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Abstract 

Environmental DNA (eDNA) metabarcoding has gained growing attention as a strategy for 

monitoring biodiversity in ecology. However, taxa identifications produced through metabarcoding 

require sophisticated processing of high-throughput sequencing data from taxonomically 

informative DNA barcodes. Various sets of universal and taxon-specific primers have been 

developed, extending the usability of metabarcoding across archaea, bacteria, and eukaryotes. 

Accordingly, a multitude of metabarcoding data analysis tools and pipelines have also been 

developed. Often, several developed workflows are designed to process the same amplicon 

sequencing data, making it somewhat puzzling to choose one amongst the plethora of existing 

pipelines. However, each pipeline has its own specific philosophy, strengths, and limitations, which 

should be considered depending on the aims of any specific study, as well as the bioinformatics 

expertise of the user. In this review, we outline the input data requirements, supported operating 

systems, and particular attributes of thirty-one amplicon processing pipelines with the goal of 

helping users to select a pipeline for their metabarcoding projects.   
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Introduction 

Advances in high-throughput sequencing (HTS) technologies have boosted the 

application of molecular methods for species identifications. Metabarcoding, the simultaneous 

tagging, sequencing, and identification of multiple species within a single environmental sample  

(Taberlet et al., 2012) is now a widely applied technique in biodiversity research (Compson et al., 

2020). Metabarcoding involves PCR-based amplification of taxonomically informative gene 

fragments (‘DNA barcodes’, markers) that are subsequently sequenced to be used for species 

identifications in the presence of reference sequence data (DNA barcodes). Before identification, 

the sequencing data is processed in several steps (Fig. 1) where one of the first steps is usually 

performing quality control on the data. A sequence analysis pipeline is generated by applying 

various steps using a collection of software and algorithms with the ultimate goal of producing an 

accurate features table with potential taxon annotations by sample (i.e., with features metadata). 

In metabarcoding, features refer to amplicon sequence variants (ASVs), operational taxonomic 

units (OTUs), or annotated taxa; and their sample-wise distribution matrix can be further utilized 

in relevant biostatistical analyses.  

  With the emergence of practical guidelines (e.g., Bruce et al. 2021; Lear et al. 2018; 

Tedersoo et al. 2022), the scalability and throughput of environmental DNA (eDNA; a mixture of 

DNA from different organisms in an environmental sample; Taberlet et al., 2012) sample 

processing has contributed to the popularity of the metabarcoding approach among ecologists. 

However, one of the bottlenecks of metabarcoding is choosing how to process sequencing 

datasets into relevant feature tables bioinformatically. Among the first highly successful software 

developed for that purpose have been mothur (Schloss et al. 2009), USEARCH (Edgar, 2010), 

and QIIME 1 (Caporaso et al., 2010), which consists of algorithms that can be combined to create 

full metabarcoding data analysis pipelines. Over the years, these programs have been 

supplemented with additional algorithms to help reduce artifactual sequences and implement 

different sequencing clustering approaches. These pipelines were initially developed for 

microbial 16S rRNA amplicon analysis, but the applications of metabarcoding have been 

expanded to a wide range of taxa from various environmental samples, resulting in a boom in 

pipeline development. Some workflows include a set of newly designed algorithms, but others 

represent a combination of different open-source tools used for the different analysis steps bound 

into executable pipelines. From the lack of easy-to-use bioinformatics tools from the early age of 

metabarcoding, we have reached a phase where the choices are so numerous that it may be 

difficult to select among the multitude of analytical workflows. 

Below, we delve into the properties of thirty-two software packages that can be used for 

the bioinformatics processing of metabarcoding data. In this review, we outline several key aspects 

of those metabarcoding software, including which ones represent software suites or pre-compiled 

pipelines, consideration of the software depending on the utilized sequencing platform,  available 

operating system and interface preference (Fig. 2). By addressing these components, we seek to 

https://drive.google.com/file/d/1-YR4vniaeQMPmJ0sy7BrErmwksMfuXzW/view?usp=sharing
https://doi.org/10.1111/j.1365-294X.2012.05542.x
https://doi.org/10.1093/bioinformatics/btq461
https://www.nature.com/articles/nmeth.f.303
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offer a comprehensive understanding of the software landscape for metabarcoding projects.Since 

different users will have different needs, we do not seek to recommend the best-performing 

pipeline, a task that would be highly context-dependent, but rather to give an overview of the 

software that are available for metabarcoding data analysis. Table 1 lists the software discussed 

here and their extended description and specific capabilities are outlined in Supplementary file 1.  

Software suites and pre-compiled pipelines 

The metabarcoding data processing software may be roughly divided into two categories 

based on their structure for executable algorithms – software providing a set of algorithms, and 

pipelines providing a pre-defined chain of algorithms. USEARCH, VSEARCH (Rognes et al., 

2016), DADA2 (Callahan et al., 2016), OBITools (Boyer et al., 2016), mothur and QIIME 2 

(Bolyen et al., 2019) are software suites that host numerous algorithms for sequence data analysis, 

thus are highly customizable to construct user-defined pipelines with a specific chain of commands 

and settings. VSEARCH largely mirrors the diverse functionalities of USEARCH, but without the 

requirement to purchase a  license for a version that can handle large datasets and use more than 4 

GB of a computer’s memory. Besides consisting of a large set of unique data processing algorithms, 

mothur and QIIME 2 wrap some functionalities of VSEARCH and/or DADA2.  

Software providing a pre-defined chain of algorithms represents full analytical pipelines 

with specific workflow steps, as depicted in Figure 1. The pre-defined pipelines consist of 

workflow steps validated on certain sequencing data to facilitate the metabarcoding data analysis, 

which may be especially convenient for users with few bioinformatics skills. Some workflows 

include a set of newly designed algorithms, but others represent a combination of different open-

source tools used for the different steps that are bound into easily executable pipelines. Although 

these pipelines are pre-defined, they often allow the user to customize the settings depending on 

the characteristics of the sequencing data set.  

 

Basic structure of a metabarcoding pipeline  

 

https://docs.google.com/spreadsheets/d/1Tk36KzFZvcdvB_SGVHYDZQImDmBAMwvltMOsSuqy9Ek/edit#gid=0
https://paperpile.com/c/qoO1SU/JgfS
https://paperpile.com/c/qoO1SU/JgfS
https://paperpile.com/c/qoO1SU/Hl6K
https://paperpile.com/c/qoO1SU/ZiSW
https://paperpile.com/c/qoO1SU/V5P7
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Demultiplexing 

Demultiplexed sequences are often provided to users since this process has been integrated into 

sequencing provider software, such as bcl2fastq (for Illumina raw data) and SMRT Tools (for 

Pacific Biosciences [PacBio] reads). Demultiplexing distributes the sequences into individual files, 

most often corresponding to the experiment's samples. However, when requesting multiplexed data 

(pooled sequences from multiple samples), the reads from a sequencing run may need to be 

demultiplexed before using some of the application software. The demultiplexing step is not 

incorporated into all software (Table 1). In cases where it is not, other programs such as cutadapt 

(Martin 2011), sdm (Falk Hildebrand et al. 2014), or lima (https://lima.how/; for single-end reads 

only) may be used. In cases where multiple markers are used per sample (via multiplex PCR), 

amplicons from different primer sets should also be split. The latter step is included in the Anacapa 

and VTAM pipeline (Curd et al., 2019; González et al., 2020), where different markers are 

automatically separated based on the primer sequences. 

