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Abstract
Attribution—the explanation of an observed change in terms of multiple causal factors—is the
cornerstone of climate-change science. For anthropogenic climate change (ACC), the central causal
factor is evidently ACC itself, and one of the primary tools used to reveal ACC is aggregation, or
grouping together, of data, e.g. global mean surface temperature. Whilst this approach has served
climate-change science well, the landscape is changing rapidly. First, there is an increasing focus on
regional or local aspects of climate change, and on singular or unprecedented events, which require
varying degrees of disaggregation. Relatedly, climate change is increasingly apparent in
observations at the local scale, which is challenging the primacy of climate model simulations.
Finally, the explosion of climate data is leading to more phenomena-laden methodologies such as
machine learning. All this demands a re-think of how attribution is performed and causal
explanations are constructed. Here we use Lloyd’s ‘Logic of Research Questions’ framework to
show how the way in which the attribution question is framed can strongly constrain its possible
and responsive answers. To address the Research Question ‘What was the effect of ACC on X?’
(RQ1), scientists generally consider the question ‘What were the causal factors leading to X, and
was ACC among them?’. If the causal factors include only external forcing and internal variability
(RQ2), then answering RQ2 also answers RQ1. However, this unconditional attribution is not
always possible. In such cases, allowing the causal factors to include elements of the climate system
itself (RQ3)—the conditional, storyline approach—is shown to allow for a wider range of possible
and responsive answers than RQ2, including that of singular causation. This flexibility is important
when uncertainties are high. As a result, the conditional RQ3 mitigates against the sort of epistemic
injustice that can arise from the unconditional RQ2.

1. Introduction

There is currently much talk of ‘useable’ or ‘actionable’ climate-change science, especially in the adaptation
context (Coen 2021, Jebeile and Roussos 2023). To be effective, action to address the impacts of climate
change needs to be anchored in attribution (in the sense of a causal explanation), otherwise the action could
be misdirected. By helping to understand the historical record, attribution not only is relevant for liability
(Burger et al 2020, Lloyd and Shepherd 2021, Wentz et al 2023) but also provides the basis for understanding
current and future climate risk and undertaking action to mitigate that risk. As a result, the attribution
statements made by the Intergovernmental Panel on Climate Change (IPCC) are both keenly awaited and the
subject of intense scrutiny. In particular, the role of anthropogenic climate change (ACC) in observed
changes in impactful hazards is a central focus of attribution science.

Physical climate science, especially as it is used to inform regional climate risk and adaptation planning,
is fast becoming a data-driven field: climate model data output is becoming increasingly heterogeneous and
voluminous; and climate change is increasingly apparent not just in the traditional global metrics (e.g. global

© 2023 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2752-5295/aceea1
https://crossmark.crossref.org/dialog/?doi=10.1088/2752-5295/aceea1&domain=pdf&date_stamp=2023-8-25
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9349-9805
https://orcid.org/0000-0002-6631-9968
mailto:theodore.shepherd@reading.ac.uk


Environ. Res.: Climate 2 (2023) 035014 E A Lloyd and T G Shepherd

mean surface temperature, global mean sea level) but also in observed data at the regional scale (Hegglin et al
2022), including extreme events (see Chapter 11 of the IPCCWorking Group (WG) I Sixth Assessment
Report (AR6), Seneviratne et al (2021)). There are increasing calls for artificial intelligence and machine
learning (AI/ML) methods to be applied to make sense of all this data (Arribas et al 2022), and climate
service providers are already using such methods (e.g. Bouwer 2022).

Although physical climate science has long been a data-centric field, it has largely been data-centric in
what Lloyd et al (2022) call a phenomena-agnostic way: data generally consist of time series of basic variables
defined on a (possibly irregular) spatial grid, and users of the data are free to configure the data in whatever
way they want. This contrasts with data-centric fields such as biology, which need to use phenomena-laden
data-handling methodologies—that is, where data are packaged into recognized entities, such as categories,
theoretical entities, and biological phenomena—in order to make the data interpretable by users. This has
potential pitfalls, because choices made by those constructing the data repositories can have unanticipated
and sometimes exclusionary downstream consequences (Leonelli 2016). For example, those choices could
restrict the exchange of data to certain kinds of researchers, thereby marginalizing some groups and
rewarding others (Lloyd et al 2022).

Consider, for example, the field of animal behavior, and the filming or videotaping of the behaviors of the
animals in question as phenomena. Such video data is transmissible as a whole, but needs to be accompanied
by a sophisticated narration of events to be fully understood. Not all educational institutions or locales will
have access to such sophisticated narrators whom their students could question and learn from, learning how
to categorize and catalogue behaviors, thus disadvantaging those far from the privileged centers of such
research in the Global North. Similar considerations would apply to animations of selected climate
phenomena. On the other hand, standardized climate data repositories with predefined variable formats
might not allow for the incorporation of traditional knowledge, so phenomena-laden approaches also offer
advantages in this respect.

