (Hogan, 2019b). All three assume any obstacles to radiation are randomly 
distributed within a horizontal plane, allowing the mean radiation field to be modelled as a function of height. The open-source 
software SPARTACUS-Surface combines SPARTACUS-Urban and SPARTACUS-Vegetation. As we focus only on buildings, we refer 
to it as SPARTACUS-Urban. 

SPARTACUS-Urban is underpinned by the 1D discrete-ordinate method, solving coupled ordinary differential equations for 2 N 

Table 2 
Inputs required for parameterisations (P1 → P5) to determine building fraction (λp) and normalised building edge length (L) from D (Fig. 1b) (assumed 
constant with height). These are evaluated using the actual ‘true’ profiles of λp and L (P0, section 3.1), mean building height, H̄, and building fraction 
at the surface, λp(z = 0), are required inputs for all parameterisations.  

Code Inputs required λp(z) parameterisation L(z) parameterisation 

P0 λp(z) and L(z) profiles Known Known 
P1 λp(z) profile; λw; H̄ Known Wall area conserved D: Eq. 5 
P2 λp(z = 0); λw; H̄ Variable b: Eq. 1 & 4 with b(H̄) Wall area conserved D: Eq. 5 
P3 λp(z = 0); λw; H̄ Fixed b: Eq. 1 & 4 with b = 4.7 Wall area conserved D: Eq. 5 
P4 λp(z = 0); H̄ Variable b: Eq. 1 & 4 with b(H̄) Linear-fit D: Eq. 6: D[λp(z = 0), H̄] 
P5 λp(z = 0); H̄ Fixed b: Eq. 1 & 4 with b = 4.7 Fixed D: D = 20.93 m  
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streams of radiation, with N streams per hemisphere. The radiation field is described more accurately as N increases, but with added 
computational cost. In this work, 16 streams are used (i.e., N = 8). A scene (any combination of building geometry, solar zenith angle, 
and albedo) is split into n layers to calculate radiative interactions per level. Each layer has regions of clear-air and buildings. 
SPARTACUS-Urban computes the radiative interactions between the three facets (wall, roof, and ground) using the vertical profiles of 
L and λp to characterise the urban form with z within a grid-cell. If vegetation is included, it also needs to be accounted for in each layer. 

To compute radiative fluxes, SPARTACUS-Urban uses a prescribed albedo (α). Here, we assign 0.2 to all facets (wall, roof, ground), 
based on literature for a range of urban form synthesised by Oke et al. (2017): 0.08–0.25 for roofs, 0.2–0.25 for walls and 0.08–0.25 for 
the ground (Grimmond and Oke, 1995; Feigenwinter et al., 1999; Grimmond et al., 2004; Lemonsu et al., 2004; Offerle et al., 2005; 
Balogun et al., 2009; Bergeron and Strachan, 2012). This is constant between facets to isolate any radiative errors due to the changes in 
morphology. SPARTACUS-Urban treats determines both direct and diffuse radiation, but does not separate sunlit and shaded surfaces. 
For this study, we assume all incoming radiation is direct radiation (i.e., no diffuse) with the normal solar flux at the top of the canopy 
set to 1000 W m− 2. We model for three solar zenith angles (θ0): overhead (nadir) sun (0◦), 45◦, and low-sun (75◦). Under overhead sun 
(θ0 = 0◦) we expect fluxes to be sensitive primarily to differences in the λp parameterisations (P2, P3), and for low sun simulations (θ0 =

75◦) to respond to differences in L parameterisations (P4, P5). 

3.4. Metrics to evaluate parameterisations against high resolution reference datasets 

The parameterisations (P1 → P5, Table 2) are evaluated using the bias error (BEi = P#i - P0i) between the ‘true’ (P0) and para-
meterised profiles for building fraction and building edge length. The BE of individual λp and L vertical profiles across each city are 
analysed using the median, mean, and 5th - 95th percentiles. 

Similarly, the λw for L parameterisations is evaluated using the mean BE (MBE). The mean λw is also evaluated using a normalised 
MBE (nMBE), computed by dividing the MBE by the ‘true’ mean λw computed from the P0 data, and multiplying by 100 to give a 
percentage. The mean absolute error (MAE = Σ(|P#i – P0i|)/n) for λw for each parameterisation is calculated for the number of grid- 
cells per city (n), to examine the performance across all data. 