Primer trimming 

 Sequencing adapters, indexes, and primers should be removed before the following 

analyses. Depending on the data structure, the former two may be absent, but the programs 

mentioned above (for demultiplexing) may be used to double-check this and remove primers. 

Adapter/primer clipping is often implemented into a pipeline by wrapping the cutadapt, 

Trimmomatic (Bolger et al., 2014) or AdapterRemoval (Lindgreen, 2012) functionality, in others 

done during quality filtering and demultiplexing steps (e.g., sdm; Table S1). 

 

Quality filtering & merging paired-end reads  

The following phases of a standard DNA metabarcoding pipeline is sequence filtration 

based on the read quality scores, removal of putative chimeric/artifactual sequences, the definition 

of features (e.g., ASVs, OTUs), and taxonomic annotation of the features (Fig. 1). In the case of 

paired-end data, the merging process of the overlapping sequences may be performed before or 

after the quality filtering step and even sometimes after the sequence clustering step. There are a 

multitude of strategies for performing the above-listed processes, where the selection of an 

approach may depend on the specific characteristics of the sequencing data or the aims of the study. 

The strategies for quality filtering include per-sequence or per-nucleotide(s) based filtering. Per-

sequence filtering includes discarding the whole sequence if it does not meet the threshold 

requirements, whereas the per-nucleotide(s) approach truncates the sequence from the position 

below the threshold to keep a partial amplicon. Among the quality threshold calculation methods, 

the filtering based on the expected number of errors (sum of the error probabilities) is preferred 

over the average quality score threshold (Edgar & Flyvbjerg, 2015), because a ‘good’ average 

quality score may mask several bases with relatively high error probabilities that can subsequently 

propagate into false positive features. Haplotype-level (ASV) analyses may require relatively 

stringent quality cutoffs for accurate fine-resolution analyses, whereas cutoffs may be more lenient 

https://docs.google.com/spreadsheets/d/1Tk36KzFZvcdvB_SGVHYDZQImDmBAMwvltMOsSuqy9Ek/edit#gid=0
https://journal.embnet.org/index.php/embnetjournal/article/view/200
https://microbiomejournal.biomedcentral.com/articles/10.1186/2049-2618-2-30
https://lima.how/
https://paperpile.com/c/qoO1SU/e9vG
https://paperpile.com/c/qoO1SU/e9vG
https://www.biorxiv.org/content/10.1101/2020.11.06.371187v3.full
https://paperpile.com/c/qoO1SU/e9vG
https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-5-337
https://docs.google.com/spreadsheets/d/15HaIF-_0-UNTjYz2aubmiMWGhkYHS5KD_0_oskE_3qo/edit#gid=0
https://drive.google.com/file/d/1-YR4vniaeQMPmJ0sy7BrErmwksMfuXzW/view?usp=sharing
https://doi.org/10.1093/bioinformatics/btv401
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when generating OTUs (because clustering collapses many of the accumulated errors during 

sequencing) or if summarizing data to more inclusive taxonomic ranks (species, genera, etc.).  

 

Artifacts filtering 

Putative chimeric sequences are most commonly removed by comparing sequences against 

each other (de novo method), but with the existence of an appropriate (curated, chimera-free) 

reference database, additional reference-based chimera filtering is recommended (Tedersoo et al. 

2022).  De novo methods tend also to discard sequences that are incorrectly flagged as chimeric 

(false-positive chimeric sequences; Pauvert et al., 2019; Tedersoo et al., 2022). The loss of these 

false positive chimeric sequences, may be more 'costly' for datasets with low sequencing depths. 

To attempt to rescue those real members of the sequenced community (false-positive chimeras), 

NextITS (Mikryukov et al., 2022) and FROGS (Bernard et al., 2021; Escudié et al., 2018) pipelines 

have implemented an approach to recover sequences that occur in multiple samples (because the 

formation of an identical chimera in different PCR runs is highly unlikely). With NextITS, it is also 

possible to inspect the distribution of UCHIME scores (Edgar et al., 2011) of putative chimeras, 

which allows adjustment of sensitivity-specificity tradeoffs in chimera discrimination according to 

the study aims. A custom false-positive chimeras recovery method is also implemented in 

BIOCOM-PIPE (Djemiel et al., 2020), where initially discarded chimeras can be recovered based 

on their taxonomic assignments. 

 

Denoising & clustering 

The formation of features in many pipelines includes both ASVs and OTUs (Table 1). 

ASVs are identical denoised reads with as few as 1 base pair difference between variants, 

representing an inference of the biological sequences prior to amplification and sequencing errors 

(Callahan et al., 2017). ASVs are mainly formed through the two most popular denoising 

algorithms, DADA2 and UNOISE (Edgar, 2016). Although features formed via UNOISE are 

referred as zOTUs (zero-radius OTUs; Edgar, 2016), sometimes also as ESVs (exact sequence 

variants; Buchner et al., 2022; Porter & Hajibabaei, 2022), we herein denote those with a unified 

term – ASVs. Although less frequently implemented in the pipeline, deblur (Amir et al. 2017) and 

obiclean (Boyer et al., 2016) are other denoising algorithms for ASVs formation (Table S1). The 

OTU clustering approaches include a much wider set of algorithms across different software (Table 

S1), which typically rely on global sequence similarities. Notably, the clustering process in SCATA 

(Durling et al., 2011) includes collapsing of homopolymer regions to account for homopolymer-

length errors during sequencing (which are especially common on 454 and Ion Torrent platforms; 

Laehnemann et al., 2015). Similarly, before the formation of features, NextITS implemented the 

correction of homopolymer errors in PacBio reads. Swarm (Mahe et al., 2022) is a notably different 

sequence clustering approach. It relies on the maximum number of differences between reads (local 

linking threshold), where clusters are resilient to input-order changes, therefore forming stable, 

high-resolution features (herein referred to as swarm-clusters). Swarm is currently implemented in 

https://doi.org/10.1111/mec.16460
https://doi.org/10.1111/mec.16460
https://github.com/vmikk/NextITS
https://paperpile.com/c/qoO1SU/F03dL+IJEC
https://academic.oup.com/bioinformatics/article/27/16/2194/255262
https://paperpile.com/c/qoO1SU/ddcQH
https://docs.google.com/spreadsheets/d/1Tk36KzFZvcdvB_SGVHYDZQImDmBAMwvltMOsSuqy9Ek/edit#gid=0
https://doi.org/10.1038/ismej.2017.119
https://doi.org/10.1101/081257
https://www.biorxiv.org/content/10.1101/081257v1.full
https://doi.org/10.1093%2Fbioinformatics%2Fbtac588
https://doi.org/10.1371/journal.pone.0274260
https://doi.org/10.1128/msystems.00191-16
https://doi.org/10.1111/1755-0998.12428
https://docs.google.com/spreadsheets/d/15HaIF-_0-UNTjYz2aubmiMWGhkYHS5KD_0_oskE_3qo/edit#gid=0
https://docs.google.com/spreadsheets/d/15HaIF-_0-UNTjYz2aubmiMWGhkYHS5KD_0_oskE_3qo/edit#gid=0
https://scata.mykopat.slu.se/
https://doi.org/10.1093/bib/bbv029
https://doi.org/10.1093/bioinformatics/btab493