As physical climate science becomes more data-driven from the explosion of climate data, the need to
combine different lines of evidence (regional and global climate models of varying spatial resolutions,
observations, and theory) will increasingly require the use of phenomena-laden data-handling
methodologies, which are inherent in AI/ML methods. This changing landscape demands a rethink of how
climate-change attribution is performed and how causal explanations are constructed, in order to avoid
falling into some of the pitfalls that can arise with phenomena-laden methodologies. To avoid the situation
of epistemic injustice—the unfair, irresponsible, and inequitable sourcing of knowledge—discussed by
Leonelli (2016) and Lloyd et al (2022), people must be able to make sense of their own local situation, using
the available combination of climate model output and observational data, in collaboration with domain
experts on the phenomena of interest for their region (Rodrigues and Shepherd 2022).

The premise of this paper is that to achieve this goal it is necessary to return to the foundations of
attribution in climate-change science. Particular scientific practices which may have been appropriate in one
context can become normative within a discipline, after which researchers tend to forget about the original
reasons for those practices and apply them inappropriately in another context (e.g. Arnet 2019). To avoid
such problems, it is important to pay close attention to how research questions are posed, because that
constrains the range of possible and responsive answers (Lloyd 2015). Sometimes separate scientific
communities appear to be asking the same question, using the same terms and language, but because of their
differing background and assumptions, they are actually asking very distinct questions. In such cases, Lloyd’s
(2015) ‘Logic of Research Questions’ (LRQ) analytic tool can be used to help unpack and highlight the
differences between relevant theoretical approaches and frameworks. The LRQ tool is applicable to any
scientific field that experiences controversy about methods and inference, and has been applied to
controversies in neuroscience, climate science, and paleontology.

A simple example comes to us from evolutionary biology (Lloyd 2021). There was a 50 year-long debate
concerning what appeared to be a flaw with the ‘adaptationist program’ taken up by many sociobiologists,
behavioral ecologists and evolutionary psychologists, among others, but it turned out to be difficult to pin
down. With LRQ the flaw became obvious. The adaptationist program’s sole RQ, ‘What is the function of this
trait?’, has only a single type of possible and responsive answer: ‘The function of this trait is A; the function of
this trait is B….’ The chief competitor of the adaptationist program, followed by evolutionists in other
research communities such as evolutionary genetics, hierarchal genetics theory and developmental
evolutionary theory, took an interest in adaptations but also in a variety of other causes of evolutionary
outcomes, such as genetic linkage, phyletic history, developmental factors, drift, migration, and so on. Their
RQ was often: ‘What evolutionary factor(s) account for the form and distribution of this trait?’ and also,
more specifically, ‘Does this trait have a function?’. The possible and responsive answers to the more detailed
version of this RQ include all of the evolutionary causes just mentioned, and more.
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Now compare the two italicized RQs from the two communities of inquiry. They look almost identical!
But they have vastly different sets of possible and responsive answers. So it is easy now to see why the
evolutionary psychologists, sociobiologists, and animal behaviorists were criticized for their method: it
constrained the possible evolutionary answer to only a single possible cause, the selection of an evolutionary
adaptation, i.e. ‘a function’, while it remained unclear why or whether any other possible cause, such as
genetic linkage, drift, migration, and developmental factors, would ever be considered. As a result, when one
possible function failed, the adaptationists just moved to the next possible and responsive function, and did
not look elsewhere (Lloyd 2021).

In this paper, we use the LRQ tool by considering the possible and responsive answers to the following
attribution questions:

RQ1: What was the effect of ACC on X?
RQ2: What were the independent causal factors leading to X, and was ACC among them?
RQ3: What were the causal factors leading to X (including external drivers), and was ACC among them?

Here we follow the IPCC Guidance Paper on Detection and Attribution (Hegerl et al 2010) who use the
term ‘external driver’ to refer to a causal factor external to X, but internal to the climate system, and in
contrast to external forcing. RQ1 is a question asked by various publics, including the IPCC, and it is also
how many climate science publications present their results. Yet in order to answer RQ1, it is necessary to first
answer either RQ2 or RQ3 (Hegerl et al 2010). This follows from the fact that in order to convert data into
evidence for or against a putative explanation for that data, one must consider all other possible explanations
for the data as well (see e.g. Shepherd 2021). However, there is a fundamental difference between
unconditional attribution (RQ2), where the causal factors are independent and include only external forcing
and internal variability, and conditional attribution (RQ3), where the causal factors also include elements of
the climate system itself, such as changes in sea-surface temperature (SST) patterns or in large-scale
atmospheric temperature gradients, which are not independent of either ACC or internal variability.

We illustrate the difference by considering three examples of X: a global-scale thermodynamic
phenomenon, a regional climate phenomenon, and an extreme event. Our point is not that one RQ is right
and the other wrong, as different actors will have legitimate reasons, with their own goals, to pursue different
research questions, including those contrasted here. Our point is simply that they are different, and those
differences constrain the possible and responsive answers to the RQ. Failing to appreciate this fact can lead to
confusion and misunderstanding. We focus here on attribution, but briefly discuss the implications for risk
(understood broadly), which differ significantly between RQ2 and RQ3.