The impact of the parameterisations to the vertically integrated shortwave absorption into the walls (aWall), roof (aRoof) and ground 
(aGround) per unit area of the entire horizontal grid-cell (W m− 2) is assessed using the MBE, nMBE, and MAE as above. The total ab-
sorption is also assessed for each grid-cell using the normalised BE (nBE). Similarly, we examine the impact on the shortwave bulk 
albedo for each grid-cell as above. 

4. Results and discussion 

4.1. Spatial variation of morphology in high resolution reference datasets 

For all six cities, the largest values of both plan are fraction at the surface (λp(z = 0)) and mean height (H̄) are found near the city 
centre or central business district (CBD) (Fig. 2). The largest H̄ values occur in NYC (e.g., Manhattan) (~ 30 m for 2 km × 2 km grid- 

Fig. 2. Parameters derived from building data (Table 1) at 2 km × 2 km resolution for (columns) six cities: (row 1) building fraction at the surface 
(λp(z = 0)), (row 2) mean building height (H̄), and (row 3) normalised building perimeter length at the surface (L(z = 0)) (Eq. 3); with city 
boundaries (black) and water bodies (blue) shown. Data sources are given in Table 1. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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cells) and Berlin. The lower values in other cities may be due to large variations in building types within a grid-cell, e.g., in Sao Paulo 
very tall buildings are often surrounded by areas of smaller buildings within the same grid-cells. Values of λp(z = 0) are higher in NYC, 
Sao Paulo, and Auckland. Similar values of L(z = 0) are found across each individual city, lowest in Berlin, Birmingham, and London (<
0.05 m− 1) and largest in Auckland, NYC, and Sao Paulo (0.05–0.1 m− 1). These could be impacted by fraction of the whole city analysed 
and the definitions used (Table 1), as this varies between 45% and > 100%. For example, in Auckland, a smaller fraction (0.45) of the 
city is analysed, so likely less variability in land-use and building type are characterised. However, each city has grid-cells that contain 
parks, residential areas, and parts of the CBD. Although only six cities are analysed, they cover a wide range of λp and H̄ combinations, 
city layouts, locations, employment types/industries, and demographic characteristics. However, as other cities are analysed the result 
details will vary. 

Across all cities the 2 km × 2 km grid-cells generally have a H̄ of <30 m (colour bar, Fig. 3). The few grid-cells with H̄ > 40 m often 
have larger λp(z = 0) values. This suggests that grid-cells are not dominated by a large number of tall buildings, although this depends 
on the exact grid-cell location. Effective building diameter (D) values are always >8 m but mostly <40 m (Fig. 3). Values of D tends to 
increase with λp(z = 0) (between 10 and 20 m, when surface building fractions are 0.0 to 0.5) in grid-cells with low values of H̄ (< 10 m) 
(Fig. 3). Grid-cells with large values of D (up to 100 m) tend to have smaller λp(z = 0). 

4.2. Evaluation of parameterisations for normalised perimeter length (L) 

We assess if the assumption that the effective building diameter (D) is constant with height (z) (Section 3.2) is appropriate. Within 
and between cities, D varies with z (Fig. 4). The mean and median D values across each city appear to follow similar vertical relations, 
with the mean D at each height larger than the median, especially with increasing height. In Birmingham, London, and NYC, D is 
approximately constant with height between 7 and 10 m, and at ~25 m (Birmingham and London), and ~ 35 m (NYC). Similar 
behaviour is seen in Berlin, although the mean and median D values are much closer in magnitude. In Sao Paulo, D is roughly constant 
with height above 20 m. In Auckland, D decreases with height, with D > 20 m until z > 50 m; but Auckland has both the fewest grid- 
cells (only 59) and smallest fraction of the city analysed (Table 1). 

As the vertical variation of D is much smaller than the vertical variation of plan area fraction of buildings (λp, Fig. 4), we test the 
consequence of assuming D is constant with height. In four of the six cities, wider buildings tend to extend higher into the urban canopy 
(not Auckland or Sao Paulo). Auckland appears to be an outlier (cf. other cities), possibly because of the smaller fraction of the city 
assessed (0.45, Table 1). In grid-cells with taller buildings (larger mean H̄), the assumption of a constant D is appropriate, but could be 
replaced with values obtained from two (or more) height intervals to better characterise the vertical profile; however, this additional 
complexity is not introduced here. 

