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ABSTRACT 
 
A two-dimensional, non-linear diffusion-limited colliding plumes simulations were used to 
demonstrate the improved solution accuracy with very high order O9–18 flux schemes, including 
upwind-biased and even-centred constant grid flux and Crowley constant grid flux schemes, and 
odd order weighted essentially non-oscillatory (WENO) flux schemes, along with variations and 
hybrids of these. All schemes were coupled with comparably high order even-centred Lagrangian 
interpolations and pressure gradient/divergence approximations, and O18 spatial filtering. 
Subgrid-scale (SGS) turbulent flux calculations, with a constant eddy-mixing coefficient, were 
made with O2 spatial approximations (O4–20 accurate SGS turbulent fluxes had little impact). 
Using a range of resolutions from Δx = Δz = 25–166.66… m for all schemes comparisons against 
an O17 flux, 25 m resolution reference solution showed solutions made with ≥ O9 fluxes produced 
(often substantially) improved solutions, both visually and usually objectively, compared to 
solutions produced with lower order (<O9/10) fluxes, especially at intermediate resolutions 
(33.33–100 m). Expectedly, odd order solutions were increasingly damped as accuracy was 
decreased, especially from O9 to O3, especially for WENO solutions, while even order solutions 
were increasingly contaminated with dispersion and aliasing errors as accuracy was decreased, 
especially from O10 to O4. Odd order schemes also produced better solutions than even order 
schemes for <O9/10 fluxes, while the highest order (≥ O13/14) schemes produced the best 
solutions, for any given resolution. Even order flux and Crowley flux (WENO) solutions were the 
least (most) computationally expensive, based on either floating-point operations (FPO) or CPU 
times. Efficient WENO-Sine and proposed hybrid Crowley-WENO(-Sine) schemes required fewer 
FPOs to produce more accurate solutions than traditional WENO schemes. We are encouraged by 
the often much improved visual and objective accuracy of very high order (≥ O9) fluxes in 
simulations of a complex problem, and encourage further testing in numerical weather prediction 
models 
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1  |  INTRODUCTION 

Very few studies have considered very high, ninth through eighteenth, order of accuracy (O9–18; 

hereafter, O denotes order-of-accuracy), upwind-biased odd order or centred even order advective 

flux finite difference approximations in the atmospheric sciences, nor have more common ≥O9 

flux schemes been compared. To address this, the purpose of this paper is to evaluate accuracy and 

computational cost effectiveness, through visual evaluation and objective error measures, of 

traditional O3–18 constant grid flux, dimension-split O3–18 constant grid flux Crowley (Crowley 

1968 C68; Smolarkiewicz 1982 S82; Schlesinger 1984; Tremback et al. T87; Bott 1989; Costa and 

Sampio 1997; Wicker and Skamarock 2002 WS02; etc.), and O3–17 weighted essentially non-

oscillatory WENO flux schemes (Jiang and Shu 1996 JS96; Shu 1997 S97; Balsara and Shu 2000 

BS00; Shu 2003 S03; Borges et al. 2008; Geroylmos et al. 2009 G09; etc.) for a slow (e.g., 

advection and turbulence modes) and fast (e.g., sound and sometimes gravity-buoyancy modes) 

mode-split system of equations (e.g., Skamarock and Klemp 1992) using a nonlinear diffusion-

limited 2D colliding plumes problem. These types schemes are chosen as they form a relatively 

simple basis for many other schemes, with lower ≤O7 order versions widely used in the 

atmospheric sciences and ≤O9 in the gas dynamics communities. All solutions produced in this 

study are made with comparable or higher order numerical approximations for both interpolations 

wherever odd-grid calculations are needed as well as for calculations of the pressure gradient and 

divergence calculations in the momentum equations and divergence term in the pressure equation. 

Higher order (e.g., O4–18) subgrid-scale (SGS) turbulent flux approximations had little impact on 

solutions (Straka et al. 2023; SWK23) and, thus are not presented.   

 

Odd order schemes generally have better phase errors compared to one-order lower even schemes, 

while even order schemes have better amplitude errors than one-order lower odd schemes (T87). 

None of the schemes were combined with flux limiters (e.g., Leonard 1991 L91; Balsara and Shu 
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2002) for this study. Other important types of advection and flux scheme constructs, such as finite-

volume, finite-element, compact, spectral/pseudo-spectral, etc., schemes were not considered 

herein, but should be considered in the future. 

 

High order advection computations based on upwind-biased odd order and centred even order 

traditional flux or Crowley-type flux schemes (including higher derivative terms) can be made 

with constant grid-based interpolation coefficients (T87), which are based on Lagrangian 

interpolations and adjusted so that they have the same order of error as pure advective schemes for 

constant advective velocity and grid spacing (T87; interpolation coefficients for constant grid flux 

are identical to the reconstruction coefficients used in WENO schemes S97). Higher order 

integrated flux schemes for odd and even order for traditional flux and Crowley flux schemes can 

also be based on unadjusted Lagrangian interpolations for either unstretched or stretched / irregular 

grids. While seemingly high order, their accuracy is not equivalent to pure advective schemes 

when the advective velocity and grid increment are constant and have been demonstrated to be 

less accurate (T87). Use of an analytical function and its derivative can be used to demonstrate 

that constant grid flux schemes converge at the order of the scheme, while integrated flux schemes 

only converge at O2 regardless of the order of the interpolation (SWK23, in review; thus, not 

shown here), consistent with T87. All non-WENO odd order schemes used in this study were one 

point-biased, although they could be constructed as up to N-point upwind-biased schemes, where 

N is order of accuracy. The reconstruction polynomials, which are used to compute the fluxes for 

WENO schemes, are numerically identical to the constant grid flux polynomials, but found by 

alternative methods (e.g., Shu 1998). Vertical advection terms for of scalars can be integrated for 

mode-split simulations on the slow time step, or on the fast mode time step using multiple small 

time steps to accommodate fast moving gravity waves, with the former used herein. 
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Traditional odd and even order higher-order advection/flux schemes are simple to implement and 

computationally very efficient. In addition, these flux schemes are very accurate, especially for 

smooth flows. However, they are subject to the production of aliasing and high frequency 

dispersion errors, especially near sharp gradients and discontinuities (S97), and thus require the 

use of flux-limiters (e.g., Bott 1989; L91; S97; BS00; etc.) and/or spatial filters (Shuman 1957; 

Shapiro 1970; S82; Purser 1987 P87; Purser and Leslie 1988 PL88) to control numerical “noise”, 

especially for low-order even-centred schemes. Odd order flux schemes, which inherently damp 

solutions, although to a lesser extent as accuracy is increased (e.g., T05), typically require less 

spatial filtering than even order flux schemes.  

 

Stable time integration for traditional flux schemes in compressible models with the slow modes 

(advection, diffusion, etc.) split from the fast modes (sound and gravity waves), called mode-split 

systems, can be accomplished with explicit two-stage O2 or three-stage O3 Runge-Kutta (RK) 

schemes (WS02), O4 RK4 schemes (Park and Lee 2009), as well as with some filtered leapfrog 

schemes (Asselin 1972; Park and Lee 2009; Williams 2009, 2011, 2013; Williams et al. 2022), 

among others [e.g., explicit O3 (for linear systems, O2 for non-linear systems) Adams-Bashforth-

Moulton Wicker 2009].  

 

The forward-in-time multidimensional advective or flux form type Crowley schemes (e.g., C68) 

can be stabilised using properly implemented dimension-split (often called time-split) approaches 

or by the use of explicit cross derivatives (e.g., C68; S82; Schlesinger 1985 S85; T87; Bott 1989; 

Easter 1993; Costa and Sampio 1997). Crowley schemes can be used in mode-split models with 

the two-step approach proposed by WS02 for the velocity and pressure variables, or by solving the 

momentum equations on the small timestep, the fast-mode part of the time integration as proposed 

by Walko and Avissar (2008). Most applications of Crowley schemes have used stabilising 

derivatives up to order N for an N-order Crowley scheme. Smolarkiewicz (1982) used a stabilising 
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second-order derivative, but commented that the first derivative advection or flux could be 

approximated using any higher order scheme. As described by T87, even (odd) derivative terms 

in Crowley schemes mostly impact amplitude (phase) errors. Multi-dimensional, dimension-split 

schemes, including Crowley schemes, have been shown to produce artificial gradients (Clappier 

1998) owing to errors with diagonal advection/flux in flows with deformation for at least some 

systems of equations. Fortunately, these artificial gradients can be eliminated by correctly 

formulating the flux using a very simple flux correction, which requires minimal code changes. 

While WS02 suggested using the Clappier (1998) flux correction, they did not use it in their mode-

split Crowley scheme demonstration using the S93 density current problem, but were still 

successful in using the Crowley mode-split time integration scheme. Positive definite area-

preserving integrated flux Crowley schemes based on nonlinearly normalising and limiting fluxes 

(applicable to other types of flux schemes) for up to O4 were presented by Bott (1989) and to O5–

8 by Costa and Sampio (1997), along with many others who presented variations described in the 

literature, and these schemes been shown to be accurate and efficient, but are not considered herein. 

Finally, Smolarkiewicz (1985) showed that the time accuracy of the Crowley scheme for non-

constant velocities could be increased from O1 to O2 by simply using the advecting velocity at 

time level n+1/2, denoted by vn+1/2, after each dimensional direction update in the advection/flux 

computations. Values of vn+1/2 can be obtained by using the average of the n* and n time level 

velocities vn+1/2 = 0.5(v* + vn), or by using extrapolated velocites at time levels n-1 and n, vn+1/2 = 

0.5(3vn – vn-1). However, it is not known how the WS02 mode split Crowley affects the 

Smolariewicz (1985) procedure in attempting to achieve O2 temporal accuracy. Thus, this 

procedure was not used in the results presented in the current study, as preliminary test results 

were somewhat encouraging to mixed. 

 

The WENO schemes, and their many variants, are widely popular in many areas of fluid dynamics, 

and to a lesser extent in atmospheric and ocean sciences, and have been shown repeatedly to 
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provide excellent solutions for non-viscous fluid problems with very complex flows and sharp 

boundaries/shocks. Most WENO schemes are odd order, although high order central WENO 

schemes for O4, 6 and 8 have been developed (e.g., Qui and Shu 2002), and can be more efficient 

than odd order WENO schemes. Care must be taken with some central WENO schemes to avoid 

negative linear weights. High computational cost associated with WENO schemes is perhaps one 

reason WENO schemes have not been used as often in atmospheric sciences compared to other 

schemes. Nevertheless, two O3–9 WENO scheme variations are available in Bryan’s CM1 model 

(Cloud Model 1; Bryan 2021 B21, https://www2.mmm.ucar.edu/people/bryan/cm1/), and at least 

one O3–9 WENO scheme variation is available in at least some versions of NCAR’s Weather 

Research and Forecast model (WRF), O3–5 WENO schemes in the Meso-NH model (Lunet et al. 

