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“Remember to look up at the stars and not down at your feet. Try to make sense of 

what you see and wonder about what makes the universe exist. Be curious. And 

however difficult life may seem, there is always something you can do and succeed at.  

It matters that you don't just give up.”  

 Stephen Hawking 
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Abstract 
 

Neurodegenerative diseases have been identified and studied for decades but disease-modifying 

drugs are still unavailable for their majority. Their genetic and clinical complexity renders the 

identification of the precise molecular disease mechanism challenging. Holistic approaches that 

allow the analysis of diseases in a systems level, studying multiple genes and their protein products 

simultaneously, could aid in the endeavour to find treatment for neurodegenerative diseases, such 

as the Hereditary Spastic Paraplegias (HSPs) and Parkinson’s disease (PD). 

Firstly, a protein-protein interaction network (PPIN) analysis was performed centred on proteins 

derived from genes that lead to HSPs, revealing that their majority share at least one interactor. 

This suggests that they participate in common biological processes and pathways. Enrichment 

analysis highlighted membrane trafficking and vesicle mediated pathways as important for the 

HSPs. Furthermore, the clinical complexity of the disease led to the investigation of potential 

mechanistic differences of the disease depending on the mode of inheritance, type of HSP, and 

clinical features. The analysis of the latter also utilised basic machine learning tools (principal 

component analysis and hierarchical clustering) and suggested the existence of 2 subgroups of 

HSPs with divergent disease mechanisms.  

To investigate how a fundamental cellular process can contribute to disease, macroautophagy was 

studied, as it is associated with multiple neurodegenerative diseases. This connection was 

investigated initially by creating 5 PPINs (macroautophagy, PD, Alzheimer’s disease, Amyotrophic 

lateral sclerosis, and Frontotemporal dementia), and examining their overlap. As the intersection 

between all studied neurodegenerative diseases and macroautophagy was extensive, I focused on 

the relationship between macroautophagy and PD. This required the creation of a mathematical 

model of the initial stages of macroautophagy, in which differential protein amounts were used to 

simulate a healthy person versus a person with PD. Interestingly, this distinction in amounts was 

sufficient to simulate differential kinetics of macroautophagy. 
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MA...............................................................................................................................Macroautophagy  
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MIQL...........................................................................................Molecular interaction query language  
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MPTP.............................................................................1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
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PD….........................................................................................................................Parkinson’s disease  

PE.................................................................................................................Phosphatidylethanolamine 

PI3P .................................................................................................Phosphatidyl inositol 3-phosphate 

PINOT.......................................................................................Protein interaction network online tool  

PPI...............................................................................................................Protein-protein interaction  

PPIN..............................................................................................Protein-protein interaction network 

PSICQUIC......................................................Proteomics standards initiative common query interface  

REM......................................................................................................................Rapid eye movement  

RNA……….......................................................................................................................Ribonucleic acid 

STRING….....................................................Search tool for the retrieval of interacting genes/proteins  

TNF…..................................................................................................................Tumour necrosis factor  
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1. Introduction 

 

1.1 Systems Biology 

 

A definition of a “system” is that it is a regularly interacting or interdependent group of items 

forming a unified whole [1], or that it is “a network of mutually dependent and thus interconnected 

components comprising a unified whole” [2]. Of all the systems in the world, biological ones 

comprised of the greatest complexity. This can be noticed by the contrast of achievements of the 

respective fields of physics and biology. The understanding of the laws of physics has grown 

exponentially in the last decades, allowing humans to walk on the moon and only 52 years later to 

fly a helicopter (Ingenuity) on Mars, which is more than 300 million kms away [3]. However, many 

aspects of the biological mechanisms governing our own bodies are yet to be understood and 

several diseases are still incurable.  

The response of a biological system to a stimulus is more difficult to predict than that of a physical 

system due to its higher level of complexity. Lowering of the environmental temperature of a gas in 

a container, will lead to the highly predictable change of its volume (Ideal gas law [4]), whereas the 

response to the same stimulus by a cell or an organism can vary significantly, as it might lead to no 

observable change or conversely to its death. One of the reasons for the lack of linearity in the 

response of biological systems is the presence of functional loops, which add complexity, allowing 

their behaviour to vary largely, depending on the details of the system [5]. An elegant example 

demonstrating this issue is described by Voit [5], in which he hypothesizes a linear system activated 

by an input. The input leads to the formation of the first component of the system, X, which in 

collaboration with E forms Y. Then Y forms Z, and Z produces an output (Fig 1-1A). Increasing or 

decreasing the input will lead to a simple increase or decrease of the quantities of the components 

of the system. However, when a loop is added starting from Z, linking it to E through TF and G (Fig 

1-1B), then the outcome depends on the model’s parameters. If the effect of Z on TF is weak then 

the system behaves in similar way to previously described. If it is strong, then this may lead to 

oscillations in the concentrations of the system entities, which dampen over time. This result was 

calculated using modelling and would have been more time-consuming to compute based on 

intuition. Thus, systems biology approaches, such as modelling, can provide valuable insight, when 

the complexity of the system renders intuition insufficient for reliably predicting the outcome. 
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Figure 1-1. Linear and non-linear biological systems.  

 (A) The Input activates X, which together with E is produces Y. Then, Y produces Z, which 

creates an output. (B) An additional positive feedback-loop is present compared to the 

model of A. The loop is formed between from Z to E, increasing the systems’ complexity and 

diversifying the potential outcomes, based on the parameters of the system. A linear 

system (A) has predictable outcomes, even based simply on intuition, in contrast to non-

linear systems (B). 

 

Systems biology is founded on the premise that biology can be more deeply understood from an 

integrated-systems perspective. Expertise from multiple branches of sciences, such as chemistry, 

physics, mathematics, and computer sciences, can facilitate in the increased understanding of the 

function of groups of genes, proteins, lipids, and other components that dynamically affect the 

functions of cells and organisms.  

In the beginning of the 20th century, the need for a systems biology approach was highlighted, by 

Ludwig von Bertalanffy, who argued that organisms have a systemic nature for three decades [6, 

7], and Mihajho Mesarovic, who first used the term “Systems Biology” [8]. Also, François Jacob 

stated in 1974 that “Every object that biology studies is a system of systems” [2]. However, the 

collaboration of biology with other disciplines like mathematics and computer science continued to 

be sparse and mainly limited to data management for a long time. 

Over the last few decades, the appreciation of systems biology approaches has grown significantly. 

The study of the human body and disease has shifted from attempting to understand how our 

A. 

B. 

Output 

Output 
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systems and organs function and dysfunction, to studying the complicated relationships between 

the over 20,000 genes that are expressed differently in various cell types. It has also become 

evident that in addition to the relationships between genes, other factors also influence their 

behaviour, such as transcription factors, metabolites, RNAs, and epigenetic changes of the DNA.  

Systems biology underlines that the features of a system are not a simple product of the addition 

of the properties of its components. Instead, there are multiple regulatory feedback loops among 

the components. The final properties of the system are, therefore, the complex result of the 

combination of all these modulatory effects. As a result, the system can have emergent behaviours, 

which are uniquely possessed by the whole system and not by the individual components. 

Examples that highlight this point are the emergent properties of the central nervous system. 

Understanding and predicting the features of action potentials in a neuron are insufficient for 

deciphering the enigma of memory storage and acquisition, and other functions of the brain. Even 

though obtaining information about the mechanistic details of neurons is essential, adopting in 

parallel a more holistic approach might be required in order to understand such a complex system.  

 

1.1.1 Omics 

 

Omics in biology is a term used to refer to the production or study of large (and comprehensive) 

data sets in a high-throughput fashion. More specific terms with this suffix include genomics and 

proteinomics, which correspond to global analyses of genes and proteins, respectively in a given 

cell, tissue or sample. 

The appreciation of the value of omics approaches has risen in the last decades, which is evident by 

their incorporation in an increasing amount of research. Interestingly, the PubMed results for 

“genome” start in 1943 [9] and their exponential growth begins in the 1990s, while “omic” follows 

a similar trend, with its first result in 2000 [10] and the start of its exponential growth in early 

2020s.  

A key factor that prompted the rise of omics was the Human Genome Project, which aimed to 

sequence and map most of the human genome. An international team of researchers was 

assembled for this massive endeavour, which started at the end of 1990 and was completed in 

early 2003. This project managed to sequence 99% of gene-containing human DNA with an 99.99% 

accuracy, to sequence the complete genome of other organisms, such as Escherichia coli, 

Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, and to create 
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whole-genome drafts for additional organisms, like mouse and rat [11, 12]. These results were 

combined with a private investigation led by J. Craig Venter to create the human reference 

sequence [13, 14]. Combining the human reference sequence to the genome-wide map of common 

variability produced by the International HapMap project and the 1,000 Genomes project [15, 16] 

interestingly demonstrated the great genetic similarity between any two humans (99.5%). At the 

end of the Human Genome Project the gap of knowledge between genotype and phenotype was 

more apparent, which highlighted the importance of further research [17]. 

Analysing the genome can reveal important information about a person’s health. Inside a human 

cell, there are approximately 20,000 pairs of genes [18]. Among people a gene can be present in 

different forms, some with positive, and/or negative effect on health [19, 20]. Studying the genome 

of groups of people can reveal associations between changes in the genome sequence and the risk 

of developing a certain disease, and can highlight the importance of a specific pathway in the 

disease mechanism. The functionality of a gene is usually expressed by its product, such as a 

protein. Therefore, complementally functional analysis of gene products can be insightful for this 

endeavour [21]. 

The rise of genomics was followed by the rise of proteinomics, the study of group of proteins, 

instead of their study in isolation or in combination with just a few proteins, as mainly done 

previously. Proteinomics can be considered more complicated than genomics. DNA has a code of 4 

nucleotides and is almost identical in different cells and developmental stages in an organism. In 

contrast, proteins have a code of 20 amino acids, with varying sequences, lengths, and 3D 

structures, leading to an over 50 times increase in the number of possible protein configurations 

compared to the number of genes [22, 23]. This increased expansion of complexity is mainly due to 

alternative splicing of exons and post translational modifications [24, 25].  

Proteinomics cover a wide range of approaches, including proteomics, structural proteomics and 

interaction proteomics [26]. Proteomics focuses on the identification and quantification of 

proteins, mainly through Mass Spectrometry [27]. This approach is valuable in describing 

differentiations of proteins among compartments, cells and tissues, and their associations with 

diseases for the development of diagnostic markers [28-30]. In addition, spatiotemporal 

proteomics can be performed allowing the study of changes, for instance, during cell signalling [28, 

31, 32]. Structural proteomics focuses on the 3D structure and protein modifications. Visualising 

the structure of proteins (or parts of proteins) can aid in inferring their function(s). In addition, 

structural changes due to disease-causing mutations can hint the disease mechanism. Combining 

data from health and disease states can aid the development of drugs that can structurally and 
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functionally modify the proteins of interest [33]. Lastly, interaction proteomics focuses on the 

associations of proteins with other components of biological systems, such as DNA, RNA and lipids. 

Interactions of proteins with DNA are necessary for multiple biological processes, including the 

transcription of genes, during which transcription factors interact with promoters. Proteins also 

interact with RNAs, such as ribosomal RNAs that are responsible for proteinosynthesis. Lipids can 

be attached to proteins to modify their properties. For instance, phosphatidylethanolamine can be 

attached to LC3I to produce LC3II, which is key for the progression of macroautophagy [34]. 

Furthermore, proteins interact with other proteins to exert their functions. Examples of such 

functions include protein modifications, like phosphorylation, ubiquitylation, and 

truncation/proteolysis. The protein-protein interaction proteomic analyses will be discussed in 

more detail in Section 1.2.  

The main challenge of proteinomics is technical. In comparison to genomic technologies, those of 

proteinomics are less developed and scalable hindering the progress of the field [28]. However, 

recent developments have allowed the identification and qualification of approximately 7,000 

proteins from mammalian systems, requiring the reasonable measuring time of 48h and a few 

thousand cells [35-37]. Based on the notion that human cells express around 10,000 proteins [28], 

this advancement of proteinomics appears to allow comprehensive expression analysis of human 

proteomes. Proteinomic analyses are advantageous as they inform about the product of gene 

expression, which is more directly associated with the biological process compared to the mRNA, or 

gene. In addition, proteinomics can inform about the presence and concentration of a protein in a 

specific location (e.g., organelle) in contrast to genomics and transcriptomics [28] . 

 

1.1.2 Big Data 

 

Improvements in the technologies and methodologies used in biology have resulted in the ability to 

produce large amounts of data through a single experiment. Such high-throughput studies have 

allowed the collection of genomic data, such as genome-wide expression, and proteinomic data, 

such as the identification and quantification of proteins and other biomarkers from a single sample. 

The advances on this field are notable. For instance, even a decade ago, it was unthinkable that a 

detailed 3D map of an animal and human cell could be obtained, let alone from one experiment, 

but this has now become a reality facilitating single cell multiomic analyses [38, 39]. 

Multiple efforts on gathering genomic and proteomic information have been conducted. For 

instance, the 100,000 Genomes Project, a patient-centric effort, sequenced the DNA of 100,000 
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people with either rare diseases or cancer by the end of 2018 [40]. Such large amounts of genetic 

data allow the conducting of powerful genetic studies that can identify genetic alterations, which 

are associated with diseases. In January 2022 there were over 325,000 unique associations of single 

nucleotide polymorphism and traits from over 5,500 studies in the Genome Wide Association 

Studies (GWAS) catalogue, providing valuable insight into the mechanisms of diseases. This has 

resulted in over 500 genetic associations with Parkinson’s disease from 67 studies, and in over 

1,200 associations with Alzheimer’s disease from 123 studies so far [41]. Other studies are focusing 

on collecting multiomic data, like the Precision Medicine Initiative that aims to collect a multiomic 

data set from over 1 million people to study a wide range of diseases [42, 43]. 

Proteinomics have a number of inherited challenges which need to be tackled. The heterogeneity 

of the identity and quantity of proteins, and their alternative splicing products and post 

translational modifications increases the complexity of their analysis. In addition, there is a lack of 

methods to sequence proteins on the omics scale, in contrast to genes [26].  

Nonetheless, collective efforts through multiple groups and organisations of researchers have 

provided a number of guidelines and repositories that accelerate the progress of proteinomics. For 

instance, a common format and unique vocabulary for proteomic data was created and is 

dynamically being updated but the Human Proteome Organization Proteomics Standards Initiative 

(HUPO-PSI) [44, 45]. A consortium, ProteomeXchange, was formed in 2006 to tackle the difficulty 

to interpret and compare data from various repositories, based on differences in the data 

submission process and the level of detail they provide. Since then, it actively encourages re-using 

of published data and adopting open data policies [46, 47]. A protein’s structure is valuable in 

multiple aspects. It can be indicative of a protein’s function and central for the designing of new 

drugs. Therefore, the need of a repository of protein structure led to the formation of Protein Data 

Bank in 1977, which published its 10,000th structure in 1999. It is an open access digital data 

resource that includes more than 185,000 structures (as of 15/01/2022) of proteins, nucleic acids, 

and complex assemblies, and provides tools for research and education [48, 49]. Another central 

endeavour has been conducted to merge amino acid sequence databases to reduce inconsistencies 

and the amount of different identifiers, such as by the work of Universal Protein (i.e., UniProt) [50].  

Another aspect of proteinomics that benefited from the organisation of the research community is 

the protein-protein interaction (PPI) analysis. This subject will be analysed in more detail in Section 

1.2, but briefly, there is a high number of databases that holds PPI information. On one hand, this 

provides a collection of protein-protein interactions per specific area of interest, allowing the user 

to have easy access to a range of data around a certain subject. However, the inconsistency of the 
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level of detail and the amount of information that each database holds, renders necessary the 

investment of additional time for both the people or algorithms that curate the research papers for 

different databases, and for the end-user, who is required to collect, collate, and filter the 

interaction data from multiple sources. Namely, some of the groups of researchers that have 

facilitated in solving the aforementioned and additional issues are the Human Proteome 

Organization Proteomics Standards Initiative [51] and the International Molecular Exchange 

consortium [52]. 

This era of big data has accelerated our understanding of biological systems but also demands the 

development of sophisticated tools for data analysis. Machine learning and bioinformatic tools 

have been developed to mine and/or analyse large quantities of data fast and consistently, and 

detect trends in data that would have been undetected using simple analytical methods. The large 

amount of available databases and tools has led to the creation of resource portals such as Expasy 

(Expert Protein Analysis System), which is allowing access to over 160 databases and software tools 

for various omic data [53], and Bioconductor through which over 2,100 software packages are 

available (on 4th May 2022) [54].  

Big data can be analysed using multiple approaches, with one of them being the production of 

networks. For instance, protein-protein interaction networks (PPINs) are valuable tools for 

summarizing the complexity of biological systems. On some occasions, they can be further 

translated into a computational model, which can then be mathematically analysed. The graphical 

representation of the system, produced by the PPIN or the model, can provide new insights. 

Therefore, studying protein networks and creating quantitative models that incorporate biological 

pathways and their connections are effective means to investigate, for example, how the 

mutations or therapeutic interventions might modulate the overall system [55]. 

 

1.1.3 Future trends of Systems Biology 

 

Even though valuable insight has been generated with the use of genomic and proteomic 

approaches in biology, the reality in live human cells and human bodies is even more complicated. 

For instance, proteins can regulate genes, but also metabolites can regulate proteins. The 

interdependence of these cellular components is not captured by studying each omic separately, 

leading to the rise of multiomic approaches [56]. Integrating data from different omics to create a 

more informative global picture of a biological process/disease [57] has been applied in multiple 

projects, such as tumour classification and prediction of aggressiveness [58], and the study of 
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COVID-19 [59] and of neurodegenerative diseases, such as Parkinson’s disease [60]. In addition, 

there are multiple recent reviews that have highlighted the need of multiomic approaches in a 

variety of topics, such as the study of endometriosis ([61], tuberculosis [62], atherosclerosis [63], 

and Parkinson’s disease [64]. 

The rise of multiomic analysis is creating the need of developing pipelines for data integration and 

allowing access to multiple data sets. Custom pipelines might be tailored to the specific needs of 

each research group but if there are not available and valuable to the broader scientific 

community, they have limited capacity to speed up this endeavour. Publicly available multiomic 

tools are being developed. For instance, through GeneAnalytics the user can collect multiple omics 

data for their genes of interest [65], however, there is a subscription fee.  

Omic and multi-omic data analyses are powerful approaches that can be applied to improve our 

understanding of biological systems, but require careful selection of appropriate data. The 

objectives, assumptions, and details of the pipeline behind the collection of each data set need to 

be known and can largely affect the compatibility of each pair of data sets. For instance, if the focus 

of the study is the understanding of the disease, then the disease mechanism needs to be taken 

into consideration to ensure -for example- that the time point(s) to which the data sets correspond 

could reflect the primary events linked to disease aetiology [66]. 

The merging of data sets itself can also present its challenges, as it is not a simple process of 

layering information. Across databases and data sets, there can be different terminologies, quality 

filters, and algorithms impeding data harmonization. Therefore, pipelines integrating a variety of 

different types of data are a necessity for this endeavour [26].  

Aside from its limitations, omic data have strong potential, which can be more fully accessed with 

open access data policies, and collaborations of people from different areas of biological research 

and expertise from other scientific backgrounds. Such systems biology approaches can accelerate 

the booming of knowledge around health and disease and thus the discovery of treatment and 

prevention methods to ameliorate the quality of life of people with conditions/diseases.  

Together with multi-omics, other applications of systems biology can contribute to the progress of 

scientific understanding. For example, systems biology plays an increasingly important role in 

multiple stages of drug development, such as the choice of drug targets, the optimal dosing 

strategy, and the extrapolation of data from animals to humans [5, 67]. In addition, since creating 

reliable and powerful biological systems through well designed alterations is another goal of 

systems biology, it could lead to progress towards personalised medical treatments [5]. This 
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endeavour commences with modelling natural systems, in which considerable progress has already 

been made [68-72].  

Significant effort has been placed on understanding the function of neurons and brain using 

systems biology approaches. One of the first steps in this direction was the publication of the work 

of Hodgkin and Huxley in modelling neurons, almost 70 years ago [73]. Since then, a variety of 

models of neuronal function and networks has been published. Some models are at the level of a 

single neuron or a pair of neurons and include more details. For instance, models have focused on 

the dynamics of neurotransmitters in a neuron, and on the signal transduction from one neuron to 

another through the synapse [74-78]. Other models address larger systems in a less detailed 

manner, such as the function and interaction of different brain areas [79]. However, there are 

exceptions in this choice between smaller or larger systems with more or less details, respectively. 

A noteworthy project that models a large system in a detailed manner is the Blue Brain project. It 

aims to “build biologically detailed digital reconstructions and simulations of the mouse brain”, 

based on supercomputers [80]. Multiple milestones have already been achieved including the 

creation of a full cell atlas of all neurons and glia in the mouse brain, published in 2018 [81], and of 

the architecture of the system among neurons, glia and blood vessels published in 2021 [82].  

The potential of mathematical modelling is increasing with the further development of computers 

and programming languages. Since the 1950s, computational power and speed have doubled every 

1.5 years. In parallel, multiple higher level programming languages, like MATLAB and SBLM, 

increase the accessibility of coding/programming to a wider audience, such as scientists who lack a 

computer science background. [5] 

 

1.1.4 Examples of Systems biology approaches in this Thesis 

 

There are different types of models that can be created in systems biology. Some are static and 

represent all the information and relationships of a model irrespective of time and space, while 

others are dynamic, in which concentrations and events can occur in both time and space. A 

paradigm of a static model is a protein-protein interaction network, in which all interactions 

between the components are incorporated, while an example of a dynamic model is a 

mathematical model formulated to describe macroautophagy related processes in time. Both 

approaches will be adopted and explored in Chapters 2-4, and 5-6, respectively. 
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1.2 Protein-protein interaction networks 

 

1.2.1 Protein-protein interactions 

 

Protein-protein interactions (PPIs) represent a key mechanism whereby proteins exert their 

functions. They can indicate the functional connection among genes and proteins, leading to the 

formation of hypotheses regarding the function of newly discovered proteins, new functions of 

proteins, and of the overall common processes and functions in which a group of various proteins 

are involved (holistic view/approach) [83].  

Protein-protein interactions are useful to conceptualize the function of the proteins of interest. The 

“guilt by association” principle, in this context, supports the idea that interacting proteins are more 

likely to belong to the same pathway, and thus to have similar functions [84]. A paradigm that 

demonstrates the power of applying this principle is the accuracy of prediction of characteristics of 

novel proteins of S. cerevisiae. The development of an algorithm to create a multiple layer network 

was centred on the proteins of interest and their interacting proteins [85]. In this way, it was 

possible to predict the cellular role and localization of the proteins of interest with high accuracy, 

as well as their biochemical function. Therefore, by studying PPINs we can assert the function of a 

new protein, as well as illuminating additional functions of a previously studied protein. 

Furthermore, understanding the dynamic connections between different proteins is particularly 

valuable when trying to intervene and manipulate the identified mechanism of a disease. For 

example, if it is known that a specific protein-protein interaction (along with its supported function) 

is lost in a disease, then it can be targeted to prevent or at least decelerate disease progression.  

Moreover, PPIs can be used to analyse communal disease pathways when dealing with complex 

disorders with unidentified mechanisms, where many different genes are responsible for the 

manifestation of the same clinical phenotype. The analysis of the genes’ interactomes (with 

particular interest in their overlaps and commonalities) might help in detecting shared functions 

responsible for univocal disease mechanisms. So, systems biology and more specifically protein-

protein interaction networks provide a valuable tool to study complex processes and their 

relationship with diseases, such as the association of macroautophagy and neurodegeneration that 

is studied in Chapters 4-6 of this Thesis. 

The interactome of a protein provides us with useful knowledge, however the conclusions from 

such an in silico analysis should be further scrutinized and always requires direct functional 
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validation. This is because, for instance, some interactions might not actually occur in the human 

body, due to differences in the tissue, space, time, and level of expression of each protein [86].  

 

1.2.2 PPI databases 

 

The first database of PPIs, the Database of Interacting Proteins (DIP) [87], was created in 1999. 

Since then, many more have been developed, due to the usefulness of information extracted from 

PPIs. The great variation among PPI databases highlights the importance of understanding their 

different types before selecting the database that fits with the type of desired data and the goal of 

each study. The main categories of PPI databases are primary and secondary. Briefly, primary 

databases store PPI data exclusively from peer-reviewed publications, while secondary databases 

collect and analyse data from primary ones [88].  

 

1.2.2.1 Primary databases 

Most primary databases include information regarding the identity of the interacting proteins, the 

detection method, and some experimental details, however they vary in many aspects of the 

process of collecting the data (i.e., curation). A characteristic of primary databases is whether they 

contain all the interactions discovered in a paper (i.e., archival database) (e.g., IntAct [89]), or only 

the interactions that are related to a specific subject (i.e., thematic database), such as immunology 

(e.g., InnateDB [90]). The depth of the curation can also vary, with the main resulting categories 

being: rapid-level curations, Minimum Information required to report a Molecular Interaction 

Experiment (MIMIx)-level curations [91], and International Molecular Exchange (IMEx)-level [52, 

92] curations, with the latter having the most detailed information, as all the available details are 

recorded. 

Another characteristic of a primary database is the data extraction process. Some databases use 

data that are manually curated from peer-reviewed papers that support the interactions, such as 

IntAct, Molecular INTeraction database (MINT) [89] and Biological General Repository for 

Interaction Datasets (BioGrid) [93]. Manual curation refers to the process of manual acquisition of 

data concerning interactions from trained experts [88]. These databases are reliable for their 

accuracy [88] but they require large efforts to be maintained, and the curation process is slow and 

expensive. In addition, manual curation is prone to inconsistencies, as not all databases have 

identical curating guidelines [94]. In order to resolve this issue, the IMEx consortium [52] (which 

will be discussed in more detail in Section 1.2.2.3) was formed with the aim of setting guidelines to 
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the manual curation process, in order to gain consistency among databases and to reduce the 

instances where one publication was curated more than once. Nonetheless, manually curated 

databases are usually more trusted by the scientific community due to the expertise and valuable 

intuition of the curators. 

Other primary databases collect information on PPIs using automated methods or use algorithms 

allowing predictions. Automated methods use in silico models that scan the literature, i.e., text 

mining (e.g., PESCADOR [95] and iHOP [96]). On the other hand, databases that predict interactions 

between proteins, can use a variety of information -such as their localization, expression, and 

interactions of orthologous proteins- to evaluate the possibility of each interaction. Predictive 

databases can combine information of manually curated primary databases with predicted results, 

like Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) [97], in order to increase 

their coverage.  

 

1.2.2.2 Secondary databases 

A PPI database is secondary when the sources of information are primary databases. Some 

examples are MIST (Molecular Interaction Search Tool) [98] and HIPPIE (Human Integrated Protein-

Protein Interaction rEference) [99]. The range and quantity of information provided from this type 

of databases is usually higher than those of primary databases, as they tend to combine data from 

multiple primary databases, however the confidence in the results is more limited. 

Some problems arise from the initial step of selecting the original data that will be processed. For 

example, the selection criteria of the primary databases or other sources used are often not fully 

transparent to the user. In addition, users might be unable to select which primary databases they 

want to include. These issues hinder the flexibility that is required to select data that correlate with 

the goal of each study. Furthermore, data from primary databases are usually stored in secondary 

databases. Thus, the users might be unable to incorporate the latest research findings into their 

analysis, limiting the rate of progress in the field. Moreover, in order to present the data in a 

homogeneous way, each secondary database decides the format of the final merge. This process 

leads to data loss, when data from primary sources is not in a format enabling the merging. Finally, 

the rules of merging might be unclear, removing the ability of the users to identify how the data 

were collected, and thus if the data are suitable for the goal of their project.  
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1.2.2.3 IMEx consortium and MITAB 

There are more than 100 PPI-related databases. As each database uses a different way to collect 

and annotate PPIs, the user faces great difficulty in processing each data set and combining them 

for a greater coverage. This highlighted the need for curating methods to be optimized and 

standardized, which required a partnership among public interaction data providers. 

The first step was to agree on the same format of curations. These guidelines were put into place in 

the early 2000s when protein interaction data providers developed a common file format, the 

Human Proteome Organization Proteomics Standards Initiative-Molecular Interaction eXtensible 

Markup Language (HUPO-PSI-MI XML) format, which was later supplemented by Molecular 

Interaction Tabular (MITAB), a simplified tabular format [100, 101]. Additionally, controlled 

vocabularies for the description of interactions were agreed to be used to increase accuracy and 

consistency of PPI entries in databases. This standardisation of data representation in proteinomics 

aimed to enable the validation, exchange and comparison of data across databases [101]. 

The next step was to limit redundancies by adopting a single curation strategy. In late 2005, some 

molecular interaction databases (e.g., IntAct, MINT, DIP) decided to co-ordinate their strategies, 

creating the International Molecular Exchange (IMEx) consortium [52, 92]. Some databases are full 

members, and others are observer members, meaning that they collaborate with the full members 

but have not yet fully committed to annotating interactions in accordance with the IMEx 

guidelines. Presently (as of 13th June 2022), the full members are DIP, IntAct, MINT, I2D, MatrixDB, 

UniProt group, InnateDB, Swiss-Prot group SIB, and UCL-BHF UCL London, EMBL-EBI and the 

observers are BioGrid and PrimesDB. All members work towards reducing the instances where 

more than one group of people curate the same publication, and also towards increasing the total 

number of publications curated and the quality and consistency of the curation. Initially, each 

journal was allocated to a single database. Although this is realised, sometimes databases curate 

additional journals. For this purpose, IMEx Central was implemented to allow databases to request 

publications in journals that are not allocated to other databases. Consequently, each publication 

has a unique IMEx accession number and is curated only once. Furthermore, it is interesting that 

IMEx allows the request of the input of an interaction by users, e.g., if the interaction is well-known 

in their field but absent from databases [52, 92]. 

 

1.2.2.4 PSICQUIC 

PSI Common Query Interface (PSICQUIC) is a standard interface that was developed to ease and 

provide flexibility in the use of multiple primary databases and was established in 2011. PSICQUIC 
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allows direct computational access to multiple molecular interaction data resources that comply 

with the PSI-MI directives and potentially the IMEx manuals. It allows the users to access the 

primary databases of interest without having to replicate the query in each single database. The 

query must follow the molecular interaction query language (MIQL) and can be more complicated 

than the protein name, e.g., complex construct [102]. 

PSICQUIC also offers open-source client libraries and a code to facilitate the access to its registry 

and services via programming. Moreover, its collaboration with the IMEx consortium is evident, as 

it provides the option to search the query in the IMEx databases, allowing for uniqueness of the 

resulting interactions [102]. However, users must be cautious, as the results might be a mixed set 

of interactions, varying from experimentally proven direct interactions to predicted interactions. 

 

1.2.3 Creating and analysing PPINs 

 

1.2.3.1 Overview of PPINs 

The most common way to visualise protein interactions is via networks. Networks are graphs in 

which proteins are represented as nodes and their interactions as edges [88]. Edges connect only 

two nodes and they can be directed, undirected or bidirectional. While the direction in the edges 

may be important for other types of networks, such as transcriptional regulatory networks, edges 

are undirected in protein-protein interaction networks (PPINs), as no flow of information is 

represented in these graphs. Edges can have scores, named edge weights, with highest weights 

usually representing higher confidence for the true nature of the interaction. A case where such an 

annotation could be beneficial is the existence of different types of data in a network. Direct 

experimental evidence suggesting the existence of a protein-protein interaction can have a higher 

edge weight, than of an interaction inferred from interactions of homologous proteins in a 

different species.  

There are two types of network-based approaches: top-down or bottom-up. In the former, the 

creation of a larger unbiased network is followed by the mapping of genes of interest in the 

network. In contrast, the network in bottom-up approaches is build based on the genes of interest, 

which creates a more focused but also potentially more biased view of the disease [103].  

The complexity of the network can vary depending on the aim of the analysis. If the interest is in 

the direct connections within a specific group of proteins, then the network consists of just the 

proteins of interest and their relationships and is called layer 0. In the 1st layer, direct interactors of 
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the group of interest are also included. Finally, in the 2nd layer of a network the direct interactors of 

the direct interactors of the proteins of interest are also included. Therefore, in the 2nd layer 

networks two proteins of interest can be linked directly, or through one, two or three interactors.  

In PPINs it is in some cases essential to identify important nodes. There are multiple ways to 

estimate the significance of a node in a network, which are named centralities. The selection of a 

centrality by the researcher is dependent on the aim of each study.  

Degree centrality is based on the degree of a node, which is the number of nodes to which a node 

connects. This is indicative of the level of connectivity within the network and the speed of the 

transfer of any signal from one side of the network to another in the case of directed graphs. 

Plotting the degree of a PPIN’s nodes to show the degree distribution, can highlight if there are any 

nodes that interact with a lot of nodes of the graph and thus could play a vital role in the system 

that is being studied.  

It is important to note here that in biological networks the degree distribution is usually different 

than in a randomly generated network. Biological networks tend to follow a power law distribution 

instead of a binomial distribution (Fig 1-2) because a few nodes connect with a lot more nodes 

acting as hubs. Such networks that follow a power law distribution are termed scale-free networks 

and they usually have a shortest distance between any two nodes (named shortest path). The 

shortest path is an indicator of how quickly information can be pass from one element of the 

system to the other, highlighting that biological networks are usually efficient in that aspect.  

In other networks, the connectivity of a node to a group of nodes with a specific characteristic can 

be of higher significance compared to the node degree. For instance, if the network is constructed 

based on disease genes it can be more intuitive to find if a node interacts with a lot of disease 

proteins, then with other proteins not associated with the disease of interest. This is the basis for 

the concept of inter-interactome hub degree, which demonstrates the degree of each node to a 

specific subgroup of components of the graph [104].  

Another type of measurement for the importance of a node is closeness centrality. This 

measurement is estimated based on the shortest path between two nodes (termed geodesic 

distance). A node with high closeness centrality is a few steps (i.e., nodes) away from all the other 

nodes in the graph, not just those with which it directly interacts.  
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Figure 1-2. Degree distribution in random and biological networks 

(A) The degree distribution in random networks usually follows a binomial distribution. (B) In biological 

systems the degree distribution within protein-protein interaction networks usually follows a power 

law distribution. 

 

Additional centralities include, betweenness centrality and eigenvector centrality. Betweenness 

centrality defines a node as important based on the number of times a node is part of the shortest 

path between all other pairs of nodes in the graph. Eigenvector centrality is a measure of the 

centralities of a node’s neighbours, and it equates to their sum. A node could have a high 

eigenvector centrality because it connects to multiple nodes with a medium/low level of 

centralities, or it connects fewer nodes with high centralities. Nodes with high eigenvector 

centrality have a higher influence over the whole network, so it can be useful for them to be 

identified [105]. 

A variety of software packages and plugins has been developed to offer user-friendly visualization 

strategies and analysis tools, providing an insight into the biology behind the interactions. Through 

those, several attributes can be encoded within the network by altering different visualisation 

parameters, such as the confidence of the interaction that can change the width of each edge. This 

flexibility allows visualisation of much information in each network and complex data analysis. 

Some examples are Cytoscape [106], NAViGaTOR [107], and packages from Bioconductor [54] and 

R [108]. Cytoscape is amongst the most widely-used, due to being open-source, having modular 

design and offering flexibility and extensibility. It allows the loading of multiple PSI-MI and txt files, 
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which it visualises into a network, while offering the ability to annotate and analyse the network 

further through a vast number of available plugins [88, 106]. 

 

1.2.3.2 Graph theory 

Graph theory relates to the properties of graphs, such as the connectivity of its components. It 

theorises abstract ideas and methods, which can be utilised for the visualisation and analysis of 

networks.  

Graph theory was developed as a branch of mathematics devoted in the study of social networks 

but it is widely applied in the analysis of PPIs [109]. Its history originates from Leonard Euler in the 

18th century, who was attempting to solve a puzzle regarding a river in his city, Königsberg, Prussia. 

The river was going through the city and could be crossed through seven bridges. The question he 

posed to himself was whether he could cross each bridge just once. His background in mathematics 

allowed him to solve the puzzle and additionally to develop the theoretical framework to calculate 

when a unique route exists, which became the foundation of graph theory. 

Biological networks that can be studied with graph theory are PPINs, metabolomic networks, 

genetic interactions, gene/transcriptional regulatory networks, and cell signalling networks. In this 

Thesis, the focus will be on PPINs, whose information is located mainly on their topology and the 

connectivity of the nodes. It is important to note that, at variance with other types of networks, 

PPINs are incomplete, due to the large number of as yet undetected and uncharacterised PPIs. In 

fact, they are based on the knowledge within published papers, which is biased towards 

genes/proteins that are more widely studied (i.e., ascertainment bias). Consequently, if a 

gene/protein is not represented in a PPIN it may either be because it is genuinely not relevant for 

that network, or because the linking interaction has not been discovered yet. Consequently, not all 

graph theory principles/definitions apply to PPIN analysis. 

 

1.2.3.3 Annotations and analysis of PPINs  

It is useful for the user to have the option to include annotations regarding the edges and nodes 

within the network of interest. The annotations of edges can show information relating to for 

instance their detection method, associated parameters, and confidence scores. These can be 

sourced from each used PPI entry and can be helpful for either highlighting the important 

interactions or contrary for filtering out the less significant ones. The annotations of nodes can 

inform, for instance the protein or gene identifier, expression levels, subcellular localization, and 
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molecular function. There is a multiplicity of databases providing such information, but the most 

broadly used is the database of the Gene Ontology (GO) project [88], which holds information 

regarding functions of gene products.  

1.2.3.3.1 Gene Ontology project 

The GO project was initiated in 1998 as a collaboration between FlyBase, Saccharomyces Genome 

Database and Mouse Genome Informatics project [110]. Since then, it has grown to include more 

databases. One of its central aims is to provide a consistent description of gene products. The 

vocabularies used, called ontologies, are very restricted to specific GO terms, in order to increase 

the accuracy and consistency of curation. The ontologies are hierarchically organized and cover 

three biological domains: (i) Cellular Component (i.e., subcellular localization), (ii) Biological Process 

(i.e., biological goal of a protein’s function), and (iii) Molecular Function (i.e., protein activity) [110]. 

Using data from the GO project in PPIN analyses enables the functional interpretation of the 

produced network and the informative grouping/clustering of proteins [88]. 

1.2.3.3.2 Functional annotations 

As previously discussed, PPIs are useful as they can provide clues regarding the cellular function of 

a protein, based on the “guilt-by-association” principle [84]. Therefore, it is essential to understand 

as much as possible about the function of the proteins of the network in order to gain mechanistic 

insight into the system being studied. Different databases might classify proteins in different 

functional categories but the Biological Process domain of the GO project is one of the most widely 

used for this purpose [88]. Such an annotation of functions to genes/proteins is called functional 

annotation.  

Functional annotation is more informative for the specific set of proteins of interest when it is 

based on enrichment, which is a statistical assessment. A GO term is enriched when it is more 

frequent in the sample set in comparison with the reference set, which is usually the annotated 

human genome [111]. The enrichment based on functional annotations (i.e., GO terms for 

Biological Processes) is called functional enrichment but it can also be based on other information, 

such as the involvement of a protein in a pathway, in which case it is called pathway enrichment. 

Functional enrichment suggests functional specificity and -taken together with the rest of the 

enriched terms- can provide valuable indications regarding the mechanism of the system that is 

being studied. 

Numerous tools are available for this type of analysis. Some examples are g:Profiler [112], Gene 

Ontology (which works through PANTHER [113]) and WebGestalt [114]. Their main differences lie 

in the specificities of the algorithms and statistical analyses [111]. For higher confidence in the 
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results from such an analysis, it is recommended to use multiple tools and their most recent portal 

[115]. 

 

1.2.4 Future trends  

Network analysis can be utilised to face the recent challenge of handling large amounts of data 

through its combination with machine learning techniques [116]. There are multiple explanations 

as to what machine learning is but briefly it refers to a computational approach that recognises 

patterns with increased accuracy [117]. Such methods can facilitate multiple aspects of biological 

research. Examples include the identification of DNA patterns and binding sites of transcriptional 

factors in large data sets, the analysis of networks to identify groups of components based on 

topological connections or similarities in features [118], and the dimensionality reduction after 

enrichment analysis [103]. 

 

1.2.5 Limitations of protein-protein interaction network analysis 

 

The use of PPIs for the analysis of a biological process has some intrinsic drawbacks. Firstly, the 

human PPI data is still incomplete for most -if not all- proteins. Additionally, the number of 

detected interactors of each protein is biased, as some proteins are studied more intensively than 

others (i.e., ascertainment bias). So, these proteins might falsely appear more important for a 

specific process or to be involved in more processes than others. Furthermore, most of the 

interactions have been detected in a variety of conditions, cell lines and tissues, which, when not 

specified in the PPI databases (which unfortunately is the norm), it fails to inform if a set of 

interactions occurs in the same tissue or cell type, or in the tissue or cell-type of interest, e.g., 

neurons. Moreover, a number of interactions are claimed to be detected, whereas the selected 

method detects only co-localization. Therefore, the results of PPI analyses should be interpreted 

with caution. 

An increasing amount of information about PPIs is being published in peer-reviewed literature and 

collected in various primary databases. However, the unsystematic collection of PPIs in such 

databases has created a considerable problem when the user aims to combine all the available 

data concerning a protein of interest. In this regard, the IMEx consortium [52] has aided 

considerably with a set of guidelines about what information and in what format should be stored 

in PPI databases. Unfortunately, not all databases abide by the IMEx instructions, hindering the 
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A. B. 

efforts to merge PPI data from different sources. Secondly, the information in the databases 

concerning a single interaction might not be complete and is often duplicated across databases, so 

it is difficult to merge information from different databases in a unique manner. The 

aforementioned issues create a technical challenge on the use of PPIs, since strategies have to be 

implemented for converting and merging data sourced from different primary databases. 

Additionally, a strong quality control must be applied for filtering all the annotations curated in 

such databases. 

 

 

 

There are freely available online tools for extracting PPIs from multiple databases. However, the 

users must carefully select which tool to use. PPIs from databases that use text mining and PPI 

prediction are prone to type II errors (i.e., false positive results), so the user must be cautious when 

interpreting results including such data. Secondly, the criteria for the quality control of the 

interactions, as well as the type of the data is regularly not clearly stated, hurdling the selection of 

the appropriate data for each study, e.g., curated data versus predicted data. Some of the most 

widespread used tools, like STRING [119] and GeneMania [120], together with providing a list of 

unique interactions also score the confidence of each interaction based on a list of criteria. 

 

Figure 1-3. Differences in the results of different PPI tools  

 

The protein-protein interaction networks of the product of SNCA as produced by two tools: GeneMania v3.6.0 (A) and STRING v10.5 

(B).  
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However, the criteria of confidence are often set and can not be modified by the user. In addition, 

the list of interactors of the same protein can vary in a great extent among them, in relation to the 

number and identity of interactors. An example is shown in Fig 1-3, where the interactome of SNCA 

is produced. The differences are noticeable even when the same type of data is selected (curated 

PPIs), as there were 17 and 10 proteins in the SNCA interactome produced by GeneMania [120] and 

STRING [119], respectively. Interestingly, only 23% of the total SNCA interactors showed an overlap 

between the two tools. These differences are incremented further when additional proteins are 

chosen as seeds for the networks. 

 

1.3 Mathematical modelling 

 

Models in biology vary substantially. A cell culture can be a model of cell growth. A Drosophila 

melanogaster strain with a specific mutation can be a model of a human disease. A phylogenetic 

tree can be a model of the evolution of a group of species. Even though these models are useful, 

they can be complemented by theoretical models, which can be used to study more conditions and 

experiments in a faster and cheaper manner, while not being limited by experimental setups. 

A mathematical model applied to a biological system is defined an “artificial construct in the 

language of mathematics that represents a process or phenomenon in biology” [5]. Such models 

can vary in their features. For instance, they can be small and simple or large and complicated, and 

mathematically elegant or detailed [5]. Irrespective of their types, mathematical models aim to 

produce knowledge about a system, predict and extrapolate data, and help researchers formulate 

new hypotheses and guide them to conduct future experiments. 

In systems biology, mathematical modelling is an approach that is frequently used to study 

complex biological systems. It aims at quantifying and predicting dynamic biological processes in 

order to decipher the regulatory concepts and to unravel the complexity of the system [121]. Their 

development is based on a combination of the current understanding of a specific system and of 

the intuitive understanding of biological systems. It is also based on mathematical theories and 

techniques and requires the creation of an abstract mathematical representation of the system of 

interest. Then, the model is solved, either analytically or computationally. By transforming 

experimental knowledge into a mathematical model, hypotheses can be tested in silico against 

previously acquired data and the general understanding of the system from the scientific 

community [122]. These in silico experimentations can lead to predictions, which are testable in 

the wet lab. 
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1.3.1 Main components of models  

 

1.3.1.1 Variables and Parameters 

Mathematical models comprise a number of different elements. An integral part of a model are the 

variables, which can represent single entities or groups of entities (e.g., proteins and complexes of 

proteins). Variables that depend on time are called dependent variables, whilst time is an 

independent variable. Variables can be interconnected through processes and interactions. 

Another essential part of the model is its set of parameters, which are constant values (i.e., 

independent of other variables in the model), such as the rates of a reaction.  

 

1.3.1.2 Ordinary Differential Equations and Law of Mass Action 

Ordinary Differential Equations, or else ODEs, are mathematical equations used to describe and 

predict the variation of variables in time (more details can be found in A1 of Appendix A).  

The Law of Mass Action [123, 124] states that the rate of a reaction is proportional to the product 

of the concentrations of the substrates, and the ODEs for a simple reaction in the form of:  

𝑋
𝑘1
→ 𝑌 

with k1, the rate constant that expresses the speed with which X is being converted to Y, 

are the following:  

𝑑𝑌

𝑑𝑡
= 𝑘1𝑋, 𝑎𝑛𝑑 

𝑑𝛸

𝑑𝑡
= −𝑘1𝑋 

These equations can be solved analytically to give: 

𝑋(𝑡) = 𝑋0𝑒
−𝑘1𝑡, and 𝑌(𝑡) = (1 − 𝑒𝑘1𝑡) 𝑋0, 

with e representing the exponential function.  

Ιn biology not all enzymatic reactions are that simple to only have one substrate and one product. 

More information on such cases can be found in A2 Section of Appendix A.  

In this Thesis the Law of Mass Action will be used to formulate a system of ODEs to model a set of 

reactions.  

 



1. Introduction 

43 
 

1.3.2 The mathematical modelling process 

 

The first main step of mathematical modelling is to identify the scientific question the model will 

attempt to answer, which will help in making any assumptions. According to the goal of the model, 

a list of the main components of the system and an abstract representation of it can be drawn. In 

this step, the availability of data regarding the process and entities of the model needs to be 

assessed. Then, based on both the aim of the model and the quantity and quality of available data, 

the type of model is selected and drafted. Mathematics is then applied to formulate a 

mathematical model which can then be solved either analytically or computationally. Dependent 

upon models and how will they compare with known knowledge, further revisions of the model 

may be required. The final version of the model can be analysed to test hypotheses and can lead to 

the formation of new hypotheses, eliciting new understanding and providing guidance for future 

experiments [5]. In this section the steps in formulating, informing a model with data 

(parameterising), solving, testing and revising it are outlined. 

 

1.3.2.1 Identifying the purpose of the model & its details 

The first step of modelling is deciding the purpose of the model and its potential applications, for 

both of which simplicity and accuracy are key elements. These features help in identifying the 

central elements in the context of the questions(s) being asked about the system, which the 

modelling will attempt to answer [5]. For instance, the inclusion of time or space in the model can 

be necessary depending on the scientific question, but can also increase the complexity of the 

model and limit its potential. Thus, a precise question to be answered via the model and critical 

appraisal of what components are vital for the model are both necessary. 

The data collection step is also crucial. The more data, knowledge, and expertise is utilised for the 

formulation of the model and its assumptions, the more accurate and robust will be the resulting 

model predictions. However, some data may not be available, or of good enough quality. If the 

missing/low quality data were essential for the model, further adaptations in the modelling 

approach might be required. 

 

1.3.2.2 Selecting the type of model & designing the model 

The type of modelling approach to be applied depends on a multitude of features. Whether time is 

included in the model affects if the model is static or dynamic. A static model can analyse how two 

variables affect each other, or how components in a large network are connected excluding any 
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variations in time. On the other hand, dynamic mathematical models have the ability to describe 

how the system changes with time. Space is another factor that can be included in the modelling 

process. A model that does not take space into account, is spatially homogeneous, otherwise, it is 

spatially heterogeneous (for instance a model describing the diffusion of a protein in a cell in both 

space and time). Lastly, a model can be either open or closed. The former is true when a system 

receives an external stimulus or has an output, whereas in the latter such external components are 

absent. 

After deciding the type of the modelling approach that is going to be applied, the entities of the 

model need to be identified, together with any variables, parameters, and relationships, which can 

affect the model. The values of the variables and parameters (e.g., rates of reactions and 

concentrations of proteins) are informative of the properties of the system, so it is essential to 

obtain them from the literature in the form of data and knowledge or by performing new 

experiments. The relationships of the entities included in the model can be expressed with simple 

reactions, based on which the equations (ODEs) describing the system attributes varying in time 

and/or space and their respective concentrations can be formulated in the next step, using the Law 

of Mass Action.  

 

1.3.2.3 Solving and testing the model 

In the case of dynamic models, the next step is to solve the ODEs of a model and then to study how 

the variables vary with time. There are two classes of methods for solving a model: analytical 

solutions that provide explicit solutions and can be calculated with pen and paper, or computer 

simulations. Since mathematical models are described with equations, it could be expected that an 

analytical solution is always possible, and lead to the questioning of why a computational solution 

is needed. A paradigm demonstrating this necessity is located in A3 Section of Appendix A.  

As discussed before, ODEs can be formulated using the law of Mass Action, which requires the 

estimation of kinetic parameters based on quantitative data [125]. A computational solution to the 

Mass Action ODEs can be obtained with a variety of software, such as tools from MATLAB. 

Biological mathematical models using such software, have been developed for signalling pathways, 

such as MAPK [126] and NF-κB [127], providing valuable new insights. In the former, modelling 

highlighted the cell-autonomous effect of the spatial profile of calcium signalling in the activation 

of MAPK in epidermis, while in the latter, evidence was produced to support that a regulatory 

protein named β-TrCP could regulate the transcriptional activity of NF-κB. 
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Analysing a model is conducted in two ways. Prior to any detailed mathematical analysis, it is 

informative to solve the model computationally and detect any evident mistakes and drawbacks by 

comparing the results to either data sourced from the specific or similar system, and/or to the 

general understanding of the system based on its biology (i.e., external consistency). An example is 

to test if any concentration values are negative or change beyond an expected range. In addition, 

the internal consistency of the model can be investigated, which can demonstrate if the 

components of the model follow the assumptions of the model. If loss of mass is not accounted for 

in the model, then there should be a mass conservation throughout the experiment. The timing of 

relative changes of components also needs to make sense biologically, based on the order of 

events. If there is a serial activation of A, B and C, then the quantity of activated B should precede 

that of C. Following any adaptations and improvements prompted by model testing, further 

analyses can be undertaken.  

 

1.3.2.4 Revising/Improving the model and interpreting the model 

Based on the findings of the previous step, the model might need to be adjusted or reformulated. 

Understanding the causes of any failures of the model, will be helpful in resolving them. If the 

results, for instance, fail to align with knowledge and data of the system being modelled, revising 

the parametrisation might be insightful. If unsuccessful, then the focus might need to be redirected 

back to the model assumptions and to the understanding of the system.  

If on the other hand, there is no need for further revising, then the model can be explored. Part of 

the process of exploring a model is studying whether the system reaches a steady state. A steady 

state is a condition in a system in which the system concentrations do not vary in time. In this state, 

the system can be dynamic but a balance has been achieved, which is common for biological 

systems. In order to find steady states, the simulation is performed, and the model variables are 

examined for reaching a constant value in time. 

Sensitivity analysis can also be used to further explore a model. It aims to simulate how a chosen 

model output may change with respect to parameter variation. Typically, a high sensitivity of a 

mathematical model is indicative of a mistake, however in biology and especially in signalling 

pathways, it can be common [5]. There are two main types of sensitivity analyses: global and local. 