Examining the normalised perimeter length at each height level (L(z), Eq. 3, Table 2) parameterisations derived using the high- 
resolution reference dataset λp profile for each grid-cell, an increase in L(z) bias error (BE) between the linear-fit D and fixed D 
parameterisations is evident (Fig. 5). In most cities there is a tendency to overestimate L(z) higher in the canopy (Fig. 4, Fig. 5), 

Fig. 3. Relation between the three parameters used in the ‘linear-fit D' parameterisation (Table 2) for all grid-cells (N = 1429): building fraction at 
the surface (λp(z = 0)), effective building diameter (D) calculated using normalised wall area (λw) and mean building height (H̄). 
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indicating an under-estimation in effective building diameter (i.e., from Eq. 3). Hence, buildings with a larger horizontal size are more 
likely to be taller. 

The λw nMBE for the linear-fit D parameterisation are lowest in NYC (0.01%), and largest in Auckland (− 15%) (Table 3). The fixed D 
parameterisation of λw have larger nMBE than the linear-fit D parameterisation, with values between − 6.4% (Berlin) and − 26% 
(Auckland). Generally, all nMBE indicate λw is underestimated when using both linear-fit D and the fixed D parameterisations for L(z) 
(Table 3). For Auckland, London, and Birmingham, the linear-fit D parameterisation performance is always better than the fixed D 
parameterisation. The distribution of BE in L(z) (Fig. 5) for both the linear-fit D and fixed D parameterisations, indicate the median is 
<0.005 m− 1 (mean L(z = 0) spans 0.02–0.05 m− 1). Exceptions to this include the fixed D parameterisation in Auckland. The 5th – 95th 
percentiles of profiles (shading, Fig. 5) for Berlin, London, and Birmingham do not exceed 0.04 m− 1 at any height but are slightly larger 
for the remaining cities. 

Fig. 4. Vertical profiles of effective building diameter (D) calculated from the true building data (P0, Table 2) [mean (dashed), median (solid), inter- 
quartile range (IQR, shading), 5th and 95th percentile (shading)], building fraction (λp) [red, mean weighted by number of grid-cells (λp > 0.001) 
per height level] and mean ‘wall area conserved D' (CWA) parameterisation (blue dashed) for: (a) Auckland, (b) Berlin, (c) Birmingham, (d) London, 
(e) NYC, and (f) Sao Paulo. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Both UK cities (London and Birmingham) have similar shaped BE profiles, suggesting a similar urban structure. In London, the L 
skill changes with height from an underestimation (z < ~7 m) to overestimation (z > ~9 m) (Fig. 4). This could result from the larger H̄ 
variation across the city (Fig. 2), cf. Birmingham which has lower H̄ with less variation, as the CBD covers fewer grid-cells. NYC has the 
largest L(z) differences of the six cities, with the fixed D parameterisation median BE and MBE generally smaller than the linear-fit D 
parameterisation for z ≤ 10 m. For all cities the largest L(z) errors occur for z< 10 m, with most overestimating L(z) for both 
parameterisations below 5 m. 

Fig. 5. Mean building edge length at the surface ( ¯L(0)) and vertical profiles of bias error (BE, section 3.4) of normalised building edge length (L) 
determined using the ‘linear-fit D' parameterisation (grey) and ‘fixed D' parameterisation (red) (Table 2) for (a) Auckland, (b) Berlin, (c) Bir-
mingham, (d) London, (e) NYC, and (f) Sao Paulo. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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4.3. Evaluation of parameterisations for plan area fraction of buildings (λp) 

Parameterisation methods for λp (variable b and fixed b, Table 2), are evaluated using the λp(z) vertical profiles from the high- 
resolution reference datasets (P0, Table 2) for each grid-cell (Fig. 2). For the variable b parameterisation, b varies with H̄ intervals 
(b = 2.1–6.5, Fig. 6), whereas fixed b uses one multi-city value (b = 4.7) independent of city. As both parameterisations assume λp(z =
0) is known, they agree with the ‘truth’ at the surface. 

Generally, b decreases when mean building heights exceed 7 m (Fig. 6). The multi-city fixed b is approximately equivalent to the 
variable b parameterisation value of b at ~7 m. Grid-cells with the lowest H̄ have the smallest variation in building heights and are 
associated with the largest b values. Areas with low H̄ are often found in suburbs, dominated by two-storey buildings. This contrasts 
with the CBD, where a wider variation of building heights occurs, with lower values of b. 