 

8 

Cascabel, CoMA, FROGS, LotuS2 (Özkurt et al., 2022), MICCA (Albanese et al., 2015), NextITS 

and PEMA (Zafeiropoulos et al., 2020) pipelines (Table S1; Supplementary File 1).  

Which type of features to prefer may be context-dependent, and both may even be used in 

the same study. Denoised ASVs provide a biologically informative fine-scale resolution that 

collapsed during the OTU formation process (Callahan et al., 2016). For example, by testing several 

ASVs and OTUs-based workflows for detecting the Botrylloides (Ascidiacea) haplotypes, Couton 

et al. (2021) reported that ASVs pipeline (DADA2) retrieved all expected haplotypes, whereas 

OTUs datasets (99.5% threshold for clustering) missed several expected haplotypes by collapsing 

very closely related ones into a single OTU. By default, denoisers tend to discard low-abundant 

sequence variants, which are more likely to be artifacts(Anslan et al., 2021; Reitmeier et al., 2021). 

Although denoising greatly lowers the fraction of spurious features (e.g., De Santiago et al., 2021), 

in some contexts it may be difficult to separate noise from a real signal in low abundant ASVs. For 

example, the denoising process might discard some rare taxa, i.e., ASVs with a low number of 

sequences (Edgar, 2016; Nearing et al., 2018). This may have a larger impact when working with 

a data set with a relatively low sequencing depth. Nevertheless, in some pipelines (e.g., DADA2, 

FROGS, VSEARCH, and USEARCH), the sensitivity to rare ASVs can be modified according to 

the user’s needs. Importantly, ASVs represent stable and reproducible units across studies whereas 

OTUs are dataset-specific features (Callahan et al., 2017). However, the ASVs approach may not 

accurately reflect species composition in the community of e.g. metazoans with highly variable 

levels of intraspecific polymorphism in the COI gene (Brandt et al., 2021) and fungi with multiple 

different ITS copies per genome and their size polymorphism (Tedersoo et al. 2022; Estensmo et 

al. 2021) , except when the treatment of ITSs is particularly taken into account (as e.g. in FROGS; 

Bernard et al. 2021).  If relevant, upon formation of ASVs, those may be subjected to further 

clustering (Antich et al., 2021; Brant et al., 2021; Porter & Hajibabaei, 2020). The latter approach 

is implemented in e.g. MetaWorks (Porter & Hajibabaei, 2022), PipeCraft2 (Anslan et al., 2017), 

and dadasnake (Weißbecker et al., 2020). Additionally, QIIME 2, nf-core/ampliseq (Straub et al. 

2020, Ewels et al 2020) and LotuS2 support the features collapsing by annotated taxon levels, 

resulting in taxa features. Overall, the resulting community patterns of a study are often highly 

similar regardless of the utilized feature (e.g., Glassman & Martiny, 2018; Kang et al., 2021; Porter 

& Hajibabaei, 2020), but may vary in recovering rare taxa (Nearing et al., 2018). 

After the formation of features, the presence of a long tail of low-abundant units is common. 

This tail is often discarded, assuming that a large proportion of low-abundant features are 

artefactual (Reeder & Knight, 2009; Huse et al., 2010). However, without applying arbitrary cutoff 

levels (e.g., removing features with <10 reads per-sample; Brown et al., 2015), the post-clustering 

process aids in removing the erroneous features but keeping the rare, potentially real ones. Post-

clustering tools, such as LULU (Froslev et al., 2017) are implemented in AMPTk (Palmer et al., 

2018), eDNAflow (Mousavi-Derazmahalleh et al., 2021), APSCALE (Buchner et al., 2022), 

LotuS2, PipeCraft2, and ReClustOR (Terrat et al., 2019) in BIOCOM-PIPE. 

https://paperpile.com/c/qoO1SU/0Zey
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1002/ece3.7453
https://doi.org/10.1002/ece3.7453
https://doi.org/10.7717%2Fpeerj.12254
https://doi.org/10.1038/s43705-021-00033-z
https://onlinelibrary.wiley.com/doi/10.1002/edn3.255
https://www.biorxiv.org/content/10.1101/081257v1
https://doi.org/10.7717%2Fpeerj.5364
https://doi.org/10.1038/ismej.2017.119
https://onlinelibrary.wiley.com/doi/full/10.1111/1755-0998.13398
https://onlinelibrary.wiley.com/doi/10.1111/mec.16460
https://doi.org/10.1111/1755-0998.13329
https://doi.org/10.1111/1755-0998.13329
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04115-6
https://onlinelibrary.wiley.com/doi/full/10.1111/1755-0998.13398
https://doi.org/10.3389/fevo.2020.00248
https://paperpile.com/c/qoO1SU/yRlc
https://paperpile.com/c/qoO1SU/cMIq
https://doi.org/10.7717/peerj.5364
https://doi.org/10.1038/nmeth0909-636
https://doi.org/10.1111/j.1462-2920.2010.02193.x
https://www.sciencedirect.com/science/article/pii/S1754504814001068
https://doi.org/10.1038/s41467-017-01312-x
https://doi.org/10.1111/1755-0998.13356
https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.13316
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Post-clustering, however, does not resolve the tag-switching phenomena, where some low-

abundant non-artificial features may represent false-positive occurrences across samples. Tag-

switching is a well-documented issue (e.g., Carlsen et al., 2012; Rodriguez-Martinez et al., 2022; 

Schnell et al., 2015), but is rarely considered in practice because the low proportions of tag-

switching errors do not heavily impact the community-level analyses (e.g., Anslan et al., 2021). 