In global sensitivity analysis all parameters are varied with respect to one another simultaneously, 

while in local sensitivity analysis one parameter is varied at a time, whilst all others are held in their 

initial value. The effect of parameter variation is then measured by any changes in the steady state 
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value of a specific entity or in other features, such as amplitudes at a certain time point, or variable 

trajectories. [128]  

Following exploration, validation can be performed by simulating scenarios that have not been 

used in the design of the model. The results of the simulations can be checked against the existing 

intuition about the process before any new hypothesis is formed. It is important to note here that 

one common misconception about validating against numeric data is that the closer the prediction 

to the data, the better it is, which is not always true, as overfitting a model can decrease its ability 

to produce new knowledge. However, validation is not always the best practise. In the cases in 

which there is a lot of available data about the system, it can be valuable to evaluate the model 

using data that has not been used for the building of the model, otherwise it might be more 

beneficial to use these data for the formation of the model. 

The final model can be used to understand the system, answer questions about it, and test 

hypotheses or inform the creation of new hypotheses. If there is a lack of or limited new valuable 

results, then the model can be altered or extended to answer related questions. Furthermore, 

refinements of a model might be beneficial to increase the quality of the model and thus the 

competence and significance of its predictions and/or extrapolations. It is notable, however, that 

the quality and usefulness of a model is not proportional to its complexity. In contrast, simple 

models are sometimes easier to use and adapt to slightly different conditions, allowing the 

exploration of a wider variety of scientific questions. Of course, for the model to have any 

predictive power a certain level of complexity is necessary. Therefore, a balance between simplicity 

and complexity of a model is ideal and that balance is unique to the specific aim of each model. [5] 

 

1.3.3 Advantages and applications in biology  

 

Mathematical modelling approaches present multiple advantages. There is a lack of limitations 

based on experimental feasibility. For example, in a wet lab experiment, a specific cell line and 

reagent might be required, whereas any system could theoretically be modelled, as long as there is 

enough computer memory and processing capacity. In addition, wet lab reagents can be costly, and 

projects may require years of work. However, the expense of mathematical modelling is limited to 

the price of the computer setup and software. Furthermore, after a model has been developed 

thousands of simulations can be performed in a short period of time. Due to these advantages, 

mathematical models can be used for a proactive screening of future experiments, in order to 

prioritise and/or optimise them. Interestingly, modelling is an integral part of drug development in 
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pharmaceutical companies in both preclinical and clinical stage. For example, pharmacokinetic and 

pharmacodynamic modelling can be performed prior to phase I clinical trials, in which the safety of 

a drug is assessed together with its pharmacokinetic profile in humans [129]. The increased 

appreciation for such applications of mathematical modelling is also evident in the formation of 

related networks, such as the UK Quantitative Systems Pharmacology Network in which there is a 

collaboration between academia and companies from the pharmaceutical industry [130].  

The usefulness of mathematical models can also be demonstrated by their wide use in the study of 

human diseases. One example is the study of an animal model of rheumatoid arthritis [131]. The 

model was developed based on rats, aiming to study the progression of the disease and to simulate 

the effects of the corticosteroid dexamethasone. It included components in different levels of 

biological systems: corticosteroid dynamics and inter-regulatory effects of tumour necrosis factor 

(TNF)-α and Interleukin 1β, up to the level of the organism with the inclusion of disease endpoints, 

such as paw edema and bone density. The same model was later used to simulate the effect of a 

proposed treatment for rheumatoid arthritis, dexamethasone, which suggested that the potential 

mechanism of action of the drug was through the inhibition of interleukins 6 and 1β and that lower 

dosage might be sufficient [132]. Such insights gained through mathematical modelling regarding 

effective dosage and the mechanism of action of a drug are valuable and can be applied to the 

design of preclinical as well as clinical trials.  

 

1.3.4 Limitations of mathematical modelling 

 

Even though mathematical modelling can be insightful, there are limitations in this approach. 

Parametrisation is one of the most time-consuming steps in the process of building a mathematical 

model. The level of difficulty of obtaining parameter values can vary substantially, as they can be 

available in the literature, or required to be estimated from published data, or little data can be 

available and instead there is some intuition on the system, or finally having no data at all. Usually, 

most mathematical models are on average somewhere in a medium level of difficulty, which is not 

necessarily bad, because the ultimate goal of the model is to create new insights, which would 

have been more difficult if all the parameters and relationships were already studied and known.  

Specifically for the concentrations of the entities of the model, they can be difficult to be collected. 

This is not only because the precise system that is being modelled might not have been studied in 

enough detail yet but also because there might be technical difficulties in calculating them. For 

instance, it is technically challenging to measure the exact local concentration of a variety of 
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components in the specific subcellular localisation of interest, especially when that location is a 

small region of the cytoplasm that is not encapsulated or divided from other regions in a way that 

makes it possible to separate them from others. This has resulted in some models avoiding using 

precise concentrations, but relative quantities instead, and their units to be shown as 

“dimensionless”, or “item”, or simply as “units”. 

In addition, some relationships in systems can also be unknown. Understudied processes and 

biological entities if included in models can limit the ability of obtaining precise values of rates of 

reactions and concentrations required for modelling. Fortunately, the amount of biological data 

collected from the scientific community is increasing daily, similarly to the number and level of 

organisation of databases that store related data.  

Caution is also required in the interpretation of results acquired from mathematical models. A 

model’s abilities are restricted by the formulated assumptions and the purpose of the model. 

Furthermore, the model needs to be rigorously explored mathematically and biologically before 

using it to make predictions and extrapolations. Therefore, modelling can be hindered by its 

requirement of obtaining insight from multiple scientific fields. However, forming and maintaining 

intradisciplinary collaborations has become easier in the last decades with the further development 

of technology and expansion of professional networks. 

Creating more powerful mathematical models that predict more accurately the behaviour of 

proteins of a system is a future aim of the field but requires an abundance of qualitative and 

quantitative data about the system. The more frequent and widespread use of omics experiments 

could assist towards this goal, thus offering valuable information to the scientific community. 

Therefore, the pipelines of model analysis and exploration ought to be developed to accommodate 

for higher complexity without limiting the predicting power or deviating from the scope of the 

model. Challenging aspects of such multiscale models include the integration of the effect of the 

environment in the system, of different timescales, and merging of features of the model with 

different modalities, such as deterministic and stochastic parameters. [5] 
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1.4 Neurodegenerative diseases 

 

1.4.1 Introduction  

 

One of the most complicated human organs is the brain, with over 80 billion neurons and a similar 

number of non-neuronal cells [133]. In each cell the biological processes are regulated by 

approximately 20,000 genes [18, 134]. The complexity of its processes is beyond doubt and several 

of their aspects remain elusive. For instance, the brain manages to control our every move and 

store information in a way that is still not understood.  

Unfortunately, problems with the function of the brain and nervous system can lead to a variety of 

symptoms, such as blindness and slow and slurred speech. Despite significant progress in the 

understanding of the nervous system in recent decades, some central challenges remain, such as 

the disease mechanism of neurodegenerative diseases. Neurodegenerative diseases, as the name 

suggests, are defined by the death of neurons, although recent research has revealed important 

contributions from a variety of cell types in the brain to the disease process [135]. In these 

complicated diseases, functions of the brain decline in a progressive manner, lowering of the 

quality of life of people with neurodegenerative diseases, also affecting their family and carers. 

These diseases are more frequent in more senior people, so they affect a percentage of the 

population, which is growing together with today’s aging population, highlighting the importance 

of deciphering the disease mechanism(s) [136].  

Although there is an enormous effort from scientists all around the globe to uncover the 

mechanism of neurodegenerative diseases (over 25,700 related publications have been released in 

2021, as retrieved from PubMed on 9th May 2022), there are still very limited disease modifying 

treatments available for a variety of reasons. One of the contributing factors is the delay of 

detection from the disease onset. For example, the onset can be decades prior to the diagnosis of a 

person with Alzheimer’s disease [137]. The mechanistic complexity of these diseases is also 

impeding their deciphering, as a variety of genetic and environmental factors have been implicated 

throughout the years. In addition, the heterogeneity of the clinical picture is large. One disease is 

not always clearly separate from another. Patients can present a combination of clinical symptoms 

that belong in two diseases, thus leading to viewing of some groups of diseases in a form of 

spectra, analogous to the schizoaffective spectrum [138].  
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1.4.2 Biological Models 

 

Neurodegenerative diseases have been studied using a variety of approaches, with significant 

advances deriving from studies of genomics [139]. Variants have been identified to be causative for 

the development of neurodegenerative diseases or increase the risk of disease development. The 

mode of inheritance of such variants has been discovered to be autosomal, X-linked or 

mitochondrial, depending on whether they are located in autosomes (i.e., body chromosomes) 

allosomes (i.e., sex chromosomes), or mitochondrial DNA. Their identification has been accelerated 

the last decade with the development of technologies that allow high quality sequencing of DNA. 

Together with the existence of variants, changes in the proteome can also be indicative of 

alterations in the function of the nervous system. Comparison of protein levels between a group of 

people with a disease versus of a healthy group, can provide insight into the importance of certain 

genes and gene products in the development of a disease. Protein expression levels can be studied 

in a variety of models, such as isolated cells or brain tissues. An example of an approach that can be 

adopted for this purpose is the use of antibodies for either the semi-quantitative analysis after 

electrophoretic separation of extracts of proteins, or the quantitative analysis through ELISA 

(enzyme-linked immunosorbent assay). For proteins for which high quality antibodies have yet to 

be manufactured, mass spectrometry can be performed, for semi-quantitative and quantitative 

analysis based on the biophysical properties of cleaved peptides of the protein(s) of interest. Of 

note, changes in the gene expression level do not always coincide with the changes in the amount 

of its product, highlighting the complementarity of proteomic and genomic studies [22]. For 

instance, a protein might be very unstable, and even though more mRNA is being produced, it fails 

to lead to an equal increase of the protein level.  

In parallel to the level of expression of a protein, studying its function might be indicative of the 

disease mechanism. The function can either be directly measured, e.g., enzymatic assays, or 

hypothesised through its structure and a correlation with structures of other proteins whose 

functions are known. The comparison of the structure of a variant, with that of a wild-type protein, 

can indicate which domain and function could be pharmacologically altered in the former to 

obstruct the development of disease. 

The medium of study of protein function and level of expression can vary substantially from non-

human organisms to human organoids. Organisms that have been used in this field of study include 

Caenorhabditis elegans [140], Drosophila melanogaster [141], mouse [142], and rat [143]. Human 

cell cultures are another classic way to study human proteins in the wet-lab, including NT2 and SH-
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SY5Y, as well as neuronal cells derived from iPSCs (induced pluripotent stem cells) of people with a 

disease [144]. Advancements in cell culture methodologies include mixed cultures, which can have 

more than one cell type to study their interactions, as well as 3D cultures that can be produced 

with the help of polymerising material that creates a 3D matrix [145]. In addition, cerebral 

organoids, which are 3D formations that contain various neuronal cell types [146], are being used 

in neurodegeneration studies [147]. Tissue from brains can also be studied, with for example patch 

clamp electrophysiology, which -even though it is a challenging technique- it can inform about 

properties of neuronal cells or more generally of brain regions of people with a disease, compared 

with healthy people [148].  

Each model has its strengths and limitations. Some models are simpler, but further away from 

human neuronal cells and others closer to human neuronal cells but more complicated, making the 

extrapolation of conclusions more challenging. So, even though comparing data from multiple 

models and conditions can be challenging, it can be quite insightful. In this effort to collect, handle 

and analyse multiple types of data, systems biology and omics approaches can be a useful 

approach.  

 

1.4.3 Systems biology approaches for neurodegeneration  

 

Genes associated with the development of a neurodegenerative disease have mainly been studied 

individually in overexpression models, models with knock-in mutations, and knock-out/down 

models. The approach of studying in parallel multiple genes is rarely used but can be insightful. 

When LRRK2 was studied together with other familial Parkinson’s disease genes, it indicated 

commonalities in the molecular mechanism of disease [149-151]. However, these models are 

suboptimal for studying multiple genes simultaneously.  

Fortunately, systems biology can facilitate this endeavour of understanding neurodegenerative 

diseases. The two main systems biology approaches that will be used in this Thesis are protein-

protein interaction networks analysis and mathematical modelling.  

Network analysis has the ability to enhance the functional understanding of a disease and 

potentially its mechanism, based on genomics and proteinomics. A high number of different genes 

linked with a neurodegenerative disease might lead someone to conclude that a multitude of 

cellular functions and/or pathways are involved in the disease development. However, it can not be 

excluded that there are commonalities between the genes. A holistic view of the genetic factors of 
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a disease offered by their display in a disease network can assist in the identification of common 

pathways associated with the development of the disease [103, 152]. Even though this approach 

requires validation, it provides a resource- and cost-effective analysis to inform wet-lab 

experimental design [103]. 

Top-down network approaches have been used to study neurodegenerative diseases by a 

multitude of research groups. For instance, a study adopted this approach to functionally analyse 

Alzheimer’s disease and predict novel candidate disease genes [153]. A more systematic approach 

was used to develop a pipeline to identify and study disease modules in a project named DIAMOnD 

[154]. Alternatively, bottom-up approaches can also provide insight into neurodegeneration. 

Common and unique pathways were identified through enrichment of disease networks built 

based on familial frontotemporal dementia (FTD) and Parkinson’s disease (PD) genes [104, 155]. A 

similar network approach was used by a different group to study amyotrophic lateral sclerosis 

(ALS), which aimed at associating genetic mutations to altered protein interaction properties [156]. 

Prioritisation of genes associated with ALS have also been conducted using network approaches 

[157, 158]. 

Protein-protein interaction networks can be enriched with additional information. For instance, 

clinical data was incorporated in a research project for ataxia genes, which explored whether genes 

related to comorbidities were present in the disease network and if so, the manner through which 

they are interconnected [159]. Additionally, gene expression can enrich disease networks. In a 

study of FTD, groups of highly co-expressed genes were detected, and potential pathways 

associated with different brain regions were suggested [160]. Incorporating functional annotations 

to create a hybrid network, e.g., Gene Ontology and pathway annotations, can also be insightful 

and has been used to highlight potential mechanisms related to Parkinson’s disease [161]. 

Neurodegenerative diseases have also been studied through other systems biology approaches, 

such as mathematical modelling. Ouzounoglou et al created an in silico model focused on α-

synuclein and its effect on dopaminergic neurons to study the development of PD. Simulated α-

synuclein dynamics included overexpression and post translational modifications, but focused 

mainly on oligomerisation and degradation through the ubiquitin proteasome system, chaperone-

mediated autophagy and macroautophagy [162]. Interestingly, experimental data was used to first 

calibrate and then to validate the model.  

A similar project was used investigated by Kuznetsov et al who also aimed to study the onset of PD 

through modelling of the kinetics of the aggregation of α-synuclein [163]. Healthy neurons were 

simulated, and multiple processes were included in the model, such as production, misfolding, 
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aggregation, transport, and degradation of α-synuclein. Various factors that could lead to the 

aggregation of α-synuclein were studied. Interestingly, an increase in the production of α-synuclein 

was demonstrated to be incapable of leading to its accumulation. In contrast, the system was more 

sensitive to the efficacy of its degradation through the proteasome and autophagy. 

A larger scale modelling approach was adopted to study Alzheimer’s disease by Mizuno et al in 

2012. They developed AlzPathway, which is a pathway map that includes multiple signalling 

pathways related to the disease. It required the manual curation of over 100 review articles and 

included 1347 molecules and 1070 reactions in multiple cell regions and cell types [164]. This 

model has since been updated with additional molecules and reactions to include new published 

data [165].  

 

1.4.4 Hereditary spastic paraplegias 

 

The Hereditary Spastic Paraplegias (HSPs) are a group of neurodegenerative diseases that are 

clinically and genetically heterogeneous. They are characterised by progressive weakness and 

spasticity of the lower limbs [166] due to degeneration of the upper-motor neurons [167]. The 

initial symptoms include frequent falls, cramps, stiff legs and abnormal or unstable gait. Clinical 

features include bilateral spasticity, leg hypertonicity, positive Babinski sign, muscle weakness, 

hyperreflexia, bladder dysfunction, loss of vibratory sensation in the ankles and pes cavus. If they 

include additional symptoms, then the form of HSPs is no longer pure, but complicated. These 

symptoms could include cerebellar ataxia, seizures, cognitive or mental impairment, optical 

atrophy, and peripheral neuropathy [168] (Table 1-1).  

There are more than 70 genetic types of HSPs, which is reflected in the differences of their clinical 

phenotypes [169]. For instance, the age of onset can vary from early childhood to adulthood, the 

form of the disease can be pure or complicated, as discussed before, and all the modes of 

inheritance have been observed (Table 1-1). Examples of associated genes are SPAST (SPG4), 

mutations in which account for most autosomal dominant forms [170], and SPG11 that when 

mutated leads to most autosomal recessive cases [171]. This disease affects 0.2-9.6/100,000 

people, depending on the mode of inheritance and geographical area [172, 173]. However, only 

symptomatic treatment can be provided to the patients, as the underlying disease mechanism(s) 

are still unclear. 
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1.4.5 Parkinson’s disease 

 

1.4.5.1 Historical overview 

Parkinson’s disease (PD) is named after James Parkinson, who described its symptoms as a 

neurological disorder in 1817 [174]. Previous short descriptions of PD-like presentations (i.e., 

parkinsonism) can be found in numerous ancient texts from around the world [175]. Symptoms 

consistent with parkinsonism were also reported by Zihe Zhang in 1228 [176], Yikvi Sun in 1584 

[176] and Ferenc Papai Pariz in 1690 [177]. In 1899 Edouard Brissaud suggested that substantia 

nigra could be related to the disease [178], which was followed by descriptions of inclusions in that 

location by Frederick Lewy and Konstantin Tretiakoff [179, 180]. The link of PD with dopamine was 

described by Oleh Hornykiewicz [181], which led to L-dopa (i.e., levodopa) being identified as an 

anti-PD drug in 1961 [182]. Additional associated molecules were identified in the following years 

with parkinsonian effect, such as MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) [183, 184], 

or anti-parkinsonian effect, like bromocriptine and apomorphine [185, 186]. Other milestones in 

the history of PD include the identification of its first genetic cause, α-synuclein, in 1997 by 

Polymeropoulos [187], and the first double-blind clinical trial of a cell-based therapy in 2001 [188].  

 

Table 1-1. Sources of variation in the clinical phenotype of patients with HSPs 

Age of onset Early childhood – late adulthood 

Form Pure and complicated 

Modes of inheritance 
Autosomal recessive, autosomal dominant, X-linked, mitochondrial, 

and unknown 

Usual Symptoms 

Bilateral spasticity and weakness of the lower body, leg hypertonicity, 

positive Babinski sign, muscle weakness, hyperreflexia, bladder 

dysfunction, loss of vibration sensation in the ankles, and pes cavus 

Additional symptoms present 

in some complicated forms 

Cerebellar ataxia, seizures, cognitive or mental impairment, cataracts, 

retinal alteration, optical atrophy, peripheral neuropathy, dystonia, 

and parkinsonism 
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1.4.5.2 Clinical presentations  

The incidence of PD increases with age, with a mean age of onset at 60 years (late onset PD). 

However, in some rare occasions it can also manifest in younger people (under 40 years young), 

and in this case it is designated as young onset PD [189].  

Currently there is lack of diagnostic biomarkers for PD. Therefore, diagnosing PD is mainly based on 

the clinical presentation in each person. Detailed inclusion and exclusion criteria have been 

described to help with this assessment, such as the UK Parkinson’s disease Society Brain Bank 

criteria [190]. For instance, supportive criteria include unilateral onset and rest tremor present, 

while exclusion criteria include MPTP exposure. Patient history and their response to therapy can 

also be helpful in the diagnosis. 

The main motor symptoms of Parkinson’s disease are tremor, bradykinesia and rigidity [191]. 

Tremor is the first presenting symptom in most people, but it might be absent in others. This 

involuntary rhythmic oscillatory movement is more prominent when the person is distracted or at 

rest. The term bradykinesia comes from the greek words “βραδύς” and “κίνηση”, meaning slow 

and movement, respectively. Its existence is necessary for the positive diagnosis of PD. 

Bradykinesia might manifest in multiple ways, e.g., progressive decreasing of handwriting, and 

reduced range of facial expressions. Rigidity is expressed as an increase in the tone of the person’s 

muscles, leading their limbs to feel stiff, which can sometimes be accompanied by cramping. 

Additional motor symptoms can include poor balance and gait instability. Usually, people with PD 

make small steps, their feet can feel frozen to the floor, and there is limited movement of their 

arms. Typically, motor symptoms initially manifest unilaterally and then progress to the other side 

of the body, continuously in an asymmetric manner. [135] 

Even though PD is classically perceived as a motor disease, people with PD have a combination of 

motor and non-motor symptoms with both categories affecting the quality of people’s lives. 

Interestingly, non-motor symptoms can be present prior to motor symptoms and thus might be 

used in the future to predict the onset of PD. [192] Examples of non-motor symptoms are 

neuropsychiatric, autonomic, related to sleep, pain, and anosmia. Neuropsychiatric symptoms 

include depression, anxiety, and apathy, which can be present in the premotor stage of the disease, 

as well as cognitive decline and dementia, which tend to manifest in later stages. Dysfunction of 

the autonomic nervous system can lead to constipation, excessive sweating, erectile dysfunction, 

and increased saliva production [193]. People’s sleep can also be disturbed in the pre-motor stage 

of PD, for instance, through the disorder of the rapid eye movement (REM) stage of sleep [194]. 

Frequently, people with PD are affected by pain, for example in their neck and shoulders [195]. 
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Most people with PD also present anosmia (i.e., loss of smell) typically in the pre-motor stage 

[196].  

PD is a progressive neurodegenerative disease, meaning that most peoples will manifest a 

worsening of their symptoms over time. This is indicative of the increased cellular death that is 

occurring in a molecular level. 

 

1.4.5.3 Pathology  

Categorical diagnosis of PD relies upon post-mortem examination. This is due to the requirement of 

two pathological conditions: the loss of neurons in substantia nigra pars compacta, and the 

presence of Lewy bodies, which need to be confirmed with post-mortem neuropathological 

examination [190, 197, 198]. 

The substantia nigra pars compacta is an area in the basal ganglia that is particularly affected in 

people with PD. The basal ganglia are involved in multiple functions, such as initiation and timing of 

movement, action selection, decision making, planning and learning [199], but have also been 

linked to reward [200], drug addiction, memory, and psychopathology [201]. The substantia nigra is 

a dopaminergic nucleus of the basal ganglia, which is important for their function and thus is 

involved in the motor impairments caused by PD. This nucleus is producing dopamine, therefore its 

malfunction and consequent decrease of dopamine that is observed in PD [202, 203] can affect 

multiple dopamine-associated functions, such as movement control, and emotional limbic activity 

[204]. This brain region is visible with the naked eye in tissue sections, as the cell bodies of the 

dopaminergic neurons that it contains are pigmented with melanin. In contrast, it might not be 

visible in the brain of people with PD due to the death of dopaminergic neurons. It is noteworthy 

that alongside neuronal death, other cell types might also be involved in the development of the 

disease, such as astrocytes and microglia [135]. 

The second requirement for PD diagnosis is the presence of Lewy bodies, which are intracellular 

protein aggregates that have formed in homocentric circular structures [197, 205]. One of their 

main components is α-synuclein, which is encoded by SNCA, the first gene to be associated with PD 

[187, 206]. Overexpression of and mutations in this gene increase protein aggregation and 

neurodegeneration. Although there is a clear causative link between SNCA and PD, whether the 

formation of the Lewy bodies itself can lead to the development of PD is unclear. Evidence from 

another neurodegenerative disease, Huntington’s disease, support the notion that protein 

aggregates might be protective [207]. On the other hand, a post-mortem examination of 

individuals who had undergone cell replacement therapy for PD, revealed that α-synuclein 
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aggregation can follow prion-like process, spreading the existence of Lewy bodies in healthy 

neurons [208-210]. Additional evidence has shown that the spread of the pathology in the body of 

people with PD follows stereotypical patterns that can be used to stage the disease, as they 

correlate with the clinical presentations (aka Braak stages) [211]. The accuracy of those patterns is 

debated [212, 213], but the suggestion that PD has a prion-like behaviour is nevertheless intriguing 

[135].  

 

1.4.5.4 Molecular mechanisms  

Historically, PD was considered a nongenetic neurodegenerative disease, however genetic analyses 

revealed multiple genetic forms. The first gene to be linked to PD was SNCA (encoding α-synuclein), 

with coding mutations causing a higher tendency for α-synuclein aggregation [187]. Since then, 

more mutations have been causally linked to PD, such as in PRKN [214] and LRRK2 [215, 216]. 

Overall, the identification of a mutation as the cause of PD is quite rare (<5%). Interestingly, there is 

a variation of this frequency between countries, with some geographic areas reaching up to 40%, 

with particular enrichment for mutations in LRRK2 and GBA1 [217]. In parallel to causative 

mutations, there are variants that increase the risk of developing PD, such as variants of LRRK2, and 

GAK [218]. Altogether, these genetic data demonstrate some functional commonalities, suggesting 

certain pathways to be involved in the development of the disease, such as proteostasis (including 

protein aggregation) [219, 220], mitochondrial health [214, 221, 222], and inflammation [223]. 

Alongside genetic factors, environmental factors that cause nigral degeneration and parkinsonism 

have also been identified. The more deeply understood is MPTP, which is the precursor of MPP+, a 

potent neurotoxin. The toxin is produced in glial cells and enters and accumulates in the 

dopaminergic neurons of substantia nigra pars compacta through the dopamine transporter. 

There, it expresses its toxicity by inhibiting complex I, a protein complex of the respiratory chain in 

the mitochondria [135]. Multiple animal models of PD have been based on this effect of MPTP, 

allowing the deeper understanding of the link between mitochondrial health and PD [224]. 

Additional environmental factors have been linked with PD. Epidemiological studies and research 

using animal models suggest that the pesticide rotenone and the herbicide paraquat can lead to 

cell death in the substantia nigra pars compacta and a higher risk of developing PD [225, 226]. A 

more inconclusive case is that of postencephalitic parkinsonism, which is developed after infection 

with the H1N1 influenza virus and is responsive to levodopa [227]. 
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1.4.5.5 Treatments and therapies 

There is a critical need for disease modifying therapies in PD. It is the second most common 

neurodegenerative disease [228] affecting more than 10 million people around the globe [229]. As 

mentioned before, this disease affects mainly older people, and since life expectancy has been 

increasing, the number of people with PD is predicted to double in the next decades to reach 14 

million by 2040 [230].  

Currently, there are only symptomatic treatments available for PD. One of the approaches for 

managing PD is the administration of drugs that replace dopamine. Levodopa is the most effective 

symptomatic oral drug [135]. It can be administrated orally and is able to cross the blood-brain 

barrier. Therefore, it is able to reach the central nervous system and produce dopamine, as it is its 

biological precursor [204]. Inhibitors of levodopa’s degradation, such as monoamine oxidase 

inhibitors [231] and Catechol-O-methyltransferase inhibitors [232], can be given in parallel to 

alleviate some of the side effects of its long-term use, including pain and poor balance. Other 

complications are nausea and gastrointestinal issues but overall levodopa is usually well tolerated 

[135]. Alternatively, dopamine receptor agonists can be administered, which are able to mimic the 

action of dopamine. Some examples are apomorphine, ropinirole, and pramipexole, but their 

duration of action and linked side-effects (e.g., gambling, hypersexuality and compulsive eating 

[233]) have limited their use [204]. 

A subgroup of PD patients is eligible for an alternative approach, deep brain stimulation. Electrodes 

are implanted in brain nuclei of the subcortical region, and are connected to a pacemaker, which is 

placed in the anterior chest wall. This circuit delivers stimuli to the selected brain region, the 

identity of which is dependent on the symptoms that are affecting the patient the most. It can 

long-lastingly alleviate symptoms that normally respond to levodopa, and also tremor. Side-effects 

of this method include cognitive decline, brain haemorrhage, and infections [135, 234]. 

The research in this field is continuous and more treatments are being explored. Earlier this year, 

there are 547 clinical trials in the USA [235] and 39 clinical trials in the UK [236] that are recruiting 

people to take part (queried on 24/1/2022). Experimental approaches include glucocerebrosidase 

modulators [237], LRRK2 inhibitors [238], anti-synuclein drugs [239], neuroprotective compounds 

[240] and cell replacement therapy [241].  

 

1.4.5.6 Systems biology approaches for PD 

In the last decades over 60 GWAS have been conducted for PD and have identified over 500 genetic 

associations [41]. However, the identification of genes associated with a disease through analysing 
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GWAS data is not straightforward [64]. A holistic approach that combined genetic, proteinic and 

functional data, led to the prioritization of candidate genes for PD, using protein networks and 

pathway enrichment [155]. Another study that used a multi omics approach to prioritize candidate 

genes for PD, combined cell-type specific epigenomic variant annotations, GWAS data and 

functional annotations [242]. Such systems biology approaches can also suggest the mechanism by 

which a variant can lead to disease. Indeed, a research project used cell type specific multi-omic 

data for individual PD GWAS loci (epigenomics and interactomics) and suggested that a PD-linked 

single nucleotide polymorphism could lead to an altered transcriptional regulation of another PD-

linked gene, STAB1. Interestingly, this functional connection was indicated to be present only in 

microglia [243]. 

It is evident that for system biology approaches collaboration between different research groups 

and sharing of information are key. A large-scale collaboration among several countries has yielded 

in the formation of the International Parkinson’s Disease Genomics Consortium [244]. In its website 

several resources are available, including whole exome sequencing data, GWAS data and a 

genotyping platform. It has more than 180 members and continues to contribute to the 

understanding of PD by producing research, which has been published in more than 70 articles 

[244]. An additional international collaborative project focused on PD, is FOUNDIN-PD. Its aim is to 

create a multi-omic data set by using inducible pluripotent stem cells obtained from people with 

PD [60]. Such endeavours are creating hope that we are not far away from understanding the 

mechanism of PD and thus from developing a disease-modifying therapy. A process that is involved 

with PD, along with multiple other neurodegenerative diseases is macroautophagy, which will be 

discussed in more detail in the following section [245, 246]. 

 

1.5 Macroautophagy 

 

1.5.1 Overview of (macro)autophagy  

 

Homeostasis is the constitutive goal of cells in order to survive. Various stress conditions and the 

accumulation of damages/alterations in components of the cell (ranging from proteins to 

organelles) can activate the process of autophagy. This process was first described by Christian de 

Duve [247] more than 50 years ago and was named autophagy from the greek words: αυτό (self) 

and φαγία (eating). The term refers to a set of processes that involve lysosomal degradation of 

cytoplasmic cell components, such as cytosol, protein complexes, and organelles. It is tightly 
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regulated by autophagy related genes and pathways, which can be grouped as mTOR (mechanistic 

target of rapamycin, mTOR) dependent and mTOR independent pathways. Such a tight regulation is 

essential, as autophagy is central for both cell survival and cell death. 

Autophagy occurs constitutively in low basal levels in all eukaryotic cells. In the presence of various 

stress conditions autophagy’s levels increase to quickly provide the cell with energy and materials 

for biosynthesis [248] or to rapidly remove dangerous macromolecules that need to be degraded 

[249]. Examples of these stress conditions are nutrient deprivation, growth factor starvation, 

hypoxia, and inflammation. One the other side, the basal level of autophagy is equally important, 

for example in post-mitotic cells, e.g., neurons [250, 251], that are unable to dilute accumulating 

toxic compounds by cell division such as damaged proteins and organelles [252-255] and toxic 

macromolecules [249]. In addition to its role in ensuring cell survival, autophagy can also lead to 

cell death, though a specific type, type II programmed cell-death, which differs from apoptosis 

[256, 257]. 

 

1.5.2 Types of autophagy 

 

Autophagy is a broad term describing three distinct processes [258]: microautophagy, chaperone-

mediated autophagy, and macroautophagy. 

Microautophagy: is the process by which the lysosomal membrane invaginates to include 

cytoplasmic contents. The lysosomal membrane is randomly invaginated and then differentiated 

into an autophagic tube that encloses parts of the cytosol. At the top of the tube vesicles are 

formed, which then fuse homotypically and bud into the lumen [259]. 

Chaperone-mediated autophagy: is a selective process found mainly in mammalian cells. The 

substrates are proteins with a specific motif [260], the KFERQ pentapeptide, which is recognised by 

Hsc70 (heat shock-cognate protein of 70KDa, Hsc70) [261]. The complex of the substrate bound 

with the chaperone is targeted to the surface of the lysosomes, where it interacts with LAMP2A 

(lysosome-associated membrane protein 2A, LAMP2A) to then cross the membrane and get 

degraded by the lysosomal hydrolases [262]. 

Macroautophagy: is the most studied subtype of autophagy, leading to the terms autophagy and 

macroautophagy being used interchangeably in the literature. During this process intracellular 

cargoes are engulfed into double membrane structures, named autophagosomes, which later fuse 

with lysosomes, leading to the degradation of their contents [263]. Amino acids, sugars, fatty acids, 
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and nucleotides, which result from the degradation, are subsequently released into the cytoplasm 

for reuse [264]. 

This Thesis will focus on macroautophagy, for a set of reasons. This type of autophagy is essential 

for all cell types. In addition, even though it is the most well-studied type of autophagy, the 

complexity of the process is substantial because there are multiple proteins and pathways 

involved, including non-canonical autophagy pathways. Furthermore, its role in pathophysiological 

responses includes energy metabolism, growth regulation, organelle turnover and ageing [245, 

246]. Additionally, it contributes to the physiological embryonic development, the removal of 

apoptotic cells and organelles, and antigen presentation. It is also involved in human diseases, such 

as neurodegenerative diseases, cancer and cardiovascular disorders [245, 246], as it protects the 

cell against starvation, toxins, aggregation-prone proteins, and infectious agents [265]. 

 

1.5.3 Main events of macroautophagy 

 

Macroautophagy is a complex and incompletely understood process, in which more than 35 

autophagy related genes are involved [266]. Briefly, the process of macroautophagy is usually 

initiated in response to intracellular stress. This signal leads to the formation of the phagophore 

(also named isolation membrane), a curved double membrane in the cytosol, which then elongates 

and fuses, forming the autophagosome, as shown in Fig 1-4. The maturation of the autophagosome 

includes its translocation close to the nucleus and the subsequent fusion with a lysosome, forming 

an autophagolysosome, also named autolysosome [266]. The contents of the autophagolysosome 

are degraded by lysosomal enzymes and the produced building blocks are recycled.  

Macroautophagy is tightly regulated, as it might lead to unwanted results if not properly 

controlled, e.g., cell death. The main regulators of macroautophagy are the mTOR pathway, the 

JNK (c-Jun N-terminal kinase, JNK) pathway, and the AMPK (AMP (adenosine monophosphate)-

activated protein kinase, AMPK) pathway, as well as pathways regulated by Ca2+, cAMP (cyclic-

AMP, cAMP), calpains and the IP3R (inositol-trisphosphate receptor, IP3R) [267].  
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1.5.4 Stages of macroautophagy 

 

1.5.4.1 Initiation and Nucleation of phagophores 

1.5.4.1.1 Mechanism 

The most upstream complex of macroautophagy is the ULK1 complex [268] that takes part in the 

production of the phagophore together with the PIK3C3 (Phosphatidylinositol 3-Kinase Catalytic 

Subunit Type 3, PIK3C3)-containing Beclin-1 complex (also known as PIK3C3-complex 1, or more 

simply PIK3C3-C1) [269]. The former is composed of ULK1/2 (Unc-51 Like autophagy activating 

Kinase, ULK), ATG13 (Autophagy-Related Genes, ATG), RB1CC1 (RB1 inducible Coiled-Coil 1, 

RB1CC1) and ATG101 [270], and the latter of PIK3C3, BECN1 (Beclin1), PIK3R4 (PhosphoInositide-3-

Kinase Regulatory subunit 4, PIK3R4) and ATG14 [271, 272]. When an intracellular stress occurs it 

leads to the inactivation of mTOR that leads to the activation of ULK1 and ULK2 via 

phosphorylation, and the subsequent formation of the ULK1 complex [273-275]. The ULK1 complex 

then activates the PIK3C3 complex [276]. These two complexes are translocated in autophagosome 

nucleation regions, where they stimulate the production of PI3P (PhosphatidylInositol 3-Phosphate, 

PI3P), which facilitates the elongation of the phagophore and the obtaining of a certain initial 

curvature [277]. More specifically, PI3P recruits effector proteins required for the formation of the 

nucleation sites. Examples of proteins recruited by PI3P include DFCP1 (Double FYVE-Containing 

 

Figure 1-4. Schematic representation of macroautophagy 

In macroautophagy, there is initially the formation of the phagophore, then of the, autophagosome and finally of the autolysosome. 

Adapted from Jing et al [265]. 
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Protein 1, DFCP1) and WIPIs (WD-repeat protein Interacting with PhosphoInositides, WIPIs) [266, 

278]. The nucleation sites are ER (Endoplasmic Reticulum, ER) associated structures enriched in 

PI3P, named omegasomes [269].  

1.5.4.1.2 Membrane sources 

The membrane sources for the nucleation of the phagophore are still unclear. It is hypothesized 

that parts of the phagophore originates from the ER, MAMs (Mitochondria Associated ER 

Membranes, MAMs), Golgi, plasma membrane and recycling endosomes [279]. 

 

1.5.4.2 Elongation of the phagophore 

1.5.4.2.1. Mechanism 

The elongation of the phagophore is mainly regulated by two ubiquitin-like conjugation reactions. 

The first is the conjugation of ATG12 with ATG5 through the E1-like activity of ATG7 and the E2-like 

activity of ATG10. The conjugated ATG12:ATG5 then interacts with ATG16L1, which is recruited by 

WIPI2b [280] when the latter detects PI3P [281]. 

The second important conjugation system is that of LC3I (MAP1LC3 (microtubule-associated 

protein 1 light chain 3), usually called LC3 or LC3I) [282]. LCE-I gets conjugated with PE 

(phosphatidylethanolamine, PE) creating the LC3:PE, otherwise known as LCE-II, through a similar 

process. Here, the E1-like and E2-like activities are expressed by ATG7 and ATG3, respectively, 

while the ATG12:ATG5:ATG16L1 complex acts as the E3-like enzyme [283, 284]. The high 

lipophilicity of PE guides the recruitment of LC3II to the autophagosome and its distribution over 

both sides of the membrane, which is important for the phagophore elongation [285]. 

LC3II has an extended role in macroautophagy. It acts as a binding receptor that interacts with 

adaptor proteins involved in selective autophagy, such as p62, which is encoded from SQSTM1 

(Sequestosome-1, SQSTM1), and TBC1D25 (TBC1 Domain family member 25, TBC1D25) [286]. 

These are cargo proteins that guide substrates for degradation by directly binding to LC3II while the 

autophagosome is closing. LC3II possibly has an additional role in the maturation of the 

phagophore, as it is involved in membrane tethering and hemifusion (i.e., the intermediate stage of 

membrane fusion, in which the outer membranes have merged, but the inner membranes still 

remain separate) [287]. Interestingly, the stages of the autophagosome formation can be 

determined based on the detection of LC3II and ATG12:ATG5:ATG16L1 [288], as shown in Table 1-

2. This is because LC3II is produced later in the stage of phagophore formation, but 

ATG12:ATG5:ATG16L1 is present only in the forming phagophore [289]. 
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1.5.4.2.2 Membrane sources 

Alongside the previously discussed uncertainty of the membrane sources of the phagophore 

nucleation is the ambiguity for the elongation step. Omegasomes are located near the MAMs, 

which might indicate that this is a membrane source [290], but other sources might include ER exit 

sites, ER-Golgi intermediate compartment, Golgi, plasma membrane and recycling endosomes 

[277].  

 

1.5.4.3 Closure of the phagophore and fusion with endosomes and lysosomes 

1.5.4.3.1 Mechanism 

The next stage of macroautophagy is the closure of the phagophore and unfortunately this step is 

poorly understood. The differentiating characteristic of this process compared to other membrane 

fusion steps is that it is between two narrow tips of phospholipid bilayers [277].  

A protein that is regulating the closure of the phagophore is UVRAG (UV radiation resistance 

associated gene, UVRAG) [291, 292]. It recruits proteins to the phagophore, such as the class-C VPS 

(vacuolar protein sorting-associated proteins, VPS) that activate Rab7 [292]. The maturation and 

fusion of autophagosomes also depends on microtubules and dynein in order to be transferred 

from various locations in the cytoplasm to the microtubule organizing centre [293, 294]. 

It has been suggested that the ESCRT proteins (Endosomal Sorting Complex Required for Transport, 

ESCRT) are involved [295]. However, it is unclear whether they enable the phagophore closure 

and/or the fusion with lysosomes. They might recruit proteins to endosome membranes, such as 

Rab7 (a small GTPase that recruits more proteins required for fusion) [296, 297] and certain 

SNAREs (soluble NSF attachment protein receptor, SNARE) [298-302], which also facilitate the 

fusion with lysosomes [303, 304].  

 

Table 1-2. Identification of different stages of phagophores and autophagosomes based on 

the existence of two conjugates: ATG12:ATG5:ATG16L1, and LC3II. 

Stage ATG12:ATG5:ATG16L1 LC3II 

Pre-phagophores / early phagophores + - 

Phagophores + + 

Mature autophagosomes - + 
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1.5.5 Regulation of macroautophagy 

 

1.5.5.1 Regulation of the initiation of macroautophagy 

1.5.5.1.1 mTORC1 dependent regulation 

One of the main regulators of macroautophagy is the energy state of the cell. The main complex 

involved in the regulation of macroautophagy as a consequence of energy status is mTORC1 (mTOR 

complex 1, mTORC1), which is composed of mTOR, DEPTOR (DEP domain containing mTOR 

interacting protein, DEPTOR), RAPTOR (Regulatory Associated Protein of mTOR, RAPTOR), AKT1S1 

(AKT1 Substrate 1, AKT1S1), mLST8 (mTOR associated protein, LST8 homolog, mLST8) and the 

Tti1/Telo2 complex (TELO2-Interacting protein 1, Tti1) (Telomere maintenance 2, Telo2) [305]. As 

an energy biosensor, mTORC1 also regulates the consumption of energy through the 

proteinosynthesis pathway, e.g., translation and ribosome biogenesis.  

More specifically, mTORC1, which is active when the energetic state of the cell is normal or high, 

inhibits macroautophagy through a direct interaction with the ULK1 complex. When energy is 

reduced, mTOR is de-activated, leading to a negative regulation of mTORC1 and the activation of 

the kinase activity of ATG13. ATG13 then activates ULK1/2 and aids the phosphorylation of RB1CC1 

by ULK1/2 and so on induces macroautophagy [273-275]. Furthermore, mTORC1 impacts 

macroautophagy by regulating DAP1 (Death Associated Protein, DAP1), which is a suppressor of 

macroautophagy [306].  

Pathways that activate macroautophagy through decreasing mTORC1 activity are multiple, 

increasing the complexity of the system. They include those of the limited essential amino acid 

detection via Rag [307, 308] and of the elevated ratio of AMP/ATP that activates AMPK [309]. 

Interestingly, AMPK can inhibit mTORC1 via two routes: it phosphorylates RAPTOR [310], and 

activates TSC1 (Tuberous Sclerosis complex subunit 1)/TSC2 dimer, a negative regulator of mTORC1 

[311]. 

A main protein through which macroautophagy is regulated is BECN1. As noted above, BECN1 is a 

component of the PIK3C3-containing Beclin-1 complex. It is also an important regulator of the 

activity of this complex and thus of the initiation of macroautophagy. Some examples of its positive 

regulators are AMBRA1 (Activating Molecule in BECN1-Regulated Autophagy Protein 1, AMBRA1) 

[312], UVRAG [313], and SHLB1 [314], and some negative regulators are BCL2, BCL2L1 [315, 316], 

and the complex of IP3R with BCL2 [317]. 

An additional protein involved in the regulation of macroautophagy through mTORC1 is MAPK8 

(mitogen-activated protein kinase 8, MAPK8) (also known as JNK1). MAPK8 phosphorylates both 
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BCL2, and BCL2L1 which then unbind from BECN1, leading to the activation of macroautophagy 

[318]. In parallel, signalling through ULK1 leads to the phosphorylation of AMBRA1 that is in a 

complex with the BECN1 complex and dynein. This modification releases the rest of the complex 

from dynein, allowing it to translocate to the autophagy initiation sites [319].  

Overall, there are multiple proteins involved in the regulation of macroautophagy through mTORC1 

and their pathways are intertwined, increasing the complexity of the system, and highlighting the 

need of a systems biology approach. 

1.5.5.1.2 mTORC1 independent regulation 

There are two main regulators of macroautophagy that are mTORC1 independent: AMPK and p53. 

Interestingly, AMPK can not only modulate macroautophagy in an mTOR-dependent fashion, as it 

was noted above, but also in an mTOR-independent way: it can directly phosphorylate and activate 

ULK1 [320].  

Notably, p53 has a bidirectional relationship with macroautophagy, as macroautophagy suppresses 

p53, and p53 regulates macroautophagy [321]. p53 is activated by variety of stressors, including 

DNA damage, oxidative stress and metabolomic stress, and either facilitates stress adaptation or 

elimination of cells that are beyond repair [321]. p53 activation induces macroautophagy by 

directly regulating proteins, such as ULK1, ATG7 [322], Dram (Damage-Regulated Autophagy 

Modulator) [323], and Isg20L1 [324]. Interestingly, the basal levels of p53 inhibit macroautophagy 

[325]. The functional association of p53 and macroautophagy is essential for stress responses, 

metabolism, and cancer. 

 

1.5.5.2 Regulation of phagophore elongation 

There is much less information about the regulation of macroautophagy in the stage of phagophore 

elongation. However, what is known is that starvation regulates macroautophagy, including in this 

step. It signals through ULK1 for the elongation of phagophore via ATG9. Under starvation 

conditions, ATG9 translocates from the trans-Golgi and endosomes towards the forming 

autophagosome [326] and promotes its elongation by delivering vesicles from membrane sources 

[279]. 
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1.5.6 Non-canonical macroautophagy 

 

The mechanism of macroautophagy described so far consists the canonical pathway. Some of the 

described steps can be altered and the produced pathways are named non-canonical 

macroautophagy, or else non-canonical macroautophagy. 

The most studied alternative pathway of macroautophagy is that in which BECN1 is absent [327], a 

protein necessary for the induction of macroautophagy in the canonical pathway. This route of 

macroautophagy has been observed in multiple studies using cell lines. In a study where Z18 -a 

compound that binds BCL2 (B cell leukaemia/lymphoma 2, BCL2) and BCL2L1 (BCL2 like 1, BCL2L1) 

(otherwise known as BCL-XL)- was administrated to HeLa cells, a BECN1-independent 

autophagosome formation was observed [328]. A similar result was obtained using pro-apoptotic 

compounds (i.e., staurosporin, MK801 and etoposide) in another study that used primary cortical 

neurons [329]. 

Other differences of non-canonical macroautophagy pathways include the absence of requirement 

of the ULK1 initiation step [330], and of ATG9 and the ATG proteins of the conjugation steps (i.e., 

ATG5, ATG7 and LC3s) [331]. Therefore, macroautophagy is clearly a biological process of high 

complexity, which can be better understood using a systems biology approach. 

 

1.6 Aims of Thesis 

 

The overarching goal of this Thesis is to study neurodegenerative diseases (i.e., HSPs, and PD) using 

holistic approaches to gain insight into the molecular mechanism of disease. This can be broken 

down to the following aims: 

1) Investigate whether any insight into the disease mechanism can be gained for the HSPs, 

using PPIs.  

Since multiple (<70) genes when mutated lead to the same disease, the HSPs, the hypothesis is that 

there is at least one process or pathway that connects them and is strongly associated with the 

disease mechanism. Proteins that act in the same process or pathway interact with each other, 

therefore, building a protein-protein interaction network could highlight the disease mechanism.  

This aim will be performed by first identifying the genes that can lead to HSPs, collecting their PPIs, 

and then building, filtering, and analysing the resultant HSP-PPIN(s). The components and structure 
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of the HSP-PPIN(s) will provide insight into the mechanistic connectivity between proteins that are 

encoded by genes that lead to HSPs. Enrichment of associated functions will then be conducted for 

the components of the network to hint the identity of the biological processes involved in the 

disease mechanism(s). 

2) Explore the potential divergence of disease mechanism(s) among HSPs, based on disease 

features.  

The HSPs showcase a large heterogeneity of clinical presentations, which hint the existence of 

mechanistic subtypes. Therefore, I hypothesised that supplementing the HSP-PPIN(s) with clinical 

data for each HSP gene and studying whether certain clinical data are clustered in a part of the 

network more associated with certain biological processes, could reveal any mechanistic subtypes. 

Clinical data will first be incorporated into the HSP-PPIN(s). Parts of the network(s) associated with 

different modes of inheritance, types of HSPs, or different clinical features will be extracted and 

analysed through enrichment to detect any differences and similarities on the associated biological 

processes, and thus the potential subtype disease mechanism(s).  

3) Identify connections between macroautophagy and neurodegenerative diseases, using 

PPINs.  

Macroautophagy has been associated with multiple neurodegenerative diseases in which proteins 

accumulate, which aligns with its biological role in proteostasis. Therefore, it was hypothesised that 

this association would be expressed by sharing common proteins or common interactors.  

The evaluation of the relationship between macroautophagy and each neurodegenerative disease 

(here Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Frontotemporal 

dementia) will be performed through creating and overlapping the respective PPINs. 

4) Investigate the differential kinetics of the initial stages of macroautophagy in healthy 

people vs people with PD.  

Mathematical modelling is a powerful tool that can create new insight into biological processes. 

The hypothesis was that simulating macroautophagy in healthy human cells and enriching the 

model with data regarding how it is affected by a neurodegenerative disease, could provide a 

mechanistic explanation for their association and therefore highlight therapeutic targets.  

For this purpose, a mathematical model of the initial stages of macroautophagy in humans will be 

created based on the literature, using MATLAB. The simulation will be run for healthy people and 

for people with PD based on published differential amounts of proteins that are part of the 

macroautophagy model. 
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2. PPIN analysis of HSPs  
 

Main points of this chapter: 

• Protein-protein interaction networks were built based on genes that lead to the 

development of the Hereditary Spastic Paraplegias. 

 

• The protein-protein interactions used to build the networks were collected via PINOT and 

were experimentally derived human data that were manually curated in primary 

databases. 

 

• The global and core network created based on the collected interactions revealed that 

most genes leading to HSPs are interconnected and therefore might be part of the same 

biological processes.  

 

• Functional enrichment suggested that processes related to protein transport and vesicle 

dynamics and transport are common themes of the core network and might be related to 

the disease mechanism. 

 

• The majority of the genes that were suggested to be causing Hereditary Spastic Paraplegias 

and discovered after the creation of the networks of this Thesis, were part of the networks, 

supporting the strength of this approach. 

 

2.1 Introduction 

 

Hereditary Spastic Paraplegias (HSPs) is a complicated group of neurodegenerative diseases with a 

very limited understanding about its mechanistic details. Even though the HSPs were first described 

140 years ago [169], the molecular mechanism responsible for disease onset is still unknown. 

However, few mechanisms have been proposed including alteration of lipid metabolism and 

endoplasmic reticulum shaping, disruption of mitochondria homeostasis, and dysfunction of 

intracellular active transport and endolysosomal trafficking [170, 332-334]. All of the above have 

been suggested based on the multiple functions of each protein associated with HSPs and in vivo 

and in vitro experiments, whereas no holistic approach solely focused on HSPs has been applied, to 

the best of my knowledge.  
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Functional biology classically uses a single-gene approach, where genes are studied in isolation. 

This approach is powerful, but it allows modelling of only one or very few genes at a time [103]. On 

the other hand, protein-protein interaction (PPI) networks (PPINs) are a powerful systems biology 

tool to evaluate the entirety of genes/proteins involved in a disease altogether through a holistic 

approach. The connections within the PPIN can be mathematically analysed to gain insight into the 

global relationships among the players of the disease, thus creating an in silico model system to 

investigate the molecular mechanism associated with those global connections and generate 

hypotheses to further support functional research and disease modelling.  

Network approaches have been previously used to study the HSPs. Some groups focused on the 

comparison of HSPs to Charcot Marie-Tooth type 2 (a neurodegenerative disease that affects 

peripheral motor and sensory nerves leading to distal muscle weakness and atrophy) and included 

predicted PPI data in their analysis [335], or considered that HSPs and Ataxias are two sides of the 

same spectrum, thus, studying all the implicated genes as one unit [336]. An additional study of 

HSPs based on whole-exome sequencing of patients, identified new HSP genes based on a network 

analysis approach [337]. However, the network was constructed based on a list of genes of HSPs 

and diseases with related phenotype, and it included additional types of interaction not limited to 

experimentally proven human proteins (e.g., Drosophila melanogaster co-citation of proteins). 

Therefore, this PhD will provide the first study focused on the HSP-PPIN solely based on 

experimentally proven human PPIs. 