2017), among other models in the atmospheric and oceanic sciences (e.g., TML05 for idealised 

advective atmospheric related test problems). Some of the desirable characteristics of WENO 

schemes include being able to stably preserve gradients, maintain non-oscillatory behaviour 

(although WENO schemes are not necessarily monotonic) by limiting dispersion error, and 

minimise dissipation of extrema near steep gradients and discontinuities through the use of 

nonlinearly weighted combinations of upwind, downwind, and centred (for some orders) local 

reconstruction polynomials for the fluxes. Examples are three third order fluxes for a fifth order 

scheme, four fourth order fluxes for a seventh order scheme, five fifth order fluxes for a ninth order 

scheme, etc., in regions of smooth flow, yet will maintain approximately third, fourth, fifth, etc. 

order near discontinuities, respectively; see references above, especially S97, for comprehensive 

explanations and descriptions for constructing WENO schemes.  

 

While the WENO schemes can produce excellent solutions for complex non-viscous problems, 

especially higher >O5 solutions, these schemes become increasingly computationally expensive, 

with floating-point operation FPOs numbers related to R to the third power, where order O = 2R–

1.  In comparison, the traditional comparably high order advection or flux schemes have FPO 
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numbers related to related to order of the scheme, and Crowley schemes have FPOs numbers 

related to the scheme order to the second power. Much of the computational cost of WENO 

schemes is associated with computing the smoothness indicators (e.g., S97; G09; Wu et al. 2020 

W20; Wu et al. 2021 W21). However, W20 and W21 recently described simpler, very accurate 

smoothness indicators (exact for sine-waves), which are much more efficient than traditional ≥ O7 

WENO schemes. The WENO-sine scheme makes the computational cost of implementing WENO 

related to R to the second power, rather than R to the third power for traditional WENO smoothness 

indicators. This cost need should not be considered excessively restrictive for using WENO 

schemes for numerical integration in studies of complex atmospheric problems and numerical 

weather prediction, as the flux computations are often only five to ten percent of the total cost 

(e.g., TML05). Finally, WENO schemes, as well as basic flux schemes, can be stably integrated 

in slow/fast mode-split models with various three-stage O3 Runge-Kutta schemes RK3 

(Williamson 1980; Shu 1988; Shu and Osher 1988; WS02; Baldauf 2008; where RK3 in general 

is O2 for non-linear system time integrations and O3 for only linear system time integrations; 

Purser 2007; Baldauf 2010; Lunet et al. 2017). 

 

A hybrid-WENO-Crowley odd order dimension-split scheme is also proposed in this study in an 

attempt to maintain the desirable characteristics of WENO schemes and offset a portion of the 

computational expense of the WENO scheme when used with Runge-Kutta time integration 

schemes. The proposed hybrid scheme simply uses O3–17 WENO fluxes for the advection flux 

terms, which are then coupled with the N-derivatives required for stability for Crowley schemes, 

with the N-derivative differenced with higher order constant grid fluxes. Time integration is stably 

carried out with the WS02 mode-split forward scheme for Crowley schemes. A higher order 

hybrid-WENO-Crowley scheme can allow for a combination of the desirable aspects of WENO 

schemes when simulating flows with sharp gradients and/or discontinuities and also be amenable 

to stable time integration with a simpler forward scheme, which reduces computational cost 
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relative to RK3 time integration. The hybrid-WENO-Crowley scheme can incorporate the W20 

and W21 WENO-Sine smoothness indicators to further reduce computational cost. 

 

Some motivating questions for this study include: 1) first and foremost, which of the high order 

numerical schemes discussed above can most accurately simulate the nonlinear diffusion-limited 

2D colliding plumes test problem by providing the most accurate representation of both physically 

important, but marginally resolved (6–10 ∆x) flow features, as well as well-resolved and smooth 

features of the solutions in their thermodynamic fields, kinetic energy fields, and derivative 

kinematic fields (e.g., deformation and vorticity), using O3–18 flux approximations and 25–166.66 

m spatial resolutions?; 2) which of these schemes can best accomplish high accuracy with high 

computational efficiency?; and 3) are there variations and combinations of these schemes that are 

more accurate and/or more efficient than the others? Objective error measures are obtained using 

the O17 flux scheme and 25 m grid resolution, nearly grid-converged, diffusion-limited solution 

of the 2D colliding plumes problem for a reference. The solutions all were integrated in time with 

relatively small timesteps to minimize temporal truncation errors. Both a brief description of the 

model and a description the design of the 2D colliding plumes problem are included in section 2. 

A reference solution as then described and serves as the basis for comparisons and visual 

comparisons and computed objective errors in section 3, as are the results and discussion of the 

results.  A summary of the findings and the conclusions are presented in section 4. 

 

2  |  METHODS  

The 3D fully-compressible model used in this study was based on the Euler equations cast in a 

conservative flux form for dry or moist dynamics on the staggered C-grid, following concepts 

discussed by Bryan and Fritsch (2002 BF02), Morrison and Bryan (2012), and B21, and nearly 

conserves mass and energy. Fast sound and gravity waves and slow advective and turbulent modes 

were split into a fast/slow time-split system of equations (Skamarock and Klemp 1992), and stably 
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integrated by including divergence damping on the fast-mode time steps (Skamarock and Klemp 

1992). The divergence damping coefficient was kept very small to minimise errors from its use 

(Lian et al. 2022). Importantly, divergence damping differencing has formal temporal and spatial 

accuracy of only O1 and O2, respectively. The turbulence scheme and spatial filtering were 

integrated in time with accuracy of O1 forward-in-time for Crowley, and O2 for nonlinear RK3 

time integrations by computing these terms on all three RK3 stages. Flux schemes used were the 

traditional constant grid flux, dimension-split constant grid flux Crowley (T87), and WENO flux 

(e.g., JS96; S97; BS00; G09). Turbulent-fluxes for all variables, except for pressure, were 

computed using O2 numerical approximations and a constant eddy-mixing coefficient, which 

allowed for a diffusion-limited nearly grid-converged reference solution when spatial (and 

temporal) resolution was sufficiently reduced. Extensive tests reported elsewhere (SWK23) 

showed that higher order (O4–18) numerical approximations for constant eddy-mixing for constant 

constant grid flux or Lagrangian integrated flux based SGS turbulent fluxes had little impact on 

RMS errors of fully compressible colliding plume solutions. The minimal impact of higher order 

SGS turbulent fluxes was a result, at least in part, of differencing errors with diffusion terms not 

being propagated as much each timestep as they are with advection terms, rather the diffusion term 

errors tend to be damped locally (e.g., personal communication B. Fornberg 2019). Spatial filtering 

was based on the family of filters described by P87. Note that the orders associated with the high 

order spatial filters is the order of the derivative they are associated with and not the spatial 

differencing accuracy; they all are O2 accurate in space as can be seen in Fornberg’s (1988) 

tabulations.  

 

A descriptive summary of all numerical schemes and physics are provided in Supporting 

Information as Table S1 (adapted from SWK23). The Courant-Friedrichs-Lewy (CFL) conditions 

and critical wave number for stable RK3 solutions with linear odd and even order O1–20 advection 

/ flux approximations following procedures described by Baldauf (2008), and for stable leapfrog 
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even order O2–20 advection / flux approximations following Straka and Anderson (1993) for 

comparison, are tabulated in Appendix A as Tables AI, AII, and AIII, respectively. All constant 

grid flux differencing, interpolation coefficients, staggered grid coefficients for pressure gradient 

and divergence calculations for O1–20 schemes, and filter coefficient for even orders O2–20 are 

tabulated in Supporting Information tables (S2a–d) along with instructions for reproducing the 

reported values. The reader is referred to JS96, S97, BS00, S03, Borges et al. 2008, and G09 for 

instructions to construct WENO schemes as well as all coefficients. Note that the non-linear 

weights for WENO schemes were found using improved methods from Borges et al. 2008, rather 

than those proposed by Jiang and Shu (1996). Additionally, the non-linear weights for O3, 7, 11, 

and 15 WENO schemes suggested by Castro et al. (2011) are used. Finally, a value of εmin = 1x10-

10 (BS00) is used to prevent division by zero in computation of the nonlinear weights for the 

WENO scheme, while a value of εmax = 1x1030 is used to keep the numerator in the weights from 

exceeding machine precision (64 bits). The exponent parameter p in the nonlinear weights for 

WENO fluxes can have an impact on the non-linear dissipation but not the formal accuracy of the 

WENO fluxes (e.g, JS96; W97; G09). This nonlinear dissipation can increase with an increasing 

p (e.g., G09), and thus, increasing the p can result in better control of overshoots at very sharp 

boundaries and shocks.  Traditionally, the value of the exponent of p=2 is used (e.g., JS96; S97; 

BS00, etc.), however, a value of p=r has been shown by G09 to result in more accurate solutions.  

The majority of WENO flux solutions shown and discussed herein are made with p=2, with test 

solutions produced and discussed for p=r.  

 

Results from a comprehensive suite of simulations of a dry nonlinear 2D test problem are presented 

to demonstrate the impact of very-high order finite difference flux, dimension-split Crowley flux, 

and WENO flux schemes made using odd/even order O3/4, O5/6, O9/10, O13/14 and O17/18 

numerical approximations (odd order only for WENO), combined with comparable even order 

Lagrangian interpolations for information required at off-grid point locations and even order 
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staggered pressure gradient/divergence approximations (one order higher for odd order schemes; 

e.g., for O17 advection, O18 interpolation/pressure gradient/divergence is used). Since most 

studies in atmospheric sciences use at most O2–7 advection/flux, the lowest order of numerical 

approximations shown are O3/4. Flux correction for diagonal advection (Clappier 1998) is not 

used for the Crowley solutions, nor was this relatively simple correction necessary, as was also 

found by WS02. Simulation results for O1/2, O7/8, O11/12 and O15/16 are not shown for brevity. 

A summary of the spatial resolutions (166.66… (hereafter 166.66), 133.33… (133.33), 100, 

66.66… (66.66), 50, 33.33… (33.33), and 25 m, time steps and domain parameters used herein, is 

presented in Table I. The orders of accuracy for fluxes, interpolations, and pressure 

gradient/divergence that comprise the simulation sets A–H are presented in Table II. All solutions 

were made with 64-bit mathematics, noting that round-off errors limit solution improvement 

beyond ~O17/18 or O19/20 for all schemes considered. Solutions in this paper were produced with 

the Intel compilers; 128-bit arithmetic and storage was not available with the latest Intel and GNU 

FORTRAN compilers. 