Nevertheless, the incorrect sample assignments of features artificially inflate the richness. For 

discarding potential tag-switching errors from the feature table, pipelines such as NextITS, LotuS2, 

and Dadaist2 (Ansorge et al., 2021) wrap the UNCROSS2 (Edgar, 2018) algorithm (from 

USEARCH). Based on the included control samples, AMPtk and VTAM attempt to automatically 

correct for tag-switching errors. Notably, the tag-switching issue can be minimized by accounting 

for this in the laboratory work protocol (Carøe & Bohmann, 2020; Taberlet et al., 2018). However, 

for further feature occurrence filtering – to filter out low-confidence detections – 

biological/technical replicates per sample are recommended (Gold et al., 2022). This allows 

examining the feature co-occurrence patterns across replicates to estimate detection probabilities 

and retain only high-confidence detections (by applying e.g., site occupancy modeling). Among 

the pre-compiled pipelines, VTAM implements a feature occurrence filtering procedure based on 

the user-defined number of technical replicates they appear in, and samples may be discarded when 

the sequence composition in the replicate samples is too dissimilar. Not incorporated to the 

pipelines discussed here, but the MetabaR package (Zinger et al., 2021) aids to detect different 

types of artifactual sequences, such as potential contaminants, tag-switches, and dysfunctional 

PCRs (on the basis of similarities between replicate samples).  

 

Taxonomy assignment  

In the reviewed pipelines, the most common taxonomy assignment methods include 

alignment-based (such as BLAST; Altschul et al. 1997) and sequence composition-based 

approaches (e.g., RDP Naïve Bayesian classifier; Wang et al 2007; see Table S1). Several studies 

have tested the accuracy of different taxonomy assignment methods (e.g., Edgar, 2018; Bokulich 

et al., 2018; Richardson et al., 2017; Curd et al., 2019; Hleap et al., 2021) and have recognized a 

relationship between the reference database completeness and the classification accuracy. 

Regardless of the taxonomic group, the reference databases are far from being complete (Gold et 

al., 2021; McGee et al., 2019; Nilsson et al., 2016; Weigand et al., 2019). Therefore, a trade-off 

between the detection of true-positives (correctly assigned sequences) and false-positives 

(incorrectly assigned sequences), i.e. the precision and the recall rate, should be considered when 

choosing a threshold for the classification (Edgar, 2018; Bokulich et al., 2018). Additionally, false 

negatives, which refer to unassigned sequences, should also be taken into account, as the trade-off 

between false positives and false negatives is particularly pertinent in this context. Hleap et al. 

(2021) suggested that a multilayer approach could enhance the effectiveness of similarity-based 

methodologies. The goal of this strategy is to improve the precision of taxonomic assignments, 

minimize the occurrence of false positives, and boost the efficiency of the classification process. 

https://www.sciencedirect.com/science/article/pii/S1754504812000918
https://doi.org/10.1111/1755-0998.13745
https://doi.org/10.1111/1755-0998.12402
https://peerj.com/articles/12254/
https://www.biorxiv.org/content/10.1101/400762v1
https://doi.org/10.1111/1755-0998.13227
https://academic.oup.com/book/32663
https://docs.google.com/spreadsheets/d/15HaIF-_0-UNTjYz2aubmiMWGhkYHS5KD_0_oskE_3qo/edit#gid=0
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VTAM's taxonomy assignment function has incorporated elements of this strategy. It begins the 

assignment process with a high percentage identity threshold, which is systematically lowered 

when there are not enough valid matches Although composition-based (and other ‘complex’) 

methods may be more sensitive to the patchy coverage databases than ‘simple’ alignment-based 

methods (Hleap et al., 2021), in certain circumstances Naïve Bayesian classifiers may outperform 

BLAST (Rosen et al., 2011). However, the assignment accuracy to higher taxonomic ranks (such 

as Family level) generally has similar performance across the approaches (Hleap et al., 2021). A 

recently introduced approach in QIIME 2 is the use of public microbiome data to inform 

probabilistic taxonomy assignment (Kaehler et al., 2019), which can often lead to higher resolution 

taxonomic assignment on the same data (e.g., species classifications where only genus level 

classification was previously possible). Other pipelines, such as LotuS2, can assign features from 

multiple taxonomic databases, to preferentially assign taxonomies based on databases that are 

specific to a given environment. FROGS returns an original multi-affiliation output to highlight 

databases conflicts and uncertainties taxonomic affiliations. AMPtk implements a hybrid taxonomy 

assignment that utilizes global alignment (VSEARCH) and SINTAX (Edgar, 2016) to calculate a 

consensus LCA (last common ancestor) taxonomy. Regardless of the taxonomy assignment 

methods used, the reference database should also include a proportion of non-target taxa (including 

potential contaminants) to limit the overclassification of features to the target taxa (e.g., Anslan et 

al., 2018).  

Sequencing platform 

The most commonly utilized high-throughput sequencing approaches for metabarcoding 

are short-read, second-generation technologies, such as those provided by Illumina platforms. 

These platforms produce a high number of high-quality paired-end short reads (up to 300 bp for 

single-end) with a relatively low cost per sample. Therefore, most amplicon data analysis pipelines 

are set up to be able to handle paired-end sequencing data (Table 1, Fig. 2). As the MGI-Tech 

platforms may also produce paired-end reads (with comparable data quality and throughput 

properties compared with Illumina; Anslan et al., 2021), the paired-end compatible pipelines may 

be used to analyze data from the latter platforms as well.  

Some pipelines are restricted to paired-end input, i.e. the analytical pipeline cannot be 

completed using only a single-end part of the data, or sequencing data from the long-read (third-

generation) sequencing platforms (Table 1, Supplementary file 1). With the rapid developments in 

third-generation sequencing accuracy and throughput, there is increasing interest to generate longer 

metabarcodes, which potentially increases the taxonomic resolution (Tedersoo et al., 2021; 

Tedersoo et al., 2022) and has lower sequencing bias toward short amplicons (Castaño et al., 2020). 

Therefore, some software developed for short reads have been updated to also process longer 

sequences (specifically PacBio reads; Supplementary file 1). Although, some of the software 

considered here have performed well for sequencing data (HiFi reads) processing from PacBio 

https://doi.org/10.1111/1755-0998.13407
https://academic.oup.com/bioinformatics/article/27/1/127/202209?login=true
https://doi.org/10.1111/1755-0998.13407
https://doi.org/10.1038/s41467-019-12669-6
https://doi.org/10.1101/074161
https://doi.org/10.3897/mycokeys.39.28109
https://doi.org/10.3897/mycokeys.39.28109
https://docs.google.com/spreadsheets/d/1Tk36KzFZvcdvB_SGVHYDZQImDmBAMwvltMOsSuqy9Ek/edit#gid=0
https://drive.google.com/file/d/1jYKyWbAL1PEwS5rVUw6N1rX4f5kzrrh-/view?usp=sharing
https://peerj.com/articles/12254/
https://docs.google.com/spreadsheets/d/1Tk36KzFZvcdvB_SGVHYDZQImDmBAMwvltMOsSuqy9Ek/edit#gid=0
https://doi.org/10.1128/AEM.00626-21
https://doi.org/10.1111/mec.16460
https://doi.org/10.1111/nph.16731
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platforms (e.g., Castaño et al., 2020; Heeger et al., 2018; Tedersoo & Anslan, 2019), the data from 

Oxford Nanopore Technologies (ONT) platform may require other customized approaches 

(Baloğlu et al., 2021). Herein listed software (Table 1) have not been specifically developed for 

analyzing ONT data, thus care should be taken when applying these tools for nanopore reads.  