2. Aggregation and disaggregation

Climate is generally understood to comprise the statistics of weather, so to analyze changes in climate it is
necessary to estimate those statistics from data samples, which are grouped in some way. This process is
called ‘aggregation’ of data. In theoretical probability distributions, which arise from well-defined chance
processes, the data are usually assumed to be independent and identically distributed (iid), meaning that the
data values are exchangeable and do not depend on each other, and differ from each other only by chance.

Data samples in the real world are never iid. Nevertheless, real-world data can sometimes follow such
theoretical distributions remarkably well. A famous example is the analysis by Bortkiewicz (1898) of the
number of Prussian cavalry units suffering the death of a soldier by horsekick in a given year, collected over a
20 years period (figure 1). The data are seen to closely follow a Poisson distribution, which describes the
number of rare events over a given period, given a fixed likelihood of occurrence. Does this mean that those
deaths occurred by chance? From the perspective of the Prussian army, who would be interested in the total
number of deaths, that is a reasonable perspective.

However, each of those deaths would have a tragic causal story behind it, involving a particular horse and
an individual man. Doubtless, the commanding officer of such a unit, if confronted by the family of the dead
soldier, could have thought of various things that could have been done differently that day, which might
have avoided the death. The nature of the attribution (the possible and responsive answer to the RQ) is very
different in the two cases.

Both perspectives are of course valid (Pandit 2016), and this sort of dialectic between aggregate and
individual questions occurs in many domains, e.g. public health vs clinical treatment. It is well understood
that a factor that increases risk across a population, while of obvious relevance for anybody interested in
effects on entire populations, cannot be reliably applied to individuals within that population (Bueno de
Mesquita and Fowler 2021). Thus, whilst the pivot from attribution to risk is straightforward for entire
populations, it is not so for individuals within that population. The same principle clearly applies to climate
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Figure 1. The number of cavalry units experiencing a particular number of deaths by horsekick in a given year, collected over a
20 years period. Data from von Bortkiewicz (1898), reproduced from Pandit (2016). Pandit J J 2016. John Wiley & Sons. © 2015
The Association of Anaesthetists of Great Britain and Ireland.

data as well (Brown 2022, Perkins-Kirkpatrick et al 2022). In particular, for a singular extreme event (e.g.
Hurricane Sandy; see Sobel 2014), where explanations invariably focus on detailed causal processes, it is
generally more informative to disaggregate rather than to aggregate, and construct ‘storyline’ explanations
(Shepherd 2016). The key point is that the kind and form of data needed to address and answer different
research questions depends completely on which research question(s) are under consideration.

Both aggregation and disaggregation, even for their own legitimate purposes, have their perils. Because
the real world is not iid, any process of aggregation will inevitably include systematic as well as random
variations in the data. There is thus a trade-off involved: aggregating over larger samples will beat down the
noise from random variations, but also obscure the systematic variations which may be of scientific interest.
This trade-off arises frequently in climate science, e.g. in the process of taking annual (Zappa et al 2015a) or
zonal averages (Hegglin et al 2008). Unfortunately, however, the systematic variations remain in the data;
they are just hidden. Drawing inferences from aggregated data relies on the ability to remove the effect of (or
‘control for’, to use statistical terminology) those systematic variations, which represent potentially
confounding factors.

This problem is exemplified in recent studies of storm-track shifts in the Southern Hemisphere (SH), a
focus of much attention. Climate scientists have sought to constrain the uncertainty in model predictions
through the use of ‘emergent constraints’ (Hall et al 2019), which are statistical relationships between an
observable property of the climate system and a predicted property from the same model-type. Hall et al
(2019) emphasize the importance of these statistical relationships being causal rather than merely
correlational. Kidston and Gerber (2010) claimed to have found such an emergent constraint between the
magnitude of the zonally-averaged SH storm-track shift and the timescale of its internal variability. Such a
relationship has theoretical support in the fluctuation–dissipation theorem of statistical physics (Breul et al
2022), which relates the forced response of a fluctuating system to its internal variability timescales, so has
some physical plausibility. However, Simpson and Polvani (2016) showed that the correlational relationship
found by Kidston and Gerber (2010) was a statistical artifact, due to a failure to control for the confounding
effect of the seasonal cycle. They proposed another emergent constraint for the winter season only, between
the magnitude of the storm-track shift and its climatological location. Again, such a relationship has
plausible theoretical support (Simpson and Polvani 2016). However, Breul et al (2023) showed that Simpson
and Polvani’s (2016) correlational relationship arises from aggregating over two very different behaviors, one
in the Pacific basin (where there are two jets, not just one) and another elsewhere, and does not reflect a
causal physical relationship. This can be seen as a failure to control for the confounding effect of longitudinal
asymmetry, which is quite pronounced in the SH winter season.