 

2.1  |  Efficient implementation of the Crowley schemes 

The computational efficiency of an N-order Crowley scheme with N derivatives can be 

substantially improved, especially when a model has many scalar dependent variables. Consider 

the O4 flux Crowley scheme, for example, with fluxes for grid index i for some variable b(i), given 

by  

 

Flux(i+1/2) =s1+s2+s3+s4,  

 

where,  

 

s1 = (a1)•(c11•b(i–1)+c12•b(i)+c13•b(i+1)+c14•b(i+2)), 
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s2 = (a2)•(c21•b(i–1)+c22•b(i)+c23•b(i+1)+c24•b(i+2)), 

s3 = (a3)•(c31•b(i–1)+c32•b(i)+c33•b(i+1)+c34•b(i+2)), 

s4 = (a4)•(c41•b(i–1)+c42•b(i)+c43•b(i+1)+c44•b(i+2)),  

 

a = u Δt / Δx, is the Courant number with velocity, time step, and grid spacing given by u, Δt , Δx, 

respectively, and S1–4 are the terms for the O1–4 fluxes, respectively. (Note the dot • denotes 

multiplication.) 

 

The fluxes can be rewritten for better computational efficiency as, 

 

Flux(i+1/2) = t1•b(i–1) + t2•b(i) + t3•b(i+1) + t4•b(i+2),  

 

where, 

 

t1 = a•(c11+a•(c12+a•(c13+a•(c14)))), 

t2 = a•(c21+a•(c22+a•(c23+a•(c24)))), 

t3 = a•(c31+a•(c32+a•(c33+a•(c34)))), 

t4 = a•(c41+a•(c42+a•(c43+a•(c44)))). 

 

The Crowley flux term here can be written with more compact notation as, 

 

Flux(i+1/2) = t(1)•b(i–1) + t(2)•b(i) + t(3)•b(i+1) + t(4)•b(i+2),  

 

where, 

 

t(j) = a•(c(j,i–1) + a•(c(j,i) + a•(c(j,i+1) + a•(c(j,i+2)))) for 

j=1,4. 
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Importantly, the values for t1, t2, t3, and t4, or t(j) in the improved efficiency version, only need 

to be computed once (twice) per time step for scalars (velocity and pressure) and can be reused for 

each scalar in the time step. Also, the variable “a” does not have to be repeatedly taken to an integer 

power. Furthermore, the improved efficiency version requires dependent variables at each index 

in the difference stencil for scalars to be accessed only once (for the O4 flux example a total of 

four dependent variable accesses versus 16), both of which can be very advantageous, in terms of 

computer CPU and cache use, especially in models with a large number of scalar dependent 

variables, which is often the case for models that include aerosols, microphysics, and chemistry. 

This procedure theoretically results in the computational cost for even (odd) order Crowley flux 

schemes being equal to (twice) the ‘traditional’ odd order flux computational cost each time the 

flux needs to be computed. In other words, the FPO numbers become linearly related to the scheme 

order rather that the scheme order squared.  

 

2.2  |  Two-dimensional colliding plumes test problem 

To compare the performance of a comprehensive suite of simulations using five numerical 

schemes, each with five orders of accuracy, and eight grid resolutions, a 2D nonlinear test problem 

with warm and cold spheroidal plumes colliding with each other above the ground was used. This 

problem was similar to the one described in Norman 2021 (N21), although with eight times smaller 

initial plume perturbation amplitude, as well as with inclusion of constant eddy-mixing SGS 

turbulent fluxes. The constant eddy-mixing SGS turbulent fluxes allow for a nearly grid-converged 

solution for nonlinear problems if the solution is high enough. In addition, the effects on solutions 

of a background mean wind of Ut = –20 m s–1 were also considered. As the plumes approach each 

other, vertical gradients are enhanced, and after colliding, both cold and warm air plumes spread 

out laterally while thermal and shear instabilities result in the development of prominent rotors. 

The solutions are symmetric in the horizontal, but they are not symmetric in the vertical owing to 
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vertical gradients in density, temperature, pressure, and sound speed. Rotors of different sizes 

develop as the plumes spread laterally, with the rotors tending to grow upscale owing to the 2D 

slab-symmetry geometry of the domain (e.g., Fjortoft 1953; Soong and Ogura 1973; Appendix B 

includes a figure, zoomed on the left member of the symmetric circulation couplet of the colliding 

plumes after 1000 s using O17 fluxes, and 16.66… m resolution, in which the features discussed 

with respect to the results herein are denoted (the upper and lower rotors, etc.) to facilitate solution 

of comparisons the schemes with various orders of accuracy and resolution. The 2D colliding 

plume simulations produce steep gradients with strong deformation, rotation, divergence and 

translation kinematic characteristics, which can significantly challenge numerical schemes. The 

colliding plume problem has physical features and attributes, such as very sharp gradients, 

deformation and rotational characteristics, and smoother flow regions, which spatial grids can 

resolve to varying degrees. All simulations were made without the complications of physical 

parameterizations other than the turbulence scheme with a constant eddy diffusion coefficient and 

selective higher order spatial filters.  

 

The atmosphere represented in the simulations is initially dry adiabatic (potential temperature 

equal to 300 K at all heights). The two plumes which collide are initiated horizontally in the centre 

(x = 10 km) of a 20 x 10 km x-z domain, which is periodic in the x-direction. The warm plume is 

centred at height z = 3050 m and the cold plume is centred at height z = 7050 m. The warm and 

cold plumes are prescribed by the same cosine squared function, but with potential temperature 

excess/deficit of Δθ = ±2.5 K, respectively. The radii of both plumes are 2000 (2000) m in the x- 

(z-) directions. All schemes were tested with grid resolutions of ∆x = ∆z = 25, 33.33, 50, 66.66, 

100, 133.33, 166.66 m. The time steps assume a constant Courant number (C = 0.046875) with the 

resulting time steps given as Δt = 0.078125, 0.1041166…, 0.15625, 0.20833..., 0.3125, 0.4166, 

and 0.520833… (Table I). With these values all solutions are stable, although all solutions were 

stable with Courant numbers as large as C = 0.12, and much larger if the number of small timesteps 
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was increased. The small Courant helped keep temporal truncation errors minimised, as discussed 

in SWK23. A constant eddy mixing coefficient (Km = 10.0 m2 s–1) was applied to all variables 

(except pressure), which allowed for a nearly grid-converged solution when ∆x = ∆z =25 m. A 

weak scale-selective O18 spatial filter (S82; P87; P88; K07) was applied in both x- and z-directions 

to perturbation values (from their base state; pressure was not filtered). The very small filtering 

coefficient used (𝛼𝛼 = 0.03) meant 2Δ spatial waves were damped 3% every time step.  For 

comparison, a value of 𝛼𝛼 = 0.24 is used in the Weather Research Forecast model (WRF; K07). The 

numerical spatial filter (P87) is very selective for higher wavenumber (small Δx) with coefficients 

for the O18 filter based on the two parameters R (rolloff) and S (smoothness); (R, S) = (18, 0) for 

all solutions in this paper. The spatial filter was not technically required to be as strong with odd 

order, upwind-biased flux scheme solutions as that needed for even order scheme solutions, and 

was not required at all for WENO scheme solutions, therefore, an intermediate filter coefficient 𝛼𝛼 

(held constant for all the schemes) was chosen so as to not overly smooth the odd order scheme 

solutions, or to not excessively under smooth the even order scheme solutions. Much lower values 

of 𝛼𝛼 were able to be used for odd order schemes where higher values of 𝛼𝛼 were found to be 

generally detrimental. On the other hand, the lower order even scheme solutions used in this paper 

would have significantly benefited from much stronger spatial filtering to remove large amplitude, 

high frequency numerical noise (dispersion error and aliasing) in the solutions presented. Use of 

stronger filtering for either odd and even higher order solutions would have resulted in unneeded 

and detrimental excessive damping of the higher order solutions. Use of a spatial filter with an 

order less than the order of advection/flux advection was always detrimental to the accuracy of 

solutions (P87, PL88), but the converse was not true.  

 

3  |  RESULTS AND DISCUSSION 

3.1  |  Reference solution 
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A nearly grid-converged reference solution (Fig. 1) was produced in order to make visual solution 

comparisons and calculate objective error measures based on a solution made using the odd order 

O17 upwind-biased constant grid flux, O18 spatial filter, O18 pressure gradient /divergence, 

constant eddy mixing coefficient Km = 10.0 m2 s–1, ∆x = ∆z = 25 m, and ∆t = 0.078125 s in order 

to make visual solution comparisons and calculate objective error measures. The idea of nearly 

grid-converged solutions herein means the flow and scalar fields become sufficiently resolved and 

smooth for the resolution such that the higher order derivatives become increasingly well posed 

and well behaved as a result of the constant eddy-mixing turbulent diffusion (or in other studies 

by flux-limiters; e.g., N21). As Park and Lee (2009) note, in the context of time differencing for 

nonlinear problems, “…the theory that a smaller time step with a low-order time-integration 

scheme can be better than an inefficient high-order scheme is supported only when the 

convergence rule is maintained” (i.e., for a linear problem). The same holds in the context of spatial 

differencing in that a higher spatial resolution with low-order spatial differencing can be better 

than a computationally intensive high order scheme. As a consequence of these concepts, 

“convergence” of nonlinear solutions in this study only means that the objective error measures 

are improving rather than converging at the theoretical linear convergence rates. 

 

Objective error measures such root mean square RMS errors and L∞ error norms (Fig. 2), computed 

for all schemes using the 25 m reference solution, for resolutions of ∆x = ∆z = 25, 33.33, 50, 66.66, 

100, 133.33, and 166.66 m and fluxes of O3/4, 5/6, 9/10, 13/14, and 17/18 were used to determine 

which resolution could be best used for a reference solution. In addition, Richardson extrapolation 

(not shown) based on the ∆x = ∆z = 25 and 33.33 m solutions was used, as in Straka et al. (1993; 

S93), to support that the test problem solution was sufficiently grid-converged with O17 numerical 

approximations and ∆x = ∆z = 25 m resolution. Note that, phase errors (which vary with each 

scheme, as some of the solutions were not completely grid-converged for the nonlinear test 
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problem) produced localised differences amongst the schemes. For example, in some test 

solutions, there were local differences from the reference solution of up to ~0.21 K in the 

perturbation potential temperatures, even though the simulation extrema (Lmax and Lmin error 

norms calculated against the reference solution) were identical to about four digits for all variables. 

Finally, as described in SWK23 for this colliding plumes problem, the L1 error norms for 

perturbation potential temperature between O(3–17), 33.33 m simulations and O17, 25 m 

simulation, were ~4.12x10–3 to 1.16x10–3, while L1 error norms between the O3–17, 50 m and 

O17, 25 m solutions, ranged from ~4.81x10–3 to 3.79x10–3. These error norms met the Zhang et 

al. (2003) L1 error norm < 0.01 criteria to indicate near-convergence for their viscous Rayleigh-

Taylor problem. The L1 error norms 3.71x10–2 to 2.64x10–2 between O3–17, 100 m solutions and 

O17, 50 m solutions indicated that the 100 m solutions were not near-convergence based on the 

Zhang et al. (2003) criteria.  