 

2.2 Aims and Objectives 

 

The aim of this chapter is to apply the holistic approach of PPIN analysis to study the HSPs, as well 

as specific molecular processes involved in this disease to improve our understanding of their 

underlying molecular mechanism(s), which aids in the identification of potential points of 

pharmaceutical intervention. 

Therefore, the objectives of this chapter are: (i) to create a PPIN using HSP associated genes, and 

(ii) to analyse it based on network topology and enrichment. 
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2.3 Methodology 

 

2.3.1 Selection of seeds 

 

In this study, the Mendelian HSP genes are referred to as “seeds” while “nodes” or “interactors” 

are proteins with which seeds interact. “Edges” are the experimentally demonstrated and manually 

curated human PPIs that connect the nodes within the PPIN. 

The proteins used to build the HSP-PPIN (i.e., seeds) were selected based on their genetic 

association with HSPs [338]. 66 genes were identified and selected (HSP seeds; Table 2-1). An 

extended table with the current knowledge on the HSP types and the names of the associated gene 

and proteins is provided (Table S2-1, Appendix B). Of note, additional 16 seeds, labelled as test-

seeds, were included as they have been strongly associated with HSP and/or a mixed phenotype of 

HSP and other diseases (Table 2-2). The final list of seeds for the HSP-PPIN is composed of 83 seeds 

(HSP-seeds n=66, test-seeds n=17) and is presented in Table 2-3. 

 

Table 2-1. Hereditary Spastic Paraplegia genes 

ALDH18A1, AMPD2, AP4B1, AP4E1, AP4M1, AP4S1, AP5Z1, ARL6IP1, ARSI, ATL1, ATP13A2, B4GALNT1, 

BSCL2, C12orf65, C19orf12, CAPN1, CPT1C, CYP2U1, CYP7B1, DDHD1, DDHD2, DSTYK, ENTPD1, ERLIN1, 

ERLIN2, FA2H, FARS2, GBA2, GJC2, HSPD1, IBA57, KIF1A, KIF1C, KIF5A, KLC2, L1CAM, MAG, MARS, 

NIPA1, NT5C2, PGAP1, PLP1, PNPLA6, RAB3GAP2, REEP1, REEP2, RTN2, SLC16A2, SLC33A1, SPART, 

SPAST, SPG7, SPG11, SPG21, TECPR2, TFG, TPP1, UBAP1, UCHL1, USP8, VPS37A, WASHC5, WDR48, ZFR, 

ZFYVE26 and ZFYVE27 

 

Table 2-2. Genes related to HSPs 

Gene 

name 
Association with HSP 

ACO2 
Homozygous missense mutation associated with complicated HSP [339]. Other associated 

diseases include Optic atrophy 9 and Infantile cerebellar-retinal degeneration [340, 341]. 

ALS2 

Infantile onset ascending hereditary spastic paraplegia is considered an HSP type [342]. Other 

associated diseases include amyotrophic lateral sclerosis 2 and Juvenile primary lateral 

sclerosis [342-345]. 
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Table 2-2. (continued) Genes related to HSPs  

BICD2 

Has been proposed to be a rare cause of HSP phenotype [346]. Other associated diseases 

include Spinal muscular atrophy, lower extremity-predominant, 2B, prenatal onset, 

autosomal dominant (SMALED2B), and Spinal muscular atrophy, lower extremity-

predominant 2A, childhood onset, autosomal dominant (SMALED2A) [347-350]. 

CCDC50 Reported as a possible HSP gene due to its genetic locus [351]. 

CCT5 
A homozygous missense mutation is considered to lead to a mixed phenotype of HSP and 

hereditary sensory neuropathy [351, 352]. 

EXOSC3 
Considered to lead to a complicated form of HSP [333, 351, 353]. Other associated diseases 

include pontocerebellar hypoplasia 1B (PCH1B) [354]. 

GAD1 

A homozygous nonsense mutation is considered by some to lead to autosomal recessive HSP 

[351, 355] Other associated diseases include Cerebral palsy, spastic quadriplegic 1 (CPSQ1) 

[356]. 

HACE1 
Involved in a form of Spastic Paraplegia (i.e., Spastic paraplegia and psychomotor retardation 

with or without seizures, SPPRS) [357, 358] and by some considered a HSP gene [351, 358]. 

IFIH1 

 An heterozygous missense mutation was found to be present in family members with HSP 

[359]. Other associated diseases include Diabetes mellitus, insulin-dependent, 19 (IDDM19) 

and Aicardi-Goutieres syndrome 7 (AGS7) [360-362]. 

KCNA2 

A mutation has been found in two unrelated families with HSP and has been considered an 

HSP gene by some [351, 363]. Other associated diseases include Developmental and epileptic 

encephalopathy 32 (DEE32) [364, 365]. 

KIDINS220 

It is associated with autosomal dominant HSP with a non-classical presentation, including, 

nystagmus and obesity [351, 366]. Other associated diseases include Spastic paraplegia, 

intellectual disability, nystagmus, and obesity (SINO) [367]. 

LYST 
A homozygous missense mutation leads to Chediak-Higashi syndrome with spastic paraplegia 

[368-371].  

MT-ATP6 

A homoplasmic mutation was identified in several members of a family to cause a late-onset 

spastic paraplegia-like disorder [372]. Other associated diseases include Neuropathy, ataxia, 

and retinitis pigmentosa (NARP), Leigh syndrome (LS), Leber hereditary optic neuropathy 

(LHON), and Ataxia and polyneuropathy, adult-onset (APAO) [373-381].  

MT-CO3 

A frameshift mutation leads to a childhood onset HSP [382]. Other associated diseases 

include Leber hereditary optic neuropathy (LHON), and Recurrent myoglobinuria 

mitochondrial (RM-MT) [383, 384]. 

https://www.uniprot.org/diseases/DI-02048
https://www.uniprot.org/diseases/DI-02048
https://www.uniprot.org/diseases/DI-00640
https://www.uniprot.org/diseases/DI-00640
https://www.uniprot.org/diseases/DI-04887
https://www.uniprot.org/diseases/DI-00640
https://www.uniprot.org/diseases/DI-02775
https://www.uniprot.org/diseases/DI-02775
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Table 2-3. Seeds for the HSP network 

HSP-seeds 

(n=66) 

ALDH18A1, AMPD2, AP4B1, AP4E1, AP4M1, AP4S1, AP5Z1, ARL6IP1, ARSI, ATL1, ATP13A2, 

B4GALNT1, BSCL2, C12orf65, C19orf12, CAPN1, CPT1C, CYP2U1, CYP7B1, DDHD1, DDHD2, 

DSTYK, ENTPD1, ERLIN1, ERLIN2, FA2H, FARS2, GBA2, GJC2, HSPD1, IBA57, KIF1A, KIF1C, 

KIF5A, KLC2, L1CAM, MAG, MARS, NIPA1, NT5C2, PGAP1, PLP1, PNPLA6, RAB3GAP2, 

REEP1, REEP2, RTN2, SLC16A2, SLC33A1, SPART, SPAST, SPG7, SPG11, SPG21, TECPR2, TFG, 

TPP1, UBAP1, UCHL1, USP8, VPS37A, WASHC5, WDR48, ZFR, ZFYVE26, and ZFYVE27 

Test-seeds 

(n=17)  

ACO2, ALS2, BICD2, CCDC50, CCT5, EXOSC3, GAD1, HACE1, IFIH1, KCNA2, KIDINS220, LYST, 

MT-ATP6, MT-CO3, MT-ND4, RETREG1 and SELENOI 

 

2.3.2 Collection of PPIs and creating the HSP-PPINs 

 

The seeds were used as input to run the Protein Interaction Network Online Tool (PINOT) 

bioinformatic tool [395]. The interactions provided from PINOT were then screened to include PPIs 

with a final score above 2 (these interactions were detected in at least two publications or using at 

least two different methods). The filtered interactions were uploaded in the form of a text file in 

Cytoscape [106], a network visualisation tool, to obtain the global HSP-PPIN, which was then 

subjected to topological analysis. Each node of the network was scored based on the number of 

seeds to which it connected. The nodes interacting with at least one seed, named “inter-

interactomes hubs (IIHs)”, were used to extract a subnetwork composed of IIHs and the connected 

seeds. This subnetwork will be referred to as the “core” HSP-PPIN. Of note, from the core network, 

similarly with previous publications [104], ubiquitin (UBB and UBC) was excluded to remove 

Table 2-2. (continued) Genes related to HSPs 

MT-ND4 

A heterozygous mutation can lead to adult onset HSP [338, 385]. Other associated diseases 

include Leber hereditary optic neuropathy (LHON) and Leber hereditary optic neuropathy with 

dystonia (LDYT) [386-390]. 

RETREG1 

An homozygous mutation is considered to lead to a mixed phenotype of HSP and hereditary 

sensory neuropathy [391]. Other associated diseases include Neuropathy, hereditary sensory 

and autonomic, 2B (HSAN2B) [392]. 

SELENOI 
An autosomal recessive mutation can lead to a complicated form of HSP named Spastic 

paraplegia 81, autosomal recessive, SPG81 [393, 394]. 
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potential non-specific interactions, because it interacts with a large number of proteins in order to 

lead to their degradation. The interactions for the global HSP and core HSP networks were 

downloaded on the 09/07/2019, PINOT (beta version; freely available at 

http://www.reading.ac.uk/bioinf/PINOT/PINOT_form.html ). 

For the 2nd layer network, the seeds were the proteins of the first layer network. The PPIs were 

obtained through PINOT on 22/11/2019. The PPIs were filtered, and the core of this network was 

obtained, following the same process, as previously described for the global and core HSP-PPIN. 

The phrase HSP-PPIN will be referring to the 1st layer unless specified. 

 

2.3.3 Enrichment 

 

The genes of the core network were analysed for functional enrichment (i.e., functions that are 

more frequent in this set of genes compared with the annotated human genome [111]), using the 

GO terms for Biological Processes (GO-BPs), which describe the biological goal of a protein’s 

function (see Section 1.2.3.2.1).  

The output of the functional enrichment analysis includes a list of enriched GO terms for Biological 

Processes and their respective enrichment ratios. The enrichment ratio of each term is a 

measurement of how many more times a specific GO term was present in the set of genes studied 

compared to the expected number calculated from its frequency in the annotated human genome. 

An explanation regarding the calculation of expected values is shown in Table 2-4. Briefly, the 

expected number of genes in the gene set of interest annotated with a specific GO term is 

calculated based on the frequency of the GO term annotation in the human genome. The 

enrichment ratio is the ratio of the actual number of genes of interest annotated with a specific GO 

term to the expected number. So, for example, if the actual number of genes is double the 

expected, the enrichment ratio will be equal to two. 

 

So, the enrichment ratio and number of expected genes can be calculated using the following 

formulas: 

Enrichment Ratio =
Number of genes with a GO term in the data

Number of expected genes with a GO term in the data
       (2-1) 

Number of expected genes with a GO term in the data =

Number of genes in the data∗Number of genes annotated with a GO term in the GO database

Total number of annotated genes in the GO database
             (2-2) 

 

http://www.reading.ac.uk/bioinf/PINOT/PINOT_form.html
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Three independent online tools were used for this analysis to reduce any tool-specific bias. More 

specifically: g:Profiler [112], Gene Ontology using Panther’s tool [110, 113, 396] and WebGestalt 

[114]. These were running with different algorithms, multiple test correction and/or versions of the 

GO database, summarised in Table 2-5.  

 

 

The same process was followed for the localisation enrichment that used Cellular Components (GO-

CCs). 

Pathway enrichment was performed using the online analysis tool of Reactome (v69& v70 in 

September and December 2019) [397]. The resulted pathways with p value below 0.05 were 

Table 2-4. Calculation of expected number of genes having a specific GO term 

 Human genome  Set of genes under study 

Number of genes characterised by a 

specific GO term 
200 α 

Total number of annotated genes 20,000 100 

Frequency of the GO term  1/100 α/100 => α=1 

Note: The number of genes expected to be characterised by a specific GO term (α) in a set of genes (here 

n=100) is calculated based on the frequency of that term in the human genome that has been annotated. 

In this case, for the ratio of 200/20,000 to be equal to α/100, α must be equal to one. So, if two genes 

out of the 100 that are being analysed have been annotated with this GO term, the enrichment ratio will 

be 2/1=2. GO: Gene Ontology 

Table 2-5. Summary of the main settings in the enrichment analysis tools  

 Version of tool Statistical test 
Multiple- comparison 

correction 

Version of GO 

database used 

g:Profiler July 2019 
Over-representation 

enrichment analysis 

Bonferroni’s 

corrections 
11/07/2019 

Gene Ontology 

using Panther’s 

tool  

September/ 

October 2019 
Fisher’s exact test 

Bonferroni’s 

corrections 
03/07/2019 

WebGestalt October 2019 
Over-representation 

enrichment analysis 
FDR 14/01/2019 
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retained and filtered further to remove those with 3 or less proteins involved, as these are not 

relevant to the analysis that aims to find communal pathways across multiple HSP genes. 

Text mining was performed at the merged GO-BPs terms from the 3 tools (see Section 2.3.4). The 

number of terms related to projections, endosomes, microtubules, membranes, vesicles, and axons 

were counted based on the presence of the key words “projection*”, “endo*”, “microtubu*”, 

“membrane”, “vesic*” and “axo*”, respectively, in the name of the GO-BP term. The results were 

manually quality checked to make sure no unrelated term was included. An enrichment analysis 

followed based on the frequency of the key words in the resulted GO-BP terms compared to their 

frequency in the in-house dictionary, which included a wide collection of GO terms, based on the 

formulas (2-1) & (2-2). In addition, a p value was calculated by comparing the frequency of the 

presence of the key words in each set of GOs with an equal number of but randomly selected GOs. 

In more detail, the randomization was performed using an in-house R script of the lab that selected 

GO terms from the in-house dictionary used for grouping (see Section 2.3.4) and repeated this 

process 100,000 times. The results were plotted to a distribution, and a p-value was calculated, 

based on the number of standard deviations that separated the distribution mean and the actual 

number of the GO terms of the network that had the key words, using pnorm() from R.  

 

2.3.4 Grouping of Gene Ontology Terms for BP and CC 

 

The resulted GO terms for Biological Process were grouped by semantic similarity into semantic 

classes (level 1 grouping) using in-house developed dictionaries. The semantic classes were further 

clustered into functional blocks (level 2 grouping).  

General GO terms (i.e., semantic classes: metabolism and physiology, functional block: general) 

were reported but not further analysed in this project, as done in previous publications [104]. Such 

general terms result in all types of different studies, failing to provide insight into the specific 

functions that are enriched in individual core networks. In contrast, they dilute the importance of 

the rest of the terms, by decreasing their ratio compared to the total number of resulted terms. 

In order to reduce any tool specific bias, the functional or location blocks enriched in more than 1 

enrichment tool (g:Profiler, GO and WebGestalt) were retained for further analysis. For the 

retained blocks, the union of the semantic classes resulting from each individual tool was analysed. 

The p-value was adjusted accordingly (p-value=0.05/3). 

The number of proteins contributing to the enrichment for each semantic class was calculated 

using the post-filtering results of g:Profiler and WebGestalt. The exclusion of the results from GO 
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via Panther was decided because it does not include this information in the downloadable output. 

In addition, semantic classes in which less than 4 genes were involved, were excluded, because the 

main interest lies in identifying processes common among multiple HSP genes. 

 

2.3.5 Software and Web-applications 

 

The software and web-applications used for this project are presented in Table 2-6.  

 

Table 2-6. Software and web applications 

Name Version Website 

Cytoscape 3.7.1 https://cytoscape.org/  

Gene Ontology 
(via PANTHER) 

14.1 
http://geneontology.org/ and http://pantherdb.org/ 

g:Profiler e94_eg41_p11_9f195a1 https://biit.cs.ut.ee/gprofiler/gost  

PINOT 1.0; beta version 
http://www.reading.ac.uk/bioinf/PINOT/PINOT_form.

html 

R 3.5.1 https://www.r-project.org/ 

R studio 1.1.463 https://www.rstudio.com/ 

Reactome’s online 

analysis tool 
v69& v70 https://reactome.org/PathwayBrowser/#TOOL=AT 

WebGestalt fcc27621 http://www.webgestalt.org/ 

 

2.4 Results 

 

2.4.1 Modelling parameters 
 

PPINs can be considered static mathematical models. From that perspective, some settings and 

goals of the modelling can be defined as a first step before any further analysis. The aim of the HSP-

PPIN analysis is to study whether the genes in which alterations can cause HSPs are interconnected, 

and if so, whether they have common biological processes. The data were human PPIs collected 

through PINOT. For some of the seeds PPI data were not available and potential explanations will 

be discussed in the next section (Section 2.5). Overall, there were a lot of available PPI data 

compared to mathematical models, so the HSP-PPIN was built as a first layer network, which 

https://cytoscape.org/
http://geneontology.org/
http://pantherdb.org/
https://biit.cs.ut.ee/gprofiler/gost
http://www.reading.ac.uk/bioinf/PINOT/PINOT_form.html
http://www.reading.ac.uk/bioinf/PINOT/PINOT_form.html
https://www.r-project.org/
https://www.rstudio.com/
https://reactome.org/PathwayBrowser/#TOOL=AT
http://www.webgestalt.org/
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includes the seeds and only their direct interactors. The parameters of the network were the 

features of the interactions, and especially the final score, as produced by PINOT. No variables or 

universal constants were included as PPINs are static representations of the interactome of the 

proteins of interest.  

 

2.4.2 Global network 
 

A PPIN was built using the chosen seeds (Table 2-3) and their experimentally detected human PPIs, 

which were collected through PINOT [395]. It was visualised through Cytoscape and filtered to 

include the PPIs with final score over 2 (925 out of 2,967 PPIs) to create the global HSP-PPIN. The 

filtering was conducted to keep the interactions that have been replicated in the literature, either 

by more than one method or publication, thus creating more confidence in their existence. 

The global HSP-PPIN consisted of 814 nodes, connected through 925 edges. It included 57 HSP 

seeds, 11 test seeds, and 746 direct protein interactors of seeds (first layer interactors). Most of the 

network components were interconnected forming a main graph, which included the majority of 

seeds (n=53, 77.9%) and total nodes (n=755, 92.8%). However, 59 nodes (8.2%) formed 14 

disconnected smaller graphs, as seen in Fig 2-1. Interestingly, a similar percentage of the two types 

of seeds were part of the separated nodes: 12 out of the 66 HSP seeds (18.2%), and 3 out of 17 

(17.6%) of test seeds. Additional seeds were not part of the global network as there were no PPIs 

or their PPIs did not pass the filtering process: 9 out of the 66 HSP seeds (13.6%), and 6 out of 17 

(35.2%) of test seeds.  

After selecting the seeds for the protein network analysis of HSPs, a gene was found to be 

causative for HSPs, RNF170 [398]. It was noticed that this gene was present in the global HSP-PPIN, 

connected directly with ERLIN2. This is highlighting the potential of PPIN analysis as a tool to 

identify and prioritise candidate genes from genetic analysis of HSP patients and showcasing the 

value of network analysis for human diseases. A more in-depth analysis of the predictive power of 

PPINs will be explored in a later section (Section 2.4.6). 

 

 



2. PPIN analysis of HSPs 

80 
 

 

Figure 2-1. The global HSP-PPIN 

The HSP global network is the visualisation of all the binary interactions of the seeds that were collected through the online tool PINOT 

following filtering based on the final score. The nodes corresponding to the HSP-seeds have a black border, while the test-seeds have a 

red border. The thickness of each edge positively correlates with its final score as calculated by PINOT. The network was visualised using 

Cytoscape v3.7.2. 
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2.4.3 Core network 

 

Each interactor of the main graph of the global network was scored based on the number of seeds 

to which it connected, and the degree distribution was plotted (Fig S2-1, Appendix B). All 

interactors of at least two seeds (IIHs) (111 out of 746, 14.9%), and the seeds to which they are 

connected were selected and used to extract the core HSP network (Fig 2-2). The nodes that fail to 

connect two or more seeds were considered of less importance because one aim of the PPIN 

analysis was to discover communal links among the seeds in order to explain how mutations in a 

large number of different genes can all lead to the same disease. 

The core network was composed of 164 proteins and 275 edges (Fig 2-2). As expected, there is a 

bias in retaining seeds versus interactors in the network based on the rationale of the filtering 

process. 68.2% of HSP seeds, 47.1% of test seeds, and 14.9% of direct interactors (45, 8, and 111, 

respectively) were included in the core network, compared with their initial amounts (66, 17, and 

746, respectively). The full list of genes that are part of the core network is shown in Table 2-7.  

 

Figure 2-2. The core HSP-PPIN  

The global network was filtered based on the connectivity of nodes with the seeds to produce the core network. HSP seeds are the nodes 

with black border, while the test seeds those with red border. The size of each node positively correlates with its number of connections 

(i.e., node degree). The thickness of each edge positively correlates with its final score as calculated by PINOT. The network diagram was 

produced using Cytoscape (version 3.7.1). 
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Interestingly, CCDC50, a test seed included in this study based on its chromosomal location being 

within the genetic loci of SPG14, was part of the core network, suggesting it could indeed be the 

responsible gene for this HSP type.  

In the core HSP-PPIN the presence of some additional genes that have been previously linked with 

HSP and its clinical phenotype were investigated. Their identity and link to HSPs are summarised in 

Table 2-8. None of them were present in the core network. However, one of these genes was 

present in the global network, AFG3L2, which was an interactor of one seed, GBA2. 

 

Table 2-7. The genes of the core protein-protein interaction network for the Hereditary Spastic 

Paraplegias 

HSP seeds 

(n=45, 

68.2%) 

ALDH18A1, AMPD2, AP4B1, AP4E1, AP4M1, AP4S1, ARL6IP1, ATP13A2, BSCL2, 
C19orf12, CAPN1, DDHD2, DSTYK, ERLIN1, ERLIN2, FARS2, GBA2, GJC2, HSPD1, IBA57, 
KIF1A, KIF1C, KIF5A, KLC2, L1CAM, MAG, MARS, NT5C2, PGAP1, PLP1, PNPLA6, RTN2, 
SLC33A1, SPART, SPAST, SPG7, TFG, TPP1, UBAP1, UCHL1, USP8, VPS37A, WDR48, 
ZFR, and ZFYVE27 

Test seeds 

(n= 8, 47.1%) 
ACO2, ALS2, BICD2, CCDC50, CCT5, IFIH1, KIDINS220, and LYST 

Interactors 

(n=111, 

14.9%) 

 

ADRA1D, ALB, AMFR, APP, ATF2, ATP2A2, ATP5F1, CANX, CDC5L, CERK, CFTR, 
CHMP1A, CHMP1B, CHMP4B, CHRNA9, CLTC, COX15, CSNK2B, DCAF7, DDB2, DIABLO, 
DLST, DNAAF2, DTNBP1, EGFR, ESR1, EVA1C, F2R, FKBP8, FN1, FXR2, GAK, GALNT2, 
GOLIM4, GOLT1B, GRB2, HAX1, HDAC1, HDAC11, HNRNPA1, HSP90B1, HSPA5, 
HSPA8, HSPE1, ICAM2, IKBKE, IKBKG, ILK, IQCB1, ISLR, IST1, KIF5B, KLC1, KLC3, LLGL2, 
MCOLN3, MMGT1, MRPL58, MTUS2, MYC, MYCBP2, MYEF2, MYH9, NEDD1, 
NIPSNAP1, NME7, NUDT18, PDHA1, PDK3, PKN2, POLR2G, POT1, PTPN1, RAB11A, 
RAB14, RAB5C, RAB7A, RFWD3, RTN4, SEC61B, SFN, SIRT3, SNW1, SOD1, STOM, 
SYNE4, SYVN1, TCP1, TEPSIN, TIMM29, TINF2, TMEM63B, TP53, TRAK2, TSG101, 
TSPAN17, TUBA1C, TUBG1, UBC, USP45, VAPA, VCAM1, VDAC1, VPS28, XRCC3, 
YWHAB, YWHAE, YWHAG, YWHAQ, YWHAZ, and ZRANB1 

 

 

Table 2-8. Additional genes related to HSPs 

Gene names Reason for studying 

AFG3L2 
It is part of the suggested spectrum of ataxias and spastic paraplegias [336]. It leads to 

Spinocerebellar ataxia 28 (SCA28) and Spastic ataxia 5, autosomal recessive (SPAX5). 

FTL Neurodegeneration with brain iron accumulation 3 (NBIA3) 

FXN 
It is part of the suggested spectrum of ataxias and spastic paraplegias [336]. It leads to 

Friedreich ataxia (FRDA). 
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Table 2-8. (continued) Additional genes related to HSPs 

MARS2 

It is part of the suggested spectrum of ataxias and spastic paraplegias [336]. It leads to 

Spastic ataxia 2, autosomal recessive (SPAX3), which is otherwise named Autosomal 

recessive spastic ataxia with leukoencephalopathy (ARSAL). 

MTHFR 

Methylenetetrahydrofolate reductase deficiency (MTHFRD) can lead to adolescent and 

adult-onset symptoms include spastic paraparesis. It is one of the conditions that can 

be mistakenly diagnosed for HSP due to their similarities [338]. Therefore, this gene was 

included as a negative control. 

PLA2G6 

It is part of the suggested spectrum of ataxias and spastic paraplegias [336]. It leads to 

Neurodegeneration with brain iron accumulation 2A and 2B (NBIA2A and NBIA2B), and 

Parkinson’s disease 14 (PARK14). 

SACS 
It is part of the suggested spectrum of ataxias and spastic paraplegias [336]. It leads to 

Autosomal recessive spastic ataxia Charlevois-Saguenay (ARSACS). 

SETX 

It is part of the suggested spectrum of ataxias and spastic paraplegias [336]. It leads to 

Spinocerebellar ataxia, autosomal recessive 1 (SCAR1) and autosomal dominant 

amyotrophic lateral sclerosis (ALS4). 

SLC2A1 

It is part of the suggested spectrum of ataxias and spastic paraplegias [336]. It leads to 

GLUT1 deficiency syndrome 1 (GLUT1DS1), whose phenotype includes spasticity, 

seizures, and motor incoordination. 

WDR45 
Involved in macroautophagy [399, 400], which could be linked to HSPs due to the 

association of vesicle trafficking as a potential mechanism of disease [170]. 

 

2.4.4 Functional enrichment 

 

The core-HSP network represents the most interconnected part of the graph and contains all the 

protein interactors that are communal to at least 2 seeds. Therefore, it can be used to explore 

functionalities shared across different HSP genes. 

The genes of the core network were therefore analysed to detect functions that were more 

frequent in the core network, compared to their frequency in the whole human genome (i.e., 

functional enrichment analysis [111]). There is a variety of available tools for functional enrichment 

(termed biological processes in these tools) with each resulting in potentially different results 

depending on the type and specific parameters in the statistical analysis [111]. Thus, three different 

tools were chosen to reduce the effect of the bias of each individual tool: g:Profiler, Gene 

Ontology, and WebGestalt.  
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2.4.4.1 Specific enriched GO terms 

Significantly enriched terms resulted via g:Profiler are shown in Fig 2-3. In this Figure, only those 

with enrichment ratio higher than 2 are depicted for ease of visualisation due to their high number 

(n=109). The enrichment results via Gene Ontology and WebGestalt were 162 and 108, 

respectively. The vast number of obtained GO terms hinders the effort of result interpretation, so a 

part of the specific GO terms had to be selected. Regarding the criterion of this selection, p-values 

are corrected differently in the different tools, however the enrichment ratio is calculated through 

the same formula (see Section 2.3.3). Therefore, the top 5 terms were selected from each tool, 

based on the enrichment ratio (Table 2-9). Of note, all of these GO terms had an enrichment ratio 

higher than 20. Even though the number, identity and the enrichment ratio of the specific terms 

obtained from the analysis via the three tools varied, multiple similarities can be observed in the 

results. Firstly, 80% of the top 5 most enriched terms of Table 2-9 were present in all three tools. 

Secondly, the identity and order of decreasing enrichment ratio of 2 of these tools were identical 

(g:Profiler and Gene Ontology). Thirdly, all of the top 5 terms were associated with the same 

themes: endomembrane system and the transport of proteins, which is indicated to be important 

for the HSPs through these results. These results were in accordance with the overlap of the 

totality of GO-BP terms resulted from each tool, as 63.8% of terms resulted from at least 2 tools 

(Fig S2-2, Appendix B). 
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Figure 2-3. Enrichment ratio of GO-BP terms as resulted from the analysis of the genes of the core HSP-PPIN, using g:Profiler 

The analysis was performed on 19/04/2019 and the results include only the significantly enriched GO-BP terms. The colour-coding 

corresponds to different level 2 GO groups (see Section 2.4.4.2). GO: Gene Ontology, BP: Biological Process 
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2.4.4.2 Grouped enriched GO terms  

All significantly enriched GO-BPs were grouped by semantic similarity into semantic classes (level 1 

grouping) and semantic classes were further organised into functional blocks (level 2 grouping) 

thus allowing an easier result interpretation (see Section 2.3.4 and [104, 155, 401, 402]). 

GO terms can be of various levels of depth (the more in depth the GO term is, the more 

specific/detailed it is) and are organised hierarchically. Broad GO terms are not useful in functional 

enrichment analysis and are being ignored or even removed from the results [104]. This is because 

the aim of such analysis is to detect functions that could be underlying a disease, thus the more 

specific the GO term, the more insightful it can be. For this reason, general terms were grouped in 

the functional block “general”, noted but not analysed any further.  

Interestingly, the results of all three tools based on the level 1 and level 2 grouping were similar 

(Table 2-10) in accordance with the results of the previous section. More specifically, 80% of the 

level 2 groups of GO terms were identical between all three tools. For the rest 20%, the level 2 

groups resulted from 2 out of 3 tools. Regarding the level 1 groups, 40% resulted from all the tools 

and 64% from at least 2. This demonstrates that even though the extracted specific GO terms were 

slightly different among the tools, the main findings that are discussed below are supported by all 

of them. So, from now and on, the results of the three enrichment tools will be merged to increase 

their coverage. To correct for this merging, only the functional groups that are present in at least 2 

tools will be included in the analysis and the p-values will be adjusted accordingly (p=0.05/3).  

 

Table 2-9. The top 5 GO terms of each functional enrichment tool, based on enrichment ratio 

 g:Profiler Gene Ontology WebGestalt 

1. 
Endoplasmic reticulum tubular 

network formation 

Endoplasmic reticulum tubular 

network formation 

Protein folding in endoplasmic 

reticulum 

2. 
Viral budding via host ESCRT 

complex 

Viral budding via host ESCRT 

complex 

Viral budding via host ESCRT 

complex 

3. Viral budding Viral budding Multivesicular body assembly 

4. Multivesicular body assembly Multivesicular body assembly 
Multivesicular body 

organization  

5. 
Multivesicular body 

organization   

Multivesicular body 

organization   
Viral budding 
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Table 2-10. The grouping of the semantic classes into functional blocks and their overlap in the three 

functional enrichment tools 

Semantic Class (level 1 grouping) 
Overlap among 

the tools 

Functional block 

(level 2 grouping) 

Cell cycle 1/3 

3/3 Cell cycle Cell cycle - segregation/cytokinesis 3/3 

Cell cycle-cytoskeleton 1/3 

Cell death 1/3 
2/3 Cell death 

Cell death - mitochondria 1/3 

Development - brain 2/3 
2/3 Development 

Development - neuronal 2/3 

Intracellular organisation  2/3 

3/3 
Intracellular 

organisation 

Intracellular organisation - cytoskeleton - cell projections 1/3 

Intracellular organisation - membrane 3/3 

Intracellular organisation - organelle 1/3 

Intracellular organisation - organelle - endosome 3/3 

Intracellular organisation - organelle - ER 2/3 

Intracellular organisation - organelle - mitochondria 2/3 

Intracellular organisation - vesicle 3/3 

Physiology - host 3/3 
3/3 Physiology - virus 

Physiology - virus 3/3 

Protein metabolism  2/3 
2/3 Protein metabolism 

Protein metabolism - folding 1/3 

Protein localisation 3/3 

3/3 Protein localisation Protein localisation - membrane 1/3 

Protein localisation - mitochondria 1/3 

Response to stimulus - signalling - ERBB 1/3 

3/3 
Response to 

stimulus 
Response to stimulus - signalling - growth factor 2/3 

Response to stimulus - stress - ER stress 1/3 
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Table 2-10. (continued) The grouping of the semantic classes into functional blocks and their overlap in 

the three functional enrichment tools 

Transport 3/3 

3/3 Transport 

Transport - intracellular 3/3 

Transport - intracellular - endocytosis 3/3 

Transport - intracellular - mitochondria 1/3 

Transport - intracellular - vesicle 3/3 

Waste disposal - ubiquitin-proteasome - ER 3/3 3/3 Waste disposal 

 

The GO terms of all three tools were associated with a range of themes varying from axonal 

transport to cell differentiation. The majority of GO terms were associated with the functional 

blocks “Intracellular organisation” (25.1%), “Transport” (23.6%), “Protein localisation” (15.9%), and 

“Cell death” (8.9%) (Fig 2-4). These are in accordance with the results obtained after manual 

evaluation of the top-5 enriched terms and suggesting that these processes have a role in the 

molecular mechanism of HSPs. A more detailed view of the results with examples of semantic 

classes can be seen in Fig 2-5. 

Interestingly, there were words in the GO-BP terms that were common across functional blocks, 

such as neuron and axon. Therefore, further analysis was conducted to find common themes 

across functional blocks and reduce any effect of the organisation of the functional blocks on the 

results. Text mining was performed for single words within all the GO-BP terms and detected 

significant enrichment for “axon” (n=17/347, 4.8% [10.4 fold enrichment] p-value=2.72×10-19 after 

100,000 random simulation), “endosomes” (n=7/347, 2.1% [6.7 fold enrichment] p-value=1.37×10-

43), “membrane” (n=55/347, 15.8% [6.4 fold enrichment], p-value=2.48×10-65), “projection” 

(n=14/347, 4.1% [6.4 fold enrichment], p-value=4.95×10-8), and “vesicles” (n=24/347, 6.8% [5.3 fold 

enrichment], p-value=4.64×10-44). 
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Figure 2-4. Distribution of the number of GO-BP terms resulted from the functional enrichment of the core HSP-PPIN in functional 

blocks 

Functional enrichment was performed for the components of the core HSP-PPIN. The resulted GO-BP terms (n=347) were grouped 

into semantic classes using in-house R script and then into functional blocks (n=11, excluding “general”). The number of terms of 

each functional block was calculated from g:Profiler, WebGestalt, and GO (through PANTHER) using the terms of semantic classes 

that were present in at least two tools. 
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Additional information can be extracted by the number of genes of each level 2 category (Table 2-

11), as it is important to distinguish if some enriched functions are a property of several or few 

genes of the network, which can lead to different conclusions. g:Profiler and WebGestalt provide 

the list of proteins in the submission query that are responsible for each enriched GO-BP. Similarly 

to previously, the functional groups that resulted from only one tool were excluded and so did the 

genes that contributed to that enrichment, leaving the total number of enriched genes to 143.  

The highest number of proteins belong in the functional block of “Intracellular organisation” 

(n=125, 88%), followed by “Transport” (n=91, 64%), “Protein metabolism” (n=84, 59%), and 

“Protein localisation” (n=64, 45%) (Table 2-11). Of note, a minimum of 45% of the proteins of the 

 

Figure 2-5. Graphical representation of the functional enrichment results of the core HSP-PPIN 

Functional enrichment was performed for the components of the core HSP-PPIN. The resulted GO-BP terms (n=347) were grouped into 

semantic classes (n=54; excluding “metabolism”) using in-house R script and then into functional blocks (n=11; excluding “general”). 

The number of terms of each functional block was calculated from g:Profiler, WebGestalt, and GO (through PANTHER) using the terms 

of semantic classes that were present in at least two tools. A more detailed version is shown in Fig S2-3 (Appendix B). 
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HSP-core network contributed to the enrichment of at least one of these groups, underlining their 

significance in HSPs in accordance with previous results of this project. 

 

The enrichment of each relevant functional block was then mapped on the HSP-core network (Fig 

2-6). From this Figure, it is evident that most genes are involved in a variety of functions 

categorised in multiple functional blocks, while the minority of nodes did not contribute to any 

enrichment (nodes coloured grey). 

The functional blocks of GO terms are visualised in the core HSP-PPIN through the colour of each 

node for the results of g:Profiler and WebGestalt. The colour-function correspondence is located 

on the right of the image, while the grey nodes are those who had no enriched functions. The 

network was visualised using Cytoscape. 

 

Table 2-11. Distribution of genes of the core network in each level 2 Gene Ontology category  

Level 2 grouping of GO terms Number of genes Percentage of genes 

Intracellular organisation  125 87.4% 

Transport 91 63.6% 

Protein metabolism  84 58.7% 

Protein localisation 64 44.8% 

Response to stimulus 52 36.4% 

Cell death 44 30.8% 

Physiology - host/virus 34 23.8% 

Waste disposal 7 4.9% 

Note: The distribution of enriched genes of the core network (n=143) that belong in each Gene Ontology 

level 2 category was analysed. The number of genes and their percentage in each category was calculated 

using the results of g:Profiler and WebGestalt. 
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Figure 2-6. Visualisation of the functional enrichment of the core HSP-PPIN 

The core network is the interconnected part of the global network that includes the proteins that interact with at least two seeds, and 

the connected seeds. The nodes corresponding to the HSP-seeds have a black border, while the test-seeds have a red border (ACO2, 

ALS2, BICD2, CCDC50, CCT5, IFIH1, KIDINS220, LYST). The size of each node positively correlates with its number of connections (i.e., 

node degree). The thickness of each edge positively correlates with its final score as calculated by PINOT. Adapted from [403].  

 

2.4.5 Pathway enrichment  
 

Interestingly, the independent analysis of the proteins of the core-HSP network through Reactome, 

suggested enrichment in similar pathways (Fig 2-7). The two most significantly enriched pathways 

were: vesicle-mediated transport (REA identifier: R-HSA-5653656, p-value: 1.1E-16) and membrane 

trafficking (REA identifier: R-HSA-199991, p-value: 1.1E-16), with 49 and 47 associated proteins, 

respectively. These constitute the 29.9% and 28.7% of the total proteins of the network, 

respectively, and the 37.1% and 35.6% of the enriched proteins of the network, which is indicative 

of the significance of these pathways in the disease mechanism of HSP.  

The pathway enrichment was visualised in the core HSP-PPIN through the colour of each node for 

the results of Reactome. The colour-function correspondence is located on the top right of the 

image, while the grey nodes are those who had no enriched functions. The network was visualised 

using Cytoscape. 
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2.4.6 Predictive power of HSP-PPIN 

 

In order to test for the presence of more genes that since the selection of the seeds have been 

causally linked with HSP, the 2nd layer of HSP was created, following the same steps as for the 1st 

layer. The core of the 2nd layer network consisted of 7,783 proteins and 47,399 interactions.  

The new genes reported to be linked to HSPs in 2021, whose presence in the HSP network was 

tested were: RNF170 [398], SPTAN1 [404], ADAR [405], VRK1 [406], SACS, ENTPD1 and CWF19L1 

[407], and GLRX5 and ELP2 [408]. The results are presented in Table 2-12. Briefly, RNF170 was 

directly linked to 3 HSP seeds, and indirectly to 6 seeds in total. SPTAN1, ADAR, VRK1, ELP2, GLRX5, 

and SACS connected with the HSP seeds only indirectly, and ENTPD1 and CWF19L1 are not present 

in the network. Interestingly, even though SPTAN1, ADAR, and VRK1 only connected with HSP 

seeds through another protein, they were interacting with a high percentage of the core of the 2nd 

layer HSP-PPIN (15.5-20.7%).  

 

 

Figure 2-7. Visualisation of the pathway enrichment of the core HSP-PPIN 

The core network is the interconnected part of the global network that includes the proteins that interact with at least two seeds, and 

the connected seeds. The nodes corresponding to the HSP-seeds have a black border, while the test-seeds have a red border (ACO2, 

ALS2, BICD2, CCDC50, CCT5, IFIH1, KIDINS220, LYST). The size of each node positively correlates with its number of connections (i.e., 

node degree). The thickness of each edge positively correlates with its final score as calculated by PINOT. Adapted from [403]. 
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Table 2-12. Exploration of the presence of new HSP genes in the core of the 2nd layer HSP-PPIN 

Gene 
Nseeds direct 

connection 
Nseeds indirect connection 

Ninteractors 

(% of total) 
Reference 

RNF170 

ERLIN1, ERLNI2, and 

ATP13A2 

(16.7%, 3/18 direct 

interactors) 

+  RTN2, SPAST, and TGF 

(1.1%) 

527 

(6.8%) 
[398] 

SPTAN1 0 

SLC33A1, KIF5A, CAPN1, 

ERLIN1, HSPD1, ATP13A2, and 

WASHC5 

(0.4%) 

1,608 (20.7%) [404] 

ADAR 0 

KIF1C, KIF1A, FARS2, ZFR, 

KLC2, ALDH18A1, ERLIN2, 

ERLIN1, HSPD1, and PNPLA6 

(0.5%) 

1,599 (20.5%) [405] 

VRK1 0 

HSPD1, WDR48, IBA57, KIF1C, 

and TFG 

(0.4%) 

1,209 

(15.5%) 
[406] 

ENTPD1 0 0 
0 

(0%) 
[407] 

CWF19L1 0 0 
0 

(0%) 
[407] 

ELP2 0 
CAPN1, and KLC2 

(1.5%) 

131 

(1.7%) 
[408] 

GLRX5 0 

GBA2, HSPD1, ZFYVE27, KLC2, 

DDHD2, and PLP1 

(0.8%) 

738 

(0.9%) 
[408] 

SACS 0 
KLC2, AP4E1, and SPAST 

(1.2%) 

257 

(3.3%) 
[407] 

Note: Ninteractors (col 4) refers to the total number of direct and indirect (through one node) interactors of the 

protein of interest. The total number of proteins of the core 2nd layer network is 7,783. 
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2.5 Discussion 

 

In this project the Hereditary Spastic Paraplegias (HSPs) were studied using the holistic approach of 

network analysis. The HSPs are neurodegenerative diseases with considerable amount of genetic 

and clinical heterogeneity [169, 170], rendering them suitable to be studied using a protein-protein 

interaction network approach. This work focused on the study of HSPs, considering HSPs a single 

disease and not including all the genes associated with a disease spectrum in which HSP is involved 

(e.g. HSP-ataxia spectrum [409]) or genes with related phenotype, in contrast to prior studies [336, 

337]. Another novel feature of this analysis is the exclusion of PPI data that were predicted or 

identified in species other than H. sapiens [335, 337]. This was achieved by using the bioinformatic 

tool PINOT for the collection of the PPIs of the seeds [395].  

PINOT produces a list of experimentally demonstrated and manually curated binary interactions 

containing unique, human PPI data obtained by merging and processing PPI data from seven 

databases: BioGrid [410], InnateDB [90], IntAct [89], MBInfo [411], MINT [412], UniProt [413] and 

bhf-ucl. It gains access to the information that these primary databases hold in real time through 

PSICQUIC [102] and then applies multiple filters in order to provide the user with a list of 

interactions for which there is accurate information in these PPI databases. Through PINOT, 

interactions are also scored taking into consideration the number of publications and different 

methods used for their detection. Therefore, PPIs accurately curated and characterised by a 

confidence score were collected for the genes listed in Table 2-3. PPIs that had been detected with 

at least two different detection methods or published in at least two research papers were then 

selected, thus decreasing the number of false positive PPI data [395]. 

 

2.5.1 Proteins of the global network 
 

In this work the global HSP-PPIN was first created. It included 57 HSP seeds and 11 test seeds. The 

missing seeds had no PPIs collected through PINOT, or their interactions were filtered out based on 

the quality control process of the tool.  

The global network was constituted of two parts: 1 interconnected graph, and 14 smaller graphs. 

Most of the seeds that were part of the smaller graphs had a low number of interactors: 1 for 6 

seeds (ATL1, B4GALNT1, C12orf65, ENTPD1, SPG11, and TECPR2; HSP seeds), 2 for 3 (AP5Z1, 

DDHD1, and SLC16A2; HSP seeds), 3 for 1 (GAD1, test seed), 4 for 2 (HACE1, test seed; RAB3GAP2, 

HSP seeds), and 6 for 1 (KCNA2, test seed). Such a low number of interactors could explain why 

these were not connected with the rest of the graph. The average number of seeds’ interactors 
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from the filtered PPIs was 36 and the median 21, which shows that they had fewer chances on 

being connected with a node that also connects to another seed. However, the HSP seed SPG21 

and the test seed EXOSC3 had 10, and 21 interactors, respectively, and still were not connected to 

the rest of the graph. Interestingly, SPG21 connected through one interactor with another seed 

(i.e., GAD1, test seed) but they failed to connect with the rest of the seeds. 

There are three hypotheses for the presence of the 14 small unconnected graphs: (i) either the 

interactions linking some of the seeds have not been discovered or curated in PPI databases by the 

time of the analysis (possibly explaining the absence of understudied proteins with limited number 

of interactors), or (ii) these links are not direct, but instead mediated by two or more interactors, or 

(iii) they are truly not connected and thus potentially mutations in these genes cause HSPs through 

a different mechanism/pathway.  

Through the exploration of the 2nd layer HSP network, it was unveiled that the second hypothesis 

was indeed able to explain all the disconnected test seeds (i.e., GAD1, HACE1, and KCNA2), and 

most of disconnected HSP seeds (i.e., ATL1, AP5Z1, B4GALNT1, DDHD1, EXOSC3 RAB3GAP2, 

SLC16A2, SPG11, SPG21, TECPR2), including SPG21 and EXOSC3. In fact, the addition of the 2nd layer 

interactome was able to connect nearly all of the seeds in a unique graph. However, C12orf65, and 

ENTPD1 were still not part of the 2nd layer network. Therefore, their absence from the global 

network would need to be explained by one of the three hypotheses mentioned above: the seeds 

are understudied, 2 or more interactors (in this case more than 2) mediate the connection with 

other seeds, or they are actually not connected to the other HSP seeds. The 3rd hypothesis would 

indeed explain the existence of a unique clinical feature for people with mutations in ENTPD1 (i.e., 

aggressive behaviour [351]). No unique clinical feature was identified for people with mutations in 

C12orf65 to the best of my knowledge, however, it produces a mitochondrial protein, so it could be 

hypothesised that HSP is developed through a different pathway. This is further supported by the 

absence of most other mitochondrial proteins from the global network.  

 

2.5.2 Proteins of the core network 

 

The global network was then filtered to include the interconnected part of the network, in which 

interactors link at least two proteins derived from HSP genes (i.e., seeds). This part of the HSP-PPIN 

is the core network and its analysis can lead to important observations. 
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Out of the initially selected 83 seeds, 53 were retained in the core HSP-PPIN (Fig 2-2) and 68 were 

part of the core network of the 2nd layer HSP-PPIN. This indicates that they are functionally 

associated and therefore convergent molecular mechanisms can lead to the development of HSPs. 

In this study test seeds were included, which are genes that have been controversially linked to 

HSPs with no general consensus. Eight test seeds were present in the core HSP-PPIN, providing in 

silico evidence to suggest their importance in the HSP system. The presence of the test-seeds 

BICD2, CCT5, KIDINS220, ACO2, LYST and IFIH1 in the network is in alignment with the biological 

processes and cellular components suggested to play a role in HSPs from the present and previous 

research, namely vesicle-mediated transport, protein folding, cell death, metabolism, and antiviral 

responses [414-421]. The latter process’ link to HSP is supported by the findings of this work but 

has yet to be strongly associated with neurodegeneration. However, the implication of IFIH1 in the 

Aicardi-Goutières syndrome is suggestive, as it is disorder affecting the brain, immune system and 

skin and its symptoms include spasticity, dystonic posturing, and other neurological dysfunctions 

[415]. The incorporation of ALS2 in the core HSP-PPIN is unsurprising, because it is accepted as an 

HSP gene from many clinicians and researchers [170, 338, 355]. However, there was no previous 

indication that CCDC50 is linked to HSPs except based on its chromosomal location. CCDC50 is in 

the 3q28 genetic locus, while the locus containing the generic risk association detected for the HSP 

subtype SPG14 is 3q27-28 [422]. CCDC50 directly interacts with two proteins that are shared 

interactors of six HSP-seeds (which is more than 95.5% of the proteins of the global and 74.5% of 

the proteins of the core HSP-PPIN). This result is an in silico prediction (based on the analysis of the 

CCDC50 interactome) that alterations in CCDC50 could be causing the SPG14 HSP type. Therefore, 

based on the physical association of the proteins derived from these test seeds with other proteins 

whose mutations lead to HSPs, it is suggested to screen for mutations in these genes for the HSP 

cases with unidentified genetic cause. 

Of note, genes that were later found to be associated with HSPs were present in the HSP network 

either in the first or second layer. Two genes that were found to be causative for HSPs after the 

data analysis for the current work, RNF170 and SPTAN1 [398, 404], with the former being present 

in the global HSP network (1st layer) and directly connected to ERLIN2. The latter was present in the 

2nd layer of the core HSP network and was connected to 11 HSP seeds through one protein. Out of 

the total 9 proteins associated with HSP after the seed selection for this project, 7 were found 

either in the 1st or 2nd layer core HSP-PPIN (78%) (Table 2-12). These results are showcasing the 

clinical and biological relevance of the HSP-PPIN analysis as a tool to identify and prioritise 

candidate genes from genetic analysis of HSP patients, and to hint about key processes involved in 

the disease mechanism. 
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In conclusion, PPIN analysis is a valuable tool that can indicate mechanistic links between different 

genes implicated in a disease. Furthermore, PPIN may be applied as a tool to prioritise candidate 

genes for explaining the genetic association between disease and risk loci. 

 

2.5.3 Functional enrichment 

 

Analysing a disease-focused PPIN based on functional annotation provides an opportunity to 

increase our understanding of the underlying mechanism(s) using a holistic approach. Therefore, 

enrichment was performed for the components of the core HSP network using three independent 

tools, g:Profiler, Gene Ontology, and WebGestalt for functions, and using Reactome for pathways 

to unveil commonalities across network components. 

These tools resulted in similar but not identical lists of GO terms, Enrichment Ratios, or p-values, 

even though whenever given the opportunity the same (or the most similar) options among tools 

were chosen. This is due to three main reasons. Firstly, the tools were using different versions of 

the GO data (28/12/2018, 02/02/2019, and 01/14/2019, respectively for g:Profiler, Gene Ontology 

and WebGestalt). Secondly, the statistical tests they were using were slightly different 

(Overrepresentation enrichment analysis, Fisher’s exact test, and Overrepresentation enrichment 

analysis, respectively). Thirdly, the specific parameters within the statistical tests were not identical 

(significance threshold: p-value<0.05, p-value<0.05 and FDR<0.05, respectively). All the 

aforementioned differences are acceptable alternatives to analyse functional enrichment [111] but 

the specifics of the results could change across tools. Therefore, there was no attempt in this 

project to compare the enrichment ratios or p-values among the three tools; the identity of the 

enriched GO terms and the functional classes of GO terms were compared, instead, to evaluate the 

consistency of the results across enrichment tools. Overall, using more than one tool for functional 

enrichment -even though it is challenging- is beneficial, as it removes the bias associated with 

specific choices in a statistical test or its parameters, and increases the confidence on any drawn 

conclusions [111]. 

Even though the number of specific terms resulted from the functional enrichment was high 

(n=347), several common themes arose. After level 2 grouping of the GO terms, the categories with 

the highest number of enriched GO terms “Intracellular organisation” (25.1%), “Transport” (23.6%), 

and “Protein localisation” (15.9%), and “Cell death” (8.9%) (Fig 2-4 and 2-5). The groups with the 

highest number of associated genes were “Intracellular organisation” (87.4%), “Transport” (63.6%), 

“Protein metabolism” (58.7%) and “Protein localisation” (44.8%) (Table 2-11), which is not identical 
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but in accordance with the previous results. In addition, most of the specific terms describe 

functions related to protein transport (e.g., protein targeting), regulation of protein level (e.g., 

protein metabolic process, ERAD pathway) and vesicle dynamics and transport (e.g., multivesicular 

body organisation, vesicle organisation, vesicle mediated transport). Of note, the notion that 

protein transport and vesicle dynamics are in the centre of the functions implicated in the 

development of HSPs is supported by several previous publications. Particularly, much evidence 

supports the implication of intracellular active transport, endolysosomal trafficking pathway and ER 

shaping in HSPs [170, 332-334]. Interestingly, functional publications were not used for the 

generation of the HSP-PPIN, therefore the conclusions obtained here based on PPIs represent a 

further validation of some of the published functional analyses. 