There is no end to confounding factors; when you control for one, there will be yet more lurking.
Out-of-sample testing does not help, since the same systematic error will just be repeated. The hope is that
one can make the remaining systematic variations small enough to be ignorable, but that can only ever be a
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Figure 2.Monsoon circulations of the world. From Annex V of IPCC (2021). The black contours outline what is deemed to
comprise the global monsoon, where the annual range of precipitation, i.e. local summer minus local winter (defined either as
May through September or November through March, as appropriate for each hemisphere), exceeds 2.5 mm d−1. The solid
colors denote the different regional monsoons according to AR6 WGI, which are a matter of expert judgment. They mostly lie
within the global monsoon, but not entirely. The stippling denotes other regions which mostly fall within the global monsoon
region and are widely regarded as exhibiting monsoon rainfall characteristics, but are excluded by the expert judgment of IPCC
(2021). Reproduced with permission from IPCC (2021).

hope. For this reason, the gold standard for statistical inference is generally considered to be randomized
controlled trials, which are widely applied in situations where controlled trials are possible, such as tests for
the efficacy of a new drug. But randomized controlled trials are not an option in climate-change science. Yet
in climate science, confounding factors are everywhere. Here be dragons.

On the other hand, causal analysis of singular events runs the risk of telling ‘just-so stories’ (Shepherd
and Lloyd 2021). An example is explanations from atmospheric dynamics of various aspects of climate
change, which are themselves singular events. Typically, if a theory predicts a certain effect (e.g. a poleward
shift of the storm tracks in response to greenhouse gas forcing), then its proponent considers that to be an
explanation. But there is a 50/50 chance of getting the sign of such an effect right, so that is not a very high
bar. Even though the poleward shift of storm tracks is an accepted prediction of climate change, there are
something like two dozen competing theories for it (Shaw 2019).

Yet sometimes there is no avoiding moving from generalizations to particular, singular cases. Consider
the example of regional monsoon circulations, which are a crucial aspect of the climate system. There are
many regional monsoon circulations around the planet (figure 2), which are explainable in general terms
from climate dynamics (Geen et al 2020). However, their manifestation in each region is different, because of
differences in the extent of the land region and the role of local mountain ranges. Moreover, the definition of
regional monsoon used in figure 2 is a matter of expert judgment, and excludes some regions, shown by the
stippling, which are otherwise widely recognized as monsoons. Thus, for regional aspects of climate change,
each monsoon circulation has to be treated differently. This is a problem in singular causation, which
requires distinctive methods.

3. Three examples

We now consider the Research Questions posed in the Introduction, applied to three examples.

3.1. Example 1: Increase of global-mean surface temperature (GMST)
Our first example is attribution of global warming itself, as evident in the time series of GMST. In this case,
RQ1 (box 1) amounts to whether there is a detectable, i.e. statistically significant, increase in GMST (meaning
an increase that cannot be explained by internal variability), which is attributable to ACC. Following the
classic detection-attribution (D&A) framework used by IPCCWGI (Hegerl et al 2010), this question is
converted into the unconditional RQ2 (box 1), which considers the effect of other external forcings as well as
ACC and internal variability. The answer to RQ2 is provided by predicting, with one or more climate models,
how GMST responds to anthropogenic forcings. This can be done by subtracting the simulations with only
natural forcings from those with both natural and anthropogenic forcings (figure 3). Essential elements in the
argumentation are that the climate models are understood to be capable of representing the relevant physics
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Box 1. Research Questions and their Possible and Responsive Answers for Example 1.

RQ1: Was there an observed change in GMST, and if so, can it be attributed to ACC?

A: There was a statistically significant increase in GMST, which can be attributed to ACC

RQ2: What were the independent causal factors leading to the observed change in GMST, and was
ACC among them? (Answers are mutually compatible)

A: Internal variability contributed x1 (percent or absolute amount)
A: ACC contributed x2
A: Other known forcings contributed x3

RQ3: What were the causal factors (including external drivers) leading to the observed change in
GMST, and was ACC among them? (Answers are mutually compatible)

A: Changes in ENSO and AMO contributed x1 (percent or absolute amount)
A: ACC (conditional on ENSO and AMO) contributed x2
A: Other known forcings (conditional on ENSO and AMO) contributed x3

Figure 3. Observed global warming (black) relative to 1850–1900, and as simulated by climate models with only natural forcings
(green) and with both natural and anthropogenic forcings (brown). From the Summary for Policymakers of IPCC (2021).
Reproduced with permission from IPCC (2021).

of global-mean warming, and that the applied forcings are broadly realistic (Lloyd 2010). To answer RQ1, it
is also essential to be able to argue that the estimated effect could not be the result of internal variability (or
sampling uncertainty, to use statistical language). That is partly shown by the gap between the shaded regions
in figure 3, and partly by the additional fact that the spatial fingerprint of the observed climate response, with
warming throughout the oceans and the troposphere, and cooling only in the stratosphere, is, at least to first
order, distinct from the surface warming that would occur from internal variability, which would be
compensated elsewhere in the climate system, e.g. in the ocean (Hegerl and Zwiers 2011).
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Figure 4. Synthesis of assessment in observed change in agricultural and ecological drought since 1950 and confidence in human
contribution to the observed changes in the world’s regions. From the Summary for Policymakers of IPCC (2021). Reproduced
with permission from IPCC (2021).