 

Using a spatial resolution of ∆x = ∆z = 25 m with any of the schemes produced maximums and 

minimums in the perturbation potential temperature, winds, and perturbation pressure fields that 

were generally within 0.51% of each other, with the O17, 25 m Crowley solution having the largest 

of these differences and largest RMS errors, and the O18 flux, O17 WENO, and O18 Crowley 

having the smallest differences and RMS errors from best to worst, respectively. Regardless, any 

of these ∆x = ∆z =25 m solutions made with O17/18 numerical approximations from any of the 

schemes in Set A were nearly indistinguishable and had very nearly identical maximums and 

minimums for up to three to four digits, as well as comparable RMS errors and L∞ error norms. As 

a result, any of the O17/18, 25 m solutions made could have been used as a reference solution, 

without any change in the conclusions based on objective error measures (and visual appearances; 

analyses with different reference solutions are not shown for brevity). The O9/10–17/18, solutions 

made with ∆x = ∆z = 25 also were visually, very nearly indistinguishable from the reference 

simulation solution without any added mean wind, as were the O13/14–17/18, 25 m solutions made 

 1477870x, ja, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4579 by <
Shibboleth>

-m
em

ber@
reading.ac.uk, W

iley O
nline L

ibrary on [06/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



with an added mean wind of Ut = –20 m s–1. Finally, it should keep in mind that numerical errors 

of any sort can result in buoyancy and shear instabilities to be erroneously excited or damp in 

problems such as the colliding plumes problem, single plume problems (Grabowksi and Clark 

1991), etc., and can complicate discernment of differences owing to physical causes from those 

caused by numerical solution errors (Zhang et al. 2003). 

 

3.2  |  Comparisons without an added mean wind (Set A) 

The results from all of the schemes, without an added mean wind were compared at t = 1000 s by 

examining solutions from all schemes made with comparably high order interpolation and pressure 

gradient/divergence approximations, same O18 spatial filter, same Courant number C, and Δx = 

Δz = 100 m for perturbation potential temperature (Fig. 3; Set A). Additional comparisons at t = 

1000 s are shown for solutions with enhanced focus on in the vicinity of the marginally resolved 

upper rotor (Figs. 4–8)  where the largest errors generally occurred for the odd order Crowley (Co; 

note even order Crowley Ce not shown in Figs. 4–8, but included in Supporting Information S3), 

odd and even constant grid flux (Fo and Fe, respectively), and WENO (W) flux schemes, 

comparable order interpolations and pressure gradient/divergence, same O18 filter, same Courant 

number C, and resolutions of Δx = Δz = 33.33, 66.66, and 100 m for perturbation potential 

temperature (Fig. 4), difference plots of between the upwind-biased constant grid flux O17, 25 m 

reference solution and test solutions (Fig. 5), kinetic energy per unit volume [Fig. 6; KE = 0.5 �(ui 

• ui)], 2D vorticity in the xz-plane [Fig. 7; (Δu/Δz-Δw/Δx)  hereafter vorticity), and total magnitude 

of 2D deformation in the xz-plane {Fig. 8; [ [(Δw/Δx+Δu/Δz)2 + (Δu/Δx–Δw/Δz)2]1/2 ; hereafter 

deformation}, where ui are the i=1,2,3 (u,v,w) velocity components in m s–1, and 𝜌𝜌 is the dry air 

density in kg m–3.  
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As expected, higher order numerical approximations produce visually better results with respect 

to the upwind-biased constant grid flux O17, 25 m reference solution for all schemes for Δx = Δz 

= 33.33, 66.66, and 100 m resolutions, especially in terms of preserving the shape of the rotors. 

All odd / even flux and odd / even order Crowley schemes, especially the ≥ O9/10 higher order 

odd and even schemes, and ≤O6 even schemes, using resolutions of 66.66 and 100 m (as well as 

50, 133.33 and 166.66 m not shown) produced notable (~ ≥1%; locally as high 20–40%) 

overshoots in the maximums and minimums of perturbations compared to the reference solution, 

while these overshoots were only found in the ≤O5, 25 and 33.33 m solutions (former not shown). 

In contrast, the ≤O9, 100 m, and ≤O13, 50 (not shown) and 66.66 m, the ≥O17, 25 (Fig. 1) and 

33.33 m (Supporting Information Figure S4a) WENO flux solutions did not produce notable (~ 

≥1%) overshoots in the maximums and minimums of perturbations compared to the reference 

solution. These behaviours are generally in agreement with G09 where ≤O9 WENO fluxes had 

few or no overshoots in the maximums and minimums of the scalar quantity (nearly monotonic), 

while ≥ O13 WENO fluxes did (not monotonic).  

 

In spite of the overshoots, which tended to be very localized, the higher order solutions had better 

overall amplitude and phase errors, as well as better objective error measures including RMS errors 

and L∞ error norms for potential temperature and KE made using the constant grid flux O17, 25 m 

reference solution (Fig. 2; RMS and L∞). The RMS errors for potential temperature and KE fields 

for all schemes made with Δx = Δz = 100 m are also shown in Table III. By t = 1000 s, most 

schemes for the nonlinear problem used in this paper converged at best at ~O2 except for some 

very high order and fine resolution solutions where convergence was ~O3 and occasionally higher, 

(Fig. 2) with convergence rates slowly flattening at higher resolutions for <O17/18, but not for 

O17/18. This is similar to what N21 showed for nonlinear, shock-producing, 1D Euler simulations.  
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While many simulations were able to reasonably capture the resolvable and marginally resolved 

characteristics of the flow with Δx = Δz = 100 m (Fig. 3) or 133.33 m (not shown), and appear 

fairly similar between schemes, among like-schemes, among like-order of accuracy, and especially 

among the odd order schemes (Fig. 1 and Figs. 3–8), as well as among the even O10, O14, and 

O18 schemes, the perturbation potential temperature differences fields (Fig. 5) show some very 

large local differences, which were typically ~1– 2 K and occasionally larger than  ± 3 K. These 

errors probably owe to a combination of phase and amplitude errors, and numerical dispersion and 

dissipation along with aliasing, all of which might not be fully appreciated from visual 

examination. The regions with the largest errors were especially in the regions around the 

boundaries of the smaller (less resolved) upper rotor and near the front and back edge of the 

outward (left-ward) propagating front beneath the upper rotor. Comparisons of maximums and 

minimums of the velocity components (not shown) have differences of 8–10% between similar 

order schemes (e.g., O17/18), as high as 15% for a given scheme amongst the all of the orders 

discussed, and an overall maximum difference of 15%. The differences in the pressure fields 

among the schemes were generally <5% (not shown).  

 

Even order constant grid flux and even order constant grid flux Crowley schemes, especially the 

low order (O4 and O6) forms, have more prominent high frequency wave numerical noise, which 

can cause excitation of physical instabilities as the numerically induced high frequency waves are 

not well controlled. These types of errors can disrupt the evolution of the larger scale features and 

produce unphysical solutions, as well as exaggerated maxima, minima, etc. Importantly, the 

Crowley schemes have some advantage over the constant grid flux solutions in terms of reduced 

dispersion errors, though the Crowley schemes tend to have slightly more dissipation errors. 

Nevertheless, the O14 and O18 constant grid flux and constant grid flux Crowley schemes have 

some of the best objective error measures (objective errors for Δx = Δz = 100 m are tabulated in 

Table III, while objective errors for Δx = Δz = 100, 66.66, and 33.33 m are also tabulated in Table 
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IV along with CPU timings which are discussed later), and these were very slightly better than 

O13 and O17 odd order schemes. In contrast, odd-order constant grid flux numerical 

approximations have much less obvious dispersion/phase and aliasing errors than even order 

schemes (especially for <O10 fluxes), appear relatively free of numerical noise, and have the best 

overall visual performance and objective error measures for all orders.  

 

Notice that the O13–17 WENO solutions using Δx = Δz = 100 m (Fig. 3) tend to produce a 

perturbation in the potential temperature field on the top left side of the interface, while none of 

the other solutions produce this perturbation. This same perturbation appeared in the non-viscous 

WENO colliding plume solutions described by N21, and appears to be associated with numerically 

accentuated shear and buoyancy gradients, both of which were already large, causing an 

unphysical feedback, based on the behaviour of the reference solution and WENO simulations 

with finer resolutions of Δx = Δz = 25, 33.33, 50, and 66.66 m for guidance, none of which have 

this perturbation. The objective measures (Fig. 2; Table III) show that error improvement stops 

and gets worse as order is increased from O13 to O17 for the 100 m WENO solutions, while all of 

the other schemes continue to have improved errors with increasing order. In contrast to the > O5 

WENO solutions, as well as the other odd solutions with the non-WENO schemes, the O3–5 

WENO solutions and especially the O3 WENO solutions, appear overly smooth with significantly 

smaller amplitude maxima and minima (Fig. 3–8). Moreover, the O3–5 WENO solutions (Fig. 2) 

are not as accurate as the odd order flux scheme solutions either visually or with objective error 

measures. The damped O3–5 WENO solutions herein are consistent with the well-known issue of 

excessive damping of gradients with O3–5 WENO schemes documented by, for example, Latini 

et al. 2006 and Wang et al. 2021 (WPM21). Though not shown for brevity, it is important to note 

that the WENO simulations show the well-known exceptional behaviour of preserving strong 

gradients both with and without artificial viscosity (eddy mixing and/or spatial filters), while the 

other schemes, especially the even order schemes, need spatial filtering.   
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Overall, considering all orders-of-accuracy and all resolutions tested, the results discussed for the 

case of no added mean wind (Set A) show that odd order constant grid flux schemes perform the 

best against the reference solution (as might be expected since the reference solution is obtained 

using the odd order constant grid flux scheme with O17, and 25 m). Additionally, the O10–18 even 

order constant grid flux schemes performed remarkably well for intermediate and finer grid 

resolutions (∆x = ∆z = 33.33–100 m). However, the O4–6 even order constant grid flux solutions, 

and to a very slightly lesser degree the O4–6 Crowley schemes, produced solutions that were all 

very noisy and contaminated with significant dispersion and aliasing errors, the latter noticeable 

in the presence of prominent 3∆ waves, both visually identifiable and in power spectra of the 

velocity components, KE, vorticity, and potential temperature (not shown). 

 

Visual inspection of the solutions in Fig. 1 and Figs. 3–8 shows that increasing the order of 

accuracy of approximations used to make the solutions by two to four orders is roughly comparable 

to making the resolution 1.5–3 times finer, consistent with Shi et al. (2003), Latini et al. (2006), 

and SWK23. All O9–17 solutions with Δx = Δz = 50 m (not shown) and 66.66 m appear nearly as 

good visually and perhaps better than the O3–5 solutions made with Δx = Δz = 33.33 m (factor of 

1.5–2; in particular, see difference fields between 25 m reference and test solutions for perturbation 

potential temperature in Fig. 5). 