Intracellular active transport has been strongly associated with HSPs. Three genes have been 

shown to have such roles (i.e., KIF5A [423], KIF1A and KIF1C [424], involved in HSP type SPG10, 

SPG30 and SPG58 respectively) and indications exist for numerous others (e.g. SPAST [425, 426], 

ATL1 [427, 428], SPART [429], and NIPA1 [430], involved in HSP type SPG4, SPG3, SPG20 and SPG6 

respectively). For example, mutations in the former genes all lead to lower affinity for microtubules 

[423, 424, 431] and more specifically in KIF5A this has been shown to lead to a decrease in the 

speed of microtubule-dependent anterograde axonal transport [423]. Even though only two of the 

three proteins strongly linked to intracellular active transport and half of the indicated ones were in 

the core network, the functional enrichment analysis showed transport and intracellular 

organisation to belong in the most enriched categories in agreement with the aforementioned 

published data. 

Endolysosomal trafficking pathway has recently been reported to be dysfunctional in HSP models. 

More specifically, a recent study showed that in SPG48 patient fibroblasts there was accumulation 

of membrane material in endolysosomes, and in a mouse model where AP5Z1 (i.e., the gene 

responsible for SPG48) was mutated there was dysfunction in the vesicular-mediated trafficking of 

cargoes [432]. Additionally, the loss of function of the proteins of the HSP types SPG11 and SPG15 

(i.e., spatacsin, and zinc finger FYVE domain-containing protein 26, respectively), leads to an 

impairment of the autophagic lysosome reformation process [433]. Alternatively, it has been 

suggested that the lysosomal dysfunctions observed in HSP models could be caused by a decrease 

in the degradation capacity [170]. Both hypotheses are in accordance with this project’s findings, as 

terms associated with vesicles, endosomes, and transport, as well as proteolysis and protein 

metabolism were amongst the enriched ones. 
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ER shaping has been suggested to be a key pathway linked to the aetiology of the HSPs, as 

numerous proteins related to HSPs have been associated with this process, including RAB3GAP2, 

ARL6IP1, REEP2, and ATL1 [332, 434] (involved with HSP type SPG69, SPG61, SPG72 and SPG3, 

respectively). For example, ATL1, SPAST and REEP1 encode proteins with hairpin loop domains, 

which they insert into the tubular ER membrane, contributing to its shaping [170]. In more detail, 

ATL1 is involved in the creation of the three-way junctions between ER tubules [435-437], SPAST in 

the linkage of the ER with the microtubules [438] and REEP1 in the formation and stabilisation of 

the ER tubular network [439]. Based on the present analysis, the most enriched GO term using 

g:Profiler (Fig 2-3) was “endoplasmic reticulum tubular network formation”, suggesting that this 

indeed could be a mechanism leading to HSPs. However, this term resulted from the presence of 

three out of only four proteins with this function, so whereas it could explain its association with 

some subtypes, it does not seem to explain the underlying mechanism of most HSPs. 

Evidence suggests that lipid metabolism is implicated in the mechanism of some HSPs [440-442]. 

This might be true for specific types of HSPs, such as SPG26 (B4GALNT1) [443, 444], SPG46 (GBA2) 

[445-447], and SPG5A (CYP7B1), which encode enzymes directly involved in the synthesis of the 

ganglioside [444], the hydrolysis of glucosylceramide [447] and the metabolism of cholesterol 

[448]. However, this idea was not supported by the functional enrichment analysis of the core 

network that included most of the genes associated with the disease, as no related GO term was 

obtained. 

The role of mitochondria has also been hypothesised to be involved in HSPs [449-453], for example 

in HSP type SPG13 (HSPD1) [449] and SPG7 (SPG7) [450], through the disruption of mitochondrial 

quality control and the axonal accumulation of mitochondria, respectively. Even though some 

related GO terms resulted from the analysis of this project, most of them are describing functions 

related to protein transport and membrane organisation, which have been found to be enriched in 

the rest of the organelles and cell as well. So, there is no evidence from this analysis supporting 

that mitochondria are particularly important for most HSPs. However, it has to be noted that most 

mitochondrial-related seeds were not part of the network, as not enough PPIs, or of not good 

enough quality were detected. Therefore, it can not be excluded that mitochondria could play an 

important role in the development of HSPs, perhaps through a different mechanism.  

Interestingly, the specific GO term substantia nigra development was obtained. This is in 

accordance with the clinical features of HSPs but problems in its development have not previously 

been suggested to be one related to the disease mechanism of HSPs to the best of my knowledge. 
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Such a result needs to be further analysed and evaluated using in vivo and in vitro experiments as 

well as genetic analysis of HSP patients with unidentified causative genes. 

There have been multiple reviews suggesting the main disease mechanism(s) of HSPs. The results 

of this chapter support the involvement of some of these suggestions. Out of the ten mechanisms 

suggested by Lo Guidice et al [355] those supported by the results of this work were mainly 

endosome membrane trafficking and vesicle formation, abnormal membrane trafficking and 

organelle shaping, dysfunction of axonal transport, but also, axon development. Regarding the 

main HSP mechanisms prioritised by de Souza et al [338], out of the total 5, those in accordance 

with this work were membrane trafficking and organelle shaping, and axonal transport. Our results 

are in most agreement with the suggestion from Blackstone [333] that the key biological processes 

are the organelle shaping and biogenesis and the membrane cargo and trafficking, further 

supporting the hypothesis that the HSPs could be considered transportopathies [454]. These results 

highlight the potential of the approach of PPINs coupled with functional enrichment that can 

identify the most relevant functions among the genes of interest associated with a complex 

disease, which is essential for discovering disease modifying targets and interventions. 

A previous study that analysed HSPs together with CMT2 proposes some different pathways to be 

involved in the disease mechanism of HSPs (i.e. Epstein-Barr virus infection, Herpes simplex 

infection and Antigen processing and presentation) [335]. The discrepancy between this study and 

the results of this project can be explained by differences in the methodology. Specifically, the 

authors used a list of 95 HSP genes as seeds to build a network, which included several genes that 

have not been associated with HSPs in the literature. Then the network was expanded using the 

DIAMOnD algorithm, which aims to identify additional disease proteins based on network analysis 

[154]. After this step, the network was analysed for functional enrichment in its entirety. This 

decision contradicts the suggestions of the creators of the algorithm, as the resulted HSP-candidate 

genes were not filtered based on topology or functional similarity before the subsequent analysis, 

which could lead to the incorporation of numerous false positive results [154]. Lastly, their data 

(DAVID v.6.8; HIPPIE v2.0) were of 2016 (e.g., HIPPIE v2.0 had 100,000 less interaction than its 2019 

version) and also included predicted interactions. On the other hand, in this study through the use 

of PINOT, only the manually curated, and experimentally demonstrated with at least two methods 

or publications PPIs were used. In addition, the seeds were carefully chosen to include only those 

that have been linked to HSPs through genetic studies on HSP patients. Furthermore, the core 

network consists of only the seeds that connect directly or through one node, and the nodes that 

connect at least two seeds. Lastly, the PPIs were collected from primary databases through 

PSICQUIC, which ensures the usage of the latest version of each database. Thus, in this PhD project 
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only the most relevant proteins were included in the HSP-PPIN and the higher number of up-to-

date PPIs were filtered based on their quality. 

 

2.5.4 Association of HSP with related diseases 

 

Some genes related to disorders of the spastic-ataxia spectrum or with similar clinical phenotypes 

were either main HSP genes (HSP seeds), or among those selected to be part of the additional seed 

list for the generation of the HSP network (test seeds) (Table 2-3). Interestingly, some of these 

genes were indeed present in the core network: 

• ALS2 was part of the core network, suggesting an association of Infantile onset ascending 

spastic paraplegia with HSPs. Mutations in ALS2 can cause Infantile onset ascending spastic 

paraplegia [343], Juvenile primary lateral sclerosis [455] and Amyotrophic Lateral Sclerosis 2 

[345]. Infantile onset ascending spastic paraplegia’s only known genetic cause so far is ALS2 

[456]. Most researchers agree that this disease belongs to HSPs, so its presence in the core 

network was not surprising, but instead it could provide additional validation of that notion. 

 

• SPG7, and PNPLA6 are part of the core network and are also associated with Hereditary 

cerebellar ataxias (HCAs) [457, 458]. Interestingly, SPG7 is a very common gene leading to 

cerebellar ataxia [459]. Mixed phenotypes of HSPs and HCAs can be caused by GBA2, and 

KIF1C, which were also part of the core HSP-PPIN. Briefly, GBA2 leads to cerebellar ataxia 

with spasticity [445], while KIF1C causes predominant cerebellar ataxia with spasticity in the 

lower limbs [460]. Additional genes are involved in both diseases, such as F2H [461-463], 

SYNE1 [464-467], PLA2G6 [468], and KCNA2 [363-365], supporting the notion that HSPs and 

HCAs could be part of the same spectrum and the use of the term spastic ataxia [336, 409, 

469]. Even though a handful of genes are implicated in both diseases, or show mixed clinical 

phenotypes, through this study only 4 were found to be in the core network.  

 

• PDK3 was also part of the network and is associated with Charcot Marie Tooth. It leads to an 

X-linked form of Charcot Marie Tooth, CMTX6 [470]. Interestingly, it was a direct interactor 

of two seeds, and through one protein connected with 20.7% of the core HSP-PPIN, including 

4 seeds. This disease is linked with Hereditary Spastic paraplegias, as spastic paraplegia can 

be present in people with Charcot Marie Tooth [471] and there are also commonalities in the 

associated biological processes. Mutations in motor proteins, such as KIF5A and KIF1C can 
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lead to HSPs, while cargo transport dysfunction (e.g., DYNC1H1, DNM2) can lead to Charcot 

Marie Tooth [471, 472]. 

 

Of note, based on the previously discussed results regarding the associated biological processes 

linked to HSPs, several similarities can be observed with the ones linked to Parkinson’s disease. In 

more detail, it has been associated with disruptions in the endolysosomal trafficking pathway [473-

476], lipid metabolism [477] and the function of the substantia nigra [198]. Interestingly, a previous 

study using network analysis supports this observation, as it demonstrated a significant functional 

link between genes of HSPs and Parkinson’s disease [337]. This suggests that different 

neurodegenerative diseases could have more common functional pathways than could be 

indicated based on their clinical manifestations. However, no supporting data for this hypothesis 

were found though this project. 

The presence of genes in the core HSP-PPIN that are also implicated in other diseases could hint 

about functional connections between them. However, a more dedicated study in which two 

networks, one for HSPs and one for the other disease (e.g., HCAs), are built and compared, could 

provide a stronger indication about their possible overlap and differential biological mechanisms. 
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3. Further analysis of HSPs based on clinical features 

 

Main points of this chapter: 

• The Hereditary Spastic Paraplegias are clinically heterogeneous, so a number of disease 

features were studied for potential mechanistic discrepancies 

 

• The analysis of the mode of inheritance and the type of Hereditary Spastic Paraplegias 

failed to suggest any differences, in contrast to clinical presentations.  

 

• A combinatorial analysis based on enrichment followed by application of machine learning 

tools suggested 2 clinical subgroups of Hereditary Spastic Paraplegias: 

o  TS cluster (Thinning of corpus callosum & Seizures) 

o EPOD cluster (Early onset, Peripheral neuropathy, Optical atrophy, and 

Dementia/mental retardation) 

 

• Enrichment suggested protein quality control and degradation potentially through the 

ERAD pathway to be especially important for the TS cluster, while for the regulation of 

protein localisation and transport in neurons via vesicles to be more tightly associated with 

the EPOD cluster. 

 

3.1 Introduction 

 

The Hereditary Spastic Paraplegias (HSPs) are a complicated group of heterogeneous 

neurodegenerative diseases characterised by progressive spasticity and weakness of the lower 

limbs [166] accompanied by degeneration of the upper-motor neurons [167]. The heterogeneity 

and complexity of HSPs derive from the clinical presentations as well as the underlying genetic 

causes. The age of onset can vary from early childhood to late adulthood, all modes of inheritance 

can be observed, and the form of the disease can be pure or complicated. Complicated forms of 

HSPs are defined by the co-occurrence of additional symptoms, including peripheral neuropathy, 

seizures, dementia or mental impairment and optic atrophy [168] (Table 1-1; Section 1.4.4). 

Regarding the genetic complexity, mutations in over 70 genes [169] have been associated with 

HSPs, which is one of the highest numbers of causative genes associated with a single Mendelian 

disease [333]. In such a complex scenario of presentations with a vast array of genetic components 
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involved in disease pathogenesis, it is not quite clear if all these disease presentations, albeit being 

classified under the same term of HSPs, can be referred to the same molecular alteration. This 

missing piece of knowledge is extremely important to support clinical classification and therapeutic 

investigation. 

This work is the first study in which PPINs solely based on experimentally detected and manually 

curated human PPIs of HSP genes are applied to the investigation of HSPs to identify biological 

processes involved in disease subtypes following stratification based on the presentation of specific 

clinical features.  

 

3.2 Aims and Objectives 

 

The aim of this chapter is to investigate whether clinical features tend to aggregate in some groups 

of proteins of the HSP-PPIN and thus provide a mechanistic link between genetic mutations and 

clinical presentations. 

The objectives of this chapter is to: (i) layer clinical data related to (1) the form of HSP (pure or 

complicated), (2) the mode of inheritance (autosomal dominant, autosomal recessive, 

mitochondrial, and X-linked), and (3) a list of clinical presentations in people with HSP (such as 

thinning of corpus callosum and seizures), (ii) investigate whether there are any clinical clusters in 

the network, and (iii) if any clusters are present, perform further analysis based on enrichment.  

 

3.3 Methodology 

 

3.3.1 Source of clinical data 
 

After consultation with a collaborator and an expert in HSPs, Prof Henry Houlden, the source of 

clinical data was chosen to be extracted from the database of the Neuromuscular Disease Centre of 

Washington University in St Louis, MO, USA [351].  

 

3.3.2 Enrichment 
 

Enrichment for biological processes was performed as described in Chapter 2. The same process 

was also followed for enrichment of cellular localization using the GO category Cellular Component, 
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which were grouped in semantic classes (level 1 grouping), and those further grouped in location 

blocks (level 2 grouping).  

Pathway enrichment was performed as described in Chapter 2 using Reactome’s online analysis 

tool (v69& v70 in September and December 2019) [397]. 

 

3.3.3 Principal component analysis & Hierarchical clustering 
 

Principal Component Analysis (PCA) was conducted through R (v. 3.6.1) using the prcomp() function 

of the stats package to compare functional enrichment profiles. The analysis of both the number 

and percentage of GO terms in each functional block was considered essential because there was a 

substantial difference in the number of resulted GO terms of the 6 groups, whose functional 

enrichment profiles were compared (19<n<114). The same process was followed for the 

comparison of the cellular localisation profiles of the clinical clusters. 

Hierarchical clustering was performed using the hclust() function (R stats package) based on the 

distance of the groups in the PCA plot (i.e., Euclidean distance) producing the cluster dendrogram. 

However, one unit of distance in the x-axis of the PCA plot is more important than on the y-axis, as 

PC1 (x-axis) explains more variation than PC2 (y-axis). Therefore, the coordinates of each clinical 

group were transformed, by multiplying them with the explained variation, leading the distance 

between points to have the same significance in any direction and can thus to be suitable for the 

subsequent analysis with hierarchical clustering. Choosing the number of clusters derived from the 

hierarchical clustering  that best fit the data was based on the Multiscale bootstrap resampling 

method, using the R package pvclust [478] that assigns p-values to the branches of the 

dendrogram. In this package, the pvclust p-value shows that confidence in each result (e.g., 

pvclust=0.95 shows 95% confidence). After identifying the clusters, the overlap of protein 

components for a pair of subnetworks, was compared for subnetworks that belonged in the same 

versus different clusters. This was performed using two tailed t-test with unequal distribution.  

 

3.3.4 Distance index and Pearson’s correlation 

The number of genes displaying a pair of clinical features was compared with the expected number 

based on their frequencies. The enrichment ratio for each clinical feature (fx) compared to the 

frequency of a feature (fa) was calculated (Rfx-a) (see Enrichment Ratio formula) and then 
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normalised with the enrichment ratio of the clinical feature to itself (Rfa-a) by calculating the 

following:  

𝑅𝐷𝑖𝑓𝑥_𝑎 =
𝑅𝑓𝑥 − 𝑅𝑓𝑎

𝑅𝑓𝑎
 

Then, the difference of the normalised ratio of each clinical feature with the rest is calculated. The 

sum of the absolute differences between all the ratios of two features was calculated and named 

distance index. 

Pearson’s correlation (r) was performed between all the normalised enrichment ratios (RDifxa) of 

two features. The p-value was calculated using the formula:  

𝑝 − 𝑣𝑎𝑙𝑢𝑒 =
r ∗ √n − 2

√(1 − r2)
,  

with n being the number of comparisons (n=5, as the Rfa-a were removed) 

 

3.4 Results 

 

3.4.1 HSP analysis based on mode of inheritance  
 

It was investigated whether the mode of inheritance of different HSPs is clustered in different parts 

of the HSP network, which could indicate that there are mechanistic subtypes of HSP. The clinical 

data regarding the mode of inheritance were visualised in the core HSP-PPIN (Fig 3-1A), and the 

cores of these networks were extracted (Fig 3-1B and C). Even though HSPs can have autosomal 

dominant, autosomal recessive, mitochondrial and X-linked inheritance, only the core network of 

the first two will be studied. This is because there were no genes with mitochondrial inheritance in 

the core HSP-PPIN, and those with X-linked inheritance were only 2 and connected through more 

than one interactor, so no core network could be extracted.  

There are 41 autosomal recessive genes in the network, and 14 autosomal dominant genes, out of 

which 5 have both modes of inheritance, which corresponds to 12.2% and 35.7% of each respective 

group. The autosomal dominant-network consists of 83 and the autosomal recessive-network of 

143 proteins, with 79 common proteins (95.2%, and 55.2%, respectively). Functional enrichment of 

these networks resulted in 36 and 43 semantic classes, and 9 and 10 functional blocks respectively. 

A comparison of the results of the two networks is shown in Table 3-1. The autosomal dominant-
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network had 1 unique semantic class (1/36, 2.8%), and no unique functional blocks (0/9, 0%), while 

the autosomal recessive-network had 8 unique semantic classes (8/43, 18.6%) and one unique 

functional block (1/10, 10%). 

These results are hard to interpret due to the low number of unique semantic classes for the two 

categories and their identity. If these results are studied in isolation, it could be claimed that the 

unique semantic classes of autosomal recessive- differentiate it from the autosomal dominant-HSP 

network. For example, “Protein localisation – mitochondria” and “Transport - intracellular – 

axonal” can lead to the conclusion that mitochondria and neurons play a more important role in 

the autosomal recessive-network. This is -however- not the case because of other shared semantic 

classes, such as Transport - intracellular - mitochondria” and “Transport - intracellular - neuron - 

dense core vesicle”. However, it could be claimed that the autosomal dominant-network has a 

preference to multivesicular body sorting pathway, while the autosomal recessive in autophagy, 

and that maybe cytoskeleton is more important for the autosomal recessive -network, as there are 

no semantic classes related to cytoskeleton for the autosomal dominant-network. Nonetheless 

these are not substantial differences, and in combination with the large overlap of the two 

networks, no strong conclusions can be drawn from this analysis.  
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A. 
           

B. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C. 

 
 
 

 

Figure 3-1. Analysis of the HSP mode of inheritance in the core HSP-PPIN 

(A) The mapping of the mode of inheritance in the core HSP-PPIN. (B) The autosomal recessive HSP network. (C) The autosomal dominant 

HSP network. 
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3.4.2 HSP analysis based on form of HSPs 
 

It was investigated whether the form of HSP (complicated or pure) is clustered in different parts of 

the HSP network, which could indicate that there are mechanistic subtypes of HSP. The clinical data 

regarding the form of HSPs were added in the core HSP-PPIN (Fig 3-2A), and the core of these 

networks was extracted (Fig 3-2B, and C). 

There are 38 complicated genes in the core HSP-PPIN, and 12 pure, out of which 8 have both forms. 

The complicated-network consists of 145 and the pure-network of 56 proteins, with 49 common 

proteins (which corresponds to 33.8%, and 87.5% of the total number of proteins of the respective 

networks). Functional enrichment of these networks resulted in 49 and 11 semantic classes, 

grouped in 11 and 5 functional blocks respectively. A comparison of the results of the two networks 

is shown in Fig 3-3 and Fig S3-1 (Appendix C), based on the percentage and number of the GO 

terms, respectively. The complicated HSP network had 38 unique semantic class (38/49, 77.6%), 

and 7 unique functional blocks (7/11, 63.63%), while the pure HSP network had no unique semantic 

classes nor any unique functional blocks.  

 

Table 3-1. Unique semantic classes and functional groups for the AD- and AR- HSP networks 

Mode of 

inheritance 
Unique semantic classes Unique functional groups 

Autosomal 

dominant 

1. Waste disposal - ubiquitin-multivesicular body sorting 

pathway 
- 

Autosomal 

recessive 

1. Cell cycle 

2. Intracellular organisation - cytoskeleton 

3. Intracellular organisation – vesicle 

4. Protein localisation – mitochondria 

5. Protein metabolism - protein complex organisation 

6. Transport - intracellular – axonal 

7. Transport - intracellular - cytoskeletal 

8. Waste disposal – autophagy 

1. Cell cycle 
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A.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.  

 

 

 

 

 

 

 

 

 

 

 

 

 

C.  

 

 

 

Figure 3-2. Analysis of the HSP form in the core HSP-PPIN 

(A) The mapping of the form of HSP in the core HSP-PPIN. (B) The complicated HSP network. (C) The pure HSP network. 
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Hypotheses can be formed by observing the distribution of the GO terms. Based on their 

percentage (Fig 3-3), it can be claimed that the pure network has a specificity to the functional 

groups “Physiology host-virus”, “Response to stimulus” and “Waste disposal”, as these are around 

3, 10 and 7 times higher compared with the complicated network. However, when taking into 

account their numbers, this claim seems weak, as they are similar or lower, with 6, 16, and 6, 

compared to 25, 18, and 9 for the pure versus complicated HSP network, respectively. 

 

3.4.3 HSP analysis based on a set of clinical features 
 

3.4.3.1 HSP clinical subtypes’ specific networks 

The typical HSP phenotype can be present with a wide group of clinical features in different 

individuals. These include peripheral neuropathy (P), thinning of the corpus callosum (T), seizures 

(S), dementia or mental retardation (D), and optic atrophy (O). Some patients also manifest early 

disease onset (E). Medical reports and case studies sometimes declare the presence of the above 

clinical features in cases with mutations of HSP genes. Therefore, the seeds of the HSP core 

network were colour-coded based on the clinical features to which they can lead (Fig 3-4). Of note, 

some seeds are associated with just 1 feature (n=9, 16%) while others with 2 (n=18, 32%), 3 (n=12, 

21%), or 4 (n=7, 12%). This incorporation of clinical information in the seeds of the network allowed 

the extraction of 6 subnetworks from the core-HSP PPIN, each of them collecting the 

interconnected seeds (and their interactors) that were associated with each specific clinical feature 

(Fig S3-2, Appendix C). 
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Enrichment of biological processes (GO-BPs) was performed for each clinical subnetwork, using 

g:Profiler, Gene Ontology and WebGestalt, as previously described. The percentage and numbers 

of GO terms within each functional block were measured to weight their relevance to the HSPs (Fig 

3-5 and Fig S3-3, Appendix C).  

The number of functional groups (13) and of the clinical subnetworks (6) required a more 

sophisticated method for their comparison. Principal components analysis (PCA) was therefore 

utilised to reduce the complexity of these functional enrichment results to 2 principal components, 

allowing the comparison of the 6 clinical subnetworks (Fig 3-6A). The chosen principal components 

were PC1 and PC2 due to their high explained variation (Fig 3-6B). In the PCA graph, each clinical 

subnetwork is represented by a single point and interestingly some were clustered together (Fig 3-

6A). More specifically, the functional enrichment profiles of the clinical features peripheral 

neuropathy, optic atrophy, dementia or mental retardation, and early onset displayed a similar 

reduction to PC1 and PC2. Of note, this result was obtained with PCA performed on both the 

percentage of the GO terms in each functional block (Fig 3-6) and their number (Fig S3-4). 

 

Figure 3-4. Visualisation of clinical characteristics of HSPs caused by each HSP gene in the core HSP-PPIN 

The presence of clinical characteristics in HSPs is visualised in the core HSP-PPIN by the colour of each node. The colour correspondence 

is located on the top right of the image. The nodes corresponding to the HSP-seeds have a black border, while the test-seeds have a red 

border. The size of each node positively correlates with its degree. The thickness of each edge positively correlates with its final score 

calculated by PINOT. The network was visualised using Cytoscape. Adapted from [403]. 
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A. 

                

B. 

 

Figure 3-6. Principal Component Analysis performed for the comparison of the clinical subnetworks 

(A) The percentage of GO-BP terms for each functional group was analysed with PCA through R, 

resulting in the PCA graph, which shows the distribution of the gene groups in the PC1 and PC2 axes. (B) 

The explained variation from each PC axis. (The results for the analysis based on the number of GO-BP 

terms in shown in Fig S3-4.) Adapted from [403]. 

 

Even though the PCA plot can provide an initial visual insight into potential clustering, the more 

dedicated method, hierarchical clustering (HC), was used to determine the clusters within the PCA 

graph. The results of the HC were plotted into a cluster dendrogram (Fig 3-7 & Fig S3-5). In order to 

find the number of clusters that best fits the data, the Multiscale bootstrap resampling method was 

used [478] (Fig S3-6). This method suggested the existence of 2 clusters: Cluster A, and Cluster B, as 

seen in Fig 3-7, with a 99%, and 91% confidence (pvclust p-value =0.99 and 0.91 respectively). This 

method also led to the same result using the number of GO-BP terms (Fig S3-5). Cluster A is 

composed of two clinical groups: thin corpus callosum and seizures (from now on named TS), while 

cluster B is composed of four groups: early onset, peripheral neuropathy, optic atrophy and 

dementia or mental retardation (from now on named EPOD). 
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Figure 3-7. Hierarchical clustering performed for the comparison of the clinical subnetworks 

Cluster dendrogram produced based on hierarchical clustering of the gene groups as analysed in Fig 3-6. 

(The results for the analysis based on the number of GO-BP terms in shown in Fig S3-5) Adapted from [403].  

 

The co-clustering of the T and S is not surprising as they shared 23 proteins, with their only 

difference being that the former had 5 extra proteins. The common proteins corresponded to 100% 

of the proteins of S and to 82.1% of the proteins of T. Interestingly, another pair of datapoints that 

clustered together based on hierarchical clustering consists of E and O, which have shared 

components. Their common proteins are 33, which is 29.8% of the proteins of E and 81.0% of the 

proteins of O. These results prompted the exploration of additional overlaps, shown in Table 3-2. 

Table 3-2. Overlap of protein composition among clinical subnetworks 

 D E O P S T 

D 100% 48.2% 45.2% 28.8% 100% 89.3% 

E 96.5% 100% 81.0% 60.3% 100% 96.4% 

O 33.3% 29.8% 100% 53.4% 8.7% 7.1% 

P 36.8% 38.6% 92.9% 100% 21.7% 17.9% 

S 40.4% 20.2% 4.8% 6.8% 100% 82.1% 

T 43.9% 23.7% 4.8% 6.8% 100% 100% 

Note: The overlap is calculated as a percentage of the total proteins of the subnetwork of the 

corresponding column. With orange colour are the comparisons within the same cluster, while in 

green those between clusters.  Adapted from [403]. 
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To explore whether the similarity of protein composition drives the results of HC, the percentage of 

overlapping protein identity between gene groups within the same cluster was calculated and 

compared with the percentage of overlapping protein identity between different clusters (Fig 3-8). 

The comparison of overlapping protein identity within the same cluster and between clusters was 

not significant (p=0.07). This result indicates that an increased overlap of proteins between two 

clinical subnetworks is insufficient to drive their co-clustering in the PCA graph, as determined by 

HC. 

 

3.4.3.2 Matching with clinical data 

 The PCA and HC analyses indicate that the functions related with the HSP genes could be distinct 

between the two clusters. Such a functional difference could indicate that the features of each 

cluster would tend to co-occur in patients as they might be caused through the same mechanism. 

Interestingly, the analysis of clinical data that included the presence of these features in patients 

with mutations in various HSP genes, showed that in most cases the order that the clinical features 

tend to co-occur in patients follows the order of similarity of functional profiles, as suggested by 

the cluster dendrogram (Table S3-1).  

When the results were analysed through Pearson’s correlation (Table S3-2), the TS cluster 

significantly positively correlated (T with S, p-value 0.0003). In addition, a pair of the EPOD cluster, 

also positively correlated (P with O, p-value 0.0010). This result further supports the previous 

findings supporting a functional connection of the components within the clusters TS and EPOD. 

 

 

 

 

 

 

 

 

 

 

3.4.3.3 Exploring potential differences between the clusters 

An initial functional insight into the clustering of the PCA data was provided by the loading score of 

each functional block (Fig 3-9 and Fig S3-4C). More specifically, the overlap of the PCA graph and 

 

Figure 3-8. Comparison of the overlap of proteins between two subnetworks that belong in different 
(left) or the same (right) cluster(s).  Adapted from [403]. 
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the loading score graph can provide an explanation as to which functional blocks guide the 

localisation of each clinical subnetwork in a particular position in the graph. For example, thin 

corpus callosum and seizures (T & S) were clustered together mainly based on higher similarities in 

the functional blocks “metabolism”, “protein metabolism”, and “waste disposal” (from the 

comparison of Fig 3-6A and Fig 3-9). 

 

 

 

Figure 3-9. Loading score of PCA for the analysis based on the percentage of GO terms 

 

The putative differences of the two clusters were further explored with enrichment analysis in two 

levels: biological processes, and cellular components. Comparing the functional profiles of the two 

clusters (see Fig 3-10, Fig S3-7) suggested some differences in the distribution of the enriched GO 

terms. The TS cluster resulted in 25 terms, 12 semantic classes and 5 functional groups, while EPOD 

in 158 terms, 56 semantic classes and 10 functional groups. There was an overlap in the identity of 

the terms (n= 14, which is 56.0% of those of TS, and 8.9% of those of EPOD), semantic classes 

(n=10, which is 83.3% of those of TS, and 17.9% of those of EPOD) and of the functional groups 

(n=4, which is 80% of those of TS, and 40% of EPOD).  
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However, there was a differential distribution of the GO terms in each functional block. The 

functional groups “Waste disposal” (n=10, 40.0%) and “Protein metabolism” (n=6, 24.0%) were 

suggested to be some of the most important processes in the cluster TS, based on the percentages 

of their GO terms. In accordance with these results, it should be mentioned that the unique 

functional group of TS was “Metabolism”, which included 3 semantic classes related to the 

catabolic process (e.g., macromolecule catabolic process (GO:0009057)). In contrast, for EPOD the 

most important functional groups were “Intracellular localisation” (n=34, 21.5%), followed by 

“Transport” (n=27, 17.1%), and Protein localisation (n=22, 13.9%). These results indicate that 

transport and localisation of proteins is a more important process in the cluster EPOD than in 

cluster TS, for which the catabolic processes of the cell are of higher relevance.  

Interestingly, the GO terms “proteasomal protein catabolic process” and “proteasome-mediated 

ubiquitin-dependent protein catabolic process” are unique to TS. These terms are 2 among the 25 

of TS (8%), while no term relevant to proteasome can be found among the 158 of the EPOD cluster, 

even though they are 6-fold higher (148 vs 25), highlighting the importance of the presence of this 

semantic class uniquely to cluster TS. This result is in accordance with the previous observations 

about the higher significance of catabolic processes for the TS cluster.  

The potential differences between the two clusters were further investigated using enrichment 

focused on cellular components, using Gene Ontology Cellular Component (GO-CC) terms (see Fig 

3-11, Fig S3-8). The enrichment resulted in 10 GO-CC terms, grouped in 7 semantic classes and 6 

location groups for TS, and 84 terms, in 46 semantic classes and 17 location groups for EPOD. There 

was a substantial overlap between the two clusters. There was no unique GO-CC term for TS, and 

therefore nor semantic classes and location groups. However, their distribution in the categories 

was differential.  
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Interestingly, a higher percentage of GO terms for the TS was related to the ER (30.0% vs 6.0%), 

melanosomes (10.0% vs 1.2%), and three forms of membranes (i.e., membrane networks, 10.0% vs 

1.2%; membranes of organelles, 20.0% vs 9.5%; and other membrane terms 20.0% vs 9.5%). These 

were 5-fold, 8-fold, and 2- to 8-fold more increased in the TS cluster compared to EPOD. The profile 

of the latter included more location groups. The functional group with the highest percentage of 

terms was “Projection” with 12 terms (n=12/84, 14.3%). This category included terms, such as 

“distal axon” and “neuron projection”. The second largest group was “Vesicle”. Examples include 

“multivesicular body”, “late endosome”, “early endosome”, and “pigment granule”. Of note, EPOD 

included various neuron related terms, for instance “myelin sheath”, “neuronal cell body”, and 

“dendrite cytoplasm”. These results suggest that the membrane system and melanosomes are of 

higher relevance to the TS cluster, while vesicles and cellular projections, such as those of neurons, 

are more related to the EPOD cluster. These results should be further investigated using an in vitro 

and/or in vivo experimental setup. 

 

3.5 Discussion 

 

In order to explore whether the clinical heterogeneity of the HSPs might reflect subtypes with 

differences in the molecular mechanism of disease, the functional profile of parts of the core 

network associated with different features was explored. The mode of inheritance was studied 

first, which resulted in the formation of 2 subgroups, one for the autosomal dominant part of the 

network and another for the autosomal recessive part. Functional enrichment indicated the 

possible differential association of the two networks with cell cycle, autophagy, and cytoskeleton 

for the autosomal recessive HSP-network, and multivesicular body sorting pathway for the 

autosomal dominant HSP-network. However, the high number of common genes between these 

two groups (95.2% of the autosomal dominant network was part of the autosomal recessive 

network), the low number of unique results from the functional enrichment (2.8% of the semantic 

classes of the autosomal dominant network were unique) and their identity, hindered the drawing 

of any strong conclusions. 

Potential mechanistic subtypes associated with the two different forms of HSPs, complicated and 

pure, were also explored. The results showed a trend for the pure network to be more specialised 

in “Physiology host-virus”, “Response to stimulus” and “Waste disposal”. However, the percentage 

of overlap of the pure and complicated networks was high (87.5% of the pure network was also 

part of the complicated network). In addition, there was a lack of unique semantic classes and 
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functional blocks for the pure network. Therefore, the interpretation of the results requires 

caution, and no strong conclusions can be drawn from this analysis. 

More promising data were generated during the exploration of a set of clinical features, when they 

were layered in the HSP-PPIN. Functional enrichment analysis in combination with machine 

learning tools were utilised, namely PCA analysis and hierarchical clustering. The results pointed 

towards the existence of at least two main subtypes of HSPs based on the associated functions: (i) 

thin corpus callosum and seizures (i.e., TS cluster), and (ii) early onset, peripheral neuropathy, 

dementia or mental retardation and optical atrophy (i.e., EPOD cluster). Enrichment analysis of 

biological processes for the two clusters proposed that waste disposal, protein metabolism and the 

function of proteasome are more associated with the TS cluster, which all fall into the same theme 

of protein quality control and degradation. The EPOD cluster was more related to protein 

localisation, and transport. The two HSP clusters also differed in their association with cellular 

components, as TS showed a higher enrichment in the ER, different types of membranes, and 

melanosomes, whereas neuron-related cellular localisations and vesicles were more strongly 

associated with EPOD. Overall, similar conclusions can be drawn from the results from enrichment 

in the level of functions, and cellular components, namely that the protein quality control and 

degradation maybe through the ERAD pathway were especially important for the TS cluster, while 

the tight regulation of protein localisation and transport in neurons via vesicles could be more 

tightly associated with the EPOD cluster. 

These findings provide an indication of separate implicated functions, pathways and potentially 

disease mechanisms in groups of genes that lead to the development of different clinical features. 

Based on the molecular mechanism of disease, it is proposed that HSPs are subdivided into at least 

2 major groups. These results indicate that not all the clinical manifestations of HSPs refer to the 

same disease at a molecular level and that it is indeed possible to stratify HSPs patients based on 

the putative molecular mechanisms of disease. These results require further validation, but they 

suggest that when aiming at drug discovery for the HSPs and when designing clinical trials, the 

molecular heterogeneity of disease would need to be taken into consideration. 

Even though the interactome analysis can provide us with useful knowledge, the conclusions from 

such an in silico analysis should be further explored, as they require direct functional validation. 

With the discovery of more protein-protein interactions, the human interactome will become more 

complete and might be able to help us understand better the connecting processes of large groups 

of genes and potentially point towards the disease mechanism. More specifically, future work 

focusing on proteins related to HSP as suggested by this study and especially those that have not 
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been studied yet in as much depth as others, might fill in the gap of the clinical and functional data 

required to unveil which pathways and processes are more related to the disease mechanism and 

might bring the scientific and clinical communities closer to a treatment or even cure. To aid 

towards that direction, people from various scientific communities and sectors could collaborate to 

set up a database that includes a detailed list of symptoms and mutations in genes/loci, as agreed 

by most experts, and that is accessible to the other researchers for further exploration.
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4. Network analysis of macroautophagy and its interplay with 

neurodegenerative diseases  

 

Main points of this chapter: 

• Finding the key players of macroautophagy: no general consensus 

 

• So, multiple sources were used: 

o Autophagy Regulatory Network (ARN), 

o Gene Ontology, 

o REACTOME,  

o KEGG, and 

o UniProt 

 

• 511 proteins were filtered to 156 main macroautophagy proteins, which were used as 

seeds to built the macroautophagy network 

 

• Most neurodegenerative genes of Alzheimer’s disease, Parkinson’s disease, Amyotrophic 

lateral sclerosis, and Frontotemporal dementia were present in the macroautophagy 

network 

 

• Large overlap of the networks of each neurodegenerative disease with the 

macroautophagy network 

 

4.1 Introduction 

 

4.1.1 Association of macroautophagy with neurodegenerative diseases 

 

Macroautophagy is one of the main systems for the degradation of cell components. It is especially 

important for post mitotic cells, including neurons in which it is involved in the removal of a 

misfolded proteins that are prone to aggregate [249]. Deficiencies in this process can lead to the 

formation of protein aggregates, which is the hallmark of multiple neurodegenerative diseases. 

Indeed, mice deficient of neuronal ATG5 and ATG7 -two proteins that regulate the elongation of 

the phagophore- showed neuronal accumulations of cytoplasmic proteins, as well as progressive 
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deficits in motor functions [250, 251]. These results were observed in the absence of mutations 

leading to higher propensity of aggregation. Therefore, in the presence of such mutations an 

efficient macroautophagic machinery might be even more essential for maintaining correct cell 

proteostasis, which then reflects in a healthy cellular environment.  

 

4.1.1.1 Alzheimer’s disease and autophagy 

Alzheimer’s disease (AD) is the most common neurodegenerative disease mainly affecting people 

over the age of 65 [479]. One of its main symptoms is dementia but others include impairment in 

language and visuospatial abilities, depression, and anxiety. The pathological hallmark of 

Alzheimer’s disease is the accumulation of protein aggregates consisted of amyloid-β and hyper-

phosphorylated tau, forming amyloid plaques and neurofibrillary tangles, respectively [480, 481].  

There is evidence linking dysfunction of macroautophagy and AD in both animal models and 

humans. Heterozygous deletion of BECN1 (a key macroautophagy protein) in a mouse model of AD 

led to an increase of the accumulation of amyloid-β and neurodegeneration [482]. In people with 

AD, there is reduction in Beclin-1 protein levels in the affected brain regions [482]. This protein was 

detected in neurons that had survived until the time of the sample collection, suggesting a 

potential advantage of those cells compared to others that had already died. However, AD is a 

progressive disease that continues to lead to neuronal death, so one of its mechanisms could be 

through the reduction of the level of Beclin-1 and of the efficacy of macroautophagy.  

Furthermore, mutations in PS1 (Presilinin-1, PS1), the most common cause of early-onset familial 

AD [483], were reported to impair macroautophagy. More specifically, PS1 was showed to be 

required for the targeting of v-ATPase in lysosomes [484] that leads to the autophagolysosomal 

acidification [485], which is essential for the degradation of its contents. The impairment of 

macroautophagy as suggested by experiments in mice was confirmed in human fibroblasts from 

people with AD [484].  

 

4.1.1.2 Parkinson’s disease and autophagy 

Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer’s 

disease. Degeneration of the neurons in the substantia nigra lead to a deficit of dopamine and 

consequent alterations of the dopaminergic circuits that are responsible for the control of 

movements. The main symptoms for individuals with this disease are motor (rigidity, bradykinesia, 

and tremor) [191], but also include disturbances in sleep, loss of smell, constipation, depression, 
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anxiety, and dementia [192-194, 196]. The pathological hallmark of PD is the accumulation of 

aggregated proteins in cellular inclusions, named Lewy Bodies, whose main component is α-

synuclein [197, 198, 205]. 

Macroautophagy has been strongly linked to Parkinson’s disease. α-synuclein’s gene (SNCA) is one 

of the genes most strongly associated with PD. Aggregation of α-synuclein is leading to the 

generation of Lewy bodies and mutations in its gene (e.g., gene triplication, leading to protein 

overexpression) can cause a familial form of PD [486]. Interestingly, α-synuclein has been shown to 

inhibit the formation of autophagosomes [487]. Furthermore, α-synuclein is cleared by chaperone 

mediated autophagy, and it was demonstrated that mutated α-synuclein can block this autophagic 

pathway [488]. These studies suggest the existence of a positive feedback loop whereby 

overproduction of α-synuclein or mutated α-synuclein might impair clearance based on autophagy, 

this leads to increased levels of α-synuclein in the cell, finally leading to misfolding and aggregation 

in Lewy bodies. Another PD gene suggested to affect autophagy is DJ-1, which regulates it through 

multiple pathways, such as the JNK/Beclin1 pathway [489]. 

The association between macroautophagy and PD is further strengthened by evidence that link a 

modulation of the autophagy regulators and the levels of aggregates. The administration of 

rapamycin (i.e., negative regulator of mTOR) increased the clearance of aggregates in animal 

models of PD through the upregulation of macroautophagy [490-492]. Additionally, there is 

evidence suggesting an increased downregulation of two genes of autophagy in brains of people 

with PD, LAMP2A and Hsc70 [493]. More specifically, there were increased levels of miRNAs in the 

substantia nigra pars compacta and the amygdala, which were negatively regulating the autophagy 

genes hinting to a role of the process in the development of the disease. 

 

4.1.1.3 Frontotemporal dementia and autophagy 

Frontotemporal dementia (FTD) is a clinically, pathologically and neuroanatomically heterogeneous 

group of progressive neurodegenerative diseases, targeting the frontal and temporal lobes [494]. 

FTD is accompanied by neuronal loss, gliosis, and microvacuolar changes in multiple brain regions 

[495], such as the frontal lobes. It can affect a broad range of brain functions such as social 

behaviour and language, and it is the second most common cause of young onset dementia [494]. 

Regarding its genetic basis, genetic cases of FTD account for around 10% of patients, and most of 

which (60%) are caused by mutations in C9ORF72, MAPT, and GRN [496, 497]. Other implicated 

genes include TARBP, FUS, VCP, CHMP2B, and TBK1 [495, 498-500]. Intracellular inclusions that 

include aggregated proteins have been identified in brain tissue of people with FTD. Mutations in 
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C9ORF72 can lead to the development of FTD and in the formation of intraneuronal inclusions of its 

protein product (a dipeptide with repeat expansion) [501]. In addition, inclusions of TDP-43 

(encoded by TADBP) and of FUS, have also been identified in people with FTD [502, 503].  

Multiple evidence has been reported linking FTD with autophagy. Tau accumulation, which is 

present in some cases of people with FTD [504], can disrupt axonal vesicle transport, leading to an 

accumulation of autophagosomes and an increased tau-induced toxicity [505]. In addition, a 

growing number of drugs that affect autophagy can ameliorate the disease phenotype of FTD. Such 

examples are methylene blue [506-509], trehalose [510], and rapamycin [511]. Furthermore, the 

suggested mechanism of neurodegeneration in FTD by mutations in VCP and CHMP2B includes the 

dysfunction in the autophagic protein degradation pathway [495]. Another FTD gene, TBK1, has 

also been linked with autophagic degradation of protein aggregates [512]. More specifically, it 

directly phosphorylates the autophagy receptors optineurin and p62 that target cargo to the 

forming autophagosome [513], and is involved in the autophagosome-lysosome fusion [514].   

 

4.1.1.4 Amyotrophic Lateral Sclerosis and autophagy 

Amyotrophic Lateral Sclerosis (ALS) is a degenerative disorder in which motor neurons are 

progressively lost from the central nervous system. One of its hallmarks is that both upper and 

lower motor neurons are affected, resulting in muscle weakness and loss of autonomic functions, 

such as mobility and lung function. Respiratory failure is the most common cause of death and 

occurs usually from 2 to 4 years after the onset of symptoms [190]. Intracellular inclusions have 

been detected in tissue from people with ALS. The majority of people with ALS present intracellular 

inclusions containing TDP-43 [503]. Additional inclusions have been detected in people with 

mutations in C9ORF72, FUS and SOD-1, which contained aggregates of the respective protein 

products [501, 502, 515].  

The link between ALS and macroautophagy is supported by multiple studies. p62 is essential for 

guiding cargo to autophagosomes. Interestingly, it is encoded by the SQSTM1 gene, whose 

mutations are linked to familial forms of ALS [516]. Optineurin is also involved in directing cargos to 

autophagosomes and mutations in its gene, OPTN, are linked with familial ALS, as well [517]. TBK1 

regulates the activity of optineurin [517] and is similarly linked to ALS, probably through the same 

pathway [214]. Guanine nucleotide exchange C9orf72, a protein strongly associated with familial 

ALS, is suggested to regulate macroautophagy through its GDP/GTP exchange factor activity [231-

233]. Finally, a study in ALS suggested a progressive neuronal accumulation of ubiquitin-positive 
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protein aggregates and a dysfunction of ESCRT-III [518, 519]. This finding combined with the 

discovery that ESCRT-III in cortical neurons is important for the fusion of autophagosome with 

lysosomes [298, 299, 301], is another piece of evidence suggesting a link between macroautophagy 

and ALS.  

 

4.1.2 Autophagy through systems biology approaches 

 

Macroautophagy is a process characterised by high complexity, rendering it an ideal process to be 

studied with a systems biology approach to unveil its mechanistic details. For instance, a proteomic 

approach was used to prioritise candidate proteins that were implicated in starvation-induced 

autophagy in Drosophila melanogaster. Further experiments in which the identified candidate 

genes were mutated, confirmed the association of a candidate, Desat1, demonstrating the 

predictive strength of combining proteomic and genetic analyses [520]. An epistatic analysis of 

pairs of genes related to autophagy and apoptosis was scaled up to a systems level through the 

development of a RNAi based methodology. Processing of the produced results using PPI data 

suggested a novel pathway connecting CASP3 (Caspase-3) and ATG5 (Autophagy protein 5) [521], 

which has since been confirmed [522]. A different study used genome-wide siRNA screening to 

investigate the mechanism of basal autophagy, identifying 236 genes that regulates autophagy and 

the convergence of multiple signalling pathways that regulate autophagy to the inhibition of 

PIK3C3 [523]. A noteworthy project created a detailed map of the mTOR signalling pathway [524]. 

It contained 946 components and 777 relationships, including a part that was related to autophagy. 

This comprehensive signalling map was made available via a collaborative web service platform 

that allowed its further development, through curation from other researchers and facilitated 

system-level analyses. 

Protein interaction network analysis is an eligible systems biology tool which has been utilised for 

the analysis of the autophagic process. For example, an aging model based on the fungus 

Podospora anserina was studied by building a PPIN of autophagy using published and new PPI data 

produced by the study [525]. Transcriptome data was incorporated in the network, and 7 modules 

were identified based on network topology, suggesting different associated pathways. Novel 

human candidate proteins that could be implicated in autophagy were identified in study based on 

PPIN analysis in yeast [526]. Mapping of conserved interactions between homologs of human and 

yeast proteins allowed these predictions, some of which were experimentally verified [526]. A 

disease protein interaction network was built around autophagy in another study in which its 
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relationship with other diseases was investigated [527]. Interestingly, the study suggests a strong 

functional link between autophagy and cancer, and that autophagy could be a connecting factor 

between cancer and the immune system, with MAPK1 potentially playing an important role.  

The link between neurodegeneration and autophagy was similarly investigated via systems biology 

approaches. One study analysed 416 genes and focused on the transcriptional and microRNA-

based post-transcriptional regulation of autophagy and lysosomal function, and their role in 

neurodegeneration [528]. The genes linking the two processes were enriched for phenotypes, such 

as motor-related, abnormal brain morphology, brain size, and gliosis. This study further supported 

the contribution of autophagic genes to AD and PD, but also suggested their involvement in other 

diseases that affect the brain, namely, tuberous sclerosis, and neuronal ceroid lipofuscinoses. In 

this study, some PPIs were used for visualisation purposes only, and the collection of PPIs was not 

described in the methods nor the supplementary material. Within the larger field of systems 

biology, this highlights the lack of PPIs studies with a focus on autophagy in the context of 

neurodegeneration. In the case of AD, PPIN analysis has been used for investigating the processes 

linked with disease and the association of AD with other conditions, such as type 2 diabetes [529-

531]. Of note, recent PPIN studies focused on the molecular mechanism of AD, consistently 

included autophagy in the processes associated to the disease mechanism [529, 530, 532-534]. 

However, there is only one PPI study (to the best of my knowledge) in which autophagy was found 

to be important for dementia, more specifically for tauopathies via an analysis of an interaction 

network of disease proteins and drug target [535]. 

Similarly, PPIN analysis of PD has been used to study its association with conditions such as COVID-

19 [536], and mitochondrial dysfunction [537], and its mechanism, with autophagy indeed 

confirmed relevant [155, 536-540]. However, PPIN has yet to be applied to specifically analyse the 

potential molecular overlaps of the pathway of autophagy with PD. 

Therefore, in this chapter the overlap of the autophagy pathway with neurodegenerative diseases 

will be studied using the systems biology approach of PPIN analysis. Since, systems biology 

approaches facilitate a deeper understanding of complicated processes, like macroautophagy, such 

a study could suggest potential mechanism(s) through which it associates to neurodegenerative 

diseases. Identifying causal links between the two processes, and potential disease-modifying 

targets could improve the quality of life of people with neurodegenerative diseases, such as AD, 

PD, FTD and ALS. 
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4.1.3 Resources and bioinformatic tools for autophagy 

 

There is a multiplicity of resources and databases that allow a systems biology study of 

macroautophagy. Several web-based resources are available for the prediction of the interaction of 

the protein of interest with the ATG8 family, a protein family essential for the elongation and 

maturation of the phagophore. They are based on the screening of an interaction motif, known as 

LCE-interacting region or ATG8-interacting motif or LC3 recognition sequence (LIR, AIM or LRS, 

respectively) in the protein sequence. Examples are the iLIR server [541], the high-fidelity AIM 

system [542], the Eukaryotic Linear Motif [543], and the ShortLinearMotif(SLiM)Search [544]. 

Additionally, there are databases that hold information about autophagy-related genes. Some 

examples are: iLIR Database, iLIR@viral [545], THANATOS Database [546], Human Autophagy 

Database (http://autophagy.lu/), Autophagy Database [547], ncRNA-Associated Cell Death 

Database [548], AutomiRDB [549] and the Gerontology-Autophagic-MicroRNA Database [550]. 

A systems biology approach was adopted in the creation of the Autophagy Regulatory Network 

(ARN), a bioinformatic tool for the study of the mechanism and the regulation of autophagy [551]. 

This database includes the proteins of the autophagy machinery, four sets of their regulators 

(direct regulators, transcriptional regulators, post-transcriptional regulators, and miRNA regulators 

and their transcription factors) and related signalling pathways. ARN allows much flexibility as the 

user is able to select the type of proteins of interest (as grouped above), but also the type of 

interaction data (manually curated and/or predicted). 

 

4.2 Aims and Objectives 
 

The aim of the rese4arch reported in this chapter is to understand whether neurodegenerative 

diseases and macroautophagy are interconnected and if so, the degree of association. To achieve 

this goal, PPINs of 4 neurodegenerative diseases, AD, PD, FTD and ALS will be produced, together 

with the PPIN of macroautophagy. Finally, the potential overlap of those networks will be 

evaluated to determine whether with an unbiased systems approach, an enrichment of autophagy 

proteins can be found in the protein interactome of neurodegenerative diseases. 
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4.3 Methodology  

 

4.3.1 Selection of seeds for neurodegenerative diseases  

 

The list of seeds for the neurodegenerative networks were kindly provided from Dr James Tomkins, 

who at the time was working in a comparative functional study of neurodegenerative diseases 

through a PPIN approach. The list of seeds was obtained by manual curation of the literature 

followed by expert evaluation of the findings. The seed list is presented in Table 4-1.  