The variability around the median multi-city curve (black, Fig. 6) shows the variability in b is higher when H̄ is larger (whiskers, 

Table 3 
Evaluation of mean normalised wall area (λw) using the linear-fit D and fixed D parameterisations (Table 2) using the conserved wall area (CWA) D 
parameterisation for each city assessed with metrics (section 4.4): mean bias error (MBE), normalised mean bias error (nMBE, %) and mean absolute 
error (MAE). Table 1 gives number of grid-cells analysed per city.  

City Conserved wall area D λ̄W (m2/m2) Linear-fit D Fixed D 

MBE 
(m− 1) 

nMBE 
(%) 

MAE  
(m− 1) 

MBE 
(m− 1) 

nMBE 
(%) 

MAE 
(m− 1) 

Auckland 0.482 − 0.054 − 15 − 0.054 − 0.082 − 26 − 0.082 
Birmingham 0.165 − 0.0025 1.5 − 0.0025 − 0.018 − 14 − 0.018 
Berlin 0.187 − 0.0073 − 3.3 − 0.0073 0.0071 − 6.4 0.0071 
London 0.250 − 0.011 − 4.8 − 0.011 − 0.016 − 13 − 0.016 
NYC 0.302 − 0.043 0.013 − 0.043 0.074 13 0.074 
Sao Paulo 0.287 0.0061 5.8 0.0061 − 0.015 − 7.6 − 0.015  

Fig. 6. Relation between b (Eq. 4) and mean building height (H̄) for each city (Table 1) and across all cities, for H̄ intervals (2 m: 2–20 m, 5 m: 
20–40 m). H̄ intervals with sample size ≥ 5, containing > 10% of individual city grid-cells or across all (multi-city) (filled, otherwise open) the 
‘variable b’ spread (whiskers) in median b with height are calculated from 1000 bootstrap samples, random with repetition to the same sample size 
of each interval, for the full dataset (P0, Table 2). 
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Fig. 6), which may be associated with smaller sample sizes. The multi-city b with H̄ relation follows NYC closely (green, Fig. 6), as NYC 
has the most grid-cells sampled. Differences between the multi-city median and the NYC b at H̄ = 40 m arise as extra grid-cells from 
other cities (i.e., with <5 grid-cells) are included. Auckland and Sao Paulo have b values are most different from both other cities and 
the multi-city relation (Fig. 6). The UK cities, London and Birmingham, are similar to ~10 m but differ above this as London has higher 
H̄. Other cities with different variations in morphology may lie either side, or elsewhere in relation to this multi-city curve, e.g., taller 

Fig. 7. As Fig. 5, but mean city plan area building fraction at the surface ( ¯λp,0) and bias error (BE) vertical profiles (λp) determined ‘variable b’ (grey) 
and ‘fixed b’ (red) (Table 2). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Table 4 
As Table 3, wall area (λw) for six cities calculated using P2-P5 (Table 2) assessed using P0 with bias and normalised bias error (MBE and nMBE, section 3.4).  

City P0 
λw 

(m2/m2) 

P2 P3 P4 P5 

MBE 
(m2/m2) 

nMBE (%) MAE 
(m− 1) 

MBE (m2/m2) nMBE (%) MAE (m− 1) MBE 
(m− 1) 

nMBE 
(%) 

MAE 
(m− 1) 

MBE 
(m− 1) 

MBE (%) MAE (m− 1) 

Auckland 0.482 − 0.0078 − 2.3 − 0.0078 − 0.0077 − 2.3 − 0.0077 − 0.060 − 17 − 0.0603 − 0.088 − 27 − 0.088 
Birmingham 0.165 − 0.0030 − 2.2 − 0.0029 − 0.0029 − 2.2 − 0.0029 − 0.0054 − 0.75 − 0.0054 − 0.020 − 15 − 0.020 
Berlin 0.187 − 0.0044 − 2.1 − 0.0044 − 0.0045 − 2.1 − 0.0045 − 0.012 − 5.3 − 0.012 0.0025 − 8.4 0.0025 
London 0.250 − 0.0051 − 2.2 − 0.0050 − 0.0050 − 2.2 − 0.0050 − 0.016 − 6.9 − 0.016 − 0.021 − 15 − 0.021 
NYC 0.302 − 0.011 − 2.4 − 0.011 − 0.0067 − 2.1 − 0.0067 − 0.053 − 2.3 − 0.053 0.069 11 0.069 
Sao Paulo 0.287 − 0.0069 − 2.1 − 0.0069 − 0.0068 − 2.0 − 0.0068 − 0.00088 3.7 − 0.00088 − 0.021 − 9.5 − 0.021  
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cities (Asian megacities) may sit with Sao Paulo, or more with NYC. 
Using the variable b and fixed b parameterisations (Table 2) gives absolute BE for λp of <0.025 for all heights in all cities (black lines, 