The IPCC AR6 WGI Summary for Policymakers (SPM) answers RQ2 as follows (IPCC 2021, paragraph
A.1.3):

‘The likely range of total human-caused global surface temperature increase from 1850–1900
to 2010–2019 is 0.8 ◦C–1.3 ◦C, with a best estimate of 1.07 ◦C. It is likely that well-mixed
GHGs contributed a warming of 1.0 ◦C–2.0 ◦C, other human drivers (principally aerosols)
contributed a cooling of 0.0 ◦C–0.8 ◦C, natural drivers changed global surface temperature by
−0.1 ◦C to+0.1 ◦C, and internal variability changed it by−0.2 ◦C to+0.2 ◦C.’

That attribution statement does not directly answer RQ1, but it is straightforward to construct a
responsive answer to RQ1 from the information provided. The comparatively small magnitude of the
contribution from internal variability shows that the observed increase in GMST is statistically significant,
whilst the attribution of the warming to ACC comes from the comparatively small magnitude of the
contribution from other forcings, and the match between the ACC contribution and the observed warming.
Thus, for this example, the two RQs lead to essentially the same conclusion. Moreover, there are direct
implications for future risk in both cases, since there is a high confidence that the effect of ACC on GMST
will not only continue but also increase in the future.

Since an unconditional attribution of long-term GMST increase to ACC is sought by the IPCC, and is
found, RQ2 is preferred to RQ3 for this purpose. However, modes of climate variability such as El Niño
Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation (AMO) have a discernible effect on
GMST, and may be considered as external drivers of GMST. In RQ2 those phenomena are implicitly included
in the internal variability, but several studies have asked RQ3 using multiple linear regression of the GMST
timeseries itself (see Imbers et al 2013 and references therein). Since neither ENSO nor AMO exhibit any
long-term trend this move does not affect the attribution of long-term GMST increase to ACC. However, by
separately considering the predictable component of internal variability, RQ3 improves the detection of
small forced signals such as those arising from solar variability, helps in the understanding of decadal
variations in GMST, and provides some near-term predictability of GMST (Imbers et al 2013).

3.2. Example 2: Regional trends in drought
Our second example is observed changes in drought (figure 4). Drought is an inherently regional
phenomenon so one cannot aggregate globally, as with GMST. Instead, in this figure the aggregation is done
across regions defined by the IPCC, which are multi-purpose (i.e. they are not defined for drought alone)
and which represent a compromise between physical and social factors (Iturbide et al 2020). In particular,
there will invariably be a trade-off between the level of disaggregation desired by governments (who the IPCC
reports are designed to serve) and the increased confidence that can usually be assigned to more aggregated
statements. Moreover, there are also various physical definitions of drought that could be used, as drought is
a complex, multifaceted phenomenon which affects different societal sectors (e.g. water resources, energy,
agriculture, ecosystems) differently. In contrast to GMST, which is a dependent variable in even the simplest
physics-based models of climate, drought is an emergent property of climate which has no clear physical
definition (Zaitchik et al 2023). For the construction of figure 4 a definition of drought had to be chosen, but
as with the regional monsoons in figure 2, it is a matter of judgment, especially when applied across a region.
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As well as the ambiguity in the definition of drought and the choice of regions over which to aggregate,
there are other differences with GMST which are relevant for attribution. The first is that the sign of the
response to ACC is not obvious a priori, as evidenced by the fact that figure 4 allows for both increase and
decrease. (Although there is a general expectation of increase in agricultural and ecological drought from
increased evaporation due to warming—which is borne out by the fact that the cases of increase in figure 4
far exceed those of decrease—for any particular region these expectations can certainly fail (van Garderen
and Mindlin 2022)). The second is that, relatedly, changes in atmospheric circulation are highly relevant for
drought, yet the response of atmospheric circulation to ACC projects strongly on the modes of internal
variability. This is expected theoretically from the aforementioned fluctuation–dissipation theorem, and is
also seen in climate model simulations (e.g. Zappa et al 2015b). As a result, it is not as easy to distinguish
signal from noise as it is for GMST, especially since the signal itself is so uncertain (Shepherd 2014).

The information shown in figure 4 provides the IPCC’s answer to RQ1 for this example, which is arrived
at using the unconditional RQ2 (box 2). The possible and responsive answers for each region are increase or
decrease in the severity of a basket of metrics for agricultural and ecological drought (e.g. soil moisture),
together with a confidence level in the attribution to ACC. The majority of the regions are seen to fall into
one of the two ‘unknown’ categories, which can be seen as an inability to provide a responsive answer to
RQ2, and hence to RQ1. This could be because the observational record is considered inadequate to
characterize the changes, or because the changes have not been documented or analyzed in a peer-reviewed
publication, or because the climate models do not provide a sufficiently clear prediction of the expected
changes to allow for the hypothesis testing that is inherent in the classic IPCC D&A framework. Note that in
each of those cases, disciplinary norms are involved.

Box 2. Research Questions and their Possible and Responsive Answers for Example 2.