 

Table 4-1. Seeds of ND networks 
  

Neurodegenerative disease Gene name SwissProtID Gene name SwissProtID 

Alzheimer’s disease 
(n=4) 

ADAM17 
APP 

P78536 
P05067 

PSEN1 
PSEN2 

P49768 
P49810 

 
Amyotrophic lateral sclerosis 
(n=29) 

FUS 
SOD1 
ALS2 
SETX 
SPG11 
ANG 
FIG4 
ATXN2 
VCP 
UBQLN2 
SIGMAR1 
CHMP2B 
PFN1 
HNRNPA1 
MATR3 

P35637 
P00441 
Q96Q42 
Q7Z333 
Q96JI7 
P03950 
Q92562 
Q99700 
P55072 
Q9UHD9 
Q99720 
Q9UQN3 
P07737 
P09651 
P43243 

TUBA4A 
CHCHD10 
C9orf72 
NEFH 
PRPH2 
DCTN1 
DAO 
SQSTM1 
TBK1 
GLE1 
GLT8D1 
NEK1 
CFAP410 
KIF5A 

P68366 
Q8WYQ3 
Q96LT7 
P12036 
P23942 
Q14203 
P14920 
Q13501 
Q9UHD2 
Q53GS7 
Q68CQ7 
Q96PY6 
O43822 
Q12840 

 
Parkinson’s disease 
(n=19) 

PARK7 
DNAJC6 
DNAJC13 
FBXO7 
GBA 
LRRK2 
PINK1 
PRKN 
RAB39B 
SMPD1 

Q99497 
O75061 
O75165 
Q9Y3I1 
P04062 
Q5S007 
Q9BXM7 
O60260 
Q96DA2 
P17405 

SNCA 
SYNJ1 
ATP13A2 
PRKRA 
WDR45 
KANSL1 
KAT8 
GAK 
RAB29 

P37840 
O43426 
Q9NQ11 
O75569 
Q9Y484 
Q7Z3B3 
Q9H7Z6 
O14976 
O14966 

 

 

 

 



4. Network analysis of macroautophagy and its interplay with neurodegenerative diseases 

 

136 
 

Table 4-1. (continued) Seeds of ND networks 

 
Frontotemporal dementia 
(n=17) 

MAPT 
GRN 
C9orf72 
VCP 
SQSTM1 
UBQLN2 
IFT74 
OPTN 
CHCHD10 

P10636 
P28799 
Q96LT7 
P55072 
Q13501 
Q9UHD9 
Q96LB3 
Q96CV9 
Q8WYQ3 

DCTN1 
FUS 
TARDBP 
TBK1 
TIA1 
RAB38 
HLA-DRA 
TMEM106B 

Q14203 
P35637 
Q13148 
Q9UHD2 
P31483 
P57729 
P01903 
Q9NUM4 

 

4.3.2 Selection of seeds for the macroautophagy network 

 

The selection of MA seeds was a multistep process, briefly described in Fig 4-1. The names of 

macroautophagy related proteins were collected from multiple sources (Reactome, KEGG, UniProt, 

Autophagy Regulatory Network, and Gene Ontology) and merged in a unique list of 511 genes that 

was then filtered, retaining 156 genes. Each gene had a score confidence depending on the 

confidence of its association with macroautophagy. 

 

 

Figure 4-1. Brief overview of the seed selection process for the macroautophagy network  

Sources included Reactome (both the list of components and the description of the process in text), KEGG, 

UniProt, Autophagy Regulatory Network (ARN), and Gene Ontology GO). The lists were brought together and 

filtered based on their replication across databases, the stage of macroautophagy in which they are involved, 

and their role.  

 

In more detail, from the ARN website 233 genes were extracted on 14/01/2020, as they were 

labelled as core macroautophagy proteins (n=37) and direct regulators of core proteins (n=196) 

(score=1).  

Information was downloaded from KEGG on 24/01/2020. The human autophagy pathway 

(hsa04140) consisted of 137 genes (score=1).  
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Gene Ontology contains lists of proteins involved with a series of processes labelled with GO-BP 

terms. The GO-BP term macroautophagy (GO:0016236) contained a range of related terms, the 

most relevant for this project being autophagosome (GO:005776), and regulation of 

macroautophagy (GO:0016241). The three groups of genes were extracted on 27/02/2020 and 

consisted of 192 genes (score=1).  

Reactome had two main sources of information, a text describing the process, and a list of 

proteins. Within the text, two groups of proteins were identified, those that were considered to be 

part of macroautophagy and those that maybe were part of macroautophagy, so a score of 1 

(n=72) and 0.5 (n=25) was attributed to them, respectively. The list of proteins from Reactome was 

first downloaded on 2/11/2018 and also on 9/1/2020, and the information from both versions was 

used. A higher confidence score was given to the proteins present in both versions (score=1, n=68), 

compared to those added in the second version (score=0.75, n=64). There were no proteins 

present in the first and not the second version. The total number of unique proteins from 

Reactome were 176.  

UniProt is another database that contains a range of information about the processes in which 

genes are involved. Examples include the Description of function, Gene Ontology, and Location. 

The list of genes identified from the above sources was queried to extract information about a 

potential link with macroautophagy based on manual text mining from the Description of function 

section. The key used was “phag” and the results were evaluated to exclude any non-autophagy 

related terms. Information was retrieved from 130 genes (March 2020), with some having a clear 

relationship with macroautophagy (score=1, n=119), while for others the link was inferred by 

similarity with other macroautophagy associated proteins (score=0.5, n=11).  

The 511 unique genes were then reduced further based on two criteria, namely confidence score 

filter (filter S), and functional contribution to the pathway of macroautophagy (filter P). In more 

detail, genes with a confidence score higher than 1.5 (filter S, n=189) were kept and further 

evaluated based on their contribution to the pathway (filter P). The “start” of macroautophagy was 

arbitrary considered to be the activated ULK1 complex and the “end” of macroautophagy was 

considered to be right before the fusion with lysosomes. Genes prior to the “start” or after the 

“end” of macroautophagy were removed. The direct regulators of proteins involved in the 

macroautophagy pathway were retained, while regulators of regulators were removed. This 

filtering process led to a final list of 156 genes (156/511, 30.5%) presented in Table 4-2. 
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Table 4-2. Seeds of the macroautophagy network 

Gene SwissProtID Score Gene SwissProtID Score 

BECN2 
GRAMD1A 
MAPK10 
PRKACA 
RAB39B 
RAB8B 
RUBCN 
RUFY4 
TMEM74 
TP53INP1 
TP53INP2 
TRIM21 
UBQLN4 
DYNC1H1 
DYNC1I1 
DYNC1I2 
DYNC1LI1 
DYNC1LI2 
HDAC10 
HDAC6 
HTT 
MAPK8 
TBC1D14 
TBC1D17 
TBC1D25 
TBC1D5 
TECPR2 
TMEM173 
UBQLN1 
UBQLN2 
DAPK1 
DAPK2 
DAPK3 
ITPR1 
HSPA8 
AMBRA1 
ATG2A 
ATG2B 
ATG9B 
MAP1LC3A 
MAP1LC3B 
NBR1 
OPTN 
PLAA 
SQSTM1 
UBXN6 
ULK2 
VCP 
VMP1 
WDFY3 
WDR45 
WDR45B 
YOD1 

A8MW95 
Q96CP6 
P53779 
P17612 
Q96DA2 
P61006 
Q92622 
Q6ZNE9 
Q96NL1 
Q96A56 
Q8IXH6 
P19474 
Q9NRR5 
Q14204 
O14576 
Q13409 
Q9Y6G9 
O43237 
Q969S8 
Q9UBN7 
P42858 
P45983 
Q9P2M4 
Q9HA65 
Q3MII6 
Q92609 
O15040 
Q86WV6 
Q9UMX0 
Q9UHD9 
P53355 
Q9UIK4 
O43293 
Q14643 
P11142 
Q9C0C7 
Q2TAZ0 
Q96BY7 
Q674R7 
Q9H492 
Q9GZQ8 
Q14596 
Q96CV9 
Q9Y263 
Q13501 
Q9BZV1 
Q8IYT8 
P55072 
Q96GC9 
Q8IZQ1 
Q9Y484 
Q5MNZ6 
Q5VVQ6 

2 
2 
2 
2 
2 
2 
4 
2 
2 
2 
3 
2 
2 
1.75 
1.75 
1.75 
1.75 
1.75 
2 
2.75 
2 
4 
2 
2 
2 
2 
2 
2 
2 
2 
3 
2 
2 
2 
1.75 
5.5 
3 
3 
4.5 
5 
5 
3 
2 
2 
4.75 
2 
4 
2.75 
3 
2 
3.5 
2.5 
2 

RAB23 
STBD1 
TOMM20 
TOMM22 
TOMM40 
TOMM5 
TOMM6 
TOMM7 
TOMM70 
VDAC1 
CAPN1 
CAPNS1 
CLTC 
FYCO1 
MAP1B 
MAPK15 
MTMR14 
MTMR3 
PARK7 
RAB1A 
SH3GLB1 
CAMKK2 
STK11 
BCL2  
BCL2L1 
CISD2 
DYNLL1 
DYNLL2 
HMGB1 
NEDD4 
NRBF2 
PIK3CB 
PIK3R2 
USP10 
LAMP2 
RAB33B 
RAB7A 
RAB7B 
TECPR1 
CHMP2A 
CHMP2B 
CHMP3 
CHMP4A 
CHMP4B 
CHMP4C 
CHMP6 
SNAP29 
STX17 
VAMP8 
VPS11 
VPS16 
VPS18 
VPS33A 

Q9ULC3 
O95210 
Q15388 
Q9NS69 
O96008 
Q8N4H5 
Q96B49 
Q9P0U1 
O94826 
P21796 
P07384 
P04632 
Q00610 
Q9BQS8 
P46821 
Q8TD08 
Q8NCE2 
Q13615 
Q99497 
P62820 
Q9Y371 
Q96RR4 
Q15831 
P10415 
Q07817 
Q8N5K1 
P63167 
Q96FJ2 
P09429 
P46934 
Q96F24 
P42338 
O00459 
Q14694 
P13473 
Q9H082 
P51149 
Q96AH8 
Q7Z6L1 
O43633 
Q9UQN3 
Q9Y3E7 
Q9BY43 
Q9H444 
Q96CF2 
Q96FZ7 
O95721 
P56962 
Q9BV40 
Q9H270 
Q9H269 
Q9P253 
Q96AX1 

 
2 
1.75 
1.75 
1.75 
1.75 
1.75 
1.75 
1.75 
1.75 
2 
2 
2 
2 
2 
2 
3 
3 
1.75 
2 
4 
2 
2 
3 
3 
2 
4 
4 
3 
2 
4 
2 
2 
2 
2 
2 
4 
2 
2 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
3 
3 
2 
3 
3 
4 
4 
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Table 4-2. (continued) Seeds of the macroautophagy network 

ZFYVE1 
PRKAA1 
PRKAA2 
PRKAB1 
PRKAB2 
PRKAG1 
PRKAG2 
PRKAG3 
ATG16L2 
GABARAPL3 
MAP1LC3B2 
MAPK9 
CALCOCO2 
CSNK2A1 
CSNK2A2 
CSNK2B 
FUNDC1 
KEAP1 
MAP1LC3C 
MFN1 
MFN2 
MTERF3 
PGAM5 
PINK1 
PRKN 

Q9HBF4 
Q13131 
P54646 
Q9Y478 
O43741 
P54619 
Q9UGJ0 
Q9UGI9 
Q8NAA4 
Q9BY60 
A6NCE7 
P45984 
Q13137 
P68400 
P19784 
P67870 
Q8IVP5 
Q14145 
Q9BXW4 
Q8IWA4 
O95140 
Q96E29 
Q96HS1-2 
Q9BXM7 
O60260 

2 
6 
6 
3 
4 
4 
4 
3 
2.5 
2.5 
2.5 
3 
2 
1.75 
1.75 
1.75 
2.75 
2 
5 
1.75 
2.75 
1.75 
1.75 
2.75 
2.75 

ATG10 
ATG101 
ATG12 
ATG13 
ATG14 
ATG16L1 
ATG3 
ATG4A 
ATG4B 
ATG4C 
ATG4D 
ATG5 
ATG7 
ATG9A 
BECN1 
GABARAP 
GABARAPL1 
GABARAPL2 
PIK3C3 
PIK3R4 
RB1CC1 
ULK1 
UVRAG 
WIPI1 
WIPI2 

Q9H0Y0 
Q9BSB4 
O94817 
O75143 
Q6ZNE5 
Q676U5 
Q9NT62 
Q8WYN0 
Q9Y4P1 
Q96DT6 
Q86TL0 
Q9H1Y0 
O95352 
Q7Z3C6 
Q14457 
O95166 
Q9H0R8 
P60520 
Q8NEB9 
Q99570 
Q8TDY2 
O75385 
Q9P2Y5 
Q5MNZ9 
Q9Y4P8 

6 
6 
6 
6 
6 
6 
6 
5 
6 
5 
5 
6 
6 
6 
6 
5 
5 
5 
6 
6 
6 
6 
5 
5.5 
6 

 

4.3.3 Building the first and second layer of the networks PINOT 

 

Using PINOT and the list of seeds, the PPIs were collected (21/03/2020) and then filtered to only 

include those with a final score higher than 2, in order to increase the confidence in the results. The 

interactors of the first layer were then used as seeds for another round of PPI collection through 

PINOT (21&23/03/2020) to create the 2nd layer interactome following the same process. The 

networks were then visualised in Cytoscape, as described in previous chapters. 

 

4.3.4 Statistical analysis 

 

The statistical analysis was performed though R, similarly to the analysis of word enrichment of 

described in Section 2.3.3. 
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4.4 Results 

 

4.4.1 MA network  

 

The macroautophagy (MA) network was built based on PPI data collected through PINOT for the 

identified seeds. It is composed of 151/156 seeds (96.8%, 746 PPIs), 2,832 direct interactors (1st 

layer; 56,982 PPIs) and 9,377 indirect interactors (2nd layer; 52,792 PPIs), bringing the total number 

of proteins to 12,360 (110,520 PPIs).  

The 5 missing seeds from the MA network were ATG16L2, GABARAPL3, TMEM74, TOMM6 and 

TOMM7. For GABARAPL3 there were not any PPIs resulted from PINOT, while for the rest of the 

MA seeds some PPIs were collected, 19, 2, 4, and 13 respectively. However, the PPIs had a score of 

2, meaning that were identified in a single publication with a single method, so there were 

excluded from further analysis. 

In the MA network, the 10 genes with the highest centralities were extracted. For closeness 

centrality the list in a descending order is: CUL3, COPS5, TP53, EGFR, HSPA8 (MA seed), CUL1, 

CDC5L, SNW1, HSP90AA1, and UBC. For betweenness centrality: CUL3, EGFR, APP, COPS5, HSPA8 

(MA seed), TP53, FN1, CDC5L, MYC, and ESR1. For node degree: CUL3, COPS5, CAND1, CUL1, 

CDC5L, TP53, EGFR, ESR1, SNW1, and FN1. The percentages of MA seeds in these lists are: 1%, 1% 

and 0%, respectively. The degree of most nodes is below 500 (99.9%), but one node, CUL3, reaches 

as many as 1,429 interactors. The distributions of the node degree, betweenness centrality and 

closeness centrality are shown Fig S4-1.  

 

 4.4.2 ND networks  

 

The neurodegenerative networks (ND networks) were created in a similar manner for AD, PD, ALS, 

and FTD. The AD network was produced using 4 seeds (see Section 4.3.3) all of which were present 

in the network. The 1st layer interactors were 466 and the 2nd layer interactors were 6,419. The 

seed with the highest node degree was APP, which had 415 interactors, followed by PSEN1 with 45 

interactors.  

The ALS network was created based on 29 seeds. The seed PRPH2 did not result in any PPIs 

produced by PINOT. The remaining 28 seeds, however, resulted in 1,102 1st layer interactors and 
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9,095 2nd layer interactors. The seed with the highest node degree was SOD1, followed by 

HNRNPA1 with 223, and 197 interactors, respectively.   

The FTD network was produced using 17 seeds all of which gave PPIs that contributed to the 

network. The 1st layer interactors were 702 and the 2nd layer interactors 8,540. The seeds with the 

most interactors were VCP and SQSTM1 with 142, and 126 interactors, respectively. 

The PD network was created using 19 seeds, all of which produced PPIs kept in the core PD 

network. The network consisted of 791 1st layer interactors and 8,583 2nd layer interactors. The 

seeds with the highest node degree were LRRK2 and PRKN with 227 and 142 interactors 

respectively.  

 

4.4.3 Overlapping the ND seeds in the MA network 

 

The MA network was explored to investigate whether the ND seeds where part of it, and if so in 

which layer. The results show that most seeds were part of the MA network and are presented in 

Table 4-3 and Fig 4-2A. All the seeds of AD were part of the MA network, with 3 out of the 4 being 

in the 1st layer interactors and 1 being in the 2nd layer (75.0%, and 25.0%, respectively), meaning 

that they either interact directly or through one protein with main MA proteins. Similarly in PD, all 

seeds were part of the MA network with 5, 8 and 6 in the seeds, 1st, and 2nd layer interactome 

respectively (corresponding to 26.3%, 42.1%, and 31.6%, respectively). Conversely, some seeds 

from ALS and FTD were absent from the MA network (nALS=3, 10.3%; nFTD= 1, 5.9%). The rest were 

present in all three layers of the network, seeds, 1st layer and 2nd layer interactors. More 

specifically, 4, 10 and 12 ALS seeds were part of the respective layers, while for FTD they were 

more evenly distributed with 4, 6 and 6, respectively.  

A statistical analysis was performed to assess whether the overlap of the ND seeds in the MA 

network was significant. Briefly, a group of random genes equal in number to the list of 

neurodegenerative genes under analysis was selected and it was investigated whether they were 

part of the MA network. The number of random matches to the MA network was recorded and the 

process was repeated 100,000 times, thus obtaining their distribution. The p-value corresponding 

to the observed number of matches of the ND seeds with the MA network was calculated based on 

the random distribution. The overlap between AD and the MA network was not significant 

(p=0.059), in contrast to the rest of the neurodegenerative diseases, including the overall group of 

ND seeds (see Table 4-3, and Fig S4-2, Appendix D). 
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Figure 4-2 Overlap of ND seeds with the MA network 

(A) ND seeds for AD, PD, ALS and FTD present and absent from the MA network. (B) ND seeds and their direct and indirect interactors 

within the MA network 

 

 

 

A. 

B. 
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Table 4-3. ND seeds present in the MA network 

Neurodegenerative 
disease 

Present in the MA 
network 

Percentage p-value 

Alzheimer’s disease 
(n=4) 

4 100% 5.86×10-2 

Parkinson’s disease 
(n=19) 

19 100% 3.16×10-4 

Amyotrophic lateral 
sclerosis 
(n=29) 

26 89.7% 1.20×10-5 

Frontotemporal dementia 
(n=17) 

16 94.1% 5.90×10-4 

Total 
(n=61) 

57 93.4% 1.2×10-12 

 

Interestingly, the ND seeds were directly interacting with 1,981 proteins, which constitute 16.0% of 

the MA network and indirectly (through one protein) interacting with 8,733 proteins (70.7%) (Fig 4-

2B). Overall, the ND seeds and their direct and indirect interactors (n= 10,771) constitute 87.1% of 

the MA network, demonstrating the strength of the association between neurodegeneration and 

macroautophagy.  

A more detailed analysis followed to identify in which layer of the MA network the ND seeds were 

located, and the results are shown in Table 4-4.  

The four seeds that were not present in the MA network were ANG (ALS seed), FIG4 (ALS seed), 

PRPH2 (ALS seed), and RAB38 (FTD seed). The third gene was expected to be absent from the 

network, as it failed to result in any PPIs through PINOT, as previously mentioned. Interestingly, the 

rest of the missing seeds had a high percentage of their interactors being present in the 2nd layer of 

the MA network (see Table 4-5, and for more details see Table S4-1). For instance, RAB38 had a 

single direct interactor (RAB32), which was in the second layer interactome of 22 MA seeds. 

Therefore, the overlap of the ND networks with the MA network was also investigated. 
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Table 4-4. ND seeds present in each layer of the MA network 

Neurodegenerative disease MA seed 1st layer 2nd layer 

Alzheimer’s disease 
(n=4) 

0 
(0%) 

3 
(75.0%) 

1 
(25.0%) 

Parkinson’s disease 
(n=19) 

5 
(26.3%) 

8 
(42.1%) 

6 
(31.6%) 

Amyotrophic lateral sclerosis 
(n=26) 

4 
(15.4%) 

10 
(38.4%) 

12 
(46.2%) 

Frontotemporal dementia 
(n=16) 

4 
(25.0%) 

6 
(37.5%) 

6 
(37.5%) 

Total 
(n=57) 

10 
(17.5%) 

24 
(42.1%) 

23 
(40.4%) 

 

Table 4-5. Connectivity of direct interactors of the missing ND seeds with the MA network 

ND seed Direct interactor N MA seeds connected through two proteins  

 
ANG  
(n=6/7, 85.7%) 
 
 

ACTN2 9 

ANXA2 55 

FST 0 

PCNA 70 

PLAUR 13 

RNH1 24 

S100A10 22 

 
FIG4 
(n=4/4, 100%) 

ANK1 7 

PIKFYVE 2 

SNX27 12 

VAC14 9 

PRPH2 0 - 

RAB38 
(n=1/1, 100%) 

RAB32 22 

Note: For more details see Table S4-1 (Appendix D)  
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4.4.4 Overlapping the ND networks in the MA network 

 

It was investigated whether and if so in what degree each ND network was overlapping with the 

MA network. The analysis was performed by counting the number of the components of each layer 

of the ND network were part of each of the 3 layers of the MA network (Tables 4-6 and Table S4-2, 

Appendix D). For instance, while none of the seeds of AD were part of the seed list of MA, its 1st 

layer had 155 proteins (33%) in the 1st layer of MA, and its 2nd layer had 6,274 (97.7%) in the 2nd 

layer of MA. Interestingly, all studied NDs had a high overlap of their 2nd layer with the respective 

2nd layer of MA (ranging from 94-98%), while the overlap of the 1st layers was more limited (ranging 

from 33-68%).  

 

Table 4-6. Distribution of the ND network in the MA networks (percentages) 

 MA 

  Seeds 1st layer 2nd layer 

AD Seeds 0.0% 75.0% 100.0% 

1st layer 2.1% 33.3% 99.8% 

2nd layer 1.3% 32.5% 97.7% 

ALS Seeds 14.3% 50.0% 92.9% 

1st layer 3.9% 54.7% 99.1% 

2nd layer 1.0% 24.4% 97.1% 

FTD Seeds 23.5% 58.8% 94.1% 

1st layer 5.0% 67.8% 98.4% 

2nd layer 1.1% 26.6% 98.4% 

PD Seeds 26.3% 68.4% 100.0% 

1st layer 4.2% 63.1% 99.5% 

2nd layer 1.1% 25.9% 97.9% 

Note: For the absolute values of the distribution of the ND network in the MA networks see Table S4-2 

(Appendix D)  
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4.5 Discussion 

 

In this chapter the association between neurodegenerative diseases and macroautophagy was 

studied. Investigating such an association in which a large number of genes are involved is a task 

for which systems biology approaches can be utilised, such as PPIN analysis.  

 

4.5.1 Selection of seeds  

 

The process of creating of a PPIN initiates with choosing the genes that will be its seeds. This step 

was more complicated than expected for the macroautophagy network (MA network), as there was 

very little agreement of the identity of the main macroautophagy proteins across databases. More 

specifically, the sources used were ARN, KEGG, Reactome, GO and UniProt, which resulted in 233, 

137, 176, 192 and 130 genes, respectively. These had limited overlap, as the unique list of the 

merged genes was consisted of 511 genes. This is unfortunately a common problem in biology, as 

identifying a main protein of a process is prone to unconscious biases based on the interests and 

background of each researcher, but also sensitive to the choices of the borders of the biological 

process, the level of detail, and the level of regulation to be included in the process. To limit these 

biases, multiple sources were used, and filters were applied, which led to a list of 156 seeds based 

on which the MA network was constructed, using PPIs collected through PINOT.  

 

4.5.2. MA network and ND networks 

 

The MA network consisted of 12,360 components, which were 151 seeds, 2,832 direct interactors, 

and 9,377 interactors of the direct interactors. The missing seeds were ATG16L2, GABARAPL3, 

TMEM74, TOMM6 and TOMM7. The main identified reason for their absence was the limited data 

of PPIs, as they had 19, 0, 2, 4, and 13 PPIs with a final score lower than 3. Further studies on these 

proteins aimed at identifying new or verifying previously suggested PPIs could aid in the endeavour 

of understanding their connection with macroautophagy through PPIN analysis. 

In the MA network a few proteins had a high number of connections with the rest of the network. 

CUL3 had 1,429 interactors, while 99.9% genes had less than 500. This is a consequence of its 

biological role, as it is involved in multiple processes, including the ubiquitination of proteins 

targeted for proteasomal degradation [552-554]. COPS5 is part of the COP9 signalosome complex, 

which is involved in multiple cellular and developmental processes, such as apoptosis, and the 
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regulation of the JNK signalling pathway [555, 556]. As par the complex, it interacts directly with a 

large number of proteins that are regulated by it, so its high node degree is not surprising [556-

563]. Similarly, the following two proteins with the highest node degree, CAND1 and CUL1, are 

associated with the ubiquitin system, explaining this result [554, 564]. CDC5L was the 5th protein 

with the highest node degree. It is a DNA binding protein involved in cell cycle control, while it may 

also have a transcription activation role [565-573]. Interestingly, the only disease it has been 

strongly associated with is multicystic renal dysplasia [574], which has not been clearly linked to 

macroautophagy or neurodegeneration. A potential link of this disease to macroautophagy can be 

deduced by its association with BCL2 [575], which regulates a variety of processes including 

macroautophagy [318, 576, 577]. This potential link of CDC5L with macroautophagy could be 

further studied by researchers to elucidate this probable relationship.  

Networks of NDs were also constructed for ALS, AD, FTD, and PD, due to their previously suggested 

association with macroautophagy [484, 487, 491, 511, 514]. Most seeds were present in the 

networks, except for PRPH2, which was a seed for ALS. Querying this gene in PINOT did not result 

in any PPIs, which can be explained by the protein being understudied. However, this is surprising 

because PRPH2has been linked with ALS for almost 20 years [578, 579]. Further studies around this 

gene and its product could lead to a deeper understanding of its function and potentially the 

mechanism through which it is implicated in complicated human diseases, such as ALS.  

The rest of the ND seeds resulted in PPIs that were included in the respective ND networks, which 

were consisted of between 6,400 and 9,100 proteins. The size of the networks is unproportionate 

to the number of seeds: 4-19 seeds led to a network made of 6,400-9,100 proteins, while 156 seeds 

to a network of 12,360 proteins. This can be explained by the focus of the scientific community in 

studying human diseases rather than biological processes, resulting in more PPIs detected for 

genes that lead to neurodegeneration rather than macroautophagy.  

 

4.5.3 Overlaps 

 

The overlap of macroautophagy and neurodegeneration was investigated with two ways: (i) 

identifying the presence of ND seeds in the MA network, and (ii) studying the intersection of each 

ND network with the MA network. 

The first approach demonstrated that most ND seeds were part of the MA network. All the seeds of 

AD, and PD were part of the network, while just a few seeds were missing for ALS and FTD (nALS=3, 

10.3%; nFTD= 1, 5.9%). The presence of these seeds was statistically significant for all NDs except for 



4. Network analysis of macroautophagy and its interplay with neurodegenerative diseases 

 

148 
 

AD, demonstrating the strength of the association of neurodegenerative diseases with 

macroautophagy. Interestingly, the distribution of the seeds in the 3 layers of the network (i.e., 

seeds, 1st layer interactome, 2nd layer interactome) varied among the diseases. In AD and PD most 

were in the 1st layer; in ALS most were part of the 2nd layer, while in FTD there was an even 

distribution between 1st and 2nd layer. In addition, the interactions of the ND seeds within the MA 

network were explored, which demonstrated that they directly interact with 16% of the MA 

network, further supporting the association between MA and NDs.  

Some ND seeds were absent from the MA network. However, most of them had a direct interactor, 

which was simultaneously a 2nd layer interactor in the MA network. Interestingly, the average 

number of MA seeds to which they connected was 19 (ranged from 0 to 70). This result led to the 

analysis of the overlap of the MA and ND networks.  

Of note, most ND networks were almost completely embedded within the MA network. For 

instance, 99.1% of the first layer interactome and 97.1% of the 2nd layer interactome of ALS were 

part of the 2nd layer interactome of MA. It can be hypothesised that this is the case because some 

seeds of ALS were part of the seed list of MA. However, the same result can be observed for AD, 

none of whose seeds are also MA seeds, whereas its 2nd layer is almost completely embedded in 

the 2nd layer of MA (97.7%).  

These results further support previously published literature demonstrating the association of 

neurodegeneration with macroautophagy through a systems approach. A noteworthy study used a 

PPIN approach was used to study the association of macroautophagy with multiple diseases 

including a category of neurological diseases [527]. In this study 770 autophagy genes were used, 

which exceed the total number of 511 macroautophagy related genes identified with our 

methodology prior to the filtering process. Their list of autophagy genes included predicted human 

autophagy genes, for instance, based on the association of their homologs with autophagy. 

Furthermore, the overlap of autophagy with diseases was measured only though identifying 

autophagy genes that were also recognized as causative for human diseases. This resulted in 

detecting only 9 genes that link autophagy and “neurological conditions”, with a 1.52 enrichment 

ratio. Therefore, the full potential of PPINs was not used in this study. However, interesting results 

included the suggestion that autophagy genes are linking different categories of diseases, such as 

cardiovascular and respiratory diseases, which is in accordance with the results of the current 

thesis, as autophagy seems to link with multiple neurodegenerative diseases. This is also supported 

by another study that demonstrated that two genes that can lead to PD are linked through 

macroautophagy, as parkin leads to the degradation of UCH-L1 by the autophagy-lysosome 
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pathway [580]. Several other PD genes have been linked with autophagy, including SNCA and DJ-1 

[486-488, 490-493]. However, the precise mechanism is yet to be deciphered, as a study showed 

that in a mouse model of PD, dysfunction of autophagy led to improved motor ability, even though 

progressive neuron loss was observed in substantia nigra pars compacta [581].  

Overall, the current study created more evidence to support that neurodegeneration and 

macroautophagy are strongly linked, using the systems biology approach of PPIN analysis. In 

contrast to the initial expectation, the overlap of neurodegenerative disease could not be localised 

in a small part of the macroautophagy network. Therefore, a different approach should be used to 

study the potential mechanism through which mutations in genes that lead to the development of 

neurodegenerative diseases affect macroautophagy, such as mathematical modelling. 
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5. A process diagram of macroautophagy  

 

Main points of this chapter: 

• The main aim of this chapter is to design a diagram of the process of macroautophagy that 

will allow the building of a mathematical model in Chapter 6. 

• Basic data sources: REACTOME, KEGG, and recent literature 

• Borders of model:  

o Stage of macroautophagy: Initiation to Phagophore elongation 

o Biological role of proteins: Key players of macroautophagy and their direct 

regulators 

• The study of the association of macroautophagy with neurodegeneration was narrowed to 

its link with Parkinson’s disease and specifically LRRK2.  

• The effect of LRRK2 on macroautophagy will be simulated using data showing alterations in 

its protein interactions when it LRRK2 is mutated. 

• The final main diagram of this chapter is composed of 23 components. 10 additional 

components link the diagram with LRRK2. 

 

5.1 Introduction 

 

5.1.1 Mathematical models of components of macroautophagy 

 

The systems biology approach of mathematical modelling has been previously applied to 

investigate macroautophagy and related proteins. A model of mammalian basal and induced 

macroautophagy was created by Martin et al to describe autophagic vesicle dynamics in single cells 

[582]. Data collected from live-cell microscopy were used to build and refine the model. The first 

step of the model was the stimulus dependent activation of PIK3C3-C1 and its final step was the 

turnover of autophagic vesicles. The model accurately predicted the change in vesicle synthesis 

rate due to a depletion in ATG9, as confirmed by in vivo experiments. 
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Sakai and colleagues focused on the membrane dynamics of phagophore formation [583]. 

Components of this model included proteins, complexes and lipids that affect the curvature of the 

phagophore membrane (named curvature generators) as well as the bending energy of the 

membrane. The stabilisation of intermediate structures (disk-shaped and cup-shaped) was shown 

to facilitate the formation of the spherical phagophore, which was further supported by in vivo 

experimental data from mouse embryonic fibroblasts, used by the authors to estimate the 

membrane area and bending angle of autophagosomes.  

These models demonstrate the value of investigating complicated biological processes -such as 

macroautophagy- using mathematical modelling, as this approach can reveal novel insight to be 

used as guidance for further experimental research. 

 

5.1.2 Mathematical models of neurodegenerative diseases  

 

Multiple mathematical models have been developed to investigate neurodegenerative diseases. 

For instance, a model developed to investigate the pathogenesis of Alzheimer’s disease described 

the cross-talk between the amyloidogenic and non-amyloidogenic pathway after administration of 

secretase inhibitors to predict the Aβ production rate and plasma levels [584]. Their predictions 

were validated by measuring plasma Αβ40 levels from human volunteers. Another model focused 

on the role Aβ42 in developing Alzheimer’s disease and the potential benefit of immunotherapy 

[585]. Through stochastic modelling, the Aβ42 turnover and accumulation were simulated and 

demonstrated that antibodies could delay AD onset by reducing the level of Aβ42 dimers. 

Although a number of models have been distinctly developed to study neurodegenerative diseases 

or macroautophagy, as previously discussed, only few models have investigated their relationship. 

One example is the modelling of α-synuclein dynamics based on biomolecular reactions, describing 

its overexpression, post-translational modification, oligomerization, and degradation [162]. The 

effect of chaperone-mediated autophagy, macroautophagy and the proteasome system were 

included in the simulated degradation process of α-synuclein. Predictions of the model were 

validated based on experimental data from human cell lines. 

The increasing body of evidence supporting an interplay between autophagy and 

neurodegeneration [586-596] highlights the need for the development of more sophisticated 

mathematical models that study the potential causality between these two processes. Therefore, 

as part of this Thesis, a mathematical model of autophagy and more specifically macroautophagy 



5. A process diagram of macroautophagy 

 

153 
 

will be built. Based upon data linking LRRK2 to macroautophagy [597, 598], this investigation will 

focus upon and test how mutations associated with Parkinson’s disease in this gene impact upon 

macroautophagy.  

 

5.1.3 LRRK2 in Parkinson’s disease 

 

LRRK2 is a gene containing 51 exons, encoding a large protein with a size of around 280kDa. It has 

two enzymatic domains, a kinase and a GTPase domain, and multiple PPI domains [599]. It has 

been hypothesized that LRRK2 is involved (among other functions) with the regulation of protein 

trafficking through the endosomal pathway, macroautophagy, and the function of lysosomes and 

synapses [215, 216, 600-602]. 

Mutations in LRRK2 were first identified as causative for PD in 2004 [215, 216] and are one of the 

most common genetic causes of this disorder [603]. There is variability related with both their 

frequency in populations and effect size. Regarding the former, some populations have a high 

frequency of LRRK2 mutations that cause PD, such as the Ashkenazi Jews, and the Imazighen and 

Timazighin (previously named North African Berber) [603]. Regarding the latter, out of 1,697 

variants of LRRK2 (as resulted from the Genome Aggregation Database, also known as gnomAD 

[604], on 27/5/2022), only a few have a clear causal relationship with PD (e.g., G2019S, R1441C) 

[215, 216, 605, 606]. The majority of pathogenic LRRK2 mutations are located in its catalytic core, 

affecting its enzymatic activity [607-609]. Interestingly, a protective LRRK2 variant (R1398H) has 

also been identified in multiple populations [610, 611].  

The clinical presentation of PD associated with LRRK2 is similar to that of idiopathic PD but with 

some distinctions. Even though most people with mutations in LRRK2 have Lewy body pathology, 

some have either neurofibrillary tangles [215, 216, 612-614] or TDP-43 deposition [615], which are 

more closely linked to other neurodegenerative diseases, such as frontotemporal dementia [616, 

617]. There are still a lot of unanswered questions regarding LRRK2’s function, and the exact 

mechanism through which it leads to PD is yet to be deciphered.  

 

5.2 Aim and Objectives 

 

The aim of this part of the research is to create an accurate but comprehensive diagram of 

macroautophagy that encapsulates the core components and events in humans, providing the 
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foundations for the construction of a dynamic model (to be presented in Chapter 6). This model 

will be used to test the impact of LRRK2 upon macroautophagy in a healthy versus disease state. 

The latter will be built based on alterations in bidirectional interactions of LRRK2 with other 

proteins, when LRRK2 is mutated.  

The first objective for this endeavour is to assess the availability of relevant data, which will inform 

the decision of defining the boundaries of pathway to be modelled and other features of the model 

and therefore of the diagram. The second objective is to construct a diagram that represents 

macroautophagy, using data from databases, literature, and previous data from Chapter 4. Data 

from LRRK2 interactors of interest will also be incorporated in the diagram. Finally, the diagram will 

be evaluated and simplified to only retain essential components and relationships.  

 

5.3 Methodology  

 

5.3.1 Comparison of PD genes 
 

For a comparison of data availability among genes leading to PD (which were previously identified 

in Section 4.3.1), the number of results in PubMed (a), number of PPIs (b), and number of 

mutational data affecting their PPIs (c) were collected.  

(a) The literature search through PubMed was performed by querying the official gene 

name (11/2/2022).  

(b) The comparison of PPI data was performed using the downloaded data of Chapter 4 

(see Section 4.3.3) by querying the official gene name in the unfiltered data set and counting the 

total number of PPIs for each PD gene.  

(c) The search of mutational data was performed using the data set from IntAct (queried on 

12/07/2021) based on the official gene name and by counting the total number of results. 

 

5.3.2 Construction and simplification of macroautophagy diagram 
 

5.3.2.1 Basis of the diagram 

The basis of the macroautophagy diagram was the two equivalent diagrams from Reactome 

(autophagy; Homo sapiens; R-HSA-9612973) and KEGG (autophagy; animal; Homo sapiens; 

hsa04140) downloaded on 24 & 30/1/2020, respectively (Fig S5-1 & S5-2, Appendix E). The 
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diagrams were filtered and simplified, as shown in Fig 5-1. The filter was based on the borders of 

the process, as defined in Section 4.3.2. Where appropriate, the diagrams were also simplified to 

remove intermediate steps that add limited value to the model; such simplifications were 

performed only in the diagram from Reactome, as the diagram from KEGG lacked similar 

intermediate steps. For instance, the creation of LC3II is depicted as the result of 6 reactions in 

Reactome, but was simplified to 2: (i) ATG4 cleaves pro-LC3 to LC3I, and (ii) ATG7, ATG3, and 

ATG12:ATG5:ATG16L1 produce LC3II from LC3I. The filtered and simplified diagrams from the two 

sources were then merged by keeping all the available information.  

 

 

Figure 5-1. Processing of the diagrams from Reactome and KEGG 

 

5.3.2.2 List of references 

A list of references was used to enrich the diagram. The list was acquired on 24/05/2021 through 

PubMed, using the keyword “macroautophagy” and the following criteria: 2018-2020, 

Review/Systematic review, Free full text, Humans, and English. Any papers that were exclusively 

about one protein or complex were removed, while papers that were specifically about 

macroautophagy (excluding Chaperone Mediated Autophagy and Microautophagy) were retained, 

resulting in 5 papers. The consensus document “Guidelines for the use and interpretation of assays 

for monitoring autophagy” [34] was also added to the reference list leading it to be consisted of 6 

papers [34, 618-622]. 

 

5.3.2.3 Simplifications 

The simplifications of the macroautophagy diagrams were based on 2 main steps. Firstly, entities of 

the diagram were omitted if they had only one outbound and one inbound relationship, and their 

contribution to the biological process was retained in the diagram, by incorporating an equivalent 

relationship between the directly upstream and directly downstream entities (bypassing the 
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intermediate entity). Secondly, branches of the diagram through which information did not flow 

(i.e., nodes with only unidirectional relationships: outbound or inbound) were also removed. The 

exception in this step was the activated ULK1 complex (as it is the first component of the pathway 

for this project), LC3II (as it is the last entity of the model and diagram), and the LRRK2 interactors 

(as no entities upstream of LRRK2 will be included in the model and diagram).  

 

5.3.3 Analysis based on LRRK2 
 

5.3.3.1 Processing of LRRK2 data 

After LRRK2 was chosen as the PD gene of interest, the collected PPIs and mutational data were 

further analysed. The PPIs of LRRK2 were filtered to only include those with final score >3 (thus 

only retaining interactions that have been replicated at least twice in peer-reviewed literature) to 

increase the confidence in the results. Regarding the mutational data analysis for LRRK2, multiple 

filters were applied in this analysis. Only mutational data that affected a binary interaction 

between two human proteins were included. If the effect of the mutation was labelled with general 

terms (i.e., “Mutation with no effect” MI:2226; and “Mutation” MI:0118), then that piece of 

information was excluded from further analysis. Interactions that included GTP or GDP were 

retained due to the function of LRRK2, but interactions in which other chemical substances were 

present, were excluded from further analysis. After filtering the mutational data set, a unique list of 

affected interactions was created.  

Data regarding protein-protein interactions affected by mutations in a protein are available in 

IntAct. LRRK2 interaction data were extracted from IntAct on 12/07/2021 and subsequently 

filtered. The criteria for exclusion included: (i) interactions of non-human proteins, (ii) more than 2 

protein participants, and (iii) mutations of the category “Mutation with no effect” (MI:2226), and 

“Mutations” (MI:0118). 

 

5.3.3.2 Identifying associations with macroautophagy 

The most relevant interactors of LRRK2 where those with associations with the macroautophagy 

pathway. For the mining of information of associations between LRRK2 and macroautophagy, or 

between LRRK2 interactors and macroautophagy, the reference list used to build the 

macroautophagy diagram [34, 618-622] (see Section 5.3.2.2) was mined for data. Data supporting 

associations with macroautophagy were investigated firstly by reading in detail the papers 

(excluding the “Guidelines for the use and interpretation of assays for monitoring autophagy” [34]), 
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and also by querying the official gene names of LRRK2 and the LRRK2 interactors, and then 

manually extracting any relevant information. For the mining of information from “Guidelines for 

the use and interpretation of assays for monitoring autophagy” [34] only the latter step was 

performed due to the number of pages of the document (i.e., 549 pages). The LRRK2 interactors 

were grouped in 3 categories based on the collected data: “yes” group (evidence of association 

with macroautophagy), “?” group (possible association with macroautophagy), and “no” group (no 

data supporting an association with macroautophagy). For the “?” group, their description in 

UniProt was also consulted, leading to their categorising as either “yes”, or “no”, depending on the 

presence or absence of data supporting their association with macroautophagy.  

A common problem in biology is the existence of alternative names for genes and proteins [26]. 

Therefore, it was necessary to exclude the possibility of the lack of supporting data for the genes of 

the “no” group being due to the use of an alternative gene name, a protein name, or the name of a 

complex in which they take part. In parallel, it was investigated whether their UniProt page had 

macroautophagy related terms in their description or in the associated biological processes. Text 

mining for the term “phag” was performed and the results were manually checked for 

macroautophagy related terms (e.g., positive selection of “regulation of macroautophagy”, 

GO:0016241; negative selection of “phagocytosis”, GO:0006909). If data supporting the association 

were obtained, then the gene could be moved to the “yes” group. 

In some cases, the information collected from the UniProt pages and reference list hinted a link 

with macroautophagy but not in a specific enough way to be able to add it in the diagram. For 

those, the additional step of searching for information in the references of either UniProt or the 

Guidelines was performed. If that did not lead to a conclusion, they were added in the “?” 

category.  

The proteins in the “?” group were investigated further in the literature, leading to none being 

included in the diagram. There were 4 main reasons: (i) absence of association with any other 

component of Enriched Diagram B, (ii) absence of evidence in humans, (iii) lack of specific 

information as to how they are linked to macroautophagy, or (iv) existence of too many 

complicated links with macroautophagy. The last category was populated by proteins in the 

proteasome and tubulins that have multiple protein-protein interactions and cross-talks with 

macroautophagy proteins. Including proteins of this category would drastically increase the 

number of proteins of the macroautophagy model and its complexity, which contradicts the need 

of including only the most necessary entities and relationships in the current diagram. 
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5.3.4 Software and databases 
 

The software used in this chapter to create the diagram of macroautophagy was Cell Collective 

(online version for researchers, accessed on September of 2021) [623]. Information about 

macroautophagy that was retrieved from databases for Chapter 4 was also used here (see Sections 

4.3.2 and 4.3.3). 

 

5.4. Results 

 

The results of creating the macroautophagy diagram will be structured following the steps of 

modelling. The first step of modelling is outlining the purpose of the model, which has been 

completed (see Section 5.2), which guides the decision of selecting the type of the model and the 

classes of its components. The available data will then be explored, based on which the scale and 

other features of the model will be defined. Next, the focus will be in designing the diagram in 

detail. This step will be followed by enriching the diagram with data related to LRRK2 interactors, 

adjusting the diagram based on feedback from an expert in autophagy, and filtering the data to 

only include those that contribute to the flow of information. The end result will be the final 

diagram of macroautophagy, which will be used as a basis for the macroautophagy model to be 

created in Chapter 6. 

 

5.4.1 Selecting the type of the model type and the classes of its components 

 

The type of the model for a series of attributes was chosen and is reported in Table 5-1. Regarding 

the first choice, an explanatory model was considered to be more suited, as it can capture 

relationships between components and provide explanations, which is aligned with the objectives 

of this model. The model was also chosen to be dynamic, as a part of the signalling pathway of 

macroautophagy needed to be simulated in the model. In this dynamic model, the timescale was 

chosen to be continuous in order to allow detection of even small temporary concentration 

changes. For simplicity, no outputs or input signals were part of the model, instead the timepoint 

start with the most upstream entity being in an activated state. Finally, no randomness is 

incorporated in the model, so it is deterministic. Selecting the features of the macroautophagy 

model to be created in Chapter 6 also guides the creation of the macroautophagy diagram to be 

formulated in the current chapter. 
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Table 5-1. Type of model based on a series of features 

Attribute Choice 

Correlative vs Explanatory Explanatory 

Dynamic vs Static Dynamic 

Continuous or Discrete timescale Continuous 

Open vs Closed Closed 

Deterministic vs Stochastic Deterministic 

 

Another important decision is related to the classes of components that will be part of the diagram 

and model. Proteins and complexes will be represented in a specific state of activation as single 

variables. An additional variable will be representing any other activation state of those 

components and the transformation from one state to the other will depend on another entity of 

the model, or time. Lipids will not have an activation state, but they can transform to another 

entity and their concentrations can change over time (i.e., variables). This multivariate model will 

also include two independent variables, time and the mutated LRRK2, which will be affecting other 

entities, but itself will be stable throughout the experiment.  

Regarding the types of reactions of the model connecting the variables, there will be of 3 main 

types: activation/inhibition, formation/disassociation, and production/degradation. The production 

or degradation will refer to the creation of a component in the model without the need for a 

substrate, or the decrease of its amount, respectively. In this case, the removal of the need for a 

substrate is not biologically accurate but it reduces the complexity of the model. In all types of 

relationships another component of the model can be a modifier or co-factor, meaning that it can 

affect the rate of these reactions directly or by adding a parallel reaction and therefore change the 

overall rate of the process.  

Parameters will also be included in the model. These will be mainly the rates of the 

aforementioned reactions, as well as the initial quantities of the components of the model (i.e., 

initial conditions). No universal constants will be part of this model. As for the equations describing 

the model, they will be deterministic ODEs. 
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5.4.2 Exploring available data to define the model  

 

5.4.2.1 Available data for macroautophagy 

There are multiple sources of data regarding macroautophagy. The primary source of information is 

the peer-review literature. In PubMed, the query for macroautophagy resulted in 105 publications 

in 2020, 60 in 2021 and 6 in 2022 (on 9/2/2022). “Autophagy”, frequently used as an 

interchangeable term with “macroautophagy” [624], resulted in 2,070, 2,198, and 188 publications 

respectively (on 9/2/2022).  

In addition, there are databases in which diagrams and information regarding biological processes, 

such as macroautophagy, can be found. Two of those sources that hold a brief description of 

macroautophagy together with an informative diagram are Reactome and KEGG (Fig S5-1 & S5-2, 

Appendix E). There are 150 molecules, including 137 proteins in the diagram from Reactome, while 

in KEGG there are 147 components, including 141 genes. These databases are informative; 

however, they are updated semi-regularly. The entry of macroautophagy from Reactome was last 

revised on 31st of October 2019 (at the time of writing this paragraph, April 2022), while that 

information from KEGG is not available. However, the most recent article that was used to create 

the diagram of KEGG was published in August 2015; since then > 8,500 publications related to 

autophagy have been released (based on PubMed queried on April 2022 using the term 

“autophagy”).  

A more dedicated resource for autophagy is the Autophagy Regulatory Network [551]. It is a 

manually curated database focused on autophagy components and their direct interactions. The 

incorporated data spans from lists of main autophagy proteins to direct regulators, transcription 

factors, miRNAs, and pathways. Predicted autophagy regulators are also included to prompt their 

further investigation by the autophagy community. There are a total of 397,764 interactions stored 

in the database (on 9/2/2022). 

Regarding existing models, there are multiple models in a database called BIOMODELS [625]. It was 

established in 2005 from the EBI [626] and has become a core resource for modelling. There are 

currently (as of April 2022) 1,041 manually curated, 1,309 non-curated, and 833 automatically 

generated models, as well as 542,964 model parameters, which is rendering this platform 

attractive for modellers. More specifically, 33 autophagy-related models resulted when querying 

the database in April 2022, each of which can be a valuable source for missing data for this project. 

Therefore, there is a multiplicity of primary and secondary sources, including platforms and 

databases, that can aid in the collection of data for creating a model of macroautophagy.  
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A. 

B. 

Based on the available data, the dimensions of time and space of the mathematical model of 

macroautophagy had to be defined. The majority of data relating to macroautophagy are referring 

to the initiation step and the phagophore formation, while the later steps are less studied [620]. 

Therefore, the model focused on the initiation of macroautophagy until the phagophore 

elongation, and more specifically the start of the macroautophagy pathway was the activated ULK1 

complex and the end of the pathway the production of LC3II (Fig 5-2A).  

 

 

 

 
 
 
 
 
 
 
Figure 5-2. Defining the borders of macroautophagy 

(A) The stages of macroautophagy to be modelled in this Thesis were decided to be from the initiation of the ULK1 complex until before 

the autophagosome formation, adapted from Jing et al [265]. (B) The main macroautophagy proteins and their direct regulators were 

included in the model, while components through which information did not flow were excluded. 

 

Regarding the location of the model, it was the phagophore forming site of the cell, which was 

considered spatially homogenous. Adding more locations in the model would have increased the 

complexity of the model, so instead of modelling proteins being transferred from other cellular 

regions, they were modelled as activated. For instance, while ATG16L1 is recruited to the 

phagophore assembly site by WIPI2, in this model it was assumed that it is already there but 

instead that it is activated by WIPI2. The parameters of the reaction were adjusted to mirror the 

difference between such a case and a real activation step.  
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Furthermore, the level of distance of included components from the main players that contribute 

to most of the flow of the process needed to be decided. An additional problem surfaced during 

this step: the identification of the main players of autophagy. For this purpose, the scoring of 

macroautophagy components developed in Chapter 4 was used to resolve this issue. The main 

components were identified as those with a score of 4 or higher. Then, the main autophagy 

proteins and their direct regulators were retained in the model. Due to the large amount of 

research around macroautophagy as seen in previous paragraphs of this section, incorporating 

additional indirect regulators would have resulted in a diagram with a larger size than acceptable 

for this project. In addition, it was decided that components through which information did not 

flow would also be removed, as shown on Fig 5-2B. 

 

5.4.2.2 Available data for the overlap of macroautophagy with neurodegenerative diseases 

The second part of the modelling for which the availability of data was required to be assessed, was 

related to the overlap of macroautophagy and neurodegenerative diseases. There are multiple 

types of data that can be used for this endeavour, such as PPIs by creating and overlapping PPINs. 