Fig. 7), except Sao Paulo. There is little difference between the two parameterisations. Generally, 90% of the data (5th - 95th 
percentile, shading Fig. 7) in each city are within 0.03 of the ‘true’ values at each height. These results suggest Eq. 1 is applicable to 
real-world cities. 

Focusing on individual cities, the UK cities have similar vertical profiles (Fig. 7), as expected given their similar b values (Fig. 6). For 
Auckland and Sao Paulo, λp is underestimated below 10 m and overestimated above, the opposite to London and Birmingham. For NYC, 
large errors extend to higher building heights, especially for the fixed b parameterisation. In Sao Paulo the largest BE (> 0.05) occur 
when z < 10 m. Berlin, up to 20 m, has the second largest maximum magnitude of BE (~0.06), but low mean and median absolute BE 
(< 0.02). 

Fig. 8. As Fig. 5, but for P2 and P3.  
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Overall, the fixed b parameterisation b (Eq. 4) gives a reasonable fit in all cities. Comparing both parameterisations (variable b, fixed 
b) shows that only small improvements when b values are dependent on mean building height. 

4.4. Evaluation of combined parameterisations 

The combined L(z) and λp parameterisations (P1 → P5, Table 2) are evaluated using the P0 high resolution reference profiles for 
each city. This evaluation also assesses λw for parameterisations of L. 

MBE for λw is smallest if more city-specific information is used (Table 2). For mean λw, the nMBE are <2.5% for P2 and P3, but up to 
− 17% for P4 (Table 4). The largest nMBE occur in Auckland and Berlin, and smallest in Birmingham and London. Using fixed 

Fig. 9. As Fig. 8, but for P4 and P5.  
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Table 5 
As Table 4, but for SPARTACUS-Urban simulated total absorption when the solar zenith angle is 75◦ for (a) walls, (b) roof, and (c) ground facets.  

City P0 
Absorption 
(W m− 2) 

P2 P3 P4 P5 

(a) Wall MBE 
(W m− 2) 

nMBE 
(%) 

MAE 
(W m− 2) 

MBE 
(W m− 2) 

nMBE 
(%) 

MAE 
(W m− 2) 

MBE 
(W m− 2) 

nMBE 
(%) 

MAE 
(W m− 2) 

MBE 
(W m− 2) 

nMBE 
(%) 

MAE 
(W m− 2) 