 

The computational cost is approximated for each scheme from a theoretical perspective to avoid 

computer / compiler dependence as total floating-point operations (FPO) per grid point per time-

step step for the three-stage RK3 mode-split time integrations using two, three, and six fast mode 

small time steps per slow-mode time step, for stages one, two and three, respectively times the 

number of grid points times the number of time steps (Fig. 9). The use of order of accuracy 

preserving interpolations and pressure gradient / divergence calculations results FPO numbers 
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beyond those compared to using O2 interpolations and pressure gradient / divergence calculations 

as is traditionally done in most atmospheric models. Overall accuracy does not seem to be degraded 

if ≥O4 is used for the interpolations and pressure gradient / divergence calculations, but is for O2 

(SWK23). Importantly, the use of O4 for the interpolations and pressure gradient / divergence 

calculations results in many fewer FPOs compared to use of comparable order of accuracy for 

these calculations (SWK23). Note the approximate linear increase with order of FPOs per grid 

point per time-step step for the flux and Crowley schemes, cubic increase for WENO schemes, 

and quadratic increase for WENO-sine solutions (discussed in section 3.4.2). The total FPOs in 

the graphs of Fig. 10 were all normalised by the Δx = Δz = 166.66 m O4 constant grid flux scheme 

FPO value (the lowest value of all schemes and resolutions considered) and are based on keeping 

the Courant number constant, and provides the basis which provides a relative computational cost 

for each scheme using with O3/4, 5/6, 9/10, 13/14, and 17/18 order numerical approximations and 

resolutions of Δx = Δz = 25, 33.33, 50, 66.66, 133.33, and 166.66 m, relative to the RMS errors 

for perturbation potential temperature and KE (Fig. 10). Use of a time step based on the stable 

CFL rather than a constant Courant number, becomes more complex, especially for the lower order 

(≤O5/6) solutions. First, temporal truncation errors tend to increase with longer time steps for this 

problem (e.g., SWK23). Second, the solutions take less time with longer, which might offset the 

impact of larger temporal errors.  

 

Comparisons of computational costs based on FPOs versus potential temperature and KE RMS 

errors for all solutions is best seen graphically, which shows that the solutions with the best 

objective errors for the computational cost are solutions made at the finest resolutions with highest 

even order flux, odd order flux, (Fig. 10), even order Crowley solutions, while WENO solutions 

had significantly larger computation costs (Fig. 10). Clearly, except at the highest orders and high 

resolutions, most schemes are not cost-effective based on the use of the theoretical FPOs. Using 

near the maximum stable CFL only worsens the cost-effectiveness for each scheme. The lack of 
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cost-effectiveness seems to be associated, at least in part, with the diffusion limited nature of the 

problem and temporal errors, especially temporal errors with the filter, as discussed in SWK23.  

 

Fortunately, owing to efficient computer cache use, which can be machine dependent, can allow 

for significant cost-effectiveness with higher order schemes as described by, for example, Balsara 

an Shu (2000) and Shi et al. (2003), who showed CPU times being up to two or more times less 

than when estimated from FPOs. In this study, attempts at careful programing resulted in better 

use of faster computer caches and reduced cost for all schemes compared to expectations based on 

FPOs. Values for the CPU times for each scheme order along with RMS errors for perturbation 

potential temperature (top right of each cell) and KE (bottom left of each cell) are presented for 

100, 66.66, and 33.33 m solutions in Table IV. The first set of values in the top left of each cell 

for each scheme order are CPU times for only the flux stencil + pressure gradient stencil + 

divergence stencil + interpolation stencil calculations and next to the CPU time in bold is the ratio 

to the lowest order scheme (O3/4) in the row. The second set of values in the bottom left of each 

cell for each scheme order are CPU time for only total advection + total small step + total buoyancy 

and next to the CPU time in bold is the ratio to the lowest order scheme (O3/4) in the row. The 

CPU for the SGS turbulent flux and spatial filter calculations are the same amongst Crowley 

solutions and same amongst RK3 solutions for any given resolution and included in the caption of 

Table IV. Efficient computer cache use, for example using the 100 m odd flux simulations, resulted 

in the ratio of the CPU time for O17 to O3 stencil calculations to be roughly only ~3.6, when 

theoretically using FPOs the ratio would be ~6.6 (note the flux FPOs in Fig. 9 included all 

calculations for fluxes, where in contrast only the stencil calculations were considered for this 

discussion). All calculations, including overhead calculations (e.g., dt/dx, map factor, density in 

the flux divergence term, etc.) needed to update dependent variables with fluxes, pressure gradient, 

and divergence, are significant, similar among the Crowley time integrations, similar among the 

RK3 time integrations, and are included in the second number in each table cell to help show why 
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high order solutions do not dramatically increase total CPU time in comparison to much lower 

order solutions. In another comparison, the O17 WENO flux solution CPU times (Table IV, second 

number), which were dominated by the flux calculations (84–93% for O3–17 WENO fluxes, 

respectively), use only about ~1.5–2 times more CPU time (domain size dependent) than O3 

WENO solutions, in contrast to using FPOs, for which the O17 WENO solutions could be expected 

to use ~10 times more CPU time that O3 WENO solutions. This made the WENO schemes much 

more attractive in terms of CPU time use compared to what could be expected using theoretical 

FPOs. The results in Table IV also show that the use of CPU times rather than FPOs to estimate 

cost-effectiveness allows some higher order schemes to be more competitive, at least visually, and 

not much more CPU compared to lower order schemes. Finally, while use of higher order 

numerical approximations, at least for the colliding plume problem, is not always be cost-effective, 

higher order numerical approximations can provide more accurate to much more accurate solutions 

when resolution is not changed, or cannot be changed for reasons such as limits associated with 

available computer memory. 

 

3.3  |  Comparisons of solutions with an added mean wind of –20 m s–1  (Set B) 

Additional simulations, with an added mean wind of Ut = –20 m s–1, were compared at t = 1000 s 

for all schemes made with comparably high order interpolation and pressure gradient/divergence 

approximations, same O18 spatial filter, same Courant number C, and Δx = Δz = 25–166.66 m. 

Use of the added mean wind proved to be more of a challenge for all schemes, as seen in the 

perturbation potential temperature fields (Fig. 11). As with the solutions without the added mean 

wind, additional comparisons were made between solutions at t = 1000 s in the vicinity of the 

marginally resolved upper rotor where the largest errors generally occurred for the odd order 

Crowley, odd and even order constant grid flux, and WENO flux schemes, with comparable order 

interpolations and pressure gradient/divergence, same O18 filter, same Courant number C, and 
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resolutions of Δx = Δz = 33.33, 66.66, and 100.00 m for perturbation potential temperature (Fig. 

12) and kinetic energy per unit volume (Fig. 13). 

 

The odd order constant grid flux, odd order constant grid flux Crowley, and WENO flux schemes 

produced the better solutions than the even order constant grid flux and even order Crowley 

schemes for all orders-of-accuracy, in terms of rotor shape preservation and amplitude and phase 

errors, when compared to solutions without an added wind and to the reference solution from the 

simulations without the added wind (theoretically, the solution should be the same with and 

without an added mean wind due to Galilean invariance; however, the mean wind adds a further 

challenge to the numerical schemes not present in the no-wind simulations.) Unsurprisingly, the 

phase errors, which are enhanced by strong advection from the added mean wind, were minimised 

with the higher order approximations. The degree of improvements, which are notable and 

continued up to O17/18, and were somewhat unexpected. Some minor loss in symmetry in the 

rotor shape and flow fields (features on left side versus right side of domain) occurred with all 

schemes, especially with the even order schemes and spatial resolutions of 100, 66.66, and 33.33 

m (all schemes and all orders are shown in Supporting Information S4) for the simulations with 

the added mean wind owing to variations in dispersion and phase errors in the parts of the solutions 

moving with and opposing the flow, especially for lower order even flux schemes. The even order 

Crowley schemes produced less asymmetries than for even order flux schemes, while the WENO 

schemes produced the least asymmetries at any order for any accuracy at any given resolution 

compared to the odd / even Crowley and odd even flux schemes. The asymmetries decreased with 

both increasing scheme orders and spatial resolutions but were still present for spatial resolutions 

of 33.33 m, however they were barely visible (Supporting Information S4).   

 

Interestingly, the apparent phase errors (based on visual assessment of the placement of the leading 

potential temperature front (relative to the reference solution, dashed contour) are the smallest in 
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the O17 WENO solutions made with Δx = Δz = 100 m (Fig. 11) compared to all of the other 

solutions for this resolution regardless of the order of accuracy with which they were made. 

Additionally, the O5, 9, 13, and 17 WENO solutions also tend to have the lowest RMS errors 

(Table III) for potential temperature and KE among the schemes for Set B. However, the O3–5 

(and to a lesser degree O9) WENO solutions with the added mean wind have the worst visual 

appearance, followed by the O3 and O5 Crowley solutions, even at finer resolutions of Δx = Δz = 

50 and 33.33… m (not shown). The solutions made with even order flux finite difference schemes, 

and to a slightly lesser extent the even order Crowley schemes, were adversely affected by 

dispersion/phase and aliasing errors, especially those with <O10 numerical approximations, and 

much more so than the odd order scheme solutions. Additional spatial filtering (factor of 10 or 

more, higher) was needed with lower order even-centred constant grid flux schemes to control 

adverse dispersion and aliasing, etc. errors (not shown) enough to make them as visually free of 

numerical noise as the odd order solutions. However, increasing filtering strength can adversely 

affect the overall accuracy, especially when evaluated in terms of amplitude error. In summary, 

the results with the added mean wind simulations showed that the highest order odd order schemes 

as well as the very highest order (≥ O9) even order schemes, were remarkably accurate and had 

minimal numerical noise for the case with an added mean wind.  

 

3.4  |  Constant grid, Crowley, and WENO flux advection scheme hybrids and variations 

Several variations of odd order versions of constant grid, Crowley, and WENO flux schemes are 

evaluated next, as are various hybrids of these schemes, including a hybrid-WENO/Crowley 

scheme. Additionally, the WENO flux schemes, integrated with three-stage O3 RK3 time 

integration schemes, slowly continue to gain use in the atmospheric sciences. Given the high 

computational cost of numerical weather models, WENO and other schemes sometimes have been 

used with “short-cuts” to improve efficiency. However, the evaluation of the impact of any 

detriment to the scheme accuracy associated with some of these implementation practices to 
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improve computational efficiency, has not always been demonstrated and/or documented for either 

linear or nonlinear atmospheric problems. The impacts of some of these implementations are 

presented in Sets C–H using ∆x = ∆z = 100 m resolution. 