In Chapter 5, in which this approach was adopted, it became evident that there is a major overlap 

of macroautophagy with neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s 

disease, Frontotemporal dementia, and Amyotrophic Lateral Sclerosis. If the overlap had been 

limited, then that small part of the PPIN would have been modelled in this chapter for each of the 

individual 4 diseases. However, the amount of overlap rendered this option more complicated than 

aimed in this project. Therefore, one disease was selected, Parkinson’s disease, which had one of 

the largest overlaps with the macroautophagy network. For instance, in the level of seeds, 100% of 

the PD seeds (n=19/19) were present in the macroautophagy network, compared to 100% (4/4), 

89.7% (26/29), and 94.1% (16/16) for AD, ALS, and FTD, respectively. Of note, between the AD and 

PD seeds, all of which were present in the MA network, only those of PD had a significant p-value 

(3.16 × 10-4), pointing towards PD having a wider and more significant overlap with 

macroautophagy. Therefore, the association of PD with macroautophagy was chosen to be studied 

in more detail.  

The overlap between the PD and MA networks was extensive. As shown on Chapter 4 (Sections 

4.4.3 and 4.4.4), there was a 63.1% overlap of the first layers, and a 97.9% overlap of the second 

layers. Therefore, the relationship between a single gene of PD with macroautophagy was going to 

be modelled. The ideal candidate for this study needed to have much related literature, a large 

number of PPIs, and much mutational data affecting its PPIs. These criteria were fulfilled by LRRK2. 

In more detail, querying the name of each gene of the PD network in PubMed (on 11/2/2022), the 
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most publications were for LRRK2 (631) followed by PINK1, SNCA, and GBA, with 523, 508, and 492 

results, respectively (Table 5-2). In addition, LRRK2 had the highest number of interactors as 

collected by PINOT (with final score>2; 222). This was 63% higher than the second ranked gene, 

PRKN (136 interactors), which was followed by SNCA with 106 interactors (Table 5-3). Regarding 

data for mutations that affect their interactions with other proteins, the highest number of data 

entries was for SNCA (1,969 interactions), followed closely by LRRK2 (1,717 interactions), with the 

third gene being KANSL1 with just 54 entries (Table 5-4). Therefore, the association of LRRK2 with 

macroautophagy was chosen to be studied in more detail.  

 

Table 5-2. Amount of literature for each PD gene 

Gene N results in PubMed Gene N results in PubMed 

LRRK2 631 SMPD1 24 

PINK1 523 PRKRA 23 

SNCA 508 SYNJ1 20 

GBA 492 DNAJC6 20 

PARK7 169 KAT8 17 

ATP13A2 94 RAB39B 17 

PRKN 51 DNAJC13 9 

GAK 44 KANSL1 7 

FBXO7 31 RAB29 7 

WDR45 28   
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Table 5-3. Number of interactors of each PD gene based on PINOT 

Gene N interactors Gene N interactors 

LRRK2 222 PINK1 23 

PRKN 136 DNAJC13 22 

SNCA 106 KAT8 20 

PARK7 100 RAB39B 20 

GAK 74 RAB29 13 

ATP13A2 59 SYNJ1 10 

FBXO7 55 WDR45 9 

KANSL1 28 SMPD1 6 

GBA 26 DNAJC6 4 

PRKRA 24   

 

Table 5-4. Amount of mutational data that affect interactions with other proteins in IntAct 

Gene N entries Gene N entries 

SNCA 1969 RAB39B 10 

LRRK2 1717 KAT8 6 

KANSL1 54 WDR45 1 

PARK7 43 SYNJ1 0 

PINK1 42 DNAJC6 0 

PRKN 41 DNAJC13 0 

PRKRA 25 GBA 0 

RAB29 21 SMPD1 0 

FBXO7 19 ATP13A2 0 

GAK 18   

 

5.4.3 Initial designing of the macroautophagy diagram 
 

To design the pathway, it was decided that the base would be the diagrams of Reactome and KEGG 

identified in Section 5.4.2.1 (Fig S5-1 & S5-2, Appendix E). The diagrams were filtered, simplified, 

and merged, leading to the creation of the Merged diagram (see details in Section 5.3.2). 

In this stage, it was essential to investigate whether core macroautophagy proteins were already 

part of the diagram, or whether they had to be incorporated. As decided in Section 5.4.2.1, the 

analysis of Chapter 4 was used to define the core proteins. The 46 proteins associated with 
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macroautophagy with a score of 4 or higher were crossed checked against the Merged diagram. 

Most proteins were already present in the diagram (n=34/46, 73.9%), while the rest of the proteins 

(n=12/46, 26.1%) failed to pass the filters of inclusion (Filter S and Filter P, discussed in Section 

4.3.2) and were not added in the diagram. For instance, VSP18 and VSP33A were not incorporated 

in the diagram as they are involved in the fusion of the phagophore membrane, which occurs in a 

later stage of macroautophagy not studied in this project (Section 4.3.2). The resulted diagram was 

named Enriched Diagram A and it was composed of 29 components and 5 descriptive terms, which 

were linked with 45 relationships.  

The diagrams used as the model’s basis are representing the main steps of macroautophagy, 

however, they might not include the most recent literature. Reactome was last updated in October 

2019 and the latest paper used for KEGG was published in August 2015. Therefore, a list of 

publications [34, 618-622], was used to mine information and enrich the Enriched Diagram A, 

producing the Enriched Diagram B (see Section 5.3.2).  

 

5.4.4 Associations of LRRK2 with macroautophagy 

  

The direct and indirect associations of LRRK2 with macroautophagy were investigated and the 

extracted data were used to enrich the diagram. The direct associations were explored through 

mining data from the reference list, and UniProt. Then, the associations of protein interactors of 

LRRK2 with macroautophagy were investigated (i.e., indirect associations). Briefly, this was 

conducted by obtaining the LRRK2 interactors, retaining those with associations with 

macroautophagy, and with data supporting that their interactions with LRRK2 are affected by 

mutations in LRRK2.  

 

5.4.4.1 Obtaining LRRK2 interactors 

PINOT was used to collect the human PPIs of LRRK2, which resulted in 1,434 interactors. The 

interactors that have been identified with multiple distinct methods and/or published in multiple 

papers were selected by filtering based on the final score being higher than 3 (n=173/1,434, 

12.1%). Therefore, this study focused on the LRRK2 interactors for which there is higher 

confidence.  
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5.4.4.2 Filtering of the LRRK2 interactors based on links with macroautophagy 

Multiple alternative approaches, described in more detail in Section 5.3.3, were used to select the 

LRRK2 interactors associated with macroautophagy. Firstly, the reference list of papers was 

consulted, resulting in 14/173 LRRK2 interactors to be linked to macroautophagy (i.e., “yes” group; 

8.1%), 6 to be potentially linked (i.e., “?” group; 3.5%) and 153 for which no data were available 

(i.e., “no” group; 88.4%). Further investigation led to 17 LRRK2 interactors belonging in the “yes” 

group and 156 in the “no” group. Therefore, as a result of this analysis the diagram was enriched 

with 17 proteins to produce the Enriched Diagram C and excluded the rest of the LRRK2 interactors 

(n=156) (see Table 5-5). Then, Enriched diagram C was simplified to exclude any proteins that did 

not contribute to the flow of information for macroautophagy or from LRRK2 to macroautophagy. 

 

Table 5-5. Filtering of LRRK2 interactors based on their association with macroautophagy 

ABCE1 

ACTG1 

ACTR2 

AGO1 

AGO2 

AHCYL1 

AIFM1 

ARFGAP1 

ARHGEF7 

ARPC1B 

ARPC2 

ATP5MG 

ATP5PO 

BAG5 

CCT3 

CDC37 

CDC42 

CFAP20 

CHD1L 

CHGB 

CKAP5 

CNP 

OPG2 

COQ8A 

CSE1L 

CYFIP1 

DDB1 

DIS3 

DNAJA1 

DNM1 

DNM1L 

DVL1 

DVL2 

DVL3 

DYNC1H1 

ECHS1 

EEF1A2 

EEF1G 

EEF2 

EPRS1 

GAK 

GNAI2 

GSK3B 

HACD3 

HSP90AA1 

HSP90AB1 

HSPA4 

HSPA8 

HSPA9 

KIF2A 

KPNB1 

LARP4 

LARP7 

LAS1L 

LDHA 

LRP6 

LRRC47 

LRRK1 

MAP1B 

MAP2K3 

MAP2K6 

MAP2K7 

MAPT 

MBP 

MDN1 

MMS19 

MOGS 

MRPL19 

MSH2 

MSN 

MTHFD2 

MYL6 

MYL9 

MYO1B 

MYO1C 

MYO1D 

NCL 

NCLN 

NUP107 

NUP133 

NUP160 

OPA1 

PCNA 

PFKP 

PKM 

PLEC 

PPP1CA 

PPP1R8 

PPP2R2A 

PRDX3 

PRKACA 

PRKDC 

PRPF6 

PSMD11 

PSMD2 

PSMD6 

PTCD3 

PYGB 

RAB10 

RAB1B 

RAB29 

RAB32 

RAB5B 

RAC1 

RBM39 

RGS2 

RO60 

RPL10A 

RPL11 

RPL12 

RPL13 

RPL19 

RPL23 

RPL24 

RPL3 

RPL30 

RPL34 

RPS11 

RPS13 

RPS14 

RPS15 

RPS15A 

RPS16 

RPS18 

RPS2 

RPS20 

RPS27 

RPS3 

RPS3A 

RPS7 

RPS8 

SAMHD1 

SEC16A 

SENP3 

SF3B2 

SF3B3 

SFN 

SFXN1 

SH3GL1 

SLC25A11 

SLC25A22 

SLC25A4 

SLC25A5 

SLC25A6 

SNAPIN 

SNCA 

SPTLC1 

SQSTM1 

SSR4 

STUB1 

TCF25 

TP53 

TTC27 

TUBA1A 

TUBA1C 

TUBB 

TUBB2A 

TUBB4A 

TUBB4B 

TUBB6 

TUBG1 

TUFM 

USP39 

VIM 

VPS4A 

WSB1 

YWHAB 

YWHAE 

YWHAG 

YWHAH 

YWHAQ 

YWHAZ 

ZRANB2 

Note: The LRRK2 interactors with an identified link with macroautophagy are in bold. 
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5.4.4.3 Which of these do we have mutational data for? 

The potential manner through which mutations in LRRK2 affect macroautophagy through its 

protein interactors was identified as an aim of this model. Therefore, it was required to explore for 

which of the 17 LRRK2 interactors associated with macroautophagy there were data showing a 

change in the interaction when LRRK2 is mutated. IntAct holds such a data set, so the LRRK2 

interaction data were extracted and filtered (see Section 5.3.3). There were relevant data for 8 

LRRK2 interactors (n=8/17, 47.1%). The gene name and SwissProt ID of these LRRK2 interactors are 

shown in Table 5-6, together with the LRRK2 mutation that affects each interaction. Interestingly, 

the G2019S mutation and D1994A mutation affects all the interactions in a negative manner (6/6, 

and 4/4, respectively), while others can have an opposite effect on different interactions. For 

instance, R1441G leads to an increased strength of interaction with PPP1CA, whereas to a 

disrupted rate with PRKACA and YWHAZ (Table S5-1; Appendix G).  

 

Table 5-6. Genes encoding proteins whose interactions with LRRK2 are affected by LRRK2 mutations  

Gene SwissProt ID LRRK2 mutations 

PRKACA P17612 Q5S007:p.Ser1444Ala, Q5S007:p.Arg1441Cys, Q5S007:p.Arg1441Gly, 

Q5S007:p.Ser1443_Ser1444delinsAlaAla, Q5S007:p.Arg1441His 

SNCA P37840 Q5S007:p.Gly2019Ser 

GSK3B P49841 Q5S007:p.Asp1994Ala, Q5S007:p.Gly2019Ser 

RAB5B P61020 Q5S007:p.Gly2385Arg, Q5S007:p.Arg1441Cys, Q5S007:p.Asp1994Ala, 

Q5S007:p.Ile2020Thr, Q5S007:p.Gly2019Ser 

PPP1CA P62136 Q5S007:p.Asn1437His, Q5S007:p.Arg1441Gly, Q5S007:p.Tyr1699Cys, 

Q5S007:p.Ser910Ala, Q5S007:p.Ser935Ala, Q5S007:p.Ser955Ala, 

Q5S007:p.Ser973Ala 

YWHAZ P63104 Q5S007:p.Arg1441Gly, Q5S007:p.Ser1444Ala 

SQSTM1 Q13501 Q5S007:p.Gly2385Arg, Q5S007:p.Asp1994Ala, Q5S007:p.Gly2019Ser 

CDC37 Q16543 
Q5S007:p.Gly2385Arg 

 

In the final model of macroautophagy of Chapter 6, the aim is to simulate the effect of different 

LRRK2 mutations on individual interactions. Therefore, the mutations of LRRK2 were prioritised to 

include those for which there was more information. As seen in Table 5-7, most mutations affected 

only 1 interaction (n=9/15, 60%), while 1 mutation (i.e., Q5S007:p.Gly2019Ser aka G2019S) affected 

6 interactions. The mutations affecting at least 3 interactions will be studied further, leading to the 
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inclusion of 5 mutations that affected 33% of the total interactions (R1441C, R1441G, D1994A, 

G2019S, and G2385R, corresponding to Q5S007:p.Arg1441Cys, Q5S007:p.Arg1441Gly, 

Q5S007:p.Asp1994Ala, Q5S007:p.Gly2019Ser, and Q5S007:p.Gly2385Arg). This did not result in the 

exclusion of any LRRK2 interactor, meaning that all interactors were affected by at least one of the 

mutations that will be simulated in a later stage.  

 

Table 5-7. Mutations of LRRK2 and the number of proteins with whom the interactions are affected 

Feature short label Feature range(s) 
Original 

sequence 

Resulting 

sequence 

N affected 

interactions 

Q5S007:p.Asn1437His 1437-1437 N H 1 

Q5S007:p.Arg1441Cys 1441-1441 R C 3 

Q5S007:p.Arg1441Gly 1441-1441 R G 3 

Q5S007:p.Arg1441His 1441-1441 R H 1 

Q5S007:p.Ser1443_Ser1444delinsAlaAla 1443-1444 SS AA 1 

Q5S007:p.Ser1444Ala 1444-1444 S A 2 

Q5S007:p.Tyr1699Cys 1699-1699 Y C 1 

Q5S007:p.Asp1994Ala 1994-1994 D A 4 

Q5S007:p.Gly2019Ser 2019-2019 G S 6 

Q5S007:p.Ile2020Thr 2020-2020 I T 1 

Q5S007:p.Gly2385Arg 2385-2385 G R 3 

Q5S007:p.Ser910Ala 910-910 S A 1 

Q5S007:p.Ser935Ala 935-935 S A 1 

Q5S007:p.Ser955Ala 955-955 S A 1 

Q5S007:p.Ser973Ala 973-973 S A 1 

 

Therefore, the 8 filtered LRRK2 interactors (i.e., SQSTM1, CDC37, GSK3B, PPP1CA, PRKACA, RAB5B, 

SNCA, and YWHAZ) were retained in the macroautophagy diagram, while the other LRRK2 

interactors were removed. An additional gene had to be retained in the diagram due to the way it 

functions. CCDC37 mainly affects macroautophagy through the complex of its protein product with 

HSP90AA1, so the latter was also included in the diagram. The resulted diagram is displayed for 

transparency, but it is too complicated to be studied in detail (Enriched diagram D, Fig S5-3, 
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Appendix E). More simplification was required and performed in a later stage, described in Section 

5.4.5.  

 

5.4.5 Further adjustments  

 

5.4.5.1 Expert curation of the macroautophagy network  

The macroautophagy pathway is complex and the subject of extensive ongoing research, and so 

the opinion of an expert in the field of macroautophagy, Dr Sharon Tooze, was sought to provide 

targeted curation of the diagram of macroautophagy. Prior to this step, however, some of her 

recent publications were studied in more detail [627-630] to incorporate any missing information 

or correct any potential mistakes that could have been made by misinterpreting the literature or 

using published data either disproven by or not convincing to field experts. Relationships were 

added in the diagram (Enriched Diagram E, Fig S5-4, Appendix E) based on the extracted 

information, including the positive regulation of the ULK1 complex through LC3II and C9orf72 

[628]. Interestingly, data were obtained supporting the association of RAC1 with macroautophagy 

[630]. RAC1 was a LRRK2 interactor that was previously excluded from the analysis due to lack of 

data supporting its association with macroautophagy (Section 5.4.4.2). Therefore, the LRRK2 

interactor list was updated to include RAC1 and the analysis that followed this step (i.e., filtering of 

the LRRK2 interactors based on the existence of mutational data) was repeated. RAC1 was retained 

after this step and therefore Tables 5-6 and 5-7 were updated and their new versions are 

presented in Tables 5-8 and 5-9.  

After updating the model based on recent publications of Dr Sharon Tooze, her advice was sought 

for a list of topics, some of them controversial, as gathered from the literature. For instance, there 

is growing evidence that the ATG9 trafficking pathway can affect macroautophagy [631-633]. It was 

questioned whether such information was essential to be added in the diagram, taking into 

account the limit of components that can be included in the model (20-30 in this case). The 

questions and decisions made based on the feedback are summarised in Table S5-2 and the 

resulted diagram named Enriched diagram E is presented in Figure S5-4 (Appendix E).  
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Table 5-8. Genes encoding proteins whose interactions with LRRK2 are affected by LRRK2 mutations 

(updated to include RAC1) 

Gene SwissProt ID LRRK2 mutations 

PRKACA P17612 Q5S007:p.Ser1444Ala, Q5S007:p.Arg1441Cys, 

Q5S007:p.Arg1441Gly, Q5S007:p.Ser1443_Ser1444delinsAlaAla, 

Q5S007:p.Arg1441His 

SNCA P37840 Q5S007:p.Gly2019Ser 

GSK3B P49841 Q5S007:p.Asp1994Ala, Q5S007:p.Gly2019Ser 

RAB5B P61020 Q5S007:p.Gly2385Arg, Q5S007:p.Arg1441Cys, 

Q5S007:p.Asp1994Ala, Q5S007:p.Ile2020Thr, 

Q5S007:p.Gly2019Ser 

PPP1CA P62136 Q5S007:p.Asn1437His, Q5S007:p.Arg1441Gly, 

Q5S007:p.Tyr1699Cys, Q5S007:p.Ser910Ala, 

Q5S007:p.Ser935Ala, Q5S007:p.Ser955Ala, 

Q5S007:p.Ser973Ala 

YWHAZ P63104 Q5S007:p.Arg1441Gly, Q5S007:p.Ser1444Ala 

SQSTM1 Q13501 Q5S007:p.Gly2385Arg, Q5S007:p.Asp1994Ala, 

Q5S007:p.Gly2019Ser 

CDC37 Q16543 Q5S007:p.Gly2385Arg 

RAC1 P63000 Q5S007:p.Gly2019Ser, Q5S007:p.Lys1906Met, 
Q5S007:p.Arg1441Cys, Q5S007:p.Ile2020Thr,  
Q5S007:p.Tyr1699Cys 
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Table 5-9. Mutations of LRRK2 and the number of proteins with whom the interactions are affected 

(updated to include RAC1) 

Feature short label Feature range(s) 
Original 

sequence 

Resulting 

sequence 

N affected 

interactions 

Q5S007:p.Asn1437His 1437-1437 N H 1 

Q5S007:p.Arg1441Cys 1441-1441 R C 4 

Q5S007:p.Arg1441Gly 1441-1441 R G 3 

Q5S007:p.Arg1441His 1441-1441 R H 1 

Q5S007:p.Ser1443_Ser1444delinsAlaAla 1443-1444 SS AA 1 

Q5S007:p.Ser1444Ala 1444-1444 S A 2 

Q5S007:p.Tyr1699Cys 1699-1699 Y C 2 

Q5S007:p.Lys1906Met 1906-1906 K M 1 

Q5S007:p.Asp1994Ala 1994-1994 D A 4 

Q5S007:p.Gly2019Ser 2019-2019 G S 7 

Q5S007:p.Ile2020Thr 2020-2020 I T 2 

Q5S007:p.Gly2385Arg 2385-2385 G R 3 

Q5S007:p.Ser910Ala 910-910 S A 1 

Q5S007:p. Ser935Ala 935-935 S A 1 

Q5S007:p.Ser955Ala 955-955 S A 1 

Q5S007:p.Ser973Ala 973-973 S A 1 

 

5.4.5.2 Additional adjustments and final diagram 

In mathematical modelling a balance between simplicity and complexity is key [5]. Even though, 

descriptive terms, such as “Initiation of macroautophagy and nucleation of isolation membrane”, 

were helpful in building the model and retaining as much information as possible in an accurate 

manner, they were removed at this stage. Similarly, relationships that expressed regulation without 

being specific about whether it is positive of negative were also excluded. Additionally, 

components through which information did not flow were also removed, with the exception of the 

initial and last components of the model (ULK1 complex and LC3II) and the LRRK2 interactors. 

Therefore, the main diagram that is going to be modelled was created. For ease of visualisation 

purposes, the macroautophagy diagram is presented without the connections with LRRK2 

interactors in Fig 5-3. 
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5.5 Discussion 
 

Creating a mathematical model of macroautophagy is a complicated multi-step process that 

requires much information to be collected and several decisions to be made. For the former, the 

vast number of produced publications relating to macroautophagy is a valuable source of 

information. A substantial total of 728 publications resulted from the query of “macroautophagy” 

in PubMed and of 13,459 publications from using the term “autophagy”, as of the 9th of February of 

2022. The amount of available literature is accompanied by a multiplicity of other resources, such 

as Reactome, KEGG, Autophagy Regulatory Network and BIOMODELS that are valuable in building a 

model. These demonstrate the international effort in understanding macroautophagy and its 

connection with human diseases.  

A number of decisions were made based on the exploration of the available data regarding 

macroautophagy. The vast amount of research around this topic led to incorporating only the core 

macroautophagy proteins and their direct interactors to limit the entities of the model and 

diagram. The location of the model and diagram was defined to be the site of phagophore 

formation. It was also decided to focus on the initial stages of the process (i.e., initiation of 

macroautophagy until the elongation of the phagophore). 

The rationale of the choice to start the modelled part of macroautophagy at the activated ULK1 

complex was partly due to the stages prior to the activated ULK1 complex, which includes a variety 

of separate pathways depending on the signal that leads to the activation of macroautophagy, as 

discussed in Chapter 4. Briefly, examples include starvation and low energy levels, which induce 

macroautophagy through mTOR and JNK, and AMPK, respectively [318, 634, 635]. However, the 

aim was to model macroautophagy in a non-signal specific manner, so anything prior to the 

activation of the ULK1 complex was excluded. An additional reason for this decision was mTORC1 

being upstream of the ULK1 complex. mTORC1 is a central complex that regulates cell growth and 

survival, and macroautophagy, responding to growth factors and amino acids [636-639]. Its 

inclusion in the model would have increased the complexity of the model to a level higher than 

aimed for this project. Regarding the decision to end the modelled pathway at the step of 

elongation, there were two main reasons: (i) multiplicity of downstream pathways, and (ii) lack of 

specificity of the associated proteins to macroautophagy. The former relates to the ability of the 

autophagosome to fuse with a variety of vesicles, including early or late endosomes, multivesicular 

bodies, lysosomes, or even the plasma membrane [640, 641]. Regarding the latter, two examples 

will be used, CHMP2B, and CHMP3. CHMP2B is associated not only with the fusion of 

autophagosome with the lysosome, but also with the multivesicular body sorting pathway, nucleus 
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organisation and viral budding [642-645]. CHMP3 is also associated with mid body abscission and 

the regulation of early endosome to late endosome transport [645, 646]. Therefore, the fusion of 

the phagophore was not included in the current model. 

As seen from the differences in the diagrams of Reactome and KEGG (Fig S5-1 & S5-2, Appendix E), 

neither the start, the end, nor the number of regulators matches between these databases. In 

Reactome, the ULK1 complex signifies the beginning, and LC3II the end of the pathway, while a 

limited number of regulators are included. In KEGG, the pathway is broader. Different stimuli that 

lead to the activation of macroautophagy are included in its diagram, who’s last step is the 

degradation of the components of the autophagolysosome. In the diagram created in this chapter 

the borders are of higher similarity to those of Reactome, as the beginning and the end match. 

However, additional regulators were incorporated to allow for a more accurate representation of 

the current knowledge of macroautophagy. In addition, some steps were simplified to limit the 

complexity of the diagram and of the mathematical model to be created from this diagram. This led 

to the main diagram of macroautophagy (Fig 5-3) been composed of 23 components (proteins, 

protein complexes and lipids), which is more restricted compared to the 150 from Reactome and 

the 147 from KEGG.  

Since the model of Chapter 6 will focus on simulating how mutations that lead to 

neurodegeneration can affect macroautophagy, the availability of data supporting the overlap 

between macroautophagy and neurodegeneration was also assessed. Together with the literature, 

the PPIN analysis of the previous chapter supports a substantial intersection between the two 

processes. Therefore, the aim of the model was adjusted to simulating the overlap of 

macroautophagy with a single protein that leads to Parkinson’s disease, LRRK2. This decision was 

based on analyses of the number or amount of available publications, protein interactors, and 

mutational data that affect protein interactions, which were available through IntAct.  

Of note, a large volume of data does not necessarily correlate with experimental value. Even 

though the connection of two LRRK2 interactors, MAPT and SEC16A, with macroautophagy was 

mentioned in one of papers in the reference list [34], there was a lack specific information to allow 

their incorporation in the diagram. In another case, that of SSR4, there was no referenced human 

evidence supporting the involvement of the protein in macroautophagy [34, 647-650]. Therefore, 

more research is required to fill in these gaps of knowledge and improve our confidence in the 

associations of certain proteins with macroautophagy in humans. 

An additional source of data for the association of LRRK2 with macroautophagy could have been 

the Autophagy Regulatory Network (ARN). Interestingly, querying LRRK2 in the ARN website (9th 
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February 2022) [551], resulted in zero direct interactions with autophagy proteins, or autophagy 

regulators, which is in disagreement with the results from this project. Through the current study, 

the relationship of LRRK2 and SQSTM1 (producing p62) was collected from the literature and 

incorporated in the diagram of macroautophagy. However, ARN included 110 post-translational 

regulators, 25 transcriptional regulations, and 2 pathways for LRRK2. Among the post-translational 

regulators, 6/9 LRRK2 interactors of the final diagram were present. Therefore, an alternative 

approach could have been to incorporate these data from ARN in the diagram. That would, 

however, require manual evaluation of the data of each interaction, and filtering based on the level 

of distance from components of the diagram. Nonetheless, 3/9 total LRRK2 interactors (33%) were 

uniquely identified by using the methodology of this Thesis and were absent from the ARN data 

set. This result demonstrates that even though valuable information can be extracted from 

specialised databases, the approach of this study resulted in the inclusion of 3 extra connections 

that could affect the behaviour of the model and thus lead to stronger predictions about 

macroautophagy and its link with neurodegeneration. 

The association of multiple LRRK2 interactors with macroautophagy proteins as identified in the 

current study is not surprising. Overexpression of LRRK2 with the G2019S mutation has been 

suggested to play a role in the regulation of macroautophagy [651] due to accumulation of 

autophagic vesicles in neurons and increased neuronal death observed in rats [652]. Evidence from 

human cells have also been produced. In human neuroblastoma cells, which overexpressed the 

LRRK2 G2019S mutation, the induction of macroautophagy resulted in the further accumulation of 

autophagosomes and shortening of neurites [653]. A more recent analysis, studied the 

overexpression of LRRK2 G2019S, which was demonstrated to induce macroautophagy in the 

neuromuscular junction [654]. In a study with human neuroglioma cells that avoided using an 

overexpression system, which represent a less natural cellular state, the inhibition of the kinase 

activity of LRRK2 resulted in an induction of macroautophagy [588]. A follow up study of the 

researchers revealed that this stimulation was dependent on PIK3C3-C1 and independent of mTOR 

and ULK1 complex [586]. In addition, increased basal macroautophagy has been reported in 

fibroblasts from patients with PD, carrying the LRRK2 G2019S mutation [655]. It has been 

suggested that LRRK2 affects macroautophagy through its impact in vesicular dynamics [602].These 

findings are highlighting the association of LRRK2, and thus Parkinson’s disease, with 

macroautophagy, supporting the results of this chapter.  
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6. A mathematical model of macroautophagy 

 

Main points of this chapter: 

• The main aim of this chapter is to formulate, parametrise and solve an ordinary differential 

equation (ODE) mathematical model of the initial stages of macroautophagy (initiation and 

elongation of phagophore) 

• The model is based on the macroautophagy process diagram detailed in Fig 6-1 and is 

informed and tested using literature data 

• The model is composed of 26 entities, and 45 relationships, each described by an ODE and 

was solved using the SimBiology toolbox of MATLAB 

• The model was investigated for both healthy and Parkinson’s disease states, based on 

differential concentrations/amounts of its entities  

• The LC3 ratio (i.e., LC3II/LC3I) was used as an output to compare macroautophagy in the 

healthy vs the Parkinson’s disease state 

• Macroautophagy in PD is suggested by the model to start earlier but reach slightly lower 

levels as described by the LC3 ratio compared to healthy controls 

 

6.1 Introduction 

 

In people living with neurodegenerative diseases, such as Parkinson’s disease (PD), specific brain 

functions are altered, including control of movement, cognition, sleep, and smell [191-194, 196]. 

These effects are also reflected in alterations in cell and protein biology in animal models of PD and 

in post-mortem analyses of human brain specimens of people with PD. For instance, a post-

mortem study of cerebellar tissue of people with PD carrying LRRK2 mutations, demonstrated that 

there was a decrease in the protein levels of GBA and VSP35, and by implication of their activity 

[656]. LAMP2A has also been found to be decreased in Parkinson’s disease [657] including in 

people with LRRK2 G2019S mutations [658]. In mice expressing the same mutation, the opposite 

trend was observed for ATP13A2, as it was upregulated [659]. Interestingly, components of the 

macroautophagy pathway and their regulators have also been found to be differentially expressed 

in people with PD. For example, a higher expression of negative regulators of LAMP2A and Hsc70 
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was found in the substantia nigra and amygdala of people with PD [493]. Macroautophagy has 

been discussed in detail previously (Section 1.5), but a brief summary of the process is presented in 

Fig 1-4 also copied in this section as an aide memoire.  

 

 

Furthermore, the effect of PD pathology is more prominent in some brain regions. This can be 

explained in part by the spreading of the disease according to Braak staging [211]. At any given 

time-point, an area that has been affected for a longer period of time (e.g., brainstem versus 

neocortex) could have a more severe PD pathology. However, the differential features of distinct 

areas of the brain can also play a role in their susceptibility to disease, e.g., level of vascularity 

[660], basic metabolism [661], and differential expression of proteins [662]. The molecular basis of 

this differential impact of PD pathology in diverse brain regions has yet to be deciphered. 

 

6.2 Aims and objectives 

 

The aim of this chapter is to formulate, parametrise and solve a mathematical model of 

macroautophagy based on the macroautophagy process diagram (Fig 5-3) that focused on its initial 

stages (initiation of macroautophagy and phagophore elongation) in a human cell. Considering that 

 

Figure 1-4. Schematic representation of macroautophagy. 

In macroautophagy, there is initially the formation of the phagophore, then of the, autophagosome and finally of the autolysosome. 

Adapted from Jing et al [265]. 
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the components of the macroautophagy pathway and their regulators have been found to be 

differently expressed in people with PD, the model will be used to investigate whether there is a 

distinction in how macroautophagy functions when comparing brains of healthy people vs people 

with PD. 

The first objective for this endeavour is to reduce the complexity of the macroautophagy diagram 

reported in Fig 5-3, so that a minimal mathematical model capturing key behaviours can be 

created. The model will be formulated using ordinary differential equations (ODEs). The second 

objective is to collate reaction rates for macroautophagy, and also protein concentration/amount 

data from healthy people vs people with PD. Finally, the model will be solved, to explore whether 

the macroautophagy process differs in by PD, and if so, in what manner.  

 

6.3 Methodology 

 

6.3.1 Model reduction  
 

The macroautophagy process diagram that was produced in Chapter 5 (Fig 5-3) focused on the 

initial stages of macroautophagy (initiation of macroautophagy and phagophore elongation) in a 

single human cell. In the current chapter, Fig 5-3 was further simplified to develop a mathematical 

model of macroautophagy, mainly by removing intermediate entities in serial reactions of the 

diagram, such as STING1, ATG4, and VMP1. Therefore, the total number of entities was reduced 

from 23 to 14, as shown in the simplified process diagram of Fig 6-1, produced in Cytoscape 

(v3.7.1). In addition, the “regulations” (black arrows) not incorporated in Fig 6-1, due to the lower 

confidence on the details of the relationships (i.e., positive or negative). The connections of the 

LRRK2 interactors (CDC37, GSK3B, PPP1C1, PRKACA, SNCA, SQSTM1, RAC1, and YWHAZ) with this 

diagram were also incorporated and are presented in Fig S6-1. Of note, the LRRK2 interactor RAB5B 

was excluded from further analysis due to lack of high confidence regarding to connections with 

other proteins of the model.  
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6.3.2 Model formulation 
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Initial simulation of this model showed PI3P increasing unbounded, which does not match the 

biology of this process [663]. Thus, a relationship was added to represent its natural decrease over 

time (PI3P → PI, k= - [PI3P] t). Similar relationships were added for the rest of the model entities for 

consistency.  

The formulated rate reaction equations that describe the mathematical model of macroautophagy 

are presented in Table S6-1.  

 

6.3.3 Parameterisation 
 

For the parametrisation of the mathematical model of macroautophagy, the relationships 

describing the model (i.e., rate reaction equations of Table S6-1) were analysed into individual 

reactions and the type of each reaction was labelled. The labels used were sensing, binding, 

complex formation, phosphorylation, lipidation, ubiquitylation, truncation, GTP exchange, 

recruitment, natural de-activation, stabilising in membrane, and unknown. To retrieve reaction rate 

values for each type of reaction, the BioModels database was queried on 9th March 2022, for 

“autophagy” and the 4 resulted models published after 2010 were used as data sources (their 

unique identifiers in BioModels are: BIOMD0000000640, BIOMD0000000560, BIOMD0000000559, 

BIOMD0000000105) [162, 664-666]. The reaction rate values were plotted per type of reaction and 

outliers were removed (outliers were defined as values with a distance of more than 2 magnitudes 

to the others; see Fig S6-2). The average reaction rate value per type of reaction across the models 

(e.g., “phosphorylation”) was calculated and used. Briefly, the resultant values were as follows: 

“binding” was set equal to 1.73×10-4 (molecule sec)-1, “truncation” to 8.60×10-5 (molecule sec)-1, 

“inactivation” to 5.00×10-10 sec-1, and “ubiquitination” to 1.00×10-3 (molecule sec)-1. Data were 

unavailable for the remaining categories. Based on their biological similarities, the reaction rate 

constants for “sensing”, “binding”, “complex formation” and “GTP exchange” were considered 

equal. In addition, “phosphorylation”, “lipidation”, and “ubiquitylation” were also considered to 

have an equal value. “Recruitment” was considered to be half as fast as “sensing”, as it requires 

transport from another region of the cell. “Stabilising in membrane”, and “unknown” types of 

reaction were assumed to be half as fast as “recruitment”. In most cases the rate constant was 

stated for 2 reactants. In cases where more than 2 reactants were involved, the reaction rate was 

adjusted with respect to the amount of the additional reactant species, for example, if a “binding” 

reaction was between 3 components instead of 2.  
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For relationships in the model composed of multiple individual reactions, the assumptions were: (i) 

If a relationship is composed of more than one reaction in a series, then the rate of this relationship 

is equal to the slowest reaction, minus a tenth of its value for each additional reaction; and (ii) If a 

relationship is composed of more than one reaction in parallel, then the reaction rate constant is 

assumed to be equal to the sum of the individual reaction rate constants, to limit their number.  

When the reaction rates were tested by running a simulation in the preliminary model, around 

5,000h were needed for LC3II to have a higher amount than LC3I, instead of approximately 1h that 

is commonly reported in the literature [586, 667]. Since, the reaction rate constants were 

calculated using average values from previously published models of autophagy-related processes, 

instead of data from targeted experiments in macroautophagy, they were adjusted accordingly to 

reflect the biology of the process. More specifically, all the rates of reactions were multiplied by 

5,000. 

For the calculations of the amount of each model entity, there was no single source providing all 

the necessary data for the entities in the model. Therefore, data from two sources were collected 

and combined. Amounts of proteins were retrieved from a previously published model [582]. In the 

published model, the concentrations of PIK3C3, WIPIs, ATG9, and LC3I were set equal to 0.55nM, 

while the concentration of PIs was 5.54nM. In parallel, the readings from a proteomic published 

analysis were used, as they included relative amounts of multiple proteins in brains of healthy 

people vs people with PD [668]. The averages of the readings from brains of healthy people and 

people with PD were calculated for each protein. Then, the retrieved data from the 2 sources were 

combined in the following manner. Since data for WIPIs and PIs were unavailable in the proteomic 

analysis, the average of the averages of the relative reading for PIK3C3, ATG9, and LC3I was 

equated to 0.55nM. Based on this equation (2039.258 equates to 0.55nM), the concentrations of 

each protein were calculated from their reading. The concentrations (nM) were then converted to 

amounts (number of molecules) using the volume of the cell from the model [582] (V=3×10-12 L). 

For genes with multiple isoforms and for protein complexes, their minimum amount was used. 

There was no data in the proteomic analysis for BCL2, so its number of molecules was set equal to 

the average value of the entities in the model. 

Similarly, the amounts of the components of the model were calculated for different brain regions 

using data from BRAINEAC (http://www.braineac.org/; [669]). The average of the relative amounts 

of PIK3C3, ATG9, and LC3I (PIs and WIPIs had no data in BRAINEAC) was calculated and equated to 

0.55nM [582]. Based on this reading, the amounts of the model entities were calculated and 

converted to numbers of molecules, as described above. 

http://www.braineac.org/
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The amounts of the model entities and the values of the reaction rate constants are presented in 

Table S6-2, and Table S6-3, respectively. 

 

6.3.4 Model solution  
 

The reaction rate equations (Table S6-1) were used as input into the SimBiology toolbox of MATLAB 

to create the mathematical model, using the settings “Mass action” to describe the type of 

relationships of the model and “odes15” as the solver. The ODEs describing the model were 

derived by the toolbox and were then manually examined for their accuracy (Table S6-4; Table S6-

5). 

The model as produced by the toolbox is presented in Fig 6-2. In this figure, the boxes are 

representing the entities of the model (i.e., proteins, complexes, and lipids), while the arrows are 

representing their relationships (see Section 6.3.1 and Appendix F for the full description). The solid 

lines are linking the main components of the reaction (identified by the number inside the circle), 

while the reaction can be also connected with an entity of the model that modifies a reaction 

through a dashed line. This figure deviates from the classic representation of models in which for 

each reaction the parameters are shown, due to the synonymity of the reaction identifier (numbers 

between 0 and 54), to the index of the parameters. For instance, reaction 1 has k_1 as its 

parameter. 

The larger number of components compared to the macroautophagy process diagram of Fig 6-1 is 

due to the nature of modelling (n=26 vs 14), as both the active and inactive states of some 

components needed to be represented in the model (e.g., LC3I and LC3I_act). Other components 

were present only in one state, either because including their activation steps was beyond the 

scope of this model (e.g., CSNK2_act) or because they represented lipids that are either present or 

absent (lack of need of activation).  

Some activations within the model of Fig 6-2 are delayed. To account for this, two more 

adjustments were applied. There are 3 entities that activate ATG16L1: PI3P, the activated ULK1 

complex, and CSNK2 (as seen in equation 11 of Table S6-4). However, these activations are distinct 

in their timings. ATG16L1 needs to first be recruited to the location of the formation of the 

phagophore through PI3P. This is represented by reaction 13 in Fig 6-2. Then, ATG16L1 can be 

further activated by ULK1 complex and CSNK2 (reactions 14 and 50, respectively). Therefore, this 

prioritisation of reactions was incorporated into the model by inserting a “trigger event” in 

SimBiology. Briefly, “trigger events” allow the user to program changes in the values of parameters 
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at a specific timepoint during the simulation. The selected timepoint for switching the reactions 14 

and 50 from inactive to active was chosen to be that at which ATG16L1 reached 10% of its 

maximum activation level (trigger event 1). Similarly, LC3II can be produced only after ATG16L1’s 

activation and the formation of the complex with ATG12 and ATG5, as seen in equation 18 of Table 

S6-4. Therefore, a second trigger event was incorporated when LC3II reached its 10% of maximum 

activation level, before which the reactions of LC3II production by the ULK1 complex, CSNK2, and 

SMCR8:WDR41:C9ORF72 were inactive (reactions 24, 26, and 34, respectively) (trigger event 2).  
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6.3.5 Local sensitivity analysis 
 

The chosen output for the local sensitivity analysis (LSA) was the LC3II/LC3I ratio (hereafter 

referred to as the LC3 ratio), which was calculated through SimBiology, based on setting the 

following “observable”: LC3activation = (LC3II_act ./ LC3I_act).  

The LSA was performed manually, by recording the effect of parameter variation on the LC3 ratio. 

The LSA function within SimBiology could not be used given it does not apply to models that have 

trigger events, such as those incorporated in the present model. The outputs of the LSA for 

increased (x10) and decreased (x1/10) reaction rate constants compared to their initial values were 

assessed visually by plotting and comparing the two graphs of the LC3 ratio. This variation in 

reaction rate constants was chosen based on literature [664]. The LSA was performed in two ways: 

based on the value of the LC3 ratio at 4,000s, and based on the value of the ratio for the timeframe 

0≤t≤4,000s.  

For the LSA at 4000s, the parameters (i.e., rates of reactions) were categorised in 2 groups based 

on their impact on the output: those with or without an impact. For the LSA in 0≤t≤4,000s, the 

rates of reactions were categorised to 3 groups: no impact, slight impact, high impact. 

 

6.3.6 Visualisation of results 
 

The model was visualised with the following software in different stages of creating the model: 

Cytoscape (v3.7.1) [106], and MATLAB (version 2021a; MathWorks, Natick, MA) using the 

SimBiology Toolbox (version 6.1). 

 

6.3 Results 

 

6.3.1 Model simulation 

 

The first step after creating the mathematical model of macroautophagy for a healthy state was to 

explore the results by solving it in SimBiology. When plotting the molecule levels of all the 

components of the model together over time (Fig S6-3), the produced picture is complicated, but it 

can be observed that the model reaches its steady state at around 10,000s (approximately 2h and 

45min). However, the model has been built based on the events of macroautophagy initiation and 
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phagophore elongation. Therefore, the analysis will focus on the events up to approximately 1h 

(4,000s) (Fig S6-4) [586, 667]. 

Plots of the molecule levels of smaller groups of model entities for ease of visualisation over time 

(t=4,000s) are presented in Fig S6-5. It can be observed that the events and the order in which they 

occur align with the biological understanding of macroautophagy. For the comparison of rates of 

activation/production of entities of the model, the time point at which the activated and 

inactivated form of each entity have equal number of molecules as seen from the plots, will usually 

be used unless otherwise stated. Firstly, the ULK1 complex remains activated throughout the 

experiment with a small temporary decrease at around 900s (Fig S6-5A&B). The PIK3C3-C1 is 

activated rapidly by the ULK1 complex. The active and inactive forms of PIK3C3-C1 are equal at 

123s (Fig S6-5B). Another 3 components that are directly regulated by ULK1 are ATG9, BCL2, and 

AMPK. Their active and inactive forms are equal at 407s, 461s, and 1565s, respectively (Fig S6-5C). 

The dynamics of PIs are also noteworthy (Fig S6-5D). PI4P is produced mainly through ATG9, which 

is reflected by the timing of its production. It reaches the same levels as PI at 437s and keeps 

increasing until around 1,000s, when it reaches its steady state. PI3P increases with a smaller rate 

(tequal, PI3P-PI = 650s) and reaches its steady state at around the same time (t=900s). After the 

production of PI3P, ATG16L1 is activated, and reaches its 10% of total activated state at 433s. The 

activated ATG16L1 leads to the formation of the ATG16L1:ATG12:ATG5 complex, which then forms 

LC3II from LC3I (Fig S6-5E). In parallel, the SMCR8:WDR41:C9ORF72 complex is forming from its 

components at reaches levels equal to those of ULK1 complex at 148s (Fig S6-5F). 

The dynamics of LC3 forms are of particular importance and are shown in Fig 6-3. Briefly, LC3I is 

slowly decreasing to produce the activated form of LC3I (i.e., LC3I_act), which is then decreasing as 

it is used to produce LC3II (i.e., LC3II_act). The rate of production of LC3II is increased further after 

t=890s. This is due to the events triggered after 890s, meaning the activation of the reactions 

through which the ULK1 complex, CNSK2, and also the SMCR8:WDR41:C9ORF72 complex lead to 

the formation of LC3II.  
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Figure 6-3. The dynamics of the LC3s in relation to the formation of the ATG16:ATG12:ATG5 complex as simulated 

by the macroautophagy model 

The image was produced through SimBiology, MATLAB. ATG16 represents ATG16L1. At t=0s, all of the ULK1 complex 

of the system is fully activated and all other entities are fully inactivated (except from the negative regulators which 

are fully activated). At t=433s, ATG16:ATG12:ATG5 complex is formed and leads to the formation of LC3-II_act  from 

LC3-I_act. 

 

 

6.3.2 Local sensitivity analysis 

 

The mathematical model of macroautophagy was then analysed using a local sensitivity analysis 

(LSA) to identify the parameters that affect the model more prominently than others. The output 

for this analysis was chosen to be the ratio of LC3II and LC3I (i.e., LC3 ratio), due to being one of the 

most widely used cellular marker for macroautophagy, whose increase can indicate an induction of 

the process [34]. 

Most parameters in the model had no effect on the output at 4,000s (n=35/45, 77.8%). The effect 

on the LC3 ratio was minimal (<10%) for 3 parameters (i.e., kf_23, kf_46, and kf_48), while the 

remaining 10 parameters (kf_3, kf_10, kf_22, kf_24, kf_26, kf_28, and kf_34) did show a discernible 

difference in the output (Fig 6-4) (see Table S6-4, and Table S6-5 for details of each reaction). 

Interestingly, the two parameters with the most prominent effect on the LC3 ratio are linked to the 

433  
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regulation of LC3s by the SMCR8:WDR41:C9ORF72 complex and CSNK2. More specifically, a 10-fold 

increase of the reaction rate constant kf_10, which describes the inactivation of LC3II (LC3II -> LC3I) 

by SMCR8:WDR41:C9ORF72 complex, led to an 88% decrease in the LC3 ratio, whilst a 10-fold 

decrease led to a 243% increase in the LC3 ratio (331% range of effect). Regarding to CSNK2, a 10-

fold increase of the reaction rate constant kf_26, which describes the activation of LC3II (LC3I -> 

LC3II) by CSNK2, led to a 758% increase in the LC3 ratio, whilst a 10-fold decrease led to an 80% 

decrease in the LC3 ratio (kf_26: -80% in x1/10, +758% in x10 (838% range of effect). Conversely, 

other entities of the model that are established regulators of macroautophagy had less an effect on 

the ratio. For instance, the parameter describing the formation of LC3II from LC3I by the 

ATG16L1:ATG12:ATG5 complex, kf_22, affected the system comparatively mildly. A 10-fold 

increase of the reaction rate constant led to a 62% increase in the LC3 ratio, whilst a 10-fold 

decrease of the reaction rate constant led to a 7% decrease in the LC3 ratio (69% range of effect, 

which is approximately a fifth of the range of kf_10, and a twelfth of the range of kf_26). 

 

 

Figure 6-4. Local sensitivity analysis of the macroautophagy model at t=4,000s  

Parameters that did not result in any discernible change of the output (LC3 ratio) are not included in this graph (n=35/45, 77.8%).  
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Furthermore, it can be observed that most parameters with an impact on the LC3 ratio, affected 

the output differently when they were increased compared to when they were decreased, usually 

having a greater effect on increasing the ratio than decreasing it. For example, the top two 

percentages of greater increase in the LC3 ratio were 243% and 758%, which were caused by a 10-

fold decrease of kf_10, and a 10-fold increase of kf_26, respectively. On the other hand, the two 

percentages of greater decrease in the ratio were 80% and 88%, which were caused by a 10-fold 

increase of kf_10, and a 10-fold decrease of kf_26, respectively. Some exceptions in the asymmetry 

between positive and negative effect can also be detected. For instance, kf_3 (i.e., the rate of the 

activation of LC3I) affected the output more in the negative side than in the positive side (-36% in 

x1/10, and +20% in x10) (Fig 6-4). Overall, from this analysis it is suggested that the LC3 ratio, and 

thus possibly the level of macroautophagy, is more prone to be increased than decreased with 

perturbations of the kinetics of the system. 

During the analysis of the model through LSA, it was observed that the effect of the parameters on 

the LC3 ratio varied throughout time. Therefore, LSA for a period of time was also performed. 

Similarly to the previous analysis, it was performed manually with the LC3 ratio as an output and 

the timeframe chosen was 0≤t≤4,000s. There was no noticeable effect for 22 parameters (n=22/45, 

48.9%); there was a small effect for 17 parameters (n=17/45, 37.8%); while 6 parameters had a 

large effect in the behaviour of the LC3 ratio. The 6 parameters were: kf_3, kf_10, kf_22, kf_26, 

kf_28, and kf_34 (see Table S6-4, and Table S6-5 for details of each reaction). As expected, these 

parameters belonged to those that had an effect on the output during the previous LSA.  

An example of a parameter with a large effect on the readout (LC3 ratio) of this analysis is kf_3, 

which is shown in Fig 6-5. Multiple differences can be observed in the LC3 ratio when comparing 

panels A and C of Fig 6.5, which correspond to a higher (x10) and lower (x1/10) rate, respectively. 

Firstly, when the rate is increased, the maximum value of the LC3 ratio is also increased to around 

29 compared to 13 (55.17% increase) (Fig 6-5A vs C). Secondly, the dynamics of the ratio differ, as 

when kf_3 is increased, it first increases very slowly until 890s, then rises rapidly until it reaches its 

maximum value at around 1,900s, and then drops slowly for the remaining 2,100s to a value of 

approximately 24 (Fig 6-5A). The behaviour of the LC3 ratio when kf_3 is decreased is similar until 

890s, but differs largely thereafter, as it increases constantly until 4,000s without reaching a 

maximum beforehand. When the LC3 are all plotted in a logarithmic graph (Fig 6-5C & D), it can be 

observed that even though both LC3I and LC3II values and dynamics differ, a main difference can 

be identified in the dynamics of LC3II, which with a higher kf_3 rate, it increases for the first 500s of 

the simulation, retains a high level until 890s and then drops to lower levels, compared to the case 

in which kf_3 is decreased.  
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A.        

                                                                                 

 

B. 

 

C.                 

                                                                    

D. 

 

Figure 6-5. An example of the behaviour of LC3 ratio with the variation of a rate of reaction constant 

The LC3 ratio (LC3II_act/ LC3I_act) as resulted from the increase (x10, A&C) and decrease (x1/10, B&D) of a parameter, here kf_3. LC3 

ratio: light pink, LC3II_act: grey, LC3I_act: dark pink. At t=0s, all of the ULK1 complex of the system is fully activated and all other entities 

are fully inactivated (except from the negative regulators which are fully activated). At t=433s, ATG16:ATG12:ATG5 complex is formed 

and leads to the formation of LC3-II_act  from LC3-I_act. From the same timepoint and on the LC3 ratio is calculated. 

 

6.3.3 Comparison of model behaviour in healthy vs PD states  

 

Here we have developed a mathematical model accounting for the initial stages of 

macroautophagy for a healthy individual. As discussed previously (Sections 4.1.1.2, and 6.1), 

macroautophagy is altered in brains of people with PD [487, 489, 652-655]. This is reflected in the 

differential expression of genes and protein amounts [668]. In this section, potential differential 

amounts of entities of the model in PD will be taken into consideration to simulate 

macroautophagy in someone with PD. The number of molecules of entities of the model for people 

433 433 

433 

433 
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with PD were calculated as described in Section 6.3.3 and are presented in Table S6-6 (Appendix G). 

The amounts of the entities in the macroautophagy model demonstrated a mean difference of -

0.47%, meaning that amounts in the PD were usually lower than in the healthy state (Fig S6-6). The 

most prominent difference was observed for PIK3C3-C1 (10.74% lower in PD), followed by a 

decrease in AMPK (-9.71%), and an increase in ATG16L1 and SMCR8 (+8.18%, and +7.56%, 

respectively). Smaller differences were observed for LC3I and ATG12 (-5.59%, and +5.41%), while 

the rest of the model entities had differences of less than 5%. The macroautophagy model was 

then solved using these amounts to simulate the PD state.  