Auckland 68.3 − 2.1 − 2.7 − 2.1 − 2.02 − 2.6 − 2.0 − 10 − 15 − 10 − 16 − 25 − 16 
Birmingham 31.9 − 0.55 − 1.9 − 0.55 − 0.53 − 1.8 − 0.53 − 1.5 − 1.1 − 1.5 − 4.9 − 15 − 4.9 
Berlin 44.6 − 0.74 − 1.9 − 0.74 − 0.9 − 2.0 − 0.90 − 2.1 − 5.1 − 2.1 − 1.2 − 9.4 − 1.2 
London 47.8 − 0.68 − 1.7 − 0.68 − 0.72 − 1.7 − 0.72 − 3.2 − 6.3 − 3.2 − 5.6 − 14 − 5.6 
NYC 73.2 − 0.89 − 1.5 − 0.89 − 1.59 − 2.1 − 1.6 − 4.8 − 0.78 − 4.8 0.22 5.4 0.22 
Sao Paulo 62.5 − 2.7 − 3.3 − 2.7 − 2.66 − 3.2 − 2.7 − 1.4 1.3 − 1.4 − 5.5 − 10 − 5.5 
(b) Roof 
Auckland 37.9 1.8 3.5 1.8 1.7 3.2 1.7 2.4 4.7 2.4 2.6 5.2 2.6 
Birmingham 18.0 − 0.24 − 0.95 − 0.24 − 0.31 − 1.2 − 0.31 − 0.28 − 0.92 − 0.28 − 0.28 − 0.85 − 0.28 
Berlin 19.0 0.18 0.83 0.18 0.5 1.7 0.50 0.21 0.98 0.21 0.37 1.5 0.37 
London 25.3 − 0.47 − 1.3 − 0.47 − 0.46 − 1.5 − 0.46 − 0.46 − 1.14 − 0.46 − 0.45 − 1.1 − 0.45 
NYC 30.3 − 0.31 − 0.74 − 0.31 0.8 1.9 0.80 0.12 0.39 0.12 0.21 0.51 0.21 
Sao Paulo 41.4 3.0 5.0 3.0 2.8 4.9 2.8 2.9 5.0 2.9 2.9 5.2 2.9 
(c) Ground 
Auckland 111 − 0.31 − 0.46 − 0.097 − 0.10 − 0.40 0.0070 0.0070 − 0.32 6.2 6.2 7.5 10 
Birmingham 162 0.11 0.086 0.70 0.70 0.51 0.75 0.75 0.55 1.5 1.5 0.86 4.3 
Berlin 150 0.066 0.043 0.44 0.44 0.40 0.25 0.25 0.17 1.5 1.5 1.4 0.58 
London 140 0.15 0.16 1.0 1.0 1.0 1.1 1.1 0.95 3.1 3.1 2.4 5.1 
NYC 115 0.26 0.36 1.1 1.1 1.7 0.53 0.53 0.12 4.0 4.0 9.0 − 0.47 
Sao Paulo 113 − 0.40 − 0.83 − 0.72 − 0.72 − 1.8 − 0.58 − 0.58 − 1.6 − 1.7 − 1.7 − 2.4 1.6  
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coefficients (P5) has the largest nMBE in all cities, with Auckland the poorest (− 27%). 
For P2 and P3, profiles of L(z) have similar BE in all cities (Fig. 8). In NYC, P3 tends to underestimate L(z), and P2 overestimate L(z), 

least. Across all cities, 90% (5-95th percentile, shading Fig. 8) of both the P2 and P3 profiles are <0.01 m− 1 different from P0, except 
for Sao Paulo between 5 and 10 m. In London and Birmingham, both P2 and P3 overestimate L(z) below z = 5 m but underestimate L(z) 
above, while in Sao Paulo and Auckland the opposite occurs. Overall, the largest errors occur in Sao Paulo. 

Consistent with the errors in total λw (Table 4), P4 and P5 perform the poorest for L(z) (Fig. 9), Generally, the L(z) absolute value of 
BE are <0.01 for P4 (black) and P5 (red, Fig. 9) with close to 90% of the profiles being within magnitude of 0.02 of P0. For all cities 
when P5 is used, the range of the 5 - 95th percentile of profiles is wider. 

5. Impacts of applying parameterisations for λp and L in the SPARTACUS-urban radiative transfer model 

5.1. Impact on vertically integrated absorbed shortwave radiation 

To assess the impact of approximating the urban morphology using parameterisations (P2-P5, Table 2) on simulated (section 3.3) 
total integrated shortwave absorption into urban facets, results are compared to the P0 in each grid-cell. Although three solar zenith 

Fig. 10. Total absorbed shortwave radiation into walls (aWall) modelled with SPARTACUS-Urban for a solar zenith angle (θ0) of 75◦ for six cities 
using ‘true’ building fraction and building edge length vertical profiles (P0, Table 2), and normalised bias error (nBE, section 3.4) when using 
parameterised profiles (P1-P5). Note scales differ between rows. See Fig. SM 3 for θ0 = 0◦ and Fig. SM 4 for θ0 = 45◦. 
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angles (θ0) are simulated, as θ0 = 75◦ has the largest normalised bias errors (nBE) we focus on these, with the θ0 = 0◦ and 45◦ results 
given in Fig. SM 3 – Fig. SM 6. 