 

3.4.1  |  WENO smoothness indicator power  (Set C) 

Gerolymos et al. (2009) showed examples WENO of solutions with up to O17, in which the 

WENO scheme smoothness indicator exponent parameter by p = R (denoted as WR), where order 

of accuracy O = 2R–1, rather than the traditional value of p = 2 (JS96; BS00; G09). (Note for O3 

WR and W are the same with R= 2 for both). Briefly, the O5–17 WENO flux solutions shown by 

G09 made using a value of p = R were generally more monotonic, and more accurately captured 

the solutions in regions of very sharp boundaries/shocks for linear and nonlinear 1D problems 

compared to solutions made with p = 2. Comparisons of examples of WENO flux scheme solutions 

presented herein with the smoothness indicator exponent parameter given by p = R (hereafter 

denoted as WR), instead of the traditional value of p = 2 (e.g., JS96; S97), and ∆x = ∆z = 100 m 

resolution, showed that the perturbation potential temperature field maximums and minimums in 

the for O5, 9, 13, and 17 WR solutions did not over shoot values (e.g., were more monotonic) 

found in the reference solution. In contrast, for example, the perturbation potential temperatures 

maximums and minimums in the O17, 100 m solutions made using of p = 2 (the worse-case) by 

4.7 and 23.1%, respectively. These precents decreased in the O17, 66.66 m (50 m) resolution 

WENO flux solutions (p = 2) to 2.6% (1.6%) for perturbation potential temperature maximums, 

with no overshoots for the minimums for either 66.66 or 5m. Minimising overshoots and better 

monotonic behaviour by using p = R was one of the defining impacts shown and discussed by 

G09. However, RMS errors were somewhat degraded for O5, 9, and 13 WR perturbation potential 

temperature and KE solutions herein using p = R (Fig. 14 rows one–three, WR, zoomed as in Figs. 

4–8; Table III), although somewhat improved in for O17 WR solutions, as compared to WENO 

with p = 2 (see Figs. 4–6. It seems that using p = R may have overdamped the solutions at 100 m 
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resolutions resulting in larger RMS errors. Finer resolution solutions (e.g., ∆x = ∆z = 66.66 and 

50 m) made using p = R (Fig. 14 rows five–six as in Fig. 3) showed somewhat less damped 

solutions compared to solutions made using 100 m resolution and p = R (Fig. 14 rows four as in 

Fig. 3), with no overshooting maximums and minimums of perturbation potential temperatures for 

≤O13, WR solutions, although there were minor overshoots for the O17, WR solutions as noted 

above. These higher resolution, WR solutions still had larger RMS errors than found using WENO 

p = 2. In addition, the ≥O13, 66.66 and 50 m resolution solutions had enhanced shear instabilities 

on the warm-cold air interface, resulting in small-scale rollups, which were not found in the 

reference solution. The rollups seemed to be less apparent as resolutions were made finer where 

diffusion could control them better, and eventually converged to the reference solution, but at finer 

resolutions than required for WENO solutions made with p = 2. In summary, the use of p = R in 

computing WENO fluxes produced potentially both worse and better solutions are possible for the 

complex dynamical problem employed in this paper depending on resolution, SGS turbulence, 

WENO flux order, and the error metrics of most interest. Although the WR solutions were more 

likely to be monotonic, they had larger RMS errors, and the higher order (≥O13) solutions had 

more shape differences from anomalous shear instabilities at intermediate resolutions, both of 

which contributed to the larger RMS errors.  

 

3.4.2  |  Accurate and more efficient smoothness indicators for WENO schemes  (Set C) 

Recently proposed and demonstrated, efficient, sine wave-based WENO smoothness indicators 

(exact for sine waves; hereafter WS; W20 and W21; note that the coefficients suggested by W21 

were recomputed and corrected for this paper owing to a couple of typographical errors in W21), 

for R ≥ 4 (≥ O7) WENO schemes (with comparable order interpolations and pressure 

gradient/divergence), provided visually better solutions (Fig. 14, rows eight-ten, WS; zoomed as 

in Figs. 4–8) for perturbation potential temperature and KE fields, as well as better objective error 

measure results (Table III) when compared to solutions with the traditional smoothness indicators 
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for O9, 13, and 17 WENO schemes given by JS96, BS00, and G09. Importantly, the anomalous 

perturbations in the inner front on top of the lower rotors in the original O13 and O17 WENO 

solutions are not produced and the maximums and minimums are much better behaved with 

WENO-sine scheme (compare row five in Fig. 3 with row ten in Fig. 14). (Solutions for cases with 

and without a mean wind for resolutions of 33.33, 66.66, 100 m are provided in Supporting 

Information S3, and for the nearly full domain, with and without a mean wind, for resolution of 

100 m and for with a mean wind for resolutions of 33.33 and 66.66 m are provided in Supporting 

information 4). These newer smoothness indicators required increasingly fewer computations per 

grid point per time step with each increase in R when compared to traditional WENO schemes of 

equivalent order as there are three versus R for each stencil for R ≥ 4. The results herein are in 

agreement with the findings of W21 who stated that a value of p = 1 provided the best solutions 

for the power with their smoothness indicators. The use of either p = 2 or p = R (in general > 1) 

with the W21 sine-based smoothness indicators degraded the results for the perturbation potential 

temperature and KE fields (not shown), as W21 found and explained. These results support the 

use of the W21 sine-based WENO scheme smoothness indicators for the colliding plumes test 

problem as formulated as they provided more accurate WENO type solutions using fewer FPOs.  

 

3.4.3  |  Lower WENO approximations for stage 1 and 2 of RK3 time integrations (Set D) 

One way to reduce the computational cost of implementing very high order advection schemes 

that are coupled to multi-stage time schemes is to use lower-order flux approximations, for 

example, in the 1st and 2nd stage calculations of the RK3 time scheme, followed by a very high-

order advection scheme for 3rd stage. As an example of the impact of this procedure, Gadd’s (1978) 

multi-dimensional implementation of an O4 advection scheme with a two-step Lax-Wendroff 

time-integration scheme, used O2 advection for the first Lax-Wendroff  “half time step”, followed 

by O4 advection in the second Lax-Wendroff  “half time step”, maintained the high order accuracy 

of the O4 advection.  
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The use of Gadd’s approach of computing lower order advection on all but the last stage of a multi-

stage time step, was applied herein on the 1st and 2nd stages of RK3/WENO integrations and is 

shown to be stable and accurate for the combinations considered. Specifically, tests were made for 

five examples with orders for the RK3 time integration stages one: two: three given by O3:3:17, 

O5:5:17, O9:9:17, O13:13:17 and O17:17:17 (Fig. 15, rows one-three, WL; zoomed as in Figs. 4–

8). The results from these experiments show that requiring the same high order advection/flux be 

used for each RK3 stage is not necessary, at least from a practical view, based on perturbation 

potential temperature and KE fields (Fig. 15), and objective error measures (Table III; compare 

the values in each column with the values in the last column, as all solutions have O17 for the third 

stage of the RK3 time integration). Interestingly, the errors were often slightly improved for the 

most part for the O3:3:17, O5:5:17, O9:9:17 WENO solutions compared to using O17 WENO for 

all three RK3 stages. For the WL results, the order of accuracy of the interpolations and pressure 

gradient/divergence at each stage were all kept the same as the ones used in the last (third) stage 

of RK3 time integration; i.e., they were all compatible with the highest order scheme used in the 

last (third) stage of RK3 time integration, which was O18 for these WL results.  

 

Unsurprisingly, solutions with high order WENO flux for the first two RK3 stages and low order 

WENO flux for the third stage (i.e., O17:17:3–13; Fig. 15, rows four–six, WH solutions; Table 

III), only shown for demonstration purposes, generally did not improve the solutions, when 

compared to those produced with WL solutions or those with the same order of WENO flux at 

each RK3 stage. The solutions were made with interpolations and pressure gradient/divergence 

that were either O18 for all stages (Fig. 15 for WL and WH solutions) or the lowest comparable 

order of accuracy of any of the three stages (not shown; errors provided in Table III). This 

demonstration shows that using higher order WENO fluxes, on the 1st and 2nd, than those on the 

3rd stage, regardless of the order of accuracy of interpolations and pressure gradient/divergence 
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that were considered, generally did not improve the appearance or objective measures of the 

WENO solutions. However, solutions for the same order-N WENO fluxes for all three RK3 stages 

were about the same as using order < N flux on the first two RK3 stages (WL scheme), making 

the use of WENO potentially much less computationally expensive. Although not tested for other 

schemes in this paper, these results are expected hold for any of the other schemes besides WENO 

fluxes considered herein.  

 

3.4.4  |  WENO approximations for scalars and constant grid flux for velocity and pressure 

and vice versa (Set E) 

A set of experiments were made using WENO flux only for scalars and constant grid flux for 

velocity and pressure to determine if these are as accurate as using WENO flux for all variables. 

While this might not be true for non-viscous problems, especially those with shocks, it might hold 

for smoother diffusion-limited problems. Both Pressel et al. (2015 P15) and WPM21 commented 

that they did not find degradation of solutions when comparing solutions made with WENO fluxes 

on only scalars compared to solutions made with WENO fluxes for scalars, velocity and pressure, 

but neither showed these results as both studies focused on other issues. Both also noted that 

perhaps the reason for the minimal impact when WENO was not used for velocity fields was that 

velocity fields tend to be smoother than scalar fields. Simulations with the test problem herein 

using WENO flux for scalars only (e.g., only potential temperature, but not pressure, which is 

strongly coupled to velocity for sound waves; arguably, potential temperature is also strongly 

coupled to velocity for gravity waves through buoyancy), and comparably high order odd order 

upwind-biased constant grid fluxes for velocity and pressure resulted in perturbation potential 

temperature and KE fields (Fig. 16 rows one–three Ws Fv; zoomed as in Figs. 4–8; Table III) that 

were better objectively than those that used WENO flux for all variables (Table III). However, the 

perturbation potential temperature field was somewhat distorted, although the 0.2 K contour of the 

potential temperature appeared to capture the upper rotor better. The potential temperature 
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difference fields in the upper rotor were improved, perhaps more for O13–17, when compared to 

results with WENO flux for all variables in Fig. 5.  

 

Simulations with WENO for scalars and constant grid flux for velocity were repeated except using 

constant grid flux for scalars and WENO flux for velocity and pressure Fig. 16, rows 4–6 Fs Wv; 

zoomed as in Figs. 4–8), which interestingly produced solutions with somewhat worse visual 

appearances in terms of the shape of 0.2 K contour for potential temperature as well as in some 

parts of the potential temperature difference fields on the inside and around the base of the upper 

rotor. In contrast, as in the case for Fv Ws solutions, these Fs Wv solutions also had better objective 

errors for the all solutions for both perturbation potential temperature and KE fields than the 

solutions with WENO fluxes on all variables (Table III). The generally reduced objective errors 

were related to the much better reproduction of the overall amplitude of potential temperature 

fields compared to the reference solution, even though the Lmax and Lmin values for KE were not 

reproduced as well as in the Fv Ws experiments or experiments using WENO for all fluxes. These 

results were mixed in terms of supporting the use of WENO only for scalar fluxes, or only for 

velocity and pressure, rather than all fluxes, as objective errors were reduced for some measures, 

but various aspects of solution appearance were found to be worse for the colliding plumes test 

problem as formulated. 