The overall dynamical behaviour of the model in the PD state is generally similar to that of the 

healthy state, as expected, but presents differences in the timings of some events. The results from 

this comparison are summarised in Table 6-1. For the majority of the entities, their activation is 

delayed in the PD compared to the healthy state. However, due to the faster activation of ATG16L1 

(reaches its 10% of maximum activation at 340s vs 433s), the ATG16L1:ATG12:ATG5 complex is 

formed earlier (by 93s) leading to an earlier formation of LC3II from LC3I. These results are 

presented in greater detail in Fig S6-7, where small groups of entities are depicted (to be compared 

with Fig 6-3, Fig S6-4, and Fig S6-5, which present the same groups for the healthy state).  

 

Table 6-1. Comparison of key points of the model simulation of a healthy vs PD state 

Components Healthy PD Comparison 

PIK3C3_C1 (active = inactive) 123s 127s +4s 

ATG9 (active = inactive) 407s 426s +19s 

BCL2 (active = inactive) 461s 477s +16s 

AMPK (active = inactive) 1565s 1576s +11s 

PI-PI4P (active = inactive) 436s 438s +2s 

PI-PI3P (active = inactive) 650s 678s +28s 

ATG16L1:ATG12:ATG5 (formation) 433s 340s -93s 

LC3I = LC3II_act 1288s 1280s -8s 

LC3I_act = LC3II_act 982s 940s -42s 

SMCR8:WDR41:C9ORF72 = ULK1complex_act 148s 144s -4s 
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The LC3 ratio was also used to compare the two cases to explore whether PD would lead to 

noticeable differences. Interestingly, there was indeed a slight difference. In the PD simulation, the 

LC3 ratio increased earlier (t=850.7s vs t= 891.9s) but at a slower rate, leading to a slightly lower 

value at t=4,000s, compared with the simulation of the healthy state (Fig 6-6A). More details can be 

observed when LC3II_act and LC3I_act are plotted alongside the LC3 ratio using a logarithmic scale 

for the y-axis (Fig 6-6B). The results graphed in Fig 6-6B show that the LC3 ratio appears earlier in 

the PD case than the healthy state, which is due to the earlier production of LC3II_act (depicted in 

grey) (340s vs 433s). However, by 850s they reach similar levels, as LC3II has a slower rate of 

production in the PD case. After 850s an additional factor that drives the differences in the LC3 

ratio between the healthy and PD case is LC3I_act (dark pink), which until that timepoint was 

similar in both states. LC3I_act starts decreasing more quickly and with a delay of a few seconds in 

the healthy state, whilst the production of LC3II_act is delayed but accumulates more quickly. At 

4,000s LC3II_act has a lower value in the PD case compared to the healthy state by 8%. Therefore, 

even though the value of the LC3 ratio at 4,000s are similar in the two states (20.4 in the healthy 

state and 20.2 in the PD state; 0.98% difference), their dynamics differ, with macroautophagy (as 

expressed by the LC3 ratio) in PD starting earlier but being accelerated slower than in the healthy 

state, reaching slightly lower levels, as expressed by the LC3 ratio. Therefore, these results point 

towards different dynamics of macroautophagy in the simulation of PD, solely based on differences 

in the amounts of the model entities. 
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6.4 Discussion 

 

In this chapter a mathematical model of the initial stages of macroautophagy signalling in humans 

was created. The model was formulated and parametrised by consulting the relevant literature, 

including published mathematical models. The macroautophagy model (Fig 6-2) was constructed 

based on the simplification of the macroautophagy process diagram (Fig 6-1). This reduction step 

led to a process diagram consisting of 26 entities connected by 45 relationships. Some of the 

components of the final model are considered key players of macroautophagy, such as the ULK1 

complex, PIK3C3-C1, and BCL2, while the contribution of others is less strongly established. More 

C. 

 

 

Figure 6-6. Comparing the behaviour of LC3s in the macroautophagy model in healthy vs Parkinson’s disease states 

(A) The ratio of LC3II_act and LC3I_act is compared between the healthy (darker hues) and Parkinson’s disease (lighter hues) states for 

4,000s. (B) The ratio of LC3II_act and LC3I_act is shown together with its individual components for healthy (darker hues) and 

Parkinson’s disease (lighter hues) conditions for 0≤t≤4,000s in a logarithmic scale for the y-axis. (C) The different forms of LC3 are 

compared between the healthy and PD state (darker and lighter hues, respectively).  At t=0s, all of the ULK1 complex of the system is 

fully activated and all other entities are fully inactivated (except from the negative regulators which are fully activated). In the healthy 

state, at t=433s, ATG16:ATG12:ATG5 complex is formed and leads to the formation of LC3-II_act  from LC3-I_act. From the same 

timepoint and on the LC3 ratio is calculated. The equivalent timepoint in the PD state is 340s. LC3I (brown), LC3 ratio (pink), LC3I_act 

(dark pink), and LC3II_act (grey). ATG16 represents ATG16L1. 

340 433 

PD                                   healthy 

PD                               healthy 



6. A mathematical model of macroautophagy 

 

196 
 

specifically, the role of CSNK2, and of C9orf72, SMRC8, and WDR41 individually and of their 

complex in macroautophagy is less clearly understood. 

The model was solved and analysed using the SimBiology toolbox of MATLAB. Model results 

showed the initial events of macroautophagy to occur within an hour, which is in accordance with 

the literature [586, 667]. These events included the activation of PIK3C3-C1 by the ULK1 complex, 

the subsequent production of PI3P, activation of ATG16L1, formation of ATG16L1:ATG12:ATG5, and 

production of LC3II from LC3I, which are considered the main initial events of macroautophagy 

[279, 281, 670]. In parallel, a positive feedback loop was observed that was composed of ATG9, 

which is activated by the ULK1 complex, leading to an increase in PI4P levels, which in turn is a 

positive regulator of the ULK1 complex. A negative feedback loop was also formed, which included 

the ULK1 complex, AMPK, and ATG9. In more detail, the ULK1 complex inhibits AMPK, which 

normally activates the positive regulator of macroautophagy, ATG9. These loops lead the ULK1 

complex to be retained in an activated state, with only a temporary small decrease of 1% at 

approximately 900s. Of note, as this model is designed to study the initial stages of 

macroautophagy, events of the next stages of macroautophagy were excluded from this work, 

leading the system to reach a steady state at around 10,000s (~3h).  

Local sensitivity analysis was performed to reveal the main parameters (rates of reaction 

constants), that affect the behaviour of the model. The selected output for this analysis was the 

ratio of LC3II and LC3I (i.e., LC3 ratio), as it is a typical marker of macroautophagy progression [34]. 

LSA at 4,000s and for 0≤t≤4,000s, suggest similar lists of rates of reaction constants to be the most 

influential in macroautophagy. Those parameters having the most influence included the activation 

of LC3I (kf_3), regulation of LC3II levels from SMCR8:WDR41:C9ORF72 (kf_10 and kf_34), formation 

of LC3II by ATG16L1:ATG12:ATG5 (kf_22), by ULK1 complex (kf_24), and by CSNK2 (kf_26), and the 

formation of SMCR8:WDR41:C9ORF72 (kf_28). Interestingly, the ULK1 complex had an impact on 

the LSA at 4,000s but less so for the 0≤t≤4,000s, in contrast to the rest of the components that had 

an impact in both analyses. Surprisingly, the two entities less robustly associated with 

macroautophagy by the literature, CSNK2 and SMCR8:WDR41:C9ORF72, presented the strongest 

effect on the system. In the LSA at 4,000s, kf_26 (the rate by which CSNK activates LC3II) had the 

greatest effect on the LC3 ratio (-80% to +758%; range of 838%), followed by kf_10 and kf_28 (the 

rate by which SMCR8:WDR41:C9ORF72 inhibits LC3II and forms itself, respectively; -88% to 243% 

and -7% to +81%; range of 331% and 88%, respectively). Of note, kf_22, which is the rate of the 

reaction by which LC3II is formed by ATG16L1:ATG12:ATG5 that is considered its main activator, 

had a smaller effect on the output than the aforementioned entities (-7% to +62%; range of 69%). 

These results need to be interpreted with caution, as the mechanism through which CSNK2 and 
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SMCR8:WDR41:C9ORF72 affect macroautophagy is not fully understood, and therefore their 

representation in this model, might not be an accurate reflection of their physiological role. 

Nevertheless, this analysis highlights the need of further studies focused on the role of CNSK2 and 

SMCR8:WDR41:C9ORF72 in macroautophagy, as they seem to have a strong effect on the level and 

dynamics of macroautophagy.  

Subsequently, the model of macroautophagy was used to compare two states: healthy versus PD. 

This was performed using amounts of entities of the model, obtained for healthy people and those 

with PD (data extracted from the literature [668]). At first the amounts of the entities were 

compared between the two states, revealing that on average most were lower in PD (including 

PIK3C3-C1, and AMPK), but interestingly ATG16L1, ATG12, and SMCR8 had higher levels in PD 

compared to the healthy state. Then the model was solved using the PD amounts and the 

simulation demonstrated that a number of entities of the model formed more slowly compared to 

the healthy state. For instance, the evaluation of PIK3C3-C1, ATG9, BCL2, and AMPK showed a 

delay by 4s, 19s, 16s, and 11s, respectively in the PD compared to the healthy state (time point at 

which the activated and non-activated states of each component have equal amounts). In contrast, 

ATG16L1 was activated 93s faster (time point at which it reaches its 10% of maximum activation), 

leading LC3II to be formed 42s faster (timepoint when the amounts of LC3II_act and LC3I_act are 

equal) in PD compared to the healthy state. Even though the dynamics of the process differ 

between the two states, the value of the LC3 ratio at 4,000s is similar (0.98% difference). However, 

the amount of LC3II was lower in the PD state compared to the healthy state by 8%. Biological 

systems are sensitive and potentially this small change could lead to a lower efficacy of 

macroautophagy, which could be magnified by an overload of the autophagic machinery due to a 

higher amount of misfolded proteins and aggregates, as occurs in PD [219, 220]. Of note, these 

results were solely based on differences in the amounts of model entities between healthy people 

and people with PD, as described in literature. Additional alterations in the macroautophagy 

process as a result of the cause of the disease (e.g., mutations in LRRK2) were not included. This 

will be discussed further in Section 7.2.2. 
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7. General discussion 

 

The work presented in this Thesis is centred around systems biology approaches applied to the 

investigation of mechanisms resulting in neurodegenerative diseases, with a particular focus on the 

Hereditary Spastic Paraplegias (HSPs), Parkinson’s disease (PD), and macroautophagy (MA). The 

results of this Thesis have been discussed in detail in each chapter. Therefore, in this section, I will 

summarise the key findings, discuss the limitations, and suggest directions for future work. 

 

7.1 Key findings 
 

7.1.1 Systems biology analysis of HSPs 
 

The HSPs are a group of complicated neurodegenerative diseases, first described over a century 

ago. There are more than 70 genetic types of HSPs, and various clinical presentations [169], 

creating a genetic and clinical heterogeneity that is hindering our understanding of the disease 

mechanism(s). A systems biology approach, and more specifically a network approach, was 

adopted to holistically study the genes that when mutated lead to the development of the HSPs. 

The uniqueness of this work, compared to previous studies of HSPs, lies upon multiple steps of 

creating the network. The seeds of the network were genes that lead to HSPs, excluding genes with 

related phenotypes. The PPIs of the seeds were collected through PINOT [395], and those with a 

“final score” over 2 were retained (higher the final score, the higher the confidence on the 

interaction). Therefore, only quality controlled, experimentally proven, and manually curated PPIs 

between human proteins were included in the analysis. This approach aids in the exclusion of false 

positive data, a particularly important consideration when handling large data sets, such as PPIs.  

The global HSP network was visualised based on the filtered PPIs and consisted of 1 interconnected 

graph that included the majority of the HSP seeds and 14 smaller graphs. From the interconnected 

graph of the global HSP-PPIN, the core network was extracted by including protein interactors 

common to at least 2 seeds, as the aim of this analysis was to identify commonalities between 

seeds. 53 HSP seeds were retained in the core network. The 2nd layer interactome showed that 

nearly all seeds were connected in a graph and suggested that the rest of the seeds were excluded 

due to limited availability of PPI data. The connectivity of the seeds in the 1st layer core network 

indicated their functional association and hinted that they might be involved in shared biological 

processes and pathways.  
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Indeed, further analysis revealed that terms associated with the functional blocks “Transport” and 

“Protein localisation” were enriched. More specifically, terms were related to protein transport, 

regulation of protein levels, and vesicle dynamics and transport (e.g., “protein targeting”, “ERAD 

pathway”, “multivesicular body organisation”, “vesicle mediated transport”), which help in 

prioritising some of the multiple previously suggested mechanisms for HSPs, such as membrane 

cargo and trafficking [170, 332-334, 454]. Of note, the GO term “substantia nigra development” 

was amongst the results, which aligns with clinical features of HSPs that lead to involuntary 

movements and loss of fine movement control [166]. 

Interestingly, most genes associated with the HSPs in the literature that were identified after the 

creation of the network [398, 404-408] were part of the HSP networks (either the global network or 

the core of the 2nd layer network), which highlights the ability of PPINs to be used as predictive 

tools for detecting genes, and a potential strategy for accounting for the missing heritability of 

diseases [103]. On that note, a HSP candidate gene with limited data supporting a causative 

association with HSP, CCDC50 [422], was part of the core network, which suggest that it could be 

the gene responsible for SPG14. Clinical and experimental validation is required to test this 

hypothesis. 

The clinical diversity of HSPs prompted an interest in exploring the existence of mechanistic 

subtypes of HSPs. This analysis was performed by mapping clinical data (mode of inheritance, type 

of HSP, and clinical features) in the core HSP-PPIN and analysing the respective parts of the 

network via enrichment. There was no evidence of mechanistic subtypes based on mode of 

inheritance or type of HSP. Conversely, machine learning tools suggested the functional clustering 

of clinical features in two groups, TS and EPOD (thinning of corpus callosum and seizures; early 

onset, peripheral neuropathy, optical atrophy, and dementia/mental retardation). Enrichment of 

the clusters suggested protein quality control and degradation to be especially important for the TS 

cluster, while regulation of protein localisation and transport in neurons via vesicles to be more 

tightly associated with the EPOD cluster. 

 

7.1.2 Overlap of macroautophagy and neurodegenerative diseases 
 

Macroautophagy (MA) is associated with multiple neurodegenerative diseases (NDs) including 

Alzheimer’s disease (AD), PD, Amyotrophic lateral sclerosis (ALS) and Frontotemporal dementia 

(FTD) [250, 251, 482, 484, 487, 489, 505, 512, 516, 517]. This relationship was studied by assessing 

the overlap of the PPINs built around macroautophagy seeds and disease seeds. 
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The MA network consisted of 12,360 components (151 seeds, 2,832 direct interactors, and 9,377 

interactors of the direct interactors). The limited availability of PPI data for 5 seeds led to lack of 

connections with other components of the network and their exclusion from further analyses. On 

the other hand, proteins related to ubiquitylation of substrates were amongst those with the 

largest number of connections within the network (i.e., hubs), which was expected due to their 

biological role.  

To investigate the relationship of macroautophagy with neurodegenerative diseases, the presence 

of the ND seeds in the MA network was investigated. Most seeds were part of the MA network, 

and this result was significant for ALS, PD, and FTD, but not for AD. Interestingly, most of the 

missing seeds interacted directly with a 2nd layer interactor of the MA network. Therefore, an 

additional analysis was performed, in which the overlap of the ND networks with the MA network 

was assessed. Interestingly, the ND networks were almost completely embedded within the MA 

network further supporting the strong association between the studied diseases and 

macroautophagy. This is in agreement with literature and also with the biological role of 

macroautophagy in disposing overexpressed and misfolded proteins [249, 252-255, 490-492].  

 

7.1.3 Mathematical model of macroautophagy  
 

In order to gain a deeper understanding of the mechanisms and events underlying these 

associations, the interplay of macroautophagy with neurodegeneration was investigated further. 

Since the overlap with all tested NDs was extensive, a single disease, PD, was selected to be studied 

in more detail. In order to simulate macroautophagy in a healthy person vs a person with PD, 

testing for any differences, a mathematical model of macroautophagy was created. The model was 

firstly based on a physiological state (“healthy” state) and focused on the initial stages of 

macroautophagy, including key macroautophagy regulators and their direct interactors. The model 

was solved using the SimBiology toolbox of MATLAB, and the behaviour of the model was found to 

be in accordance with the literature. Interestingly, local sensitivity analysis showed that the highest 

effects on the system were induced by CSNK2 and SMCR8:WDR41:C9ORF72, which are the entities 

of the model the most understudied in relation to their precise mechanistic link with 

macroautophagy.  

CSNK2 is part of the CK2 complex which catalyses the phosphorylation of more than 300 substrates 

thereby constituting one of the most pleiotropic members of the human kinome [671, 672]. For 

instance, it has been linked to neurite outgrowth [673], and suggested to have a neuroprotective 
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effect on the brain through modulating the NADPH oxidase after ischemic brain injury [674]. CK2 

has been associated with multiple diseases, including diabetes [675], multiple types of cancers 

[676] and neurodegenerative diseases, such as Huntington’s disease [677], Alzheimer’s disease 

[678], as well as Parkinson’s disease [677]. The suggested mechanism for the associations with 

Parkinson’s disease varies. For instance, CK2 was proposed to phosphorylate α-synuclein [679]. 

However, while this result was performed in vitro, further in vivo studies failed to support it [677, 

680]. Therefore, the mechanistic link with Parkinson’s disease remains elusive [677]. On the other 

hand, data linking CSK2 with autophagy are more limited (PubMed resulted in just 27 papers for 

“CK2 kinase autophagy”, while for LRRK2 and autophagy, and ULK1 and autophagy the respective 

results were 282, and 1,795, respectively when queried on 13th June 2022). They include the 

inhibition of autophagic degradation of Keap1 [681] and an effect on autophagy in astroglial cells 

through a pathway with at least 4 intermediate steps [682], or by multiple parallel pathways under 

calorie restriction conditions [683], all of which are upstream of the ULK1 complex. However, in this 

study we show that CK2 has a direct effect of high impact on macroautophagy, as simulated in the 

mathematical model.  

Repeat expansions in the C9orf72 gene cause familial forms of Amyotrophic lateral sclerosis and 

Frontotemporal dementia [684-686]. The resultant protein is required fort normal lysosome 

homeostasis [687-692]. However, C9ORF72 is unstable and functions as part of the 

SMCR8:WDR41:C9ORF72 complex [691-695], which was first identified in 2016 [692, 695]. Little is 

known about it and its exact functions still need to be elucidated [696]. Research has revealed that 

it acts as GAP (GTPase activating protein) for RAB GTPase proteins, such as RAB8a and RAB39b to 

control macroautophagy [695], and as a GEF for other RABs (e.g., RAB5, RAB7, and RAB11) [697]. In 

regards to macroautophagy, it associates with the ULK1 complex [692] to regulate its expression 

and activity [698] and also affects later stages of macroautophagy by regulating the expression of 

lysosomal enzymes [698]. Its localisation is consistent with these roles, as it is detected in the 

cytoplasmic surface of lysosomes [691, 699]. Interestingly, it is recruited to lysosomes when amino 

acids are scarce through an interaction with a lysosomal cationic amino acid transporter PQLC2, 

with this interaction being negatively regulated by amino acids levels [700, 701]. Interestingly, 

studying its association with PD, revealed that repeat expansion of C9ORF72 was present in a 

patient with early onset and familial PD [702]. In addition, C9ORF72 was found to be differentially 

expressed during the progression of PD [703]. The main role of the complex in regulating RAB 

GTPases could be the way through which is it associated with PD, as these proteins have been 

strongly linked to the disease mechanism [704]. 



7. General discussion 

203 
 

Data from the literature were then used to simulate a PD state, by creating a second list of 

amounts for the entities of the model based on literature. The simulation suggested that in the 

disease conditions, the LC3 ratio (i.e., LC3II/LC3I) increased earlier but reached slightly lower levels 

(by 8%) at around 1h after the activation of ULK1 complex. The kinetics of LC3I were identical in 

both conditions, so this difference in the LC3 ratio was solely due to higher levels of LC3II in PD 

compared with the healthy state. This difference was marginal (8%) however biological systems are 

sensitive and this small change could lead to larger discrepancies in the kinetics of 

macroautophagy, which could be amplified further by a higher concentration of misfolded proteins 

and aggregates, as it occurs in PD [219, 220] that could overload the autophagic machinery. 

Furthermore, the only modelling parameters that differed between the two states (healthy vs PD) 

were the amounts of the entities of the model. Therefore, incorporating additional alterations in 

the autophagic process due to the cause of the disease (e.g., LRRK2 mutations) is hypothesised to 

lead to stronger effects on macroautophagy in people with PD compared with healthy people. 

 

7.2 Limitations and Future directions of my projects 
 

7.2.1 PPIN analysis and clinical data availability 
 

Even though the potential of PPIN analysis is substantial, its drawbacks also need to be discussed. 

The results derived from PPIN analyses require cautious interpretation depending on the PPI 

detection method (e.g., experiment versus prediction). Some of the limitations of PPIN analysis, as 

discussed in Section 1.2.5 were addressed by using PINOT, due to its filtering and scoring system, 

and exclusion of predicted data. However, the PPI results from PINOT were still affected by the 

ascertainment bias (discussed in greater detail in Section 1.2.3), increasing the risk of including 

false positive data. In addition, this approach represents all protein products of a gene with a single 

node, leading to potential loss of valuable information regarding the system’s mode of function 

(e.g., isoform specific information is excluded). Moreover, the dynamic alteration of protein 

functionality through the regulation of gene expression, protein level, and activity is not taken into 

consideration in PPIN analyses, limiting the ability to represent the system’s fine mechanistic 

details. Finally, similarly to all other in silico analyses, the results have to be experimentally 

validated.  

Upon analysis, a bias to disease-related proteins was observed in the PPIN results. Even though it is 

a natural consequence of the community and researchers being interested in treating and curing 

diseases, resulting in more funding (and hence more experiments) investigating disease implicated 
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proteins, it also skews analyses towards disease genes. For instance, out of the 173 LRRK2 

interactors that had a final score higher than 3 in Chapter 5, most were associated with at least 2 

human diseases (85.0%), while 50% were associated with 6 or more diseases (data from UniProt, 

16/3/2022).  

Over time, as more protein-protein interactions are detected and as high-quality PPI data 

accumulate, the confidence in the results of PPIN analyses will increase. Identifying gaps of 

knowledge by studies such as the current one, can aid in this endeavour. More specifically, future 

research could focus on the missing seeds from the core HSP-PPIN of Chapter 2 (i.e., ATL1, 

B4GALNT1, C12orf65, ENTPD1, SPG11, and TECPR2), such as the study of Cogo et al [705], and from 

the study of the interplay of macroautophagy and neurodegeneration of Chapter 4 (i.e., TMEM74, 

TOMM6, TOMM7, and PRPH2). In addition, more PPI experiments should be conducted for the 

LRRK2 interactors, which were excluded from further analysis due to lack of data in Chapter 5 (i.e., 

BCL2, CASP8, DNM1, EIF2A, ERLIN1, KIF21A, KLC2, RAB12). The issue of data availability is evident in 

the latter analysis, as 1,261 proteins failed to be confirmed as LRRK2 interactors (detected with less 

than 2 publications or two methods), which corresponds to 87.9% (n=1,261/1,434) of its total 

interactors. An example of an approach that could be adopted for the detection of new and 

validation of previously suggested protein interactions is a Mass Spectrometry analysis of the 

interactome of the protein of interest, which was previously extracted through tagging followed by 

a pull-down assay. In addition, multiplexing (analysing multiple samples in a single experiment) in 

Mass Spectrometry is becoming more common [706] which increases the speed of such 

experiments.  

The data availability problem was also related to the clinical features of people with HSPs. 

Therefore, to aid towards this direction, people from various scientific communities and sectors 

could collaborate to set up a database that includes a detailed and regularly updated list of 

symptoms and mutations in genes/loci, as agreed by most experts, and that is accessible to the 

other researchers for further exploration.  

Conversely, only a subsection of published PPI data might be appropriate for an experiment. 

Generating and publishing PPI data from specific tissues and cell types can allow the selection of 

PPIs that are occurring in the biological context relevant to the scope of each experiment (e.g., 

brain or neuron specific analyses). Such endeavours have recently blossomed, as multiple research 

groups are generating single cell omic data [66]. 

Such future work might fill in the gap of the PPI and clinical data, which would render PPIN analyses 

more powerful. PPIN analyses are already capable of guiding researchers towards detecting the 
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underlying pathways and processes shared by multiple genes involved in complicated diseases, 

thus hinting about the disease mechanism(s) and accelerating the development of targeted 

therapies. Furthermore, due to PPIN analysis’ ability to identify groups of proteins connected with 

disease genes, it can be developed as a predictive tool to prioritise candidate proteins/genes, 

which then can be genetically evaluated in the search for causes of missing heritability. Finally, by 

analysing PPINs created using as seeds genes associated with diseases that belong to the same 

spectrum, indications can be provided regarding mechanistical associations among them. 

 

7.2.2 Mathematical modelling of macroautophagy and its relationship with neurodegeneration 
 

The investigation of associations between LRRK2 interactors and macroautophagy in Chapter 5, 

revealed two substantial issues. The first was the bias introduced in the study based on the 

selection of papers and sources used to extract information. Although efforts were made to make 

this decision as objective as possible, a different list of criteria would have resulted in a different 

outcome. This became evident when some of the recent papers of Dr Sharon Tooze were included 

in the analysis, and an additional LRRK2 interactor was found to be linked with macroautophagy 

(1/8, 12.5% increase in the total number of interactors). Unfortunately, there is no apparent 

solution for this problem, as any selection of papers would lead to a different result. On the other 

hand, incorporating all of the papers with the term “autophagy” could only be performed with 

automated text-mining, due to the volume of published work. However, this solution has its 

drawbacks compared to manual evaluation; for instance, the confidence in the quality of each 

piece of collected information would be reduced. 

The second issue was the multiplicity of methods that had to be utilised for this analysis. In 

addition to manual text-mining for the list of official gene names, alternative gene names, official 

and alternative protein names, as well as names of complexes in which the gene product takes part 

had to be performed. This process was time consuming, intrinsically error-prone (due to possible 

misinterpretation of the mined information), and difficult to automate. Alternatively, a researcher 

can decide to use data already curated in databases (such as Reactome), which however might not 

include some of the latest research findings. 

After selecting the LRRK2 interactors associated with macroautophagy, mutational data affecting 

individual interactions were required. Such data have been collected by and made available 

through IntAct for a multitude of human proteins and were explored to collect interactions 

affected by mutations in LRRK2. Human data regarding bidirectional interactions with proteins of 
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macroautophagy were found for 9 out of 17 LRRK2 interactors (53%). The completion of this 

valuable data set of IntAct by primary data generation will require resources and expertise but will 

be beneficial in the endeavour of understanding the disease mechanism of mutated proteins, such 

as LRRK2. 

The basis of a mathematical model for the initial stages of macroautophagy was developed in 

Chapter 6 lies in the known relationships between the components and their amounts and 

parameters. For the former, even though the process of macroautophagy has been studied for a 

long time by various research groups around the world, several of its aspects are still unclear [34]. 

This relates to all steps in the macroautophagy process but especially to the later ones, as the 

initiation step has been studied in more detail in numerous organisms. In addition, many different 

models have been used to study macroautophagy, so simply compiling the available data would be 

unfavourable for modelling, as the number and identity of autophagic components, and the rates 

of reactions, can vary in different biological models [34]. Therefore, further research of the 

autophagic process is required to elucidate the role of understudied events, as well as effectors, 

like CSNK2, and SMCR8:WDR41:C9ORF72, whose importance is suggested by this Thesis.  

Additionally, the simplification of the model might have introduced a bias to the model. Even small 

perturbations of the amounts of the model entities, affect the behaviour of the macroautophagy 

readout, as it was observed from the comparison of the healthy state vs the PD state. Therefore, a 

slightly diverse set of rules for the simplification step might have led to a macroautophagy model 

with a different list of entities that could be present in different amounts, leading the model to 

demonstrate a distinct behaviour. 

In parallel, instead of modelling an “average” cell, modelling a specific cell type that is strongly 

associated with the aim of each study could be beneficial. However, such data sets are usually 

sparse and incomplete. Therefore, there is a need for generating data about the relative reaction 

rates and amounts of components of macroautophagy in a cell-type specific manner. Even though 

such experiments would be costly and time consuming, the benefits from being able to model 

macroautophagy in specific brain cell types with higher accuracy could be considerable, as they 

might elucidate the mechanism(s) of the differential response and vulnerability of certain cell types 

to the same disease [707]. It is of note, however, that the absence of accurate numerical data 

informing model parameters does not prevent analysis of this system, as qualitative data can still 

provide valuable constrains that the model needs to satisfy to make accurate predictions, as shown 

in previous studies [78].  
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The unavailability of the rates of reactions and amounts of the proteins, complexes and lipids in the 

model created the need of their calculation from data in the literature in Chapter 6. This step 

required certain assumptions to be made. For example, it was assumed that some types of 

reactions occurred at the same rates (e.g., phosphorylation and ubiquitylation). It was also 

assumed that the quantities of the entities of the model calculated based on a proteomic analysis 

of specific regions human brains were accurate and indicative of their local concentration in the 

region of the cell in which the phagophore was forming. These assumptions were necessary due to 

lack of data, but they might not fully reflect the physiological state within human cells. For 

example, averages of protein amounts were used for each brain region. In reality, they might differ 

amongst the different cell types composing the brain region. Therefore, a more granular analysis of 

protein amounts needs to be performed. 

Regarding the protein concentrations, their accurate measurement is a technically challenging task. 

There are techniques available for quantifying protein concentrations, which are for instance based 

on ELISA, but they are costly and available only for specific proteins for which an adequate 

antibody has been developed. In addition, the concentration of a protein within a cell might not be 

indicative of the local concentration in the region of interest, which is a much more challenging 

task for experimental biologists. The limitations in accurate protein concentration measurements 

have led researchers to opt for using transcriptomic data instead, which is -however- also 

problematic, as mRNA levels might not necessarily be indicative of protein levels [708]. Recent 

advances in proteinomics methods have enabled the conducting of quantitative experiments in the 

level of protein that analyse multiple samples in a single experiment [709, 710], detecting the 

interactome in the single cell level [711], or even in a subcellular region manner [712].  

The current limitations in this field should fail to discourage the scientific community from the 

endeavour of investigating biological processes. As more research is being performed around 

macroautophagy and macroautophagy related proteins, the gaps of knowledge will narrow, and 

the produced mathematical models, such as the one produced in this Thesis can be optimised and 

updated to reflect the new understanding of the process. 

Optimisations performed in the macroautophagy model of Chapter 6 could initially focus on 

parameterisation. In vitro experiments describing the kinetics of key reactions of the model and 

thus providing more accurate rates of reactions, would further strengthen the predictive power of 

the model. In parallel, it would be useful to retrieve or create a data set of concentrations from 

human iPSCs derived from healthy people and people diagnosed with PD. Such data from iPSCs of 

patients could be insightful, as the effects of the disease on the cell physiology have occurred for 
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less time compared to cells derived from post-mortem tissues. Therefore, this approach allows the 

study of the initial stages of disease and the pathobiological changes, and limits the extent of 

inclusion of changes due to the activation of protective mechanisms against the disease, the impact 

of agonal state or post-mortem delays in tissue processing [713]. Additionally, iPSCs would produce 

homogenous population of cells thus allowing the study of the macroautophagy dynamics in a 

single cell type. 

Currently, an increasing number of research groups are producing omic data for specific cell types 

[66]. This could be beneficial for fitting the macroautophagy model to a cell type of interest, (e.g., 

neurons or astrocytes). Such an approach would allow the modelling of potential cell-type specific 

mechanisms of macroautophagy and thus identification of cell-type specific drug targets. 

Interestingly, Filippi-Chiela et al [714] found that phenotypes can be masked when a mix of cell 

populations is studied. They demonstrated an absence of correlation between senescence and 

macroautophagy in human glioma cells, in contrast to a negative correlation when more cell types 

were included in the experiment. An advance towards the direction of single cell analysis in 

macroautophagy has been made by Xu et al [715] and Hu et al [716]. The former investigated the 

dynamics between macroautophagy and apoptosis using single cell sequencing in tandem with live 

microscopy imaging, whilst the latter performed single cell RNA sequencing to study the role of 

macroautophagy in the cell-renewal and differentiation of hematopoietic stem cells. 

In this Thesis macroautophagy was modelled in a general manner. Differences between the 

signalling processes that occur with different stimuli that activate macroautophagy were not taken 

into consideration. In addition, differences in pathways can be noted based on the specific tissue or 

cell type under study. Therefore, future development of this model could be targeted at developing 

different versions depending on the selected stimulus, tissue, and cell-type of interest. The scarcity 

of data for such specific models could be addressed by performing wet-lab experiments that aim to 

fill that gap of knowledge or test the model, as previously achieved by other research teams [582, 

717, 718].  

In parallel to optimizations, more experiments can be performed with the current version of the 

model of macroautophagy for studying Parkinson’s disease. Data regarding LRRK2 mutations and 

their effect on interactions with other proteins that have direct associations with entities of the 

model have been collected for this study and are described in Appendix G and summarised in Table 

S6-7. Simulating this effect for each mutation could hint whether the altered strength of protein-

protein interactions could explain in part the differential severity of various LRRK2 mutations in 

human health.  
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Interestingly, there are differences in the PD pathology among brain regions [211]. A source of 

information for relative amounts of mRNAs (which is used as a proxy for the amounts of proteins) 

in post-mortem analyses of multiple brain regions from healthy people is Braineac 

(http://www.braineac.org/; [669]). Therefore, Braineac data were used to extract relative amounts 

of entities that are part of the mathematical model of macroautophagy, which were then 

converted into amounts (see Table S6-8), as previously described in Section 6.3. Future work in this 

project can utilised these amounts and explore whether the developed model predicts a change in 

macroautophagy, for instance in the LC3 ratio, in a brain region specific manner in healthy people, 

and whether macroautophagy is affected differently by PD, depending on the brain region 

considered. 

In addition, the predictive power of the mathematical model of macroautophagy could be 

explored. Decreasing the quantity of a component or the rate of a reaction could simulate the 

effect of an inhibitor and predict which reactions and components would affect the model in the 

desired manner (e.g., rescuing the effect of a mutation). Some of these results could be validated 

through experiments with inhibitors or knock-downs in cultures of human cell lines. A validated 

mathematical model of macroautophagy could be used as a tool to screen the effect of various 

pharmacological components targeting macroautophagy in a fast and cost-effective manner. 

  

7.3 Conclusions 
 

In this Thesis, systems biology approaches were used to shed light on neurodegenerative diseases 

and their relationships with the complicated biological process of macroautophagy. Disease 

mechanisms were prioritised against others for the HSPs, and using machine learning tools, two 

clinical subgroups of HSPs were suggested to exist with potential disease mechanistic 

discrepancies. Then, macroautophagy and its association with four neurodegenerative diseases was 

assessed and hinted to be extensive. Therefore, I focused on further investigating its relationship 

with one disease, Parkinson’s disease. For this purpose, a mathematical model of macroautophagy 

was created, which suggested that macroautophagy in the disease state has differential kinetics 

compared to the healthy state. Further optimisations and explorations of the model predictions 

could highlight potential interventions in the macroautophagy pathway that could ameliorate the 

pathobiology observed in people with Parkinson’s disease. A deeper insight into macroautophagy 

and its link with neurodegenerative diseases through in vivo, in vitro and in silico analysis could 

lead to the development of disease-modifying therapies for a variety of illnesses, such as cancer, 

cardiovascular disorders, and neurodegenerative diseases [245, 246].  

http://www.braineac.org/
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As demonstrated in this Thesis, systems biology approaches can shed light on complicated 

processes and human diseases. Specifically, PPIN analysis is a powerful tool that can extract, 

capture, and combine a large volume of knowledge in a relatively quick and easy manner, creating 

a comprehensive picture that can summarise state-of-the-art knowledge, helping to confirm 

existing theories, as well as facilitate the identification of uncertain areas that require further 

investigation. In parallel, mathematical modelling can simulate complex biological processes, 

increase our understanding of their mechanisms and suggest potential therapeutic interventions. 

Overall, the potential of systems biology approaches is vast and could accelerate the discovery of 

the several missing links within neurodegenerative diseases and in their relationships with 

macroautophagy, as well as the identification of promising sites for disease-modifying 

interventions.  
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A1. 

In order to show how a variable (e.g., protein concentration, Y) changes over time (t), two graphs 

can be made: (i) 𝑌(𝑡), in which the y-axis is visualising the concentration of Y, and the x-axis the 

time, or (ii) 
𝑑𝑌

𝑑𝑡
(𝑡), in which the y-axis shows the rate of change of the concentration of Y, and the x-

axis the time. For example, if X is made into Y with a constant rate (named α) until the timepoint t1, 

and then from t1 and on Y is made into Z, also with a constant rate (named β), the corresponding 

graphs would look like those of Fig 1-4A and 1-4B, respectively. In order to graph the system 

correctly, the initial values of the variables of the model, which are called initial conditions, are also 

needed. In this example, the initial concentration of Y and Z (at 𝑡 = 0𝑠, 𝑌(𝑡) = 𝑌(0) = 𝑌0, 𝑍(𝑡) =

𝑍(0) = 𝑍0) are assumed to be equal to 0. 

 

 

Figure S1-1. Graphs describing the change of the concentration of Y 

An initial amount of X is transformed into Y until t1, and then into Z until t2. (A) A graph of the 

concentration of Y over time. (B) A graph of the rate of change of the concentration of Y over time.  

 

In each model, it is important to identify the components. The model of Fig 1-4 is composed of 3 

dependent variables (X, Y & Z, depend on time), an independent variable (time) and 2 parameters 
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(the rates α and β) and the initial conditions (at t=0s: X=X0, Y=Z=0). The dynamics of Y can be 

described by 2 ODEs (
𝑑𝑌

𝑑𝑡
= 𝑎𝑡, for 0≤t<t1; and 

𝑑𝑌

𝑑𝑡
= −𝛽𝑡, for t1≤t<t2). 

 

 

A2.  

Reactions with 2 substrates are described with a slightly different form of the previously mentioned 

differential expression. For instance, for the reaction: 𝑋1 + 𝑋2 → 𝑋3, the ODE is: 

𝑑𝑋3
𝑑𝑡

= 𝑘3𝑋1𝑋2, 

with k3 the rate of the creation of X3.  

 

Note that the equation is not expressed as:  

𝑑𝑋3
𝑑𝑡

= 𝑘3𝑋1 + 𝑘3𝑋2,  

because the two molecules need to come into physical contact with each other to then form X3, 

which adds the effect of probability of this event into the system that needs to be accounted for.  

Similarly to the previous example, the equation describing the concentration of the substrates over 

time, are: 

𝑑𝑋1
𝑑𝑡

=
𝑑𝑋2
𝑑𝑡

= −𝑘3𝑋1𝑋2, 

There is also the case of bimolecular reactions, in which a product is made out of two molecules of 

the same substrate. Then: 

Reaction: 2𝑋1 → 𝑋3 

ODEs: 
𝑑𝑋3

𝑑𝑡
= 𝑘3𝑋1𝑋1 = 𝑘3𝑋1

2 , 𝑎𝑛𝑑 
𝑑𝑋1

𝑑𝑡
= −2𝑘3𝑋1

2. 

As expected X1 is used up in double the speed as X3 is being produced, as two molecules of X1 are 

required for the generation of one molecule of X3.  
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A3.  

The necessity of computational solutions can be demonstrated through the identification of the 

value of x for: 

𝑒𝑥 − 4𝑥 = 0 

Even though when visualised through a graph it is evident that there are two solutions and they 

can be estimated based on the values of the axes (Fig S1-2), there is a lack of an algebraic method 

for computing the solutions in an exact manner. So, the combination of mathematical analysis and 

computer methods can be insightful. 

 

 

Figure S1-2. Solving the equation ex-4x=0 graphically 
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Table S2-1. The gene (or locus) and protein name responsible for each HSP type 

Gene name 

(or locus) 

Protein name/ previous name UniProt identifier 

(SwissProt) 

HSP type 

L1CAM neural cell adhesion molecule L1 P32004 SPG1 

PLP1 myelin proteolipid protein P60201 SPG2 

ATL1 atlastin-1 Q8WXF7 SPG3A 

SPAST spastin Q9UBP0 SPG4 

CYP7B1 25-hydroxycholesterol 7-alpha-hydroxylase O75881 SPG5A 

NIPA1 magnesium transporter NIPA1 Q7RTP0 SPG6 

SPG7 paraplegin Q9UQ90 SPG7 

WASHC5 WASH complex subunit 5 (strumpellin) Q12768 SPG8 

ALDH18A1 delta-1-pyrroline-5-carboxylate synthase P54886 SPG9A/SPG9B 

KIF5A kinesin heavy chain isoform 5A Q12840 SPG10 

SPG11 spatacsin Q96JI7 SPG11 

RTN2 reticulon-2 O75298 SPG12 

HSPD1 60 kDa heat shock protein, mitochondrial P10809 SPG13 

(3q27-q28) 
 

 SPG14 

ZFYVE26 zinc finger FYVE domain-containing protein 

26 (spastizin) 

Q68DK2 SPG15 

(Xq11.2) 
 

 SPG16 

BSCL2 Seipin Q96G97 SPG17 

ERLIN2 erlin-2 O94905 SPG18/SPG37 

(9q33-q34) 
 

 SPG19 

SPART Spartin Q8N0X7 SPG20 

SPG21 maspardin Q9NZD8 SPG21 

SLC16A2 monocarboxylate transporter 8 P36021 SPG22 

DSTYK dual serine/threonine and tyrosine protein 

kinase 

Q6XUX3 SPG23 

https://www.uniprot.org/uniprot/P60201
https://www.uniprot.org/uniprot/Q8WXF7
https://www.uniprot.org/uniprot/Q9UBP0
https://www.uniprot.org/uniprot/O75881
https://www.uniprot.org/uniprot/Q7RTP0
https://www.uniprot.org/uniprot/Q9UQ90
https://www.uniprot.org/uniprot/Q12768
https://www.uniprot.org/uniprot/P54886
https://www.uniprot.org/uniprot/Q12840
https://www.uniprot.org/uniprot/Q96JI7
https://www.uniprot.org/uniprot/O75298
https://www.uniprot.org/uniprot/P10809
https://www.uniprot.org/uniprot/Q68DK2
https://www.uniprot.org/uniprot/Q96G97
https://www.uniprot.org/uniprot/O94905
https://www.uniprot.org/uniprot/Q8N0X7
https://www.uniprot.org/uniprot/Q9NZD8
https://www.uniprot.org/uniprot/P36021
https://www.uniprot.org/uniprot/Q6XUX3
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Table S2-1. (continued) The gene (or locus) and protein name responsible for each HSP type 

(13q14)   SPG24 

(6q23-24.1)   SPG25 

B4GALNT1 beta-1,4 N-acetylgalactosaminyltransferase 1 Q00973 SPG26 

(10q22.1-

q24.1) 

   SPG27 

DDHD1 phospholipase DDHD1 Q8NEL9 SPG28 

(1p31.1-

p21.1) 

  SPG29 

KIF1A kinesin-like protein KIF1A Q12756 SPG30 

REEP1 receptor expression-enhancing protein 1 Q9H902 SPG31 

(14q12-q21)   SPG32 

ZFYVE27 protrudin Q5T4F4 SPG33 

(Xq24-q25)   SPG34 

FA2H fatty acid 2-hydroxylase Q7L5A8 SPG35 

(12q23-q24)   SPG36 

(4p16-p15)   SPG38 

PNPLA6 neuropathy target esterase Q8IY17 SPG39 

(11p14.1-

p11.2) 

  SPG41 

SLC33A1 acetyl-coenzyme A transporter 1 O00400 SPG42 

C19orf12 protein C19orf12 Q9NSK7 SPG43 

GJC2 gap junction gamma-2 protein Q5T442 SPG44 

NT5C2 cytosolic purine 5'-nucleotidase P49902 SPG45/SPG65 

GBA2 non-lysosomal glucosylceramidase Q9HCG7 SPG46 

AP4B1 AP-4 complex subunit beta-1 Q9Y6B7 SPG47 

AP5Z1 AP-5 complex subunit zeta-1 O43299 SPG48 

TECPR2 tectonin beta-propeller repeat-containing protein 

2 

O15040 SPG49 

AP4M1 AP-4 complex subunit mu-1 O00189 SPG50 

https://www.uniprot.org/uniprot/Q00973
https://www.uniprot.org/uniprot/Q8NEL9
https://www.uniprot.org/uniprot/Q12756
https://www.uniprot.org/uniprot/Q9H902
https://www.uniprot.org/uniprot/Q5T4F4
https://www.uniprot.org/uniprot/Q7L5A8
https://www.uniprot.org/uniprot/Q8IY17
https://www.uniprot.org/uniprot/O00400
https://www.uniprot.org/uniprot/Q9NSK7
https://www.uniprot.org/uniprot/Q5T442
https://www.uniprot.org/uniprot/P49902
https://www.uniprot.org/uniprot/Q9HCG7
https://www.uniprot.org/uniprot/Q9Y6B7
https://www.uniprot.org/uniprot/O43299
https://www.uniprot.org/uniprot/O15040
https://www.uniprot.org/uniprot/O00189
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Table S2-1. (continued) The gene (or locus) and protein name responsible for each HSP type 

AP4E1 AP-4 complex subunit epsilon-1 Q9UPM8 SPG51 

AP4S1 AP-4 complex subunit sigma-1 Q9Y587 SPG52 

VPS37A vacuolar protein sorting-associated protein 37A Q8NEZ2 SPG53 

DDHD2 phospholipase DDHD2 O94830 SPG54 

C12orf65 probable peptide chain release factor C12orf65, 

mitochondrial 

Q9H3J6 SPG55 

CYP2U1 cytochrome P450 2U1 Q7Z449 SPG56 

TFG protein TFG Q92734 SPG57 

KIF1C kinesin-like protein KIF1C O43896 SPG58 

USP8 ubiquitin carboxyl-terminal hydrolase 8 P40818 SPG59 

WDR48 WD repeat-containing protein 48 Q8TAF3 SPG60 

ARL6IP1 ADP-ribosylation factor-like protein 6-interacting 

protein 1 

Q15041 SPG61 

ERLIN1 erlin-1 O75477 SPG62 

AMPD2 AMP deaminase 2 Q01433 SPG63 

ENTPD1 ectonucleoside triphosphate diphosphohydrolase 

1 

P49961 SPG64 

ARSI arylsulfatase I Q5FYB1 SPG66 

PGAP1 GPI inositol-deacylase Q75T13 SPG67 

KLC2 kinesin light chain 2 Q9H0B6 SPG68 

RAB3GAP2 rab3 GTPase-activating protein non-catalytic 

subunit 

Q9H2M9 SPG69 

MARS methionine--tRNA ligase, cytoplasmic P56192 SPG70 

ZFR zinc finger RNA-binding protein Q96KR1 SPG71 

REEP2 receptor expression-enhancing protein 2 Q9BRK0 SPG72 

CPT1C carnitine O-palmitoyltransferase 1, brain isoform Q8TCG5 SPG73 

IBA57 putative transferase CAF17, mitochondrial Q5T440 SPG74 

MAG myelin-associated glycoprotein P20916 SPG75 

 

https://www.uniprot.org/uniprot/Q9UPM8
https://www.uniprot.org/uniprot/Q9Y587
https://www.uniprot.org/uniprot/Q8NEZ2
https://www.uniprot.org/uniprot/O94830
https://www.uniprot.org/uniprot/Q9H3J6
https://www.uniprot.org/uniprot/Q7Z449
https://www.uniprot.org/uniprot/Q92734
https://www.uniprot.org/uniprot/O43896
https://www.uniprot.org/uniprot/P40818
https://www.uniprot.org/uniprot/Q8TAF3
https://www.uniprot.org/uniprot/Q15041
https://www.uniprot.org/uniprot/O75477
https://www.uniprot.org/uniprot/Q01433
https://www.uniprot.org/uniprot/P49961
https://www.uniprot.org/uniprot/Q5FYB1
https://www.uniprot.org/uniprot/Q75T13
https://www.uniprot.org/uniprot/Q9H0B6
https://www.uniprot.org/uniprot/Q9H2M9
https://www.uniprot.org/uniprot/P56192
https://www.uniprot.org/uniprot/Q96KR1
https://www.uniprot.org/uniprot/Q9BRK0
https://www.uniprot.org/uniprot/Q8TCG5
https://www.uniprot.org/uniprot/Q5T440
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Table S2-1. (continued) The gene (or locus) and protein name responsible for each HSP type 

CAPN1 calpain-1 catalytic subunit P07384 SPG76 

FARS2 phenylalanine--tRNA ligase, mitochondrial O95363 SPG77 

ATP13A2 cation-transporting ATPase 13A2 Q9NQ11 SPG78 

UCHL1 ubiquitin carboxyl-terminal hydrolase isozyme L1 P09936 SPG79 

UBAP1 ubiquitin-associated protein 1 Q9NZ09 SPG80 

TPP1 tripeptidyl-peptidase 1 O14773      - 

Note: Adapted from [403]. 

 

 

 

Figure S2-1. Degree distribution of the proteins of the global HSP-PPIN based on their connectivity with seeds 

The nodes of the global HSP-PPIN were analysed to calculate the number of seeds to which they connect. The nodes connected 

to one seed (635/746, 85.0%) were excluded from further analyses. Adapted from [403]. 

 

https://www.uniprot.org/uniprot/Q9NQ11
https://www.uniprot.org/uniprot/P09936
https://www.uniprot.org/uniprot/Q9NZ09
https://www.uniprot.org/uniprot/O14773
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Figure S2-2. Overlap of the three functional enrichment tools for the analysis of the core HSP-PPIN in the level of GO-BP 

terms 

The single GO terms resulted from the analysis of the core HSP-PPIN were compared across all the used functional enrichment 

tools. Most were common in at least two tools (122, 63.8%). 
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Figure S2-3. Detailed graphical representation of the functional enrichment of the core HSP-PPIN 

Functional enrichment was performed for the components of the core HSP-PPIN. The resulted GO terms (n=379) were grouped into 

level 1 groups (n=54; excluding “metabolism”) using in-house R script and then into level 2 groups (n=11; excluding “general”). The 

number of GO terms of each level 2 was calculated from g:Profiler, WebGestalt, and GO (through -PANTHER) using the GO terms of 

semantic classes that were present in at least 2 tools, and their distribution is shown here. Examples of GO terms are included for 

each functional block. 
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B. 

 

C. 

 

D. 

 

E. 
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F. 

  

G. 

  

Figure S3-2. Comparison of the core network of seeds with the analysed clinical features 

The presence of clinical characteristics in HSPs is visualised in the core networks by the colour of each node for early onset (A), peripheral 

neuropathy (B), motor neuropathy (C), thin corpus callosum (D), seizures (E), dementia or mental retardation (F) and optic atrophy (G). 

The nodes corresponding to the HSP-seeds have a black border, while the test-seeds have a red border. The size of each node correlates 

with its degree and all pictures are of the same scale. The thickness of each edge correlates with its final score as calculated by PINOT. 

The network was visualised using Cytoscape. 
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 A. 

 

B.  

 

 

 

 

 

 

C.  

 

 

 

 

 

Figure S3-4. Comparison of the functional profiles of the 6 subdivisions of the HSP-PPIN based on clinical features using Principal 

Component Analysis  

The number of GO-BP terms for each functional group were analysed with PCA through R. (A) The PCA graph showing the distribution 

of the gene groups in the PC1 and PC2 axes. (B) The scree plot is showing the explained variation of the data for PC1 to PC6. (C) The 

loading scores of each variable (here functional groups) are plotted against PC1 and PC2, indicating which functions drive the 

localisation of the gene groups in the PCA graph. In (A) and (C) the PC axes were transformed to equate their significance. Adapted 

from [403]. 
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Figure S3-5. Cluster dendrogram for the number of GO-terms in the enrichment of the clinical subnetworks following PCA  

Cluster dendrogram produced based on hierarchical clustering of the gene groups of the clinical subnetworks using R. Adapted from 

[403]. 

 

 

A.

 

B. 