The SPARTACUS-Urban simulated wall absorption (aWall) with a θ0 = 75◦, generally have nMBE magnitudes >3% for P2 (cf. > 15% 
as complexity increases to P5, Table 5) across all cities. Given poorer skill of the urban form parameterisations in Auckland (section 4), 
the poorest aWall performance is consistent (P4 15%; P5 25%) (Table 5). The largest nBE in aWall occur when using P1-P3 in Auckland, 
NYC, and Sao Paulo, in areas with the largest λp(z = 0) and L(z = 0) (Fig. 2, cf. Fig. 10). However, for P4 and P5 no clear relation is 
evident between grid-cell morphology and aWall nBE. Generally, P1 - P3 underestimate the absorption of radiation by walls (Table 5), 
which is consistent with the morphology results (Table 4). 

Simulated aRoof, using P2-P5 morphology, have all cities have a mean nBE < 5% (Table 5), and across all grid-cells the largest nBE 
magnitudes <25% (Fig. 11). Given the skill in morphology parameterisations (section 4), Sao Paulo and Auckland overestimate aRoof, 
while London and Birmingham underestimate aRoof. The highest nBE occur in areas with the largest λp(z = 0) (e.g., CBD, industrial), 
and therefore P0 aRoof is highest. 

Across all parameterisations, many cities have an absolute value of nMBE in mean aGround of <2% (Table 5), apart from P5 in 
Auckland (7.5%) and NYC (9%). The spatial patterns of aGround show underestimates in Auckland and Sao Paulo, but overestimates in 
the other cities when using P1-P3 (Fig. 12). 

Overall, the lowest nMBE occur when θ0 = 0◦ with aRoof and aGround nBE < 1% for all cities (Table SM 3); but with larger nMBE for 

Fig. 11. As Fig. 10, but for total roof absorption (aRoof). See Fig. SM 5 for θ0 = 45◦.  
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aWall (2–5% for P1-P3, up to 50% for P4 and P5, Fig. SM 3). When θ0 = 45◦ the nMBE for aWall are similar to θ0 = 0◦ (P1-P3 < 5%, and 
P4 and P5 > 50%; Table SM 2, Fig. SM 4) and aRoof (2–5%) with the largest nBE associated with larger λp(z = 0). The θ0 = 45◦ aGround 
values have nBE that are <10% (Table SM 2, Fig. SM 6). 

5.2. Impact on shortwave bulk albedo 

We additionally assess the error in approximating the urban morphology using P2-P5 on the simulated bulk albedo for each grid- 
cell (i.e., ratio of upwelling to downwelling shortwave radiation at the top of the urban canopy). For all θ0 values tested, the nBE have 
similar magnitudes across the six cities, so we focus on θ0 = 45◦. The nBE results for θ0 = 75◦ are slightly larger (Fig. SM 7). 

Simulated bulk albedo generally increases with parameterisation complexity (i.e., P1-P5), but all have an absolute nBE < 10% 
(Fig. 13). This is smaller than the total facets absorption nBE (Fig. 10 - Fig. 12) that have a maximum of ±20–50% for P5 (largest for 
aWall). This suggests bulk effects result from within canopy compensation (i.e., some absorption overestimates and underestimates). 
The net result is a good approximation of the shortwave bulk albedo for all parameterisations. Unlike absorption, albedo has a similar 
trend for all six cities, being overestimated for P1-P3 in all grid-cells and for P4-P5 in most grid-cells. For the latter, notably P5, the 
albedo is underestimated in areas with the higher surface building fractions (Fig. 2). 

Hence, the crudest assumptions about urban form have low impact on the bulk albedo. However, this contrasts with the error in 
shortwave absorption (section 5.1), suggesting that the within-canopy impacts work to cancel one another out. 

Fig. 12. As Fig. 10, but for total ground absorption (aGround). See Fig. SM 6 for θ0 = 45◦.  
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6. Conclusions 

Given the challenges in collecting urban morphology data (Frantz et al., 2021; Masson, 2020), that are critical to simulating 
meteorological processes in cities (e.g. Hogan, 2019b; Krayenhoff et al., 2020), we propose methods to parameterise vertical profiles of 
building plan area fraction (λp) and normalised building perimeter length (L). The latter is simply the vertically resolved normalised 
wall area. 

Although profiles can be derived from high resolution building height data, few datasets with large spatial extent exist. Here, data 
are analysed for six cities (in Europe, North America, Oceania, and South America) to derive both city specific and multi-city pa-
rameters, and to evaluate model skill. 