RQ1: Was there an observed change in drought in region Y, and if so, can it be attributed to ACC?
(Answers are mutually exclusive)

A: There was a statistically significant increase in drought in region Y, which can be attributed to
ACC
A: There was a statistically significant decrease in drought in region Y, which can be attributed to
ACC

RQ2: What were the independent causal factors leading to the observed change in drought in region
Y, and was ACC among them? (Answers are mutually compatible)

A: Internal variability contributed x1 (percent or absolute amount)
A: ACC contributed x2
A: Other known forcings contributed x3

RQ3: What were the causal factors (including external drivers) leading to the observed change in
drought in region Y, and was ACC among them? (Answers are mutually compatible)

A: Changes in large-scale temperature gradients contributed x1 (percent or absolute amount)
A: ACC (conditional on those large-scale temperature gradients) contributed x2
A: Other known forcings (conditional on those large-scale temperature gradients) contributed x3

The inability to provide a responsive answer to RQ2 (and thus to RQ1) over most of the world’s regions is
an example of what Shepherd (2019) referred to as the ‘confidence straightjacket’ that arises in situations of
high uncertainty. Yet it is not as if there is no information relevant to those regions. Section 10.4.2 of the
IPCC AR6 WGI report (Doblas-Reyes et al 2021) assessed three regional examples of observed precipitation
changes (a major driver of drought): Sahel drought and recovery (straddling SAH, WAF, CAF and NEAF in
figure 4), south-eastern South America summer wetting (SES), and south-western North America drought
(straddling WNA and NCA). Their strong confidence levels, taking into account multiple lines of evidence
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Table 1. Summary of selected findings from Section 10.4.2 of Doblas-Reyes et al (2021). Bold font is used for emphasis.

There is very high confidence (robust evidence and high agreement) that patterns of 20th-century ocean and
land surface temperature variability have caused the Sahel drought and subsequent recovery by adjusting
meridional gradients. There is high confidence (robust evidence and medium agreement) that the changing
temperature gradients that perturb the West African monsoon and Sahel rainfall are themselves driven by
anthropogenic emissions: warming by GHG emissions was initially restricted to the tropics but suppressed in
the North Atlantic due to nearby emissions of sulphate aerosols, leading to a reduction in rainfall. The North
Atlantic subsequently warmed following the reduction of aerosol emissions, leading to rainfall recovery.

There is high confidence that South-Eastern South America summer precipitation has increased since the
beginning of the 20th century. Since AR5, science has advanced in the identification of the drivers of the
precipitation increase in South-Eastern South America since 1950, including GHG through various
mechanisms, stratospheric ozone depletion and Pacific and Atlantic variability. There is high confidence that
anthropogenic forcing has contributed to the South-Eastern South America summer precipitation increase
since 1950, but very low confidence on the relative contribution of each driver to the precipitation increase.

There is high confidence (robust evidence and medium agreement) that most (>50%) of the anomalous
atmospheric circulation that caused the south-western North America negative precipitation trend can be
attributed to teleconnections arising from tropical Pacific SST variations related to PDV. There is high
confidence (robust evidence and medium agreement) that anthropogenic forcing has made a substantial
contribution (about 50%) to the south-western North America warming since 1980.

(table 1), stand in contrast to the largely agnostic perspective of figure 4 with regard to those regional
phenomena. Crucially, the findings allow for conditional attribution to known physical drivers of drought in
each region—most notably to changes in large-scale temperature gradients, either in the atmosphere or as
manifested in particular SST patterns—which might or might not be attributable to ACC. Thus, those
authors were answering RQ3 for this example (box 2). Because the changes in large-scale temperature
gradients were not themselves fully attributed to external forcing or internal variability, the conditional
attribution statements provided by RQ3 do not answer RQ1, i.e. they do not permit a straightforward pivot
to future risk (see Chapter 12 of the IPCC AR6 WGI report (Ranasinghe et al 2021), where the stated
uncertainties in these cases are high). That is the price one inevitably pays for the wider range of possible and
responsive answers offered by the conditional RQ3 compared to the unconditional RQ2. However, the
conditional nature of the attribution allows for additional or new information to be subsequently brought to
bear by other researchers concerned with those phenomena, and to be combined with knowledge about
regional vulnerabilities and exposure, which is an essential part of any risk analysis.

3.3. Example 3: An extreme event
Our third and final example is an extreme event, namely the failure of the South American monsoon rainfall
in the austral summer of 2013/14 discussed by Rodrigues and Shepherd (2022). That was a compound
extreme event induced by an anomalous blocking anticyclone, which cut off the seasonal flow of moisture to
the region, led to land and marine heat waves and drought, and affected the food-water-energy nexus. If X is
that specific event, then there is no possible and responsive answer to RQ2, because the sample size is one,
and unconditional attribution requires aggregation. Moreover, there is no detection step involved, as in the
first two examples, because the very posing of the question is conditional on the fact that the event occurred.
In order to allow a possible and responsive answer to RQ2, X must be changed to events of that type, by the
creation of an event class (Shepherd 2016) (reflected in RQ1 in box 3). This move allows a probabilistic
attribution, which can follow the classic, unconditional IPCC D&A framework and which directly links
attribution with risk. As noted earlier, however, the results cannot be directly applied to that particular event,
hence the answer is not actually responsive to the original question. In contrast, singular causation is a
possible and responsive answer to RQ3 (box 3). Moreover, as with Example 2 and figure 4, the aggregation
involved in the definition of ‘events of that type’ involves a compromise between scientific and social factors
(Philip et al 2020).
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Box 3. Research Questions and their Possible and Responsive Answers for Example 3.