   

Figure S3-6. Evaluating the optimal number of clusters using the multiscale bootstrap resampling  

The analysis was based on the number (A) and percentage (B) of the GO terms in functional block. The graphs based on the 

multiscale bootstrap resampling the recommended clusters are framed in red boxes. The analysis was performed through R using the 

function pvclust()..Adapted from [403]. 
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Table S3-1. The distance index resulted from the comparison of the co-occurrence of clinical features 

in HSP patients 

 E P T E D O 

E       

P 0.84      

T 1.76 2.59     

E 2.06 3.00 0.30    

D 0.62 1.55 1.00 1.23   

O 0.99 0.45 2.49 2.87 1.70  

Note: The smaller the value of the distance index of a pair of clinical features, the more they tend to co-

occur in HSP patients 

  

 

Table S3-2. p values from the Pearson correlation analysis for the co-occurrence of clinical features in 

HSP patients. 

 E P T E D O 

E       

P 0.347473786      

T 0.877808201 0.875683027     

E 0.866587401 0.712382365 0.000271037    

D 0.866597665 0.282766009 0.172178712 0.231163467   

O 0.1602981 0.000977093 0.725008956 0.56306008 0.402797979  
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Figure S2-1. Centralities of the macroautophagy network 

The node degree (A), closeness centrality (B), and betweenness centrality (C) were calculated for the 2nd layer of the 

macroautophagy network. The calculation was made through Cytoscape. Image produced using Cytoscape. 
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Figure S4-2. Analysis of the overlap of the neurodegenerative seeds with the macroautophagy 

network  

The distributions were produced by randomly picking a list of genes -of equal length to each 

neurodegenerative disease seed list-, and evaluating their presence in the macroautophagy network. 

This process was repeated 100,000 times and produced the distribution of the overlap for the whole ND 

list (A), AD (B), FTD(C), PD (D), and ALS (E). ND: neurodegenerative disease, AD: Alzheimer’s disease, 

FTD: Frontotemporal Dementia, ALS: Amyotrophic Lateral Sclerosis 

 

 

Table S4-1. Connectivity of interactors of ND seeds with the MA network 

ND seed Interactors 

N MA seeds 
connected 

through two 
proteins 

Gene name of connected MA seeds 

 
ANG 

(n=6/7, 
85.7%) 

 

ACTN2 9 
DYNC1H1, DYNC1I1, HDAC6, HMGB1, NBR1, OPTN, 

RAB8B, SQSTM1, TOMM70 

 ANXA2 55 

ATG3, ATG9A, BCL2, CALCOCO2, CAMKK2, CAPN1, 
CAPNS1, CHMP2A, CHMP4B, CLTC, CSNK2A1, 

CSNK2B, DAPK3, DYNC1H1, DYNLL1, DYNLL2, FYCO1, 
HDAC6, HMGB1, HSPA8, HTT, ITPR1, KEAP1, MAP1B, 

MAP1LC3A, MAPK10, MAPK8, MAPK9, NEDD4, 
PARK7, PGAM5, PIK3CB, PIK3R2, PRKAB1, PRKACA, 
PRKN, RAB1A, RAB7A, RAB8B, SH3GLB1, SNAP29, 
SQSTM1, STK11, TBC1D17, TMEM173, TOMM20, 

TOMM22, TOMM40, TRIM21, UBQLN1, VAMP8, VCP, 
VDAC1, WDFY3, WIPI2 

 FST 0 - 

 PCNA 70 

AMBRA1, ATG101, ATG16L1, BCL2, BCL2L1, BECN1, 
CALCOCO2, CLTC, CSNK2A1, CSNK2A2, CSNK2B, 
DAPK1, DAPK3, DYNC1H1, DYNC1I1, DYNC1I2, 

DYNC1LI1, DYNC1LI2, DYNLL1, FYCO1, GABARAP, 
GABARAPL1, GABARAPL2, HDAC6, HMGB1, HSPA8, 

HTT, KEAP1, LAMP2, MAP1B, MAPK10, MAPK15, 
MAPK8, MAPK9, MFN2, MTMR3, NBR1, NEDD4, 

NRBF2, OPTN, PARK7, PGAM5, PIK3R2, PINK1, PLAA, 
PRKAA1, PRKAB1, PRKAB2, PRKACA, PRKAG1, 

PRKAG2, PRKN, RAB7A, RB1CC1, RUBCN, SH3GLB1, 
SNAP29, SQSTM1, TBC1D17, TOMM22, TOMM40, 
TP53INP1, TRIM21, UBQLN1, USP10, VCP, VDAC1, 

VPS18, WIPI1, YOD1 

 PLAUR 13 
HDAC10, HDAC6, HSPA8, KEAP1, LAMP2, PIK3R4, 
PRKAB1, SQSTM1, TOMM22, TOMM5, UBQLN1, 

UBQLN2, WDFY3 
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Table S4-1. (continued) Connectivity of interactors of ND seeds with the MA network 

 RNH1  24 

ATG4C, BCL2, CALCOCO2, CLTC, CSNK2A1, CSNK2B, 
DYNC1H1, DYNLL1, FYCO1, HDAC6, HMGB1, HSPA8, 

MAP1B, MAPK8, PGAM5, PRKN, RAB1A, RAB7A, 
SQSTM1, TRIM21, UBQLN4, UBXN6, ULK1, USP10 

 S100A10 22 

ATG9A, BCL2, BCL2L1, CAMKK2, CHMP4B, CLTC, 
CSNK2A1, DAPK3, HDAC6, HSPA8, MAP1LC3B2, 

MAPK10, MAPK8, MAPK9, NEDD4, PIK3CB, PIK3R2, 
PRKACA, RAB7A, RAB8B, SQSTM1, VDAC1 

FIG4 
(n=4/4, 
100%) 

ANK1 7 
NBR1, OPTN, PIK3CB, SQSTM1, TOMM70, VPS18, 

ZFYVE1 

PIKFYVE 2 KEAP1, PRKAG2 

SNX27 12 
ATG3, CALCOCO2, CAPN1, HSPA8, MAP1B, MAPK15, 

MAPK8, MAPK9 
NEDD4, SQSTM1, TBC1D5, TRIM21 

VAC14 9 
ATG9A, CALCOCO2, CHMP6, DYNLL1, HSPA8, MFN1, 

OPTN, PRKACA, TMEM173 

PRPH2 0 - - 

RAB38 
(n=1/1, 
100%) 

RAB32 22 

CISD2, CLTC, DAPK1, DYNC1H1, DYNLL1, HSPA8, 
LAMP2, MAP1B, MAP1LC3A, MFN2, PRKACA, 

PRKAG3, PRKN, RAB1A, RAB7A, RAB7B, RAB8B, 
SNAP29, SQSTM1, TOMM22, and TOMM40 
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Table S4-2 Distribution of the ND network in the MA networks (absolute 

values) 

  MA 

  Seeds 1st layer 2nd layer 

AD Seeds 0 3 4 

1st layer 10 155 465 

2nd layer 86 2089 6274 

ALS Seeds 4 14 26 

1st layer 43 603 1092 

2nd layer 93 2222 8833 

FTD Seeds 4 10 16 

1st layer 35 476 691 

2nd layer 96 2272 8405 

PD Seeds 5 13 19 

1st layer 33 499 787 

2nd layer 96 2219 8406 
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Figure S5-1. Macroautophagy diagram of Reactome 
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Figure S5-2. Macroautophagy diagram of KEGG 
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Table S5-1. Protein interactions of LRRK2 affected by mutations 

#Feature AC Feature short label Feature type & annotation PubMedID Interactor 

EBI-9104709 Q5S007:p.Arg1441Gly mutation disrupting (MI:0573) 24351927 1433Z 

EBI-9104715 Q5S007:p.Ser1444Ala mutation disrupting (MI:0573) 24351927 1433Z 

EBI-6508728 Q5S007:p.Gly2385Arg mutation increasing (MI:0382) 22612223 CDC37 

EBI-8842326 Q5S007:p.Gly2019Ser mutation increasing (MI:0382) 24165324 GSK3B 

EBI-22228908 Q5S007:p.Gly2385Arg mutation decreasing rate (MI:1130) 29519959 SQSTM1 

EBI-22229066 Q5S007:p.Asp1994Ala mutation disrupting rate (MI:1129) 29519959 SQSTM1 

EBI-22228788 Q5S007:p.Asp1994Ala mutation disrupting rate (MI:1129) 29519959 SQSTM1 

EBI-22228906 Q5S007:p.Gly2019Ser mutation increasing rate (MI:1131) 29519959 SQSTM1 

EBI-22229046 Q5S007:p.Gly2019Ser mutation increasing rate (MI:1131) 29519959 SQSTM1 

EBI-9691043 Q5S007:p.Asn1437His mutation increasing strength 
(MI:1132) 

23937259 PPP1CA 

EBI-9691045 Q5S007:p.Arg1441Gly mutation increasing strength 
(MI:1132) 

23937259 PPP1CA 

EBI-9691047 Q5S007:p.Tyr1699Cys mutation increasing strength 
(MI:1132) 

23937259 PPP1CA 

EBI-9691049 Q5S007:p.Ser910Ala mutation increasing strength 
(MI:1132) 

23937259 PPP1CA 

EBI-9691049 Q5S007:p.Ser935Ala mutation increasing strength 
(MI:1132) 

23937259 PPP1CA 

EBI-9691049 Q5S007:p.Ser955Ala mutation increasing strength 
(MI:1132) 

23937259 PPP1CA 

EBI-9691049 Q5S007:p.Ser973Ala mutation increasing strength 
(MI:1132) 

23937259 PPP1CA 

EBI-12509246 Q5S007:p.Gly2385Arg mutation decreasing rate (MI:1130) 27314038 RAB5B 

EBI-12509232 Q5S007:p.Arg1441Cys mutation decreasing rate (MI:1130) 27314038 RAB5B 

EBI-12509228 Q5S007:p.Asp1994Ala mutation disrupting rate (MI:1129) 27314038 RAB5B 

EBI-10688243 Q5S007:p.Asp1994Ala mutation disrupting rate (MI:1129) 25605758 RAB5B 

EBI-12509242 Q5S007:p.Ile2020Thr mutation increasing rate (MI:1131) 27314038 RAB5B 

EBI-10688241 Q5S007:p.Gly2019Ser mutation increasing rate (MI:1131) 25605758 RAB5B 

EBI-12509230 Q5S007:p.Gly2019Ser mutation increasing rate (MI:1131) 27314038 RAB5B 

EBI-6309768 Q5S007:p.Gly2019Ser mutation decreasing (MI:0119) 21454543 RAC1 

EBI-6309786 Q5S007:p.Lys1906Met mutation decreasing (MI:0119) 21454543 RAC1 

EBI-6309770 Q5S007:p.Arg1441Cys mutation disrupting (MI:0573) 21454543 RAC1 

EBI-6309857 Q5S007:p.Arg1441Cys mutation disrupting (MI:0573) 21454543 RAC1 
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Table S5-1. (continued) Protein interactions of LRRK2 affected by mutations 

EBI-6309784 Q5S007:p.Ile2020Thr mutation increasing (MI:0382) 21454543 RAC1 

EBI-6309776 Q5S007:p.Tyr1699Cys mutation increasing (MI:0382) 21454543 RAC1 

EBI-8844589 Q5S007:p.Asp1994Ala mutation disrupting rate (MI:1129) 24165324 GSK3B 

EBI-9104120 Q5S007:p.Ser1444Ala mutation decreasing rate (MI:1130) 24351927 PRKACA 

EBI-9104139 Q5S007:p.Arg1441Cys mutation disrupting rate (MI:1129) 24351927 PRKACA 

EBI-9104141 Q5S007:p.Arg1441Gly mutation disrupting rate (MI:1129) 24351927 PRKACA 

EBI-9104122 Q5S007:p.Ser1443_Ser
1444delinsAlaAla 

mutation disrupting rate (MI:1129) 24351927 PRKACA 

EBI-9104143 Q5S007:p.Arg1441His mutation disrupting rate (MI:1129) 24351927 PRKACA 

EBI-6507337 Q5S007:p.Gly2019Ser mutation increasing (MI:0382) 23183827 SNCA 

Note: For each interaction the affected protein AC was uniprotkb:Q5S007, the affected protein symbol was 
LRRK2 and the affected protein organism was 9606-Homo sapiens. 
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Table S5-2. Decisions based on feedback from Dr Sharon Tooze 

Question Decision 

Are AMBRA1 and NRBF2 part of the PIK3C3 complex I? Can be considered as true for this project 

Should P62 bodies be considered as scaffolds for 

macroautophagy? 

This is true only for selective autophagy. 

Therefore, p62 bodies will not be taken into 

consideration in this project.  

Which should be considered the membrane sources in 

this project? (e.g., ERGIC-derived COPII vesicles and/or 

recycling endosomes and/or ATG9 vesicles) 

Combining the different membrane sources 

might be tricky, so either different models 

should be made or one membrane source to 

be chosen. Here, ATG9 was considered the 

main membrane source and the rest were 

excluded. 

Should the ATG9 trafficking system be included in the 

diagram? 

Due to its complexity and partial knowledge 

of this system it will be excluded.  

Lipid composition and phosphatidic acid levels of the 

autophagosome precursor membranes pay a role in the 

formation of the phagophore. Should they be included? 

Too complex to be included in a model of the 

decided scale. Can be added in a future, 

more complicated version of the model.  

Exclusion of LRRK2 interactors due to lack of specific 

information regarding their link with macroautophagy or 

a very complex relationship with macroautophagy? 

Both are acceptable 

Are there any other key players that are missing? 
Added TMEM41B in the detailed diagram but 

was later removed (see Section 5.4.5.2).  
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Table S6-1. Rate reaction equations describing the macroautophagy model and the calculation of 
the reaction rate 

Reaction 
number 

Rate reaction equation Reaction Rate 

0 
PIK3C3_C1_act + ULK1complex -> 
ULK1complex_act + PIK3C3_C1_act 

kf*PIK3C3_C1_act*ULK1complex 

1 
ULK1complex_act + PIK3C3_C1 -> 
ULK1complex_act + PIK3C3_C1_act 

kf_1*ULK1complex_act*PIK3C3_C1 

2 
ULK1complex_act + AMPK_act -> AMPK + 
ULK1complex_act 

kf_2*ULK1complex_act*AMPK_act 

4 
AMPK_act + ULK1complex -> AMPK_act + 
ULK1complex_act 

kf_4*AMPK_act*ULK1complex 

5 AMPK_act + ATG9 -> AMPK_act + ATG9_act kf_5*AMPK_act*ATG9 

6 
AMPK_act + PIK3C3_C1 -> AMPK_act + 
PIK3C3_C1_act 

kf_6*AMPK_act*PIK3C3_C1 

7 
ATG9 + ULK1complex_act -> ATG9_act + 
ULK1complex_act 

kf_7*ATG9*ULK1complex_act 

9 PIK3C3_C1_act + PI -> PIK3C3_C1_act + PI3P kf_9*PIK3C3_C1_act*PI 

8 ATG9_act + PI -> ATG9_act + PI4P kf_8*ATG9_act*PI 

11 ATG9 + PI3P -> ATG9_act + PI3P kf_11*ATG9*PI3P 

13 PI3P + ATG16L1 -> PI3P + ATG16L1_act kf_13*PI3P*ATG16L1 

14 
ATG16L1 + ULK1complex_act -> ATG16L1_act + 
ULK1complex_act 

kf_14*ATG16L1*ULK1complex_act 

15 
ATG16L1_act + ATG12_act + ATG5_act -> 
ATG12ATG5ATG16L1_act 

kf_15*ATG16L1_act*ATG12_act*ATG5_act 

18 CSNK2_act + BCL2_act -> BCL2 + CSNK2_act kf_18*CSNK2_act*BCL2_act 

19 ATG12_act + BCL2_act -> BCL2 + ATG12_act kf_19*ATG12_act*BCL2_act 

20 
BCL2_act + PIK3C3_C1_act -> BCL2_act + 
PIK3C3_C1 

kf_20*BCL2_act*PIK3C3_C1_act 

22 
LC3I_act + ATG12ATG5ATG16L1_act -> 
LC3II_act + ATG12ATG5ATG16L1_act 

kf_22*LC3I_act*ATG12ATG5ATG16L1_act 
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Table S6-1. (continued) Rate reaction equations describing the macroautophagy model and the 
calculation of the reaction rate 

23 
ULK1complex_act + LC3I_act -> 
ULK1complex_act + LC3I 

kf_23*ULK1complex_act*LC3I_act 

24 
ULK1complex_act + LC3I_act -> 
ULK1complex_act + LC3II_act 

kf_24*ULK1complex_act*LC3I_act 

25 
ULK1complex + LC3II_act -> ULK1complex_act 
+ LC3II_act 

kf_25*ULK1complex*LC3II_act 

34 
SMCR8WDR41C9ORF72_act + LC3I_act -> 
LC3II_act + SMCR8WDR41C9ORF72_act 

kf_34*SMCR8WDR41C9ORF72_act*LC3I_act 

28 
SMCR8_act + WDR41_act + C9ORF72_act + 
ULK1complex_act -> ULK1complex_act + 
SMCR8WDR41C9ORF72_act 

kf_28*SMCR8_act*WDR41_act*C9ORF72_act* 
ULK1complex_act 

29 
ULK1complex + C9ORF72_act -> 
ULK1complex_act + C9ORF72_act 

kf_29*ULK1complex*C9ORF72_act 

32 
PIK3C3_C1 + SMCR8WDR41C9ORF72_act -> 
PIK3C3_C1_act + SMCR8WDR41C9ORF72_act 

kf_32*PIK3C3_C1*SMCR8WDR41C9ORF72_act 

35 ULK1complex_act -> ULK1complex kf_35*ULK1complex_act 

36 PIK3C3_C1_act -> PIK3C3_C1 kf_36*PIK3C3_C1_act 

37 AMPK_act -> AMPK kf_37*AMPK_act 

38 ATG9_act -> ATG9 kf_38*ATG9_act 

39 ATG16L1_act -> ATG16L1 kf_39*ATG16L1_act 

41 
ATG12ATG5ATG16L1_act -> ATG12_act + 
ATG5_act + ATG16L1_act 

kf_41*ATG12ATG5ATG16L1_act 

16 PI3P -> PI kf_16*PI3P 

44 BCL2_act -> BCL2 kf_44*BCL2_act 

46 
SMCR8WDR41C9ORF72_act -> SMCR8_act + 
WDR41_act + C9ORF72_act 

kf_46*SMCR8WDR41C9ORF72_act 

47 LC3I_act -> LC3I kf_47*LC3I_act 

48 LC3II_act -> LC3I_act kf_48*LC3II_act 
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Table S6-1. (continued) Rate reaction equations describing the macroautophagy model and the 
calculation of the reaction rate 

49 
PI4P + ULK1complex -> ULK1complex_act + 
PI4P 

kf_49*PI4P*ULK1complex 

50 
ATG16L1 + CSNK2_act -> ATG16L1_act + 
CSNK2_act 

kf_50*ATG16L1*CSNK2_act 

52 
ULK1complex + PI3P -> PI3P + 
ULK1complex_act 

kf_52*ULK1complex*PI3P 

53 
ULK1complex_act + BCL2_act -> BCL2 + 
ULK1complex_act 

kf_53*ULK1complex_act*BCL2_act 

54 
ULK1complex_act + LC3I_act -> LC3I_act + 
ULK1complex 

kf_54*ULK1complex_act*LC3I_act 

12 PI4P -> PI kf_12*PI4P 

3 LC3I -> LC3I_act kf_3*LC3I 

26 CSNK2_act + LC3I_act -> CSNK2_act + LC3II_act kf_26*CSNK2_act*LC3I_act 

27 
CSNK2_act + PIK3C3_C1 -> CSNK2_act + 
PIK3C3_C1_act 

kf_27*CSNK2_act*PIK3C3_C1 

10 
SMCR8WDR41C9ORF72_act + LC3II_act -> 
SMCR8WDR41C9ORF72_act + LC3I_act 

kf_10*SMCR8WDR41C9ORF72_act*LC3II_act 
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 A.  

 
 
B.  

 
 
C. 

 
 
Figure S6-2. Removing outliers of reaction rates during parametrisation 

Parameter values with more than 2 magnitudes of difference compared to the rest of the values were considered outliers and 

removed from further analysis for association (A), disassociation (B) and truncation (C).  
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Table S6-2. Initial conditions- Amounts of the components of the 

mathematical model of macroautophagy 

Name of entity Amount in molecules 

ULK1complex / ULK1complex_act 0 / 8.88×10-5 

PIK3C3_C1 / PIK3C3_C1_act 0.000149 / 0 

AMPK / AMPK_act 0 / 0.000103 

ATG9 / ATG9_act 0.00107 / 0 

PI / PI3P / PI4P 0.0165 / 0 / 0  

ATG16L1 / ATG16L1_act 0.00159 / 0 

ATG12_act 0.000111 

ATG5_act 0.00114 

ATG12ATG5ATG16L1_act 0 

CSNK2_act 0.00123 

BCL2 / BCL2_act 0 / 0.00077 

LC3I / LC3I_act / LC3II_act 0.00143 / 0 / 0 

C9ORF72_act 0.000477 

SMCR8_act 0.00119 

WDR41_act 0.000669 

SMCR8WDR41C9ORF72_act 0 

 

Table S6-3. Parameter values for the mathematical model of macroautophagy 

Name Value (units) Name Value (units) 

kf 9.5 (molecule sec)-1 kf_35 0.0000025 (sec)-1 

kf_1 5.216865 (molecule sec)-1 kf_36 0.0000025 (sec)-1 

kf_2 5 (molecule sec)-1 kf_37 0.0000025 (sec)-1 

kf_4 5.216865 (molecule sec)-1 kf_38 0.0000025 (sec)-1 

kf_5 5 (molecule sec)-1 kf_39 0.0000025 (sec)-1 

kf_6 5 (molecule sec)-1 kf_41 0.0000025 (sec)-1 

kf_7 9.716865 (molecule sec)-1 kf_44 0.0000025 (sec)-1 
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Table S6-3. (continued) Parameter values for the mathematical model of macroautophagy 

kf_9 5 (molecule sec)-1 kf_46 0.0000025 (sec)-1 

kf_11 0.3903525 (molecule sec)-1 kf_47 0.0000025 (sec)-1 

kf_13 0.3903525 (molecule sec)-1 kf_48 0.0000025 (sec)-1 

kf_14 0.433725 (molecule sec)-1 kf_49 0.4335 (molecule sec)-1 

kf_15 63363769.15 (molecule2 sec)-1 kf_50 5 (molecule sec)-1 

kf_18 1.084315 (molecule sec)-1 kf_52 0.2168625 (molecule sec)-1 

kf_19 0.86745 (molecule sec)-1 kf_53 0.86745 (molecule sec)-1 

kf_20 0.86745 (molecule sec)-1 kf_54 0.2168625 (molecule sec)-1 

kf_22 4 (molecule sec)-1 kf_3 0.000614645 (sec)-1 

kf_23 0.4298215 (molecule sec)-1 kf_8 5 (molecule sec)-1 

kf_24 4.5 (molecule sec)-1 kf_12 0.0000025 (sec)-1 

kf_25 0.86745 (molecule sec)-1 kf_16 0.0000025 (sec)-1 

kf_28 21975221 (molecule3 sec)-1 kf_26 4.5 (molecule sec)-1 

kf_29 0.3903525 (molecule sec)-1 kf_27 4 (molecule sec)-1 

kf_32 0.607215 (molecule sec)-1 kf_10 0.607215 (molecule sec)-1 

kf_34 0.607215 (molecule sec)-1   

 

Table S6-4. ODEs describing the mathematical model of macroautophagy 

Equations 
d(U)/dt = -(kf*PCa*U) - (kf_4*AKa*U) - (kf_25*U*L2a) - (kf_29*U*C9a) + (kf_35*Ua) - (kf_49*P4*U) - 
(kf_52*U*P3) + (kf_54*Ua*L1a)         (1) 
 
d(Ua)/dt = (kf*PCa*U) + (kf_4*AKa*U) + (kf_25*U*L2a) + (kf_29*U*C9a) - (kf_35*Ua) + (kf_49*P4*U) + 
(kf_52*U*P3) - (kf_54*Ua*L1a)         (2) 
 
d(PC)/dt = -(kf_1*Ua*PC) - (kf_6*AKa*PC) + (kf_20*Ba*PCa) - (kf_32*PC*SCMa) + (kf_36*PCa) - 
(kf_27*Ca*PC)           (3) 
 
d(PCa)/dt = (kf_1*Ua*PC) + (kf_6*AKa*PC) - (kf_20*Ba*PCa) + (kf_32*PC*SCMa) - (kf_36*PCa) + 
(kf_27*Ca*PC)           (4) 
 
d(AK)/dt = (kf_2*Ua*AKa) + (kf_37*AKa)        (6) 
 
d(AKa)/dt = -(kf_2*Ua*AKa) - (kf_37*AKa)        (5) 
 
d(A9)/dt = -(kf_5*AKa*A9) - (kf_7*A9*Ua) - (kf_11*A9*P3) - (kf_30*A9*Ua) + (kf_38*A9a)  (7) 
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d(A9a)/dt = (kf_5*AKa*A9) + (kf_7*A9*Ua) + (kf_11*A9*P3) + (kf_30*A9*Ua) - (kf_38*A9a)  (8) 
 
d(P3)/dt = (kf_9*PCa*P) - (kf_16*P3)        (9) 
 
d(P4)/dt = (kf_8*A9a*P) - (kf_12*P4)        (24) 
 
d(P)/dt = -(kf_9*PCa*P) - (kf_8*A9a*P) + (kf_16*P3) + (kf_12*P4)    (25) 
 
d(A16)/dt = -(kf_13*P3*A16) - (kf_14*A16*Ua) + (kf_39*A16a) - (kf_50*A16*Ca)   (10) 
 
d(A16a)/dt = (kf_13*P3*A16) + (kf_14*A16*Ua) - (kf_15*A16a*A12a*A5a) - (kf_39*A16a) + (kf_41*ACa) + 
(kf_50*A16*Ca)            (11) 
 
d(A12a)/dt = -(kf_15*A16a*A12a*A5a) + (kf_41*ACa)     (12) 
 
d(A5a)/dt = -(kf_15*A16a*A12a*A5a) + (kf_41*ACa)      (13) 
 
d(ACa)/dt = (kf_15*A16a*A12a*A5a) - (kf_41*ACa)      (14) 
 
d(B)/dt = (kf_18*Ca*Ba) + (kf_19*A12a*Ba) + (kf_44*Ba) + (kf_53*Ua*Ba)    (16) 

 
d(Ba)/dt = -(kf_18*Ca*Ba) - (kf_19*A12a*Ba) - (kf_44*Ba) - (kf_53*Ua*Ba)    (15) 
 
d(L1)/dt = (kf_23*Ua*L1a) + (kf_47*L1a) - (kf_3*L1)       (19) 
 
d(L1a)/dt = -(kf_22*L1a*ACa) - (kf_23*Ua*L1a) - (kf_24*Ua*L1a) - (kf_34*SCMa*L1a) - (kf_47*L1a) + 
(kf_48*L2a) + (kf_3*L1) - (kf_26*Ca*L1a)       (17) 
  
d(L2a)/dt = (kf_22*L1a*ACa) + (kf_24*Ua*L1a) + (kf_34*SCMa*L1a) - (kf_48*L2a) + (kf_26*Ca*L1a) 
             (18) 
d(SCMa)/dt = (kf_28*Sa*Wa*C9a*U) + (kf_31*Sa*Wa*C9a) - (kf_46*SCMa)    (20) 
 
d(C9a)/dt = -(kf_28*Sa*Wa*C9a*U) - (kf_31*Sa*Wa*C9a) + (kf_46*SCMa)    (21) 
 
d(Sa)/dt = -(kf_28*Sa*Wa*C9a*U) - (kf_31*Sa*Wa*C9a) + (kf_46*SCMa)    (22) 
 
d(Wa)/dt = -(kf_28*Sa*Wa*C9a*U) - (kf_31*Sa*Wa*C9a) + (kf_46*SCMa)    (23) 
 
Name of entity   Symbol of entity 
ULK1complex / ULK1complex_act U / Ua 
PIK3C3_C1 / PIK3C3_C1_act PC / PCa 
AMPK / AMPK_act  AK / AKa 
ATG9 / ATG9_ac   A9 / A9a 
PI / PI3P / PI4P   P / P3 / P4 
ATG16L1 / ATG16L1_act  A16 / A16a 
ATG12_act /    A12 
ATG5_act   A12a 
ATG12ATG5ATG16L1_act  ACa 
BCL2 / BCL2_act   B / Ba 
LC3I / LC3I_act / LC3II_act  L1 / L1a / L2a 
SMCR8WDR41C9ORF72_act SCMa 
C9ORF72_act   C9a 
SMCR8_act   Sa 
WDR41_act   Wa 
CSNK2_act   Ca 

Note: The ODEs exactly as produced by SimBiology are presented in Table S6-5.  



Appendix F 

xli 
 

 

Table S6-5 ODEs describing the mathematical model of macroautophagy as produced by SimBiology, a 

MATLAB toolbox 

 d(ULK1complex)/dt = 1/[L.A.F.]*(-(kf*PIK3C3_C1_act*ULK1complex) -
kf_4*AMPK_act*ULK1complex) - (kf_25*ULK1complex*LC3II_act) - (kf_29*ULK1complex*C9ORF72_act) + 
(kf_35*ULK1complex_act) - (kf_49*PI4P*ULK1complex) - (kf_52*ULK1complex*PI3P) + 
(kf_54*ULK1complex_act*LC3I_act)) 

 d(ULK1complex_act)/dt = 1/[L.A.F.]*((kf*PIK3C3_C1_act*ULK1complex) + 
(kf_4*AMPK_act*ULK1complex) + (kf_25*ULK1complex*LC3II_act) + (kf_29*ULK1complex*C9ORF72_act) 
- (kf_35*ULK1complex_act) + (kf_49*PI4P*ULK1complex) + (kf_52*ULK1complex*PI3P) - 
(kf_54*ULK1complex_act*LC3I_act)) 

 d(PIK3C3_C1)/dt = 1/[L.A.F.]*(-(kf_1*ULK1complex_act*PIK3C3_C1) - (kf_6*AMPK_act* 
PIK3C3_C1) + (kf_20*BCL2_act*PIK3C3_C1_act) - (kf_32*PIK3C3_C1*SMCR8WDR41C9ORF72_act) + 
(kf_36*PIK3C3_C1_act) - (kf_27*CSNK2_act*PIK3C3_C1)) 

 d(PIK3C3_C1_act)/dt = 1/[L.A.F.]*((kf_1*ULK1complex_act*PIK3C3_C1) + (kf_6*AMPK_act* 
PIK3C3_C1) - (kf_20*BCL2_act*PIK3C3_C1_act) + (kf_32*PIK3C3_C1*SMCR8WDR41C9ORF72_act) - 
(kf_36*PIK3C3_C1_act) + (kf_27*CSNK2_act*PIK3C3_C1)) 

 d(AMPK_act)/dt = 1/[L.A.F.]*(-(kf_2*ULK1complex_act*AMPK_act) - (kf_37*AMPK_act)) 

 d(AMPK)/dt = 1/[L.A.F.]*((kf_2*ULK1complex_act*AMPK_act) + (kf_37*AMPK_act)) 

 d(ATG9)/dt = 1/[L.A.F.]*(-(kf_5*AMPK_act*ATG9) - (kf_7*ATG9*ULK1complex_act) - 
(kf_11*ATG9*PI3P) + (kf_38*ATG9_act)) 

 d(ATG9_act)/dt = 1/[L.A.F.]*((kf_5*AMPK_act*ATG9) + (kf_7*ATG9*ULK1complex_act) + 
(kf_11*ATG9*PI3P) - (kf_38*ATG9_act)) 

 d(PI3P)/dt = 1/[L.A.F.]*((kf_9*PIK3C3_C1_act*PI) - (kf_16*PI3P)) 

 d(ATG16L1)/dt = 1/[L.A.F.]*(-(kf_13*PI3P*ATG16L1) - (kf_14*ATG16L1*ULK1complex_act) + 
(kf_39*ATG16L1_act) - (kf_50*ATG16L1*CSNK2_act)) 

 d(ATG16L1_act)/dt = 1/[L.A.F.]*((kf_13*PI3P*ATG16L1) + (kf_14*ATG16L1*ULK1complex_act) - 
(kf_15*ATG16L1_act*ATG12_act*ATG5_act) - (kf_39*ATG16L1_act) + (kf_41*ATG12ATG5ATG16L1_act) + 
(kf_50*ATG16L1*CSNK2_act)) 

 d(ATG12_act)/dt = 1/[L.A.F.]*(-(kf_15*ATG16L1_act*ATG12_act*ATG5_act) + 
(kf_41*ATG12ATG5ATG16L1_act)) 

 d(ATG5_act)/dt = 1/[L.A.F.]*(-(kf_15*ATG16L1_act*ATG12_act*ATG5_act) + 
(kf_41*ATG12ATG5ATG16L1_act)) 

 d(ATG12ATG5ATG16L1_act)/dt = 1/[L.A.F.]*((kf_15*ATG16L1_act*ATG12_act*ATG5_act) - 
(kf_41*ATG12ATG5ATG16L1_act)) 

 d(BCL2_act)/dt = 1/[L.A.F.]*(-(kf_18*CSNK2_act*BCL2_act) - (kf_19*ATG12_act*BCL2_act) - 
(kf_44*BCL2_act) - (kf_53*ULK1complex_act*BCL2_act)) 

 d(BCL2)/dt = 1/[L.A.F.]*((kf_18*CSNK2_act*BCL2_act) + (kf_19*ATG12_act*BCL2_act) + 
(kf_44*BCL2_act) + (kf_53*ULK1complex_act*BCL2_act)) 
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 d(LC3I_act)/dt = 1/[L.A.F.]*(-(kf_22*LC3I_act*ATG12ATG5ATG16L1_act) - (kf_23* 
ULK1complex_act*LC3I_act) - (kf_24*ULK1complex_act*LC3I_act) - (kf_34*SMCR8WDR41C9ORF72_act* 
LC3I_act) - (kf_47*LC3I_act) + (kf_48*LC3II_act) + (kf_3*LC3I) - (kf_26*CSNK2_act*LC3I_act) + 
(kf_10*SMCR8WDR41C9ORF72_act*LC3II_act)) 

 d(LC3II_act)/dt = 1/[L.A.F.]*((kf_22*LC3I_act*ATG12ATG5ATG16L1_act) + (kf_24* 
ULK1complex_act*LC3I_act) + (kf_34*SMCR8WDR41C9ORF72_act*LC3I_act) - (kf_48*LC3II_act) + 
(kf_26*CSNK2_act*LC3I_act) - (kf_10*SMCR8WDR41C9ORF72_act*LC3II_act)) 

 d(LC3I)/dt = 1/[L.A.F.]*((kf_23*ULK1complex_act*LC3I_act) + (kf_47*LC3I_act) - (kf_3*LC3I)) 

 d(SMCR8WDR41C9ORF72_act)/dt = 1/[L.A.F.]*((kf_28*SMCR8_act*WDR41_act*C9ORF72_act 
*ULK1complex_act) - (kf_46*SMCR8WDR41C9ORF72_act)) 

 d(C9ORF72_act)/dt = 1/[L.A.F.]*(-(kf_28*SMCR8_act*WDR41_act*C9ORF72_act* 
ULK1complex_act) + (kf_46*SMCR8WDR41C9ORF72_act)) 

 d(SMCR8_act)/dt = 1/[L.A.F.]*(-(kf_28*SMCR8_act*WDR41_act*C9ORF72_act* 
ULK1complex_act) + (kf_46*SMCR8WDR41C9ORF72_act)) 

 d(WDR41_act)/dt = 1/[L.A.F.]*(-(kf_28*SMCR8_act*WDR41_act*C9ORF72_act* 
ULK1complex_act) + (kf_46*SMCR8WDR41C9ORF72_act)) 

 d(PI4P)/dt = 1/[L.A.F.]*((kf_8*ATG9_act*PI) - (kf_12*PI4P)) 

 d(PI)/dt = 1/[L.A.F.]*(-(kf_9*PIK3C3_C1_act*PI) - (kf_8*ATG9_act*PI) + (kf_16*PI3P) + 

(kf_12*PI4P)) 

 

A.  

 

 

B.  

 

Figure S6-3. Steady state of the macroautophagy model is reached at around 10,000s. 

(A) Includes all components of the model. (B) PI3P, PI4P, and PI were removed to allow better visualisation of the rest of the 

components. 
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A. 
 
 

 
B. 
 
 

Figure S6-4. Simulation of macroautophagy as produced by the model.  

(A) All the components of the model are included. (B) PI3P (pink), PI (orange) and PI4P (yellow) were excluded to allow better 

visualisation of components with lower amounts. See Fig S6-5 for the individual graphs. 
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E. 

 
F. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S6-5. Changes in the amounts of groups of entities of the model of macroautophagy over time. 

(A) ULK1 complex in its activated form. (B) PIK3C3-C1 in activated and inactivated form, including the activated form of 

ULK1 complex for reference. (C) ATG9, BCL2, and AMPK in their activated and inactivated forms. (D) PI, PI3P, and PI4P, 

together with ATG9 and PIK3C3 in both their activated and inactivated forms for reference. (E) ATG16L1:ATG12:ATG5 

and its components, together with PI3P for reference. (F) SMCR8:WDR41:C9ORF72 and its components, together with 

the activated form of ULK1complex for reference. The timescale for the simulation was: 0≤t≤4,000s. 
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Table S6-6. Amounts of the components of the mathematical model 

of macroautophagy for people with PD 

Name Number in molecules 

ULK1complex / ULK1complex_act 0 / 8.81×10-5 

PIK3C3_C1 / PIK3C3_C1_act 1.33×10-4 / 0 

AMPK / AMPK_act 0 / 9.30×10-5 

ATG9 / ATG9_act 1.12×10-3 / 0  

PI / PI3P / PI4P 0.0165 / 0 / 0 

ATG16L1 / ATG16L1_act 1.72×10-3 / 0 

ATG12_act 1.17×10-4 

ATG5_act 1.14×10-3 

ATG12ATG5ATG16L1_act 0 

CSNK2_act 1.20×10-3 

BCL2 / BCL2_act 0 / 7.81×10-4 

LC3I / LC3I_act / LC3II_act 1.35×10-3 / 0 / 0 

SMCR8WDR41C9ORF72_act 0 

C9ORF72_act 4.69×10-4 

SMCR8_act 1.28×10-3 

WDR41_act 6.50×10-4 

 

 

 

Figure S6-6. Comparison of the relative total amount of the entities of the macroautophagy model in the PD state 

compared to the healthy state.  
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I.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S6-7. The totality of and individual components of macroautophagy simulated with the model for better visualisation-

Parkinson’s disease. 

(A) All the components of the model are included. (B) PI3P (pink), PI (orange) and PI4P (yellow) were excluded to allow better 

visualisation of components with lower amounts. (C) ULK1 complex in its activated form. (D) PIK3C3-C1 in activated and inactivated 

form, including the activated form of ULK1 complex for reference. (E) ATG9, BCL2, and AMPK in their activated and inactivated 

forms. (F) PI, PI3P, and PI4P, together with ATG9 and PIK3C3 in both their activated and inactivated forms for reference. (G) 

ATG16L1:ATG12:ATG5 and its components, together with PI3P for reference. (H) LC3s together with ATG16L1:ATG12:ATG5 for 

reference. (I) SMCR8:WDR41:C9ORF72 and its components, together with the activated form of ULK1complex for reference. 

 

 

Analysis for simulating the effect of LRRK2 mutations 

 

Data for the identity and manner in which mutations of LRRK2 affect its interactions were collected 

from IntAct (on 12/07/2021). Each mutation affecting an interaction had a label of a feature type 

(e.g., mutation increasing strength, and mutation disrupting rate). The effect of each mutation on 

each interaction is unknown in most cases. Therefore, it will be assumed that the effect of a 

decreased rate of interaction with LRRK2, leads to an increased amount of the free form of the 

LRRK2 interactor, which enhances its concentration/amount. The opposite will be assumed for an 

increased rate of interaction. It will be assumed that the concentration/amount of the affected 

component of the model will be changed by 5% in either direction. The resulted effects of each 
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LRRK2 mutation on components of the model are shown in Table S6-7. For each LRRK2 mutation a 

version of the model can be created, and the effect can be simulated by changing the amounts of 

the affected components of the model. The ratio of LC3II and LC3I can be used as a readout to 

compare macroautophagy among the different mutations. 

 

Table S6-7. Rates of reaction representing the effect of LRRK2 mutations to the model 

LRRK2 

mutation 

Affected LRRK2 

interactor (direction of 

change of interaction by 

the mutation) 

Affected component of model 

(relationship with LRRK2 interactor) 

Affected component 

of model (direction 

of change of 

amount) 

R1441C PRKACA (↓) 

RAC1 (↓) 

LC3I (negatively regulated)  

PI3P (positively regulated) 

AMPK (negatively regulated) 

LC3I (↓) 

PI3P (↑) 

AMPK (↓)  

R1441G PRKACA (↓) 

PPP1CA (↑) 

 

YWHAZ (↓) 

LC3I (negatively regulated)  

AMPK (negatively regulated) 

CSNK2 (negatively regulated) 

PIK3C3-C1 (negatively regulated) 

LC3I (↓) 

AMPK (↑) 

CSNK2 (↑) 

PIK3C3-C1 (↓) 

D1994A GSK3B (↓) 

 

SQSTM1(↓) 

ULK1 complex (positively regulated) 

BCL2 (negatively regulated) 

LC3I (positively regulated) 

LC3I (negatively regulated) 

PIK3C3-C1 (positively regulated) 

ULK1 complex (↑) 

BCL2 (↓) 

LC3I (↑) 

LC3I (↓) 

PIK3C3-C1 (↑) 

G2019S SNCA (↑) 

GSK3B (↑) 

 

SQSTM1 (↑) 

 

 

RAC1 (↓) 

BCL2 (positively regulated) 

ULK1 complex (positively regulated) 

BCL2 (negatively regulated) 

LC3I (positively regulated) 

LC3I (negatively regulated) 

PIK3C3-C1 (positively regulated) 

PI3P (positively regulated) 

BCL2 (↓) 

ULK1 complex (↓) 

BCL2 (↑) 

LC3I (↓) 

LC3I (↑) 

PIK3C3-C1 (↓) 

PI3P (↑) 

G2385R SQSTM1(↓) 

 

 

CDC37 (↑) 

LC3I (positively regulated) 

LC3I (negatively regulated) 

PIK3C3-C1 (positively regulated) 

ULK1 complex (positively regulated) 

LC3I (↑) 

LC3I (↓) 

PIK3C3-C1 (↑) 

ULK1 complex (↓) 

 

 

 



Appendix F 

liv 
 

Table S6-8. Number of molecules of the components of the mathematical model of macroautophagy (in 

molecules)-Different brain regions 

Gene name aveALL CRBL FCTX HIPP MEDU OCTX PUTM SNIG TCTX THAL WHMT 

ULK1 
1.80E-03 1.76E-

03 

1.83E-

03 

1.83E-

03 

1.74E-03 1.85E-

03 

1.96E-03 1.74E-

03 

1.83E-

03 

1.79E-

03 

1.69E-03 

ATG101 
1.48E-03 1.42E-

03 

1.54E-

03 

1.48E-

03 

1.45E-03 1.53E-

03 

1.51E-03 1.46E-

03 

1.52E-

03 

1.47E-

03 

1.45E-03 

ATG13 
1.98E-03 1.89E-

03 

2.04E-

03 

1.99E-

03 

1.95E-03 2.02E-

03 

2.02E-03 1.94E-

03 

2.02E-

03 

1.97E-

03 

1.97E-03 

RB1CC1 
1.64E-03 1.62E-

03 

1.77E-

03 

1.67E-

03 

1.51E-03 1.73E-

03 

1.59E-03 1.55E-

03 

1.78E-

03 

1.63E-

03 

1.54E-03 

BECN1 
1.29E-03 1.26E-

03 

1.32E-

03 

1.28E-

03 

1.28E-03 1.32E-

03 

1.28E-03 1.29E-

03 

1.32E-

03 

1.29E-

03 

1.27E-03 

PIK3R4 
1.83E-03 1.83E-

03 

1.87E-

03 

1.81E-

03 

1.82E-03 1.85E-

03 

1.85E-03 1.81E-

03 

1.87E-

03 

1.82E-

03 

1.78E-03 

PIK3C3 
1.82E-03 1.93E-

03 

1.82E-

03 

1.80E-

03 

1.79E-03 1.82E-

03 

1.84E-03 1.77E-

03 

1.84E-

03 

1.77E-

03 

1.84E-03 

NRBF2 
1.46E-03 1.41E-

03 

1.48E-

03 

1.45E-

03 

1.47E-03 1.47E-

03 

1.45E-03 1.45E-

03 

1.47E-

03 

1.48E-

03 

1.45E-03 

ATG14 
1.45E-03 1.44E-

03 

1.45E-

03 

1.45E-

03 

1.47E-03 1.45E-

03 

1.43E-03 1.44E-

03 

1.46E-

03 

1.42E-

03 

1.54E-03 

AMBRA1 
1.64E-03 1.66E-

03 

1.66E-

03 

1.64E-

03 

1.60E-03 1.66E-

03 

1.67E-03 1.61E-

03 

1.66E-

03 

1.63E-

03 

1.62E-03 

ATG9A 
1.51E-03 1.52E-

03 

1.53E-

03 

1.52E-

03 

1.49E-03 1.51E-

03 

1.52E-03 1.51E-

03 

1.53E-

03 

1.52E-

03 

1.45E-03 

ATG9B 
1.37E-03 1.34E-

03 

1.38E-

03 

1.37E-

03 

1.39E-03 1.38E-

03 

1.38E-03 1.38E-

03 

1.37E-

03 

1.40E-

03 

1.37E-03 

PRKAA2 
1.79E-03 1.94E-

03 

1.96E-

03 

1.80E-

03 

1.72E-03 1.86E-

03 

1.78E-03 1.70E-

03 

1.94E-

03 

1.67E-

03 

1.55E-03 

PRKAA1 
1.57E-03 1.66E-

03 

1.54E-

03 

1.55E-

03 

1.63E-03 1.54E-

03 

1.56E-03 1.62E-

03 

1.55E-

03 

1.59E-

03 

1.55E-03 

PRKAB1 
1.72E-03 1.70E-

03 

1.74E-

03 

1.69E-

03 

1.72E-03 1.76E-

03 

1.70E-03 1.69E-

03 

1.72E-

03 

1.71E-

03 

1.72E-03 

PRKAB2 
1.76E-03 1.88E-

03 

1.78E-

03 

1.71E-

03 

1.77E-03 1.76E-

03 

1.74E-03 1.72E-

03 

1.77E-

03 

1.73E-

03 

1.76E-03 

PRKAG1 
1.96E-03 1.89E-

03 

1.98E-

03 

1.95E-

03 

1.99E-03 1.96E-

03 

1.93E-03 2.00E-

03 

1.99E-

03 

2.03E-

03 

1.91E-03 

PRKAG2 
1.65E-03 1.64E-

03 

1.71E-

03 

1.72E-

03 

1.59E-03 1.65E-

03 

1.75E-03 1.61E-

03 

1.70E-

03 

1.68E-

03 

1.47E-03 

PRKAG3 
1.17E-03 1.14E-

03 

1.16E-

03 

1.15E-

03 

1.17E-03 1.17E-

03 

1.21E-03 1.16E-

03 

1.16E-

03 

1.17E-

03 

1.17E-03 

ATG16L1 
1.45E-03 1.49E-

03 

1.50E-

03 

1.43E-

03 

1.39E-03 1.53E-

03 

1.48E-03 1.39E-

03 

1.50E-

03 

1.41E-

03 

1.39E-03 

RAB33B 
1.64E-03 1.76E-

03 

1.61E-

03 

1.59E-

03 

1.67E-03 1.59E-

03 

1.56E-03 1.62E-

03 

1.60E-

03 

1.66E-

03 

1.70E-03 

CSNK2A1 
1.82E-03 1.84E-

03 

1.81E-

03 

1.82E-

03 

1.83E-03 1.80E-

03 

1.81E-03 1.83E-

03 

1.80E-

03 

1.83E-

03 

1.82E-03 

CSNK2A2 
1.85E-03 1.77E-

03 

1.92E-

03 

1.87E-

03 

1.81E-03 1.89E-

03 

1.87E-03 1.82E-

03 

1.92E-

03 

1.85E-

03 

1.81E-03 

CSNK2B 
1.91E-03 1.93E-

03 

1.90E-

03 

1.90E-

03 

1.90E-03 1.91E-

03 

1.91E-03 1.92E-

03 

1.90E-

03 

1.89E-

03 

1.91E-03 
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Table S6-8. (continued) Number of molecules of the components of the mathematical model of 

macroautophagy (in molecules)-Different brain regions 

BCL2 
1.50E-03 1.29E-

03 

1.49E-

03 

1.51E-

03 

1.55E-03 1.48E-

03 

1.52E-03 1.60E-

03 

1.50E-

03 

1.59E-

03 

1.51E-03 

ATG12 
1.48E-03 1.54E-

03 

1.48E-

03 

1.47E-

03 

1.48E-03 1.46E-

03 

1.44E-03 1.47E-

03 

1.49E-

03 

1.46E-

03 

1.49E-03 

ATG5 
1.54E-03 1.52E-

03 

1.64E-

03 

1.56E-

03 

1.48E-03 1.59E-

03 

1.51E-03 1.49E-

03 

1.63E-

03 

1.51E-

03 

1.49E-03 

MAP1LC3B 
1.75E-03 1.87E-

03 

1.74E-

03 

1.71E-

03 

1.76E-03 1.76E-

03 

1.70E-03 1.77E-

03 

1.75E-

03 

1.73E-

03 

1.73E-03 

MAP1LC3A 
1.65E-03 1.66E-

03 

1.67E-

03 

1.66E-

03 

1.63E-03 1.65E-

03 

1.59E-03 1.68E-

03 

1.67E-

03 

1.66E-

03 

1.60E-03 

SMRC8 
1.58E-03 1.64E-

03 

1.64E-

03 

1.59E-

03 

1.52E-03 1.64E-

03 

1.59E-03 1.54E-

03 

1.63E-

03 

1.55E-

03 

1.50E-03 

WDR41 
1.84E-03 1.80E-

03 

1.88E-

03 

1.83E-

03 

1.84E-03 1.85E-

03 

1.84E-03 1.83E-

03 

1.87E-

03 

1.85E-

03 

1.83E-03 

C9ORF72 
1.50E-03 1.83E-

03 

1.51E-

03 

1.41E-

03 

1.50E-03 1.51E-

03 

1.34E-03 1.48E-

03 

1.52E-

03 

1.47E-

03 

1.43E-03 

CDC37 
1.89E-03 1.83E-

03 

1.95E-

03 

1.89E-

03 

1.88E-03 1.93E-

03 

1.86E-03 1.88E-

03 

1.94E-

03 

1.90E-

03 

1.85E-03 

HSP90AA1 
1.75E-03 1.68E-

03 

1.72E-

03 

1.74E-

03 

1.80E-03 1.72E-

03 

1.72E-03 1.76E-

03 

1.72E-

03 

1.76E-

03 

1.91E-03 

GSK3B 
1.94E-03 2.00E-

03 

2.01E-

03 

1.95E-

03 

1.92E-03 1.99E-

03 

1.90E-03 1.94E-

03 

2.02E-

03 

1.96E-

03 

1.79E-03 

SNCA 
2.18E-03 2.14E-

03 

2.32E-

03 

2.21E-

03 

2.19E-03 2.23E-

03 

2.10E-03 2.22E-

03 

2.33E-

03 

2.01E-

03 

2.13E-03 

PPP1CA 
1.80E-03 1.50E-

03 

1.68E-

03 

1.81E-

03 

2.02E-03 1.70E-

03 

1.74E-03 1.90E-

03 

1.70E-

03 

1.79E-

03 

2.15E-03 

PRKACA 
1.71E-03 1.72E-

03 

1.77E-

03 

1.73E-

03 

1.70E-03 1.75E-

03 

1.65E-03 1.73E-

03 

1.76E-

03 

1.77E-

03 

1.58E-03 

YWHAZ 
1.64E-03 1.64E-

03 

1.67E-

03 

1.67E-

03 

1.61E-03 1.65E-

03 

1.65E-03 1.62E-

03 

1.68E-

03 

1.65E-

03 

1.59E-03 

Note: The abbreviations CRBL, FCTX, HIPP, MEDU, OCTX, PUTM, SNIG, TCTX, THAL, and WHMT refer to the following 

brain areas: cerebellar cortex, frontal cortex, hippocampus, medulla (inf olivary nucleus), occipital cortex, putamen, 

substantia nigra, temporal cortex, thalamus, and intralobular white matter, respectively. The first category, 

“averALL”, is simply the average of all the brain areas, as calculated by Braineac. 

 