The sequencing depth may vary considerably between sequencing platforms. For example, 

Illumina MiSeq system may produce up to 25M 2x300 bp reads and NovaSeq up to 1600M 2x250 

bp reads per flow cell, whereas the throughput of PacBio Sequel II(e) system is up to 4M HiFi 

reads. Since the denoising tools are sensitive (by default) to low abundant sequences, then one must 

be wary that strict denoising of low sequencing depth samples increases the number of false 

negatives, i.e., rare true positives may be denoised out (Furneaux et al., 2021), especially if the 

samples contain complex communities, such as found in soil. Besides sequencing depth, the 

detection of rare sequence variants may be affected by the different chemistry utilized by different 

platforms (e.g., NovaSeq vs. MiSeq; Singer et al., 2019). Importantly, denoising algorithms, such 

as UNOISE and deblur, are designed for Illumina reads and may not perform well with data from 

other sequencing platforms. Therefore, opting for an OTU clustering approach may be more 

appropriate for analyzing complex communities sequenced by the third-generation platforms. The 

remaining bioinformatically unscreened low-abundance spurious OTUs could then be abandoned 

after the post-clustering step, by e.g., filtering out unclassified features at the phylum level, and 

based on the number of samples they occur in (e.g., discard features only observed in one sample). 

Although, DADA2 has a specific denoising function to estimate errors from PacBio reads 

(Callahan et al., 2019) which performs well also on synthetic long reads (Callahan et al., 2021), its 

application may still require higher sequencing depth for high diversity samples (Furneaux et al., 

2021). However, the throughput of the most recent PacBio long-read sequencing system, Revio 

(commercially available from the first half of 2023), is expectedly up to 15 times higher compared 

with Sequel II. But the performance of the denoisers with the greatly increased  throughput of long-

read data (exceeds the throughput of e.g., Illumina MiSeq) is yet to be tested. 

In case the amplicon is shorter than the sequencing cycle (e.g., expected amplicon is ~130 

bp, but one cycle synthesizes 250 bp), the Illumina NovaSeq and NextSeq platforms may extend 

the amplicon by adding a poly-G tail (with ‘good’ quality scores). Therefore, trimming primers 

from amplicon reads should be used by default, as this will discard the overhanging sequence parts. 

Fastp tool (Chen et al., 2018), wrapped also in PipeCraft2 and NextITS, may be used to specifically 

trim these non-biological poly-G (or poly-X) tails. Additionally, Phred scores from third-

generation sequencing platforms range from 0-93, thus may require adjustments of the maximum 

quality score setting when using e.g., VSEARCH or USEARCH software (where the default is 41, 

for Illumina).  

https://doi.org/10.1111/nph.16731
https://onlinelibrary.wiley.com/doi/full/10.1111/1755-0998.12937
https://doi.org/10.1111/1758-2229.12776
https://doi.org/10.1111/2041-210X.13561
https://doi.org/10.1111/1755-0998.13387
https://doi.org/10.1038/s41598-019-42455-9
https://doi.org/10.1093/nar/gkz569
https://doi.org/10.1186/s40168-021-01072-3
https://doi.org/10.1111/1755-0998.13387
https://doi.org/10.1111/1755-0998.13387
https://doi.org/10.1093/bioinformatics/bty560
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Operating systems and workflow managers 

Unix-based operating systems (OS), such as Linux and macOS, are the most common and 

convenient platforms in bioinformatics, as users may run software with a comparable interface on 

a personal computer or high-performance computing (HPC) system. As a result, they are by far the 

most widely used for the development and use of bioinformatics tools. Accordingly, almost all the 

presented pipelines can be executed in Linux and/or macOS operating systems (Table 1; Fig. 2). 

Since many users have computers running on Windows-based operating systems, several pipeline 

developers have gone through the effort of making the Unix-based workflows executable in 

Windows; sometimes through native code adaptations or by making their software available in 

either containers or through websites (such as Galaxy; The Galaxy Community, 2022), making the 

pipelines independent of the OS (Table 1).  

Some metabarcoding data analysis tools, such as DADA2  rely exclusively on R and are 

thus also compatible with any OS that can execute R. JAMP 

(https://github.com/VascoElbrecht/JAMP) is another R package that wraps full metabarcoding and 

haplotyping pipelines, although it is only available for Linux and macOS (Elbrecht et al.. 2018). 

Additionally, with the development of containerization technology (e.g., Docker, Singularity), it 

becomes easier to develop bioinformatics pipelines that can run on the three major operating 

systems, Windows, macOS, and Linux. A container encapsulates the code and dependencies 

needed for the data analyses so that the pipeline may run reliably on any OS. Once the 

containerization software is installed, users are free to install all the underlying dependencies. For 

a few of the presented pipelines, the developers have included the pre-built containers and/or virtual 

machine images required to run it (Table 1, Supplementary file 1). Pipelines such as those 

distributed by nf-core/ampliseq, PipeCraft2,PEMA, and Tourmaline (Thompson et al., 2022) 

require utilizing Docker/Singularity containers at the back-end, so the core bioinformatics 

processes are running on a Linux environment but may also be executed on Windows and macOS 

systems. Moreover, containerized pipelines resolve the numerical instability issue occurring while 

running software on different computational platforms (Di Tommaso et al., 2017), ensuring the 

consistency of results and allowing more reproducible computational workflows. 

Essentially all the pipelines can be run on any OS via containers or virtual machines. 

However, containers are preferred to virtual machines (e.g., VirtualBox), as virtualization (i.e., 

running a second OS on top of the main OS) has high overhead and comes at the cost of a 

computer's RAM usage, which ultimately limits the amount of data that can be processed. 

Considering container engines, Docker is usually unavailable on HPC clusters, as potential 

vulnerability could provide means to gain root access to the system they are running on. Therefore, 

Singularity (Kurtzer et al., 2017) is generally more widespread on HPC clusters as it was 

specifically developed for it. 

With the capacity to provide computational resources, web-based platforms, such as 

DAnIEL (Loos et al., 2021) and SCATA may be simply used through a web browser on any 

https://docs.google.com/spreadsheets/d/1Tk36KzFZvcdvB_SGVHYDZQImDmBAMwvltMOsSuqy9Ek/edit#gid=0
https://drive.google.com/file/d/1iyGayQB00xI9WZCxaMhxIE5HqcQbmNrh/view?usp=sharing
https://doi.org/10.1093/nar/gkac247
https://docs.google.com/spreadsheets/d/1Tk36KzFZvcdvB_SGVHYDZQImDmBAMwvltMOsSuqy9Ek/edit#gid=0
https://github.com/VascoElbrecht/JAMP
https://paperpile.com/c/qoO1SU/nDL9
https://docs.google.com/spreadsheets/d/1Tk36KzFZvcdvB_SGVHYDZQImDmBAMwvltMOsSuqy9Ek/edit#gid=0
https://www.nature.com/articles/nbt.3820
https://paperpile.com/c/qoO1SU/2ZvUl
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operating system. Additionally, some other pipelines, such as FROGS and LotuS2, can also be 

accessed  through Galaxy websites, and nf-core/ampliseq (Straub et al., 2020)  can be launched via 

Nextflow Tower (a monitoring and management platform for Nextflow workflows).  