RQ1: What was the effect of ACC on the failure of the South American monsoon rainfall in the
austral summer of 2013/14? (Answers are mutually exclusive)

A: ACC increased the likelihood/magnitude of events of that type
A: ACC decreased the likelihood/magnitude of events of that type

RQ2: What were the independent causal factors leading to the failure of the South American
monsoon rainfall in the austral summer of 2013/14, and was ACC among them? (Answers are mutually
compatible)

A: Internal variability contributed x1 (percent or absolute amount) to events of that type
A: ACC contributed x2 to events of that type
A: Other known forcings contributed x3 to events of that type

RQ3: What were the causal factors (including external drivers) leading to the failure of the South
American monsoon rainfall in the austral summer of 2013/14, and was ACC among them? (Answers
are mutually compatible)

A: A blocking anticyclone was the physical driver of the event
A: ACC (conditional on the blocking anticyclone) contributed x1/y1/z1 to the observed land
heatwave/marine heatwave/drought
A: Other known forcings (conditional on the blocking anticyclone) contributed x2/y2/z2 to the
observed land heatwave/marine heatwave/drought

A probabilistic attribution performed by Martins et al (2018) of the multi-year period encompassing the
drought, covering the southern parts of region NES in figure 4, concluded that ‘we could not find sufficient
evidence that ACC increased drought risk’. What they meant was that they were not able to reject the null
hypothesis of no anthropogenic effect, which is a RQ1 framing4. This despite the fact that both observations
and CMIP5 climate simulations generally supported increased drought risk in that region, as shown in
figure 4 and as also concluded in section 12.4.4.2 of the IPCC AR6 WGI report (Ranasinghe et al 2021).
However, Martins et al (2018) included two versions of the Met Office model in their analysis which
indicated decreased drought risk (see their figure 13.2(i)), and which prevented them from rejecting the null
hypothesis. But absence of evidence is not evidence of absence (Shepherd 2021). Insisting that all lines of
evidence agree sets an impossibly high bar for such a singular event, especially when climate models can
struggle to represent the phenomena in question (Pereima et al 2022).

Most climate scientists would surely place more weight on the combined evidence from observations and
the CMIP5 ensemble than on two versions of the same climate model, no matter what model that was. Thus,
one option for Martins et al (2018) would have been to loosen the evidentiary standard to ‘more likely than
not’ (Lloyd et al 2021), which would have allowed an attribution statement to be made in this case. However,
that would still have been an aggregated statement, not applicable to that particular event. Rodrigues and
Shepherd (2022) discuss the various causal factors affecting drought risk in the region based on the
published literature—notably teleconnections from SST patterns in the equatorial Indian and Pacific
oceans—which could be used to develop a possible and responsive answer to RQ3 in this case. In particular,
the known thermodynamic factors such as increasing likelihood of heat waves (for a given circulation
regime) could then be invoked to support the conditional attribution (Hegerl et al 2010).

4. Discussion

The three examples above illustrate that by asking the unconditional RQ2, which if answered would
immediately answer RQ1, one seeks ACC as the explanation of a climate phenomenon and regards all other
factors as potentially confounding. This approach forces one into a probabilistic perspective, and often leads
to null hypothesis significance testing, where the null hypothesis is chance together with natural forcings. In
contrast, by asking the conditional RQ3, one seeks all relevant and possibly interacting causal factors, of
which ACC will only be one, and the other factors may be equally if not more important. The latter is the

4 Philip et al (2020) indicates four possible answers to RQ1 for probabilistic attribution: the two listed in box 3, plus ‘ACC did not change
events of that type’, and ‘assessment not possible in current state of knowledge’. We regard the first of these as logically impossible, and
the second as a failure to answer RQ1.
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storyline approach, where the other factors (including local inhomogeneities across a region) may be more
appropriately treated as mediators, rather than confounders (Lloyd and Shepherd 2021). The unconditional
RQ2 has been the traditional approach of IPCCWGI. Indeed, the IPCC D&A framework (Hegerl et al 2010)
offers the following guidance:

To avoid selection bias in studies, it is vital that the data are not preselected based on observed
responses, but instead chosen to represent regions/phenomena/timelines in which responses are
expected, based on process-understanding.

Confounding factors (or influences) should be explicitly identified and evaluated where possible.

Both statements are standard forms of guidance for statistical inference based on aggregated sample
populations. The first guards against the multiple testing problem, and the second guards against
confounding factors. This guidance is entirely appropriate when seeking an unconditional attribution.
However, the guidance demands a model-first approach rather than an observations-first approach, and
furthermore is challenged by complex local environments. Both can lead to epistemic injustice (Shepherd
and Sobel 2020). The conditional attribution provided by RQ3 finesses these limitations by allowing the
articulation of various explanations (which may be plural), and the assessment of the strength of evidence
behind them. Conditional attribution aligns more closely with how climate change is treated from the lens of
the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (Lloyd and Shepherd
2020, Shepherd and Lloyd 2021) or the Sustainable Development Goals.