The impact of parameter uncertainty is assessed using SPARTACUS-Surface (Hogan, 2019b), shortwave radiation simulations of 
albedo, and shortwave radiation absorption by three urban facets (roof, walls, ground). The grid-cell bulk albedo has an absolute 
normalised bias error of ≤10% when using the urban form parameterisations. Albedo is more likely to be underestimated in high- 
density central-city areas when the most assumptions are made about the urban morphology. Reducing the assumptions made, and 
therefore increasing the knowledge of the urban morphology used within the parameterisation, decreases the absolute value of 
normalised bias errors to ≤2% for all areas of cities. 

The low error in bulk albedo hides errors within the urban canopy introduced by the parameterisations, as errors in shortwave 

Fig. 13. As Fig. 10, but for bulk albedo for θ0 = 45◦. See Fig. SM 7 for θ0 = 75◦.  
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absorption appear to cancel out. This may make the parameterisations acceptable for use with more complex models. Generally, low 
(< 20%) absolute values of normalised errors in absorption occur at when the sun is overhead, when building fraction parameter-
isation is more influential (cf. wall area parameterisation). The largest normalised bias errors (up to 50%) occur in wall absorption for 
larger solar zenith angles, when wall area is assumed unknown (Section 4.4, 5.1). Thus, trying to overcome a lack of urban form data 
through parameterisations introduces larger errors. Hence, if vertical profiles of radiation absorption are the focus, appropriate wall 
area data are critical. 

We conclude that building height variations can be approximated using a function of mean building height and surface λp. Pa-
rameters are derived for both all-cities and each city. Overall, 90% of the profiles have building fraction error < ±0.03 at any height 
(cf. ‘true’ data). As there is little difference between the two methods in four out of six cities analysed, it suggests the multi-city 
approach may be acceptable. 

Additionally, we find intra-city building horizontal extent can be approximated using an effective building diameter D derived 
either as function of mean building height and λp, or from the ‘true’ wall area. The latter is most constrained by data availability. 
Although we treat D as constant with height, we find evidence suggesting two values may improve representation of vertical vari-
ability. The near ground (for areas with λp > 0.05) mean D across all six cities is ~21 m. For all methods used to determine D, the 
absolute value of median bias error is <6%, with the magnitude of bias error of 90% of all profiles <0.02 m− 1 (cf. 0.02–0.05 m− 1 at the 
surface). 

The proposed parameterisations can be combined to give a full description of the vertical morphology, with five combinations used 
here, with decreasing data requirements. Little skill is lost from using a more general (cf. detailed) parameterisation for λp. Parame-
terisation of L has a larger impact on wall area. If wall area is known but λp is parameterised, the mean total wall area is calculated 
within 3% for all cities, whereas if wall area is unknown this error can increase by up to an order of magnitude. The parameterisations 
for the six cities perform best in areas with both low λp and L (e.g., suburban areas). In denser areas, errors are generally larger and 
increase without knowledge of wall area. Additionally, in denser areas the errors in absorbed shortwave and bulk albedo may have 
opposite signs of those in the outer city. 

Overall, as our parameterisations can characterise vertical profiles of λp and L they have utility in multi-layer urban canopy models 
(e.g., SPARTACUS-Urban, BEP, TEB). However, the uncertainty in radiative fluxes shown here will impact other modelled fluxes (e.g., 
storage and sensible heat fluxes) so future work should assess these cascading effects. Alongside this, as the morphology within a given 
grid cell influences the surface roughness, future work could include assessing the impact of the parameterisations developed here on 
the momentum transfer. Here, only λp and mean building height data are used to approximate urban form. Including building wall area 
information would improve this, but it is the most challenging of the three variables to obtain. Additionally, we note that the co-
efficients and best-fit parameters derived here, which impact absorption and albedo, may change as the range and mean of cities 
properties are expanded and analysed at different scales. 

If only mean building height and plan area fraction are available for a city at grid resolution, building height and λp can be derived 
from existing empirical relations, such as Bohnenstengel et al. (2011), that are currently applied globally, despite being developed 
from data from a single city. But, these relations require input data (i.e., built or ‘urban’ [sic] fraction). Thus, there is a clear and 
increasing need to improve global datasets of urban morphological parameters for weather and climate models, but also for a wide 
range of other applications that use the outputs from these models for decision making and managing cities day-to-day, in emergencies 
and for the long-term changes (both climate and urban). 
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