The increasing complexity of bioinformatics pipelines, which consist of a large number of 

computational steps, encouraged the development of workflow management systems capable of 

orchestrating in a scalable and reproducible manner (Mölder et al., 2021; Wratten et al., 2021). 

Workflow managers allow pipelines to resume after a failure and start from the last successfully 

completed step, automate pipeline execution triggered by input or reference data updates, and 

perform parameter exploration. Nextflow (Di Tommaso et al., 2017) and Snakemake (Koster & 

Rahmann, 2012; Mölder et al., 2021) are among the most prominent workflow management 

systems in the field of bioinformatics. They simplify pipeline development, maximize resource 

usage efficiency, and handle installation and versioning of the software dependencies (e.g., using 

Docker and Singularity containers or conda environments). These systems allow running workflow 

steps in parallel locally or using resources of HPC clusters or commercial cloud computing 

providers (Amazon web services (Bai et al., 2019), Microsoft Azure (Copeland et al., 2015), 

Google Cloud (Hussain & Aleem, 2018)) almost without the need to adapt pipeline code to a 

specific platform architecture. MetaWorks, dadasnake, Tourmaline, and Cascabel (Asbun et al., 

2020) are examples of Snakemake-based pipelines, while nf-core/ampliseq, eDNAflow and 

NextITS were developed using Nextflow.   

The interface 

Generally, the Unix-based command-line interfaces (CLI; commands are typed into a 

terminal) are often preferred by analysts with bioinformatics experience. That is because most of 

the pipelines are developed as CLI-runnable software that can be operated on HPC clusters, but 

also due to the flexibility and availability of applying various custom processes to manage the data 

effectively. Although the CLI tools offer numerous advantages, using a CLI might be intimidating 

for users with less programming experience. To facilitate the analysis of metabarcoding data by 

non-bioinformaticians, APSCALE, CoMA (Hupfauf et al., 2020), gDAT (Vasar et al., 2021), 

PipeCraft2 and SEED 2 (Vetrovský et al., 2018) provide a graphical user interface (GUI; 

interaction via clickable graphical icons; Table 1, Fig. 2) as a front-end for specifying the settings 

of the bioinformatics analyses, which will be executed on the back-end. Depending on the 

architecture, the GUI-based applications may require more RAM than CLI pipelines. Pipelines that 

have web server support (DAnIEL, SCATA) or have been implemented into Galaxy server 

(LotuS2, FROGS, QIIME 2) naturally possess a web-based GUI for specifying the settings of the 

analysis. Some software that is wrapped into GUI may also be executed through CLI (Table 1).  

https://paperpile.com/c/qoO1SU/s69MR
https://www.nature.com/articles/s41592-021-01254-9
https://paperpile.com/c/qoO1SU/D3LA
https://paperpile.com/c/qoO1SU/D3LA
https://paperpile.com/c/qoO1SU/wCg2K
https://paperpile.com/c/qoO1SU/NUkIy
https://paperpile.com/c/qoO1SU/X1FDr
https://docs.google.com/spreadsheets/d/1Tk36KzFZvcdvB_SGVHYDZQImDmBAMwvltMOsSuqy9Ek/edit#gid=0
https://drive.google.com/file/d/1iyGayQB00xI9WZCxaMhxIE5HqcQbmNrh/view?usp=sharing
https://docs.google.com/spreadsheets/d/1Tk36KzFZvcdvB_SGVHYDZQImDmBAMwvltMOsSuqy9Ek/edit#gid=0
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Marker-specific pipelines  

A marker (i.e., ‘DNA barcode’) is a taxonomically informative gene fragment that is 

utilized for species identifications in the presence of reference sequence data. Bioinformatics 

processes combined in a pipeline may be specifically designed to analyze amplicons from a specific 

marker, i.e., the analytical steps may depend on the characteristics of the amplicons. For example, 

when processing ITS amplicon data, it is common to remove conservative flanking genes of ITS 

for accurate taxonomic classification purposes (Vu et al., 2022; Tedersoo et al., 2022). When 

processing sequences from the COI gene, removing the co-amplified putative nuclear 

mitochondrial pseudogenes (NUMTs) is highly recommended (Song et al., 2008; Porter & 

Hajibabaei. 2021; Greedy et al., 2021). The subsections below outline the herein-considered 

marker-specific and multi-marker pipelines and highlight some of the results from their 

benchmarking trials. 

  

Prokaryotic 16S rRNA 

Amplicon sequencing targeting the 16S rRNA gene is commonly utilized to investigate 

microbiomes from various ecosystems/substrates (Knight et al., 2018; Pollock et al., 2018; Staats 

et al., 2016). The 16S gene sequence is roughly 1,500 bp in length and contains nine distinct 

hypervariable regions (V1–V9). The V4 hypervariable region is most often used in short-read 

sequencing, whereas full-length 16S analyses are becoming increasingly utilized with the increased 

quality, availability, and decreasing costs of long-read sequencing methods. For processing 16S 

amplicons, mothur, USEARCH, QIIME 2 and DADA2 are the most used ones. Recently 

established pipelines such as dadaist2, dadasnake, nf-core/ampliseq, Tourmaline also wrap QIIME 

2 and/or DADA2 functionalities and are thus optimized for 16S (but not exclusively) analyses. 

BIOCOM-PIPE, Cascabel, CoMA, LotuS2, MICCA, PEMA and FROGS have also benchmarked 

their pipelines using 16S data sets.However, since the bioinformatics processing of 16S amplicon 

data was at the forefront of metabarcoding data analyses before the wide-scale utilization of other 

markers, other multi-marker pipelines (Table 1) that consist of critical filtering steps may also be 

used to process 16S reads.  