 

3.4.5  |  Number of derivatives for Crowley schemes (Set F) 

Smolarkiewicz (1982) successfully developed dimension-split/time-split 3D and explicit cross-

derivative Crowley schemes, which use any order approximation for the advection and O2 

approximations for the stabilising second derivatives. Tremback et al. (1987), similar to C68, 

further developed the dimension-split/time-split 3D Crowley schemes by adding stabilising 

derivatives up to O10 for both odd and even order O1–10 Crowley schemes (N-stabilising 

derivatives for an N-order scheme). Test simulations made for this paper with O3, 5, 9, 13, and 17 
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Crowley schemes using only the second stabilising derivative (N = 2), rather than all N stabilising 

higher derivatives for an N-order Crowley schemes, produced solutions for perturbation potential 

temperature and KE fields (Fig. 17 row one and two, C2; zoomed as in Figs. 4–8; Table III; note 

the traditional Crowley solutions with N-derivative for an N-order scheme are shown in Figs. 3 

and 4) that were virtually indistinguishable from each other, both visually and objectively (the 

schemes with N-higher derivatives were nearly identical or very slightly better objectively for 

some of solutions), for any given scheme order. Importantly, these Crowley solutions with N = 2 

were produced with lower computational costs as only two derivatives were evaluated and not N 

derivatives. This result can be explained in part by noting that when the Courant number value of 

C = u  Δ t/ Δx becomes increasingly small (<1), the values of C N that are multiplied with each Nth 

derivative become increasingly small and less impactful (e.g., with a Courant number value used 

in this study of C = 0.046875, values for C 2 ~ 2.197x10–3, C 3 ~ 1.03x10–4, … , C 9 = ~1.09x10–12, 

C 17 = ~2.547x10–23, etc.), than if C = 0.9 (C 2 = 0.8100, C 3 = 0.7290, … , C 9 = ~0.3874, C 17 = 

~0.1668, etc.). The Crowley simulations shown all use the difference-stencils (related to order of 

accuracy) for the higher order derivatives suggested by T87, noting that the order accuracy for the 

approximations for lower derivatives are generally higher order, but the highest order derivatives 

in T87 are not the order of the higher order derivatives (presumably this practice is not a serious 

issue as at least the even order derivatives are dissipative). Rather the approximations are the 

highest order of accuracy that will fit in the length of the stencil used to compute each specific 

derivative. Note that comparable order interpolations and pressure gradient/divergence were used 

for all Set E simulations.  In summary, these results support the use of only the second stabilising 

derivative, as objective and visual appearances were not changed and solutions were 

computationally less expensive than using N derivatives for an N-order Crowley scheme. 

 

3.4.6  |  Hybrid-WENO/Crowley schemes (Set G) 
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Dimension-split/time-split hybrid-WENO/Crowley schemes were tested as the use of higher order 

derivatives sometimes can help reduce phase errors (e.g., T87; WS02). Furthermore, the WS02 

forward-in-time Crowley scheme time integration procedure for mode-split systems with only 

one/two functions per time step for scalars, velocities, and pressure is notably less computationally 

intensive in terms of total FPOs for any given order of flux using the spatial differencing algorithm 

discussed in section 2, compared to the RK3 time integration scheme, which requires three 

functions per time step for scalars, velocities, and pressure, respectively. With this in mind, the use 

of WENO fluxes in a Crowley scheme framework might be advantageous computationally as well 

as numerically. Experiments were conducted with a proposed hybrid-WENO/Crowley scheme, 

which has interpolation for the flux obtained from the WENO scheme, and upwind-biased constant 

grid flux higher order derivatives. Comparable order interpolations and pressure 

gradient/divergence were used for all Set G simulations.  

 

Visually accurate perturbation potential temperature and KE solutions were obtained with the 

Hybrid-WENO-Crowley schemes (Hy) when compared to the WENO and odd order Crowley 

solutions in Set A (e.g., Fig. 4). The potential temperature perturbation difference plots (Fig. 17, 

row four) showed patterns and regions of errors for Hybrid-WENO-Crowley that were more 

similar to those with the Set A, WENO solutions than the Set A, odd order Crowley solutions (Fig. 

5). Objective errors, including RMS for perturbation potential temperature and KE (Table III) for 

the Hybrid-WENO-Crowley schemes were similar to those with the WENO schemes for these 

simulations. Additionally, like with the WENO scheme, the Hybrid-WENO-Crowley scheme and 

sine-based WENO smoothness indicators scheme, also produced improved perturbation potential 

temperature difference fields from the reference solution and improved RMS errors, based on the 

reference solution, over those made with traditional smoothness indicators by ~5% to ≥20%, 

especially for the O17 solutions as compared to solutions made solutions with traditional 

smoothness indicators. These results are important as the computational cost based on FPOs of the 
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forward in time Hybrid-WENO-Crowley schemes, for either traditional or sine-based smoothness 

indicators, are markedly less than RK3 WENO solutions, especially for higher order solutions. 

 

Using hybrid-WENO/Crowley flux for scalars and Crowley flux on velocities and pressure also 

performed well (Fig. 17, rows seven and eight, Hs Cv; zoomed as in Figs 4–8; Table III), while 

the use hybrid-WENO/Crowley on velocities and pressure only and Crowley flux on scalars 

produced better results for perturbation potential temperature (Fig. 17, rows nine and ten, Hv Cs; 

zoomed as in Figs 4–8; Table III) and KE fields (not shown), than using WENO on all variables, 

both with further reductions in computational cost from the cases of using WENO fluxes on all 

variables (the differences were again somewhat worse than for odd order Crowley). Although not 

shown, comparably accurate solutions, which were virtually indistinguishable, either visually (not 

shown) or objectively (Table III; H2S) were also possible using only the stabilising second 

derivative and no other higher order stabilising derivatives in these hybrid schemes. In summary, 

computational costs can be reduced, and objective errors notably improved using hybrid-

WENO/Crowley schemes with or without the sine-based smoothness indicators, as well as with or 

without stabilising higher order derivative or only the stabilising second derivative. Additionally, 

use of hybrid WENO/Crowley fluxes on either scalars or velocities and pressure, especially for the 

hybrid-WENO on velocities and pressure and Crowley on scalars (Hs Cv) might help provide more 

accurate solutions than using WENO flux on all variables; the HsCv and HvCs solutions appeared 

visually better compared to the WENO solutions, but visually not as good as the Crowley solutions. 

This appeared to be the case for the objective errors as well. 

 

3.4.7  |  Use of lower order approximations for velocity and pressure advection and higher 

order for scalars and vice versa (Set H) 

Finally, a set of simulations was made to determine whether higher order accuracy flux of 

velocities and pressure or higher order flux of scalars (potential temperature) was more important 

 1477870x, ja, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4579 by <
Shibboleth>

-m
em

ber@
reading.ac.uk, W

iley O
nline L

ibrary on [06/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



to solution accuracy, while potentially allowing for some reduced computational costs. Pressel et 

al. (2015) and WPM21 both stated that the velocity fields are generally smoother than the scalar 

fields in their atmospheric planetary boundary layer simulations (which was also seen with KE 

fields herein), and thus did not require velocity flux schemes to be as accurate as scalar flux 

schemes. The simulations shown herein include those made with O17 fluxes for scalars and O3–

17 fluxes for velocities and pressure, and well as those made using O17 fluxes for velocities and 

pressure, and O3–17 fluxes for scalars. These were used to compare with simulations using O17 

fluxes for all variables (Figs. 3 and 4–8). All Set H simulations (Fig. 18) used O(18) interpolations 

and pressure gradient/divergence.  

 

The amplitudes of the perturbation potential temperature fields in the most marginally resolved 

features of the upper rotor for the first subset of experiments were best preserved with O17 scalar 

fluxes, although the shape is not as well preserved (as compared to the Set A odd order flux 

solutions in Fig. 4) or the reference solution) in association with less accurate velocity and pressure 

fluxes (Fig. 18, rows one–three, Fv s17; zoomed as in Figs 4–8; Table III). In addition, the 0.2 K 

perturbation potential temperature contour was not as well preserved compared to the Set A 

solutions or the reference solution. Conversely, the second subset of experiments produced worse 

amplitude preservation of the perturbation potential temperature fields with O3–13 scalar fluxes, 

compared to the reference solution, but about the same as in Set A, with slightly better placement 

and shape for the rotor associated with O17 velocities (Fig. 18, rows four–six Fs v17; zoomed as 

in Figs 4–8; Table III). Interestingly, the use of lower order fluxes with scalars than velocity and 

pressure resulted in generally better objective error measures than Set A odd order flux solutions 

and better 0.2 K perturbation potential temperature contour preservation in the upper rotor, 

especially in the narrow warm regions for most solutions, owing to lower order scalar fluxes being 

more dispersive, which makes the > 0.2 K regions wider, especially in finer scale regions of the 

upper rotor. The perturbation potential temperature difference fields also had smaller differences 
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when using lower order (O3–5) scalar fluxes. These characteristics permit gross determinations as 

to which of these subsets of experiments produce the best solutions for all orders considering 

competing factors. The best solutions in these experiments were the Fs v17 solutions based on 

RMS errors for potential temperature and KE, as well as for perturbation potential temperature 

field differences, especially for O3–9 solutions.  

 

4  |  CONCLUSIONS 

The main conclusions of this study include; The visual appearances and objective error measures 

for solutions produced by all schemes considered continued to improve well through flux orders 

of O3/4–9/10, which are the highest orders available/used in most popular research and operational 

3D atmospheric science numerical models, and all the up way to O17/18. Most of the visual and 

objective improvements were from O3 to O5, and then from O5 to O9, and so on, although they 

often were not negligible from O13–17. Higher order numerical approximations also improved the 

accuracy of kinematic aspects of flows as seen using quantities such as KE, deformation, and 

vorticity. Upwind-biased, odd order, very high order flux schemes produced the least 

dispersion/phase errors with only minimally damped extrema at very high orders of accuracy > 

O13 when compared to the reference solution. Very high order even order ≥O14 schemes, which 

better preserve amplitude errors over one order lower odd schemes and have slightly worse phase 

errors than one order higher odd schemes, also performed very well. Excessive round-off error 

accumulation argues against using much higher than O17/18 constant grid flux and constant grid 

flux Crowley schemes, and especially against using higher than O13 or O17 WENO flux schemes.  