But what other causal factors should be considered in climate-change attribution? As noted earlier, as
well as other external forcings (such as volcanic eruptions), the IPCC attribution framework (Hegerl et al
2010) allows for external drivers, where external does not mean external to the climate system but only
external to the feature of interest. This device is especially useful for the climate impacts considered by IPCC
WGII, as it allows WGII to focus on the linkage between changes in climate (from whatever origin) and their
impacts, which the observed data can more convincingly answer. But the same device can be usefully
deployed within the WGI domain as well. Thus, for example, observed changes in regional climatic extremes
and impacts may be attributable in part to changes in remote climatic drivers (as in table 1), whose response
to ACC may be highly uncertain. Indeed, that is how climate scientists would normally begin an attribution
investigation of regional climate change. But since climatic drivers are phenomenological, this approach to
attribution inevitably depends on how the phenomena are defined. In other words, it is phenomena-laden.
That is not in itself a bad thing, because it reflects the fact that the relevant phenomena are emergent rather
than being definable ab initio from the laws of physics, but it does raise the key issue of who controls how the
phenomena are defined.

RQ3 works backward from the phenomenon of interest to seek conditional explanations. One can see this
as constructing a model outline, with the blanks to be filled in (Lloyd 2021), which is illustrated for our case
by figure 5. In panel (a), changes in the phenomenon of interest X are seen to be caused by external driver 1
which is known to affect X in the internal variability, as well as by ACC and any other known forcings. If this
dependence is represented in a causal network, then the influence of the forcings is conditional on the state of
external driver 1 (Shepherd 2019). However, external driver 1 may itself be affected by ACC and any other
known forcings, as well as by external driver 2. One can replicate this structure as far back as one wishes,
stopping the process with ‘internal variability’. (Of course, in a causal network, internal variability is also
implicit within each of the causal linkages, which are understood to be noisy.)

We can now fill in the blanks for our three examples, based on the possible and responsive answers to
RQ2 or 3 (boxes 1–3). In the first example (panel (b)), we can stop at the first step with internal variability,
making the attribution unconditional (RQ2), which is why we obtain a possible and responsive answer to
RQ1 as well. In the second example (panel (c)), it is clear that observed drought trends in many regions of
the planet are driven in large measure by trends in large-scale temperature gradients, which represent
external drivers, but there is generally considerable uncertainty in the extent to which such trends are
attributable to ACC or other forcings (see Lee et al 2022 for the case of tropical SST patterns). In such a
situation, dynamical storylines of the external drivers can provide possible and responsive answers to RQ3
(see Zappa and Shepherd 2017 for the case of atmospheric temperature gradients, and Ghosh and Shepherd
2023 for the case of SST patterns). In the third example (panel (d)), which is of a singular event, we may start
with a very local external driver, the blocking anticyclone. Such a move explicitly distinguishes between
thermodynamic and dynamical aspects of changes in extremes, which is a device that has been widely used in
the literature and reflects the different levels of uncertainty in the two aspects (Shepherd 2016, Pfahl et al
2017). It can be done statistically for classes of events (Cattiaux et al 2010, Horton et al 2015), in which case
dynamical storylines of future risk can be constructed (Bevacqua et al 2020). It can also be done for singular
events (Reed et al 2020, van Garderen et al 2021), where the attribution question can be reframed as ‘What
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Figure 5. A causal model, with the blanks filled in for the three examples.

would a similar extreme event have looked like in the past?’. However, in this case the pivot to future risk will
generally just be thermodynamic. Introducing the additional layer in the causal chain allows the
consideration of compound risk in a spatially coherent way, e.g. the conjunction of land and marine heat
waves and drought across a region. This structure is elaborated in figure 3 of Rodrigues and Shepherd (2022).

5. Conclusion

Returning to the original motivation of epistemic justice, the conditionality of the causal explanations
permitted by RQ3 is a simplifying assumption (Rodrigues and Shepherd 2022). It further allows the
construction of regional climate information, which will inevitably be phenomena-laden (in terms of the
external drivers described in figure 5 as well as the target phenomenon X), to be based on local knowledge
and domain experts. Together, those features help meet the three criteria of context-sensitivity and
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decision-relevance, clarity and comprehensibility, and trustworthiness, which were identified by Schwab and
von Storch (2018) in their study of a particular use case as being the criteria that matter most to stakeholders.
Because attribution is increasingly practiced by such local communities of users with specific research
questions, their interests must be incorporated into both the judgments about the definitions of phenomena
of interest and the sets of possible and responsive answers to the research questions that are posed (Jézéquel
et al 2019, Stone et al 2021). This may be especially true in cases using AI/ML, where the phenomena
introduced to control and categorize big data must be managed in such a way that local users’ interests,
values, and rights are respected and maintained in the information processing practices (Leonelli 2016, Lloyd
et al 2022). Note that AI/ML methods need not be incompatible with these local approaches, so long as they
are not ‘black boxes’ (Arribas et al 2022). Finally, RQ3 opens the door to further research in a much more
effective way than does RQ2. That is also an important benefit, since the value of research is not only in
generating findings, but also in opening up new fields of research.
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