Testing different workflows on 16S V4 amplicon mock data (known composition of taxa 

in a sample), Straub et al. (2020) found QIIME 2 pipeline with the DADA2 plugin being the most 

optimal compared to mothur, QIIME 1, and  MEGAN workflows. Based on the benchmarking 

results, the nf-core/ampliseq pipeline was developed which demonstrated a high degree of 

similarity with the results produced by QIIME 2. Prodan et al. (2020) reported good performance 

of all tested ASV workflows (DADA2, QIIME 2 deblur, UNOISE3), but with slight variations in 

their sensitivity and specificity to detect mock community members. In the latter study, two OTU 

workflows also performed well (UPARSE, mothur; but not QIIME1-uclust), but with lower 

specificity than ASV pipelines. A more recent study by Özkurt et al. (2022) reported the higher 

accuracy of LotuS2 compared with QIIME 2, DADA2, and PipeCraft2. The LotuS2 pipeline runs 

https://doi.org/10.1111/1755-0998.13651
https://doi.org/10.1111/mec.16460
https://paperpile.com/c/qoO1SU/F7iIL
https://doi.org/10.1186/s12859-021-04180-x
https://doi.org/10.1186/s12859-021-04180-x
https://doi.org/10.1111/1755-0998.13337
https://paperpile.com/c/qoO1SU/UJIpP+1hhQr+3EbvV
https://paperpile.com/c/qoO1SU/UJIpP+1hhQr+3EbvV
https://docs.google.com/spreadsheets/d/1Tk36KzFZvcdvB_SGVHYDZQImDmBAMwvltMOsSuqy9Ek/edit#gid=0
https://doi.org/10.3389%2Ffmicb.2020.550420
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227434
https://doi.org/10.1186/s40168-022-01365-1
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with stringent read filtering and implements a unique feature, a ‘seed extension’ algorithm, that 

improves the quality of a feature's representative sequence. By introducing the CoMA pipeline that 

uses LotuS1/2 (Hildebrand, et al., 2014) at its core, Hupfauf et al. (2020) reported a good 

performance of all tested pipelines (CoMA, QIIME 2, mothur). However, some degree of 

variability was evidently depending on the test dataset. In general, the lack of consensus as to the 

‘best performing pipeline’ illustrates the importance of the underlying dataset properties. 

Considering the dataset's characteristics under the operation, tweaking, and fine-tuning the settings 

of different pipelines may further, at least to some extent, diminish the variability in their accuracy.  

 

ITS rRNA 

The nuclear ribosomal internal transcribed spacer (ITS) region is a standard marker in 

fungal metabarcoding studies (Nilsson et al., 2019). It is also taxonomically informative in other 

eukaryotic groups (e.g., flowering plants, mites, springtails; Banchi et al., 2020; Ben-David et al., 

2007; Anslan & Tedersoo., 2015). The ITS region is highly-variable in length among eukaryotic 

groups, complicating the bioinformatics analysis steps that rely on aligning (such as e.g., mothur 

OTU clustering) or require uniform sequence length (such as e.g., deblur).Pipelines such as 

NextITS, PIPITS (Gweon et al., 2015), and DAnIEL are developed explicitly for ITS amplicon 

analyses. Those pipelines implement the extraction of ITS sub-regions (ITS1/ITS2, or full ITS) to 

exclude flanking conservative regions (18S/5.8S/28S), which is optimal for taxonomic assignment 

accuracy (Vu et al., 2022, Bengtsson-Palme et al., 2013). SCATA is also optimized for the ITS 

region, and for other amplicon sequences which cannot be easily aligned. However, a few other 

universal pipelines, such as LotuS2, SEED 2, nf-core/ampliseq, PipeCraft2, MetaWorks, 

dadasnake, FROGS (all using ITSx; Bengtsson-Palme et al. 2013), and QIIME 2 (using the 

ITSxpress plugin; Rivers et al., 2018) incorporate the step for extracting the ITS sub-regions for 

optimal processing of ITS amplicon data. Because the ITS-subregions of some fungal groups may 

not sufficiently overlap during the paired-end data assembly process, FROGS, PipeCraft2, 

Dadaist2 and Cascabel (latter two without ITSx) implement settings to also include non-assembled 

reads to ensure that taxa with longer ITS regions are not excluded (Bernard et al., 2021).  

Although AMPtk, DADA2, eDNAflow, and gDAT were validated using ITS reads, these 

pipelines lack a step to clip the flanking regions from ITS reads. While ITS extraction tools may 

eliminate some fungal strains from the data, many false-positive molecular units are generated 

when this extraction process is excluded (Pauvert et al., 2019). To mitigate the detection of false-

negatives, the exclusion of the ITS extraction may be more appropriate if the aim is to find specific 

target taxa, whereas the ITS extraction operation should be included in community ecology studies 

(Pauvert et al., 2019).  

Tested on technical replicates from soil samples (i.e. DNA from the same sample sequenced 

twice), compositional matrices of ITS data from QIIME 2 and LotuS2 were more reproducible than 

native DADA2, where the latter did not incorporate an ITS extraction step (Özkurt et al., 2022). 

Differences in the ITS amplicon data analyses among various software (PipeCraft1, QIIME 2, 

https://microbiomejournal.biomedcentral.com/articles/10.1186/2049-2618-2-30
https://doi.org/10.1371/journal.pone.0243241
https://paperpile.com/c/qoO1SU/v69tN
https://doi.org/10.1093/database/baz155
https://doi.org/10.1007/s10493-007-9058-1
https://doi.org/10.1007/s10493-007-9058-1
https://doi.org/10.1016/j.ejsobi.2015.04.001
https://paperpile.com/c/qoO1SU/AAUFD
https://paperpile.com/c/qoO1SU/Q6dfj
https://doi.org/10.1111/2041-210X.12073
https://pubmed.ncbi.nlm.nih.gov/30416717/
https://paperpile.com/c/qoO1SU/F03dL
https://doi.org/10.1016/j.funeco.2019.03.005
https://doi.org/10.1016/j.funeco.2019.03.005
https://doi.org/10.1186/s40168-022-01365-1
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PIPITS, LotuS1, and custom pipeline compiled on Galaxy platform) were evident also in the study 

by Anslan et al. (2018) where QIIME 2 and Galaxy-based pipelines did not include the ITS 

extraction step (because it was not yet implemented). Although the inclusion of ITS region 

extraction step lowers the amount of non-target features, the latter study concluded that none of the 

tested workflows were able to fully filter out the erroneous sequences, which contributed to the 

demonstrated differences between pipelines.  

 

COI 

Found in the mitochondria, the cytochrome oxidase subunit I (COI/CO1/cox1) is a standard 

animal barcode (Hebert et al., 2003; Hajibabaei et al., 2011). Compared with other suitable markers 

(e.g., mt 16S, ITS, 28S) for most metazoan groups, the reference database of the COI is vast 

(,;,Porter & Hajibabaei, 2018; ) and COI fragments are extensively used in metabarcoding studies. 

Metabarcoding of metazoan communities is increasingly employed in ecology, but the 

strategies for analyzing the sequencing data vary largely across studies. Generally, the 

metabarcoding studies utilizing protein-coding genes (such as COI) have largely followed the 

bioinformatic workflows designed to characterize microbial diversity without adapting the 

workflows to the characteristics of protein-coding markers (Creedy et al., 2021). When processing 

protein-coding markers, the noise of nuclear mitochondrial pseudogenes (NUMTs) may inflate the 

richness estimates and thus introduce biases in biodiversity research using metabarcoding (Porter 

& Hajibabaei, 2021). Thus, the amino acid translation, but also the length of the read should be 

used to identify erroneous sequences (Creedy et al., 2021). Of the pipelines reviewed here, 

MetaWorks and VTAM implement a step of removing putative NUMTs, which alleviates the 

burden of manual curation of the features to produce more accurate richness estimates. The multi-

marker amplicon processing platform PipeCraft2 has also wrapped the MetaWorks strategy of the 

pseudogene removal step. Apart from the full pipelines, the multi-sample features matrix may be 

processed with metaMATE (Andújar et al., 2021) to remove putative NUMTs and other erroneous 

sequences (based on e.g., length and relative read abundance). Additionally, DARN (Zafeiropoulos 

et al., 2021), which makes use of the phylogenetic tree, aids in filtering out non-target features and 

upon denoising, the characteristics of protein coding genes are also accounted for in the DnoisE 

(Antich et al., 2021). We will most likely see the latter module integrated into the already 

established pipelines in the near future.  