 

The WENO flux schemes did not perform as well as the constant grid flux and constant grid flux 

Crowley schemes for O3–9 solutions made with resolutions coarser than 50 m, supporting the 

results described by Latini et al. (2006) and WPM21 that ≤ O5 WENO solutions could be 

excessively dissipative. Interestingly, the very high order O9–17 WENO flux scheme solutions 
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made with a strong added mean wind were the most accurate for a given resolution, with some of 

the lowest overall objective errors, in this study. Importantly, the ≤O13 WENO flux solutions also 

tended to be more monotonic at intermediate and coarser solutions, in contrast to other schemes, 

even though WENO scheme solutions are technically not monotonic. While WENO schemes 

certainly were much more computationally expensive than most schemes considered in terms of 

FPOs, they were not necessarily excessively/prohibitively expensive with careful use of cache 

memory in making computations; the CPU time for O17 WENO was at most three to four times 

more than the CPU time O17 flux.  

 

Only weak numerical spatial filters were generally needed with odd order high order constant grid 

flux and constant grid flux Crowley schemes in contrast to even-order schemes, which required 

much more filtering for low orders of accuracy as they tend to produce more dispersion and 

aliasing errors. Very high order constant grid flux non-WENO schemes, with had appropriate 

spatial filters for the diffusion-limited problem, produce solutions that were comparable or better 

than both lower order and higher order WENO based solutions at a fraction of the cost in terms of 

FPOs or CPU time, especially the forward in time WS02 Crowley based flux solutions.  

 

The WENO flux solutions made with the exponent parameter p = R in the nonlinear weights for 

WENO fluxes were generally less accurate based on RMS errors than those using the traditional 

value of p = 2 for the test problem. Using by p = R improved maximum and minimum perturbation 

potential temperature overshoots and generally helped maintain more monotonic WENO flux 

solutions, although shear instabilities formed in these WENO solutions on the warm-cold air 

interface at coarser resolutions of 50 m with higher order >O13 WENO schemes, that was not 

present in the reference solution. Importantly, the use of recently proposed, efficient and fewer 

(three versus R for each stencil; for R ≥ 4) sine-wave WENO smoothness indicators, which are 

exact for sine waves, along with p = 1, produced solutions that were in good agreement with the 
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reference solution, and were more accurate than solutions made with traditional WENO 

smoothness indicators. Using less than order N WENO flux for the first two stages of the three 

RK3 stages of order N WENO solutions produced solutions that were as accurate as using order 

N WENO flux advection on all three RK3 stages, especially if the WENO flux order for the first 

two stages is not very small (e.g., O3) compared to the last stage (e.g., O17). Other findings include 

that, solutions made with odd order constant grid flux for velocities and pressure and WENO flux 

for scalars, were better solutions than those made with odd order constant grid flux for scalars and 

WENO flux for velocities and pressure, and both were more accurate, especially the former, 

compared to the reference solution or the use of WENO flux advection for all variables. The anti-

WENO (A-WENO) O3 and O5 flux schemes proposed by WPM21 to improve the excessive 

smoothing of lower order WENO schemes might be considered for improvement of high order 

WENO schemes, but the A-WENO approach might not be necessary with higher order (≥ O7) 

WENO or other flux schemes. Finally, the adaptive order WENO flux schemes based on Legendre 

polynomials, which result in much simpler smoothness indicator approximations (Balsara et al. 

2009; Balsara et al. 2016), as well as the use of hybrid-WENO flux schemes, which only use 

nonlinear WENO fluxes in regions of steep gradients or approximate discontinuities with efficient 

high order flux schemes in smoother flow regions (Hu et al. 2015) should be explored for 

atmospheric problems. These schemes seem very attractive as most regions in atmospheric flows 

are rather smooth compared to non-viscous gas dynamics flows. The proposed hybrid-WENO flux 

scheme is promising as WENO flux is only applied at a small number of grid points (<1%) and 

requires only a simple numerical test to determine whether the WENO flux should replace the 

more efficient high order flux. 

 

A proposed dimension-split hybrid-WENO/Crowley advection scheme integrated in time with the 

WS02 two-step Crowley forward-in-time integration scheme, which allowed for fast/slow mode-

split time integration, produced accurate solutions with fewer FPOs compared with either 
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traditional or newer efficient smoothness indicators, with p = 2 for the traditional, or p = 1 for the 

newer smoothness indicators, respectively. This was true for hybrid-WENO/Crowley flux scheme 

used for all scalars, velocity and pressure, or with hybrid-WENO/Crowley flux scheme for only 

scalars and constant grid flux Crowley for velocity and pressure.  

 

Crowley scheme solutions with just the stabilising O2 spatial derivative Crowley, compared to 

those with N higher order derivatives for an Nth order scheme, produce nearly identical solutions 

and lowers the number of FPOs. This also was true for the hybrid-WENO/Crowley flux scheme. 

Use of lower order odd order constant grid flux for scalars, and high order odd order constant grid 

flux for velocities produced better solutions in terms of the shape of the flow field features, but 

worse amplitudes of the potential temperature compared to the reference solution in the marginally 

resolved regions, than the use of the high order odd order constant grid flux for velocity and 

pressure, and lower order odd constant grid flux for scalars. Finally, the mode-split time integration 

solutions produced with constant grid flux Crowley schemes were the least computationally 

expensive of all schemes considered in terms of either FPOs or CPU in this study for any given 

order of accuracy and resolution owing largely to being amenable to being written in a condensed 

form. Otherwise, they would have been more computationally expensive than the constant grid 

flux RK3 integrations, as was found by WS02.  

 

Future assessments of very high order numerical schemes should be made using realistic 

atmospheric forecast problems, especially those that require high accuracy, have complex physics, 

and can be integrated for relatively long periods of time relative to their spatial scales. Examples 

of problems that might be considered are those related to significant weather forecast for hail, 

winds, and tornadoes with severe storms, extreme winds and precipitation with hurricanes, heavy 

snow with lake effect and synoptic systems, as well as a multitude of short-term climate problems 

associated with excess precipitation, heat and drought, and cold waves.  
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In summation, upwind-biased, very high order (O9–18) flux schemes performed very well in the 

experiments described in this paper, especially the non-WENO flux schemes, although the high 

order WENO flux schemes produced very good solutions in experiments with a strong mean wind. 

The odd order schemes, which generally require less spatial filtering (WENO flux schemes 

technically required none) compared to the lower order even schemes that were considered, were 

only slightly more computationally expensive (two function evaluations are required for odd order 

schemes for each step or sub-step), when compared to even order centred flux schemes. Objective 

error measures for non-WENO flux schemes improved to O17/18, while those for WENO flux 

schemes did not improve much past O9 or O13 for intermediate resolutions of ≥ 50 m. The use of 

high order flux computations coupled with high order interpolation and pressure 

gradient/divergence numerical approximations (≥O4) are recommended to attain the best 

solutions, especially for physically important, marginally resolved phenomena, as was found for 

short-term integrations presented in this paper. The results of this study lead us to encourage the 

further testing of very high order ≥ O9 flux schemes in numerical weather prediction and weather 

research models.  
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S4; Figures for sub-domain from x = –8 to 8 km and z = 1 to 9 km for odd and even order flux, 

Crowley, WENO, and Weno-Sine using all orders of accuracy with and without a mean added and 

100 m resolutions and with a mean for all orders of accuracy with 33.33 and 66.66 m resolution.  
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Summary of key findings: Very high order odd and even order flux and Crowley flux, and odd 
order WENO flux were evaluated for orders of accuracy that ranged from order 3–20 and 
resolutions that varied by a factor of six, using simulations of nonlinear 2D colliding plumes.  At 
intermediate resolutions, which only marginally resolved important flow structures, the best 
solutions were obtained with ≥O13/14 flux, Crowley flux, and O13–17 WENO flux. For a given 
resolution, the Crowley solutions were least computationally intensive. 

Summary figure: 
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Caption: Part of nonlinear 2D colliding plumes solutions the stronger rotors that forms, using 
odd order 5 and 17 Crowley, odd/even order 5/6 and 17/18 order Flux, and odd order 5 and 17 
WENO flux.  
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TABLE I Domain and timestep parameters. Nx (Nz) is equal to the number of scalar grid points in x- (z-) 
directions for a staggered grid. The total number of grid points = Nx • Nz, and Nt is the number of time 
steps for 1000 s of integration. The x-direction velocity (u) has one extra point in the x-direction and the z- 
direction velocity (w) has one extra point in the z-direction for the staggered C-grid. The time steps for each 
resolution are found using ∆t = C •∆x/Vmax(s), where Courant number C = 0.046875, values of ∆x are grid 
resolutions, and approximate maximum velocity Vmax = 15 m s–1. 
 

∆x (m) ∆z (m) Lx (m) Lz (m) Nx Nz Nx • Nz Nt ∆t (s) 
166.66… 166.66… 20000 10000 121 61 7381 1920 0.520833… 
133.33… 133.33… 20000 10000 151 76 11476 2400 0.4166… 
100.00 100.00 20000 10000 201 101 20301 3200 0.3125 

66.66… 66.66… 20000 10000 301 151 45451 4800 0.20833... 
50.00 50.00 20000 10000 401 201 80601 6400 0.15625 

33.33… 33.33… 20000 10000 601 301 180901 9600 0.104166… 
25 25 20000 10000 801 401 321201 12800 0.078125 
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Table  II  Simulation sets, resolutions, and orders of accuracy.  Abbreviations are: Co = odd order upwind-
biased constant grid flux Crowley; Ce = even order constant grid flux Crowley; Fo = upwind-biased odd 
order constant grid flux; Fe = even order constant grid flux; W = WENO flux; WS = W with sine-based 
smoothness indicators; WR = W with smoothness indicator power given by p = R, where O = 2R–1; WL 
c:c:17 = O3, 5, 9, 13,17 W for stages one and two of RK3, and O17 W for stage three of RK3; WH = 
(17:17:c) = O17 W for stages one and two of RK3, and O3, 5, 9, 13, 17 W for stage three of RK3; WH PIc 
= (17:17:c) = O17 W for stages one and two of RK3, and O3, 5, 9, 13, 17 W for stage three of RK3 with 
comparable order interpolations and pressure gradient/divergence; Ws Fv = W for scalars and Fo for 
velocities/pressure; Fs Wv = Fo for scalars and W for velocities/pressure; C2 = O3, 5, 9, 13, 17 Co with N 
= 2 derivatives in place of N = Nth order Crowley scheme; Hy = hybrid WENO/Crowley flux; HS = hybrid 
WENO/Crowley flux with sine-based smoothness indicators (p = 1); Hs Cv =  hybrid W for scalars and Co 
for velocities/pressure; Hv Cs = hybrid W for velocities/pressure and Co for scalars; Fv s17 = lower order 
Fo (O3, 5, 9, 13, 17) for velocities/pressure and O17 Fo for scalars; and Fs v17 = lower order Fo (O3, 5, 9, 
13 17) for scalars and