 

Other markers and multi-marker pipelines 

Besides the above-mentioned markers, other popular markers used for metabarcoding are 

mt 16S rRNA for Metazoa, mt 12S rRNA for fish ( Miya et al., 2020), 18S rRNA for protists and 

other eukaryotes, 28S rRNA for nematodes and eukaryotes in general, rbcL for diatoms (Rimet et 

al., 2019), rbcL+matK and trnL for plants (CBOL Plant Working Group et al., 2009; Taberlet et 

al., 2007), and 23S rRNA for photosynthetic microbes (Djemiel et al., 2020). A variety of pipelines 

have been applied for the analyses of the amplicon sequences from these markers. For example, 
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https://doi.org/10.1073/pnas.0905845106
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MICCA, DADA2 for 18S rRNA (Harrison et al., 2021; Minerovic et al., 2020); DADA2, OBITools 

for mt 16S (Thomsen & Sigsgaard, 2019; Marquina et al., 2019); and custom built pipelines (using 

multiple third-party sequence data analysis tools) for other markers above (Westfall et al., 2019; 

Liu & Zhang, 2021; Elbrecht et al., 2016; Anslan et al., 2021). Benchmarked on mt 12S reads from 

both simulated and real eDNA data, the Barque pipeline demonstrated a small sensitivity 

improvement over QIIME 2 and OBITools (Mathon et al., 2021). Moreover, another VSEARCH-

based custom pipeline found in the latter study, which was designed to match Barque’s 

performance by adjusting the parameters and threshold, showed the same mean sensitivity as 

Barque, demonstrating that the careful choice of the tools for the required task provides accurate 

results.  

Table 1 lists multi-marker software that may be utilized for various markers. All of the 

developed application software contain the most crucial steps for basic metabarcoding data 

analyses, but the suitability of a software or workflow steps for a given marker should be assessed. 

For example, considering the length variability and alignability of the amplicon set is important 

when some pipeline steps (e.g., clustering) use alignment-based methods (such as in mothur) or 

require uniform read lengths (such as deblur denoising). When working e.g., rbcL amplicons (or 

amplicons from any other protein coding gene), validation is needed to ensure that the generated 

features do not represent potential pseudogenes (or off-target taxa) for biodiversity analyses. Some 

multi-marker pipelines incorporate marker-specific steps, e.g., extracting the ITS region, removing 

putative pseudogenes and off-target features (Supplementary File 1). Using a pipeline that is not 

restricted to a certain marker gene, but where the above listed automated filtering processes are 

lacking, a manual feature curation step is usually required to filter out bioinformatically unfiltered 

noise or to validate that most of the noise has already been removed. Depending on the study 

context, different analytical pipelines may yield highly compatible results (e.g., Kang et al., 2021; 

Baltrušiset et al., 2022), but the outcome and interpretation may also vary considerably (Anslan et 

al., 2018; Pauvert et al., 2019; Straub et al., 2020; Bailet et al., 2020) without the validation of the 

software suitability for a given marker.  

Concluding remarks 

The development of a wide range of metabarcoding data analysis pipelines illustrates the 

need for ‘easy-to-use’ software, but also of specific customized workflows depending on the 

underlying sequencing data set. Although most of the pre-compiled pipelines largely mirror the 

functionalities of several software suites – by incorporating steps from algorithms providing 

software suites – they offer easily executable automated alternatives for users with less 

bioinformatics experience. Additionally, many pre-compiled pipelines are supplemented with 

several possibilities for downstream analyses by wrapping various third-party tools. Applying 

different workflows on the same data will always demonstrate a certain level of variation among 

pipelines. These variations are usually most obvious in terms of the reported number of features. 
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This generally derives from variations in filtering out spurious and low-abundant sequences (e.g. 

Edgar, 2017; Prodan et al., 2020). Therefore, one pipeline may produce a higher number of features 

per sample and the other much less, but the correlations between sample-wise richness from one to 

another result are in most cases very high (Kang et al., 2021; Baltrušis et al., 2022).However, 

depending on the analyzed data set, this correlation pattern may be the opposite(Nearing et al., 

2018) and pipeline settings should be carefully considered, especially when identifying rare taxa is 

imperative. Thus, although the automated pipelines have made the analyses easier and more 

reproducible, expertise is still required to validate the accuracy of the biological results. It is 

noteworthy that a pipeline's performance measured on mock community samples with relatively 

few species may vary when applied to a complex data set originating from environmental samples. 

Nevertheless, including a mock community control sample(s) in a study will certainly aid in 

identifying false positives and false negatives. A robust sense of the community patterns may be 

obtained by applying ‘default’ parameter values but fine-tuning of the parameters may be required 

to find an appropriate compromise between false positive removal and retention of true detections. 

Table 1 and Figure 2 are aiming to provide assistance in narrowing down the desirable 

pipelines for the task. Once the potential target workhorses have been selected, one would naturally 

need to explore the respective user guides for more detailed information about the underlying 

procedures. 
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Figures 

 

Figure 1. Examples of basic bioinformatics workflows for metabarcoding data. The workflow 

begins with demultiplexing, assigning reads to respective samples based on unique molecular 

identifiers. Next, quality filtering removes low-quality reads to reduce errors and improve 

reliability. Denoising algorithms identify and correct sequencing errors while preserving biological 

variation. For paired-end reads, merging combines forward and reverse reads into single sequences. 

Artifacts filtering removes biases introduced by sequencing artifacts like chimeras and NUMTs. 

Clustering groups sequences into OTUs or ASVs based on similarity, reducing data complexity. 

Finally, taxonomic assignment is performed using reference databases and algorithms, enabling 

accurate identification of studied communities. 

* Primer trimming between any of these steps can be applied. 

*1 Only for paired-end data. May be performed before or after quality filtering. 

*2 Error correction; formation of ASVs. 

*3 Including chimera filtering, off-target gene removal (pseudogene removal, ITS extraction). 

*4 Formation of OTUs/swarm-clusters. 

 

Figure 2. Software for metabarcoding data bioinformatics processing categorized by input read 

type (paired-end, single-end (the tools in electric blue are capable of handling both paired-end and 

single-end reads)), software type (suite, pre-compiled pipeline), interface (CLI, GUI, Web, Galaxy 

web platform), produced feature type (OTU, ASV, swarm-cluster), and operating system (Linux, 

macOS, Windows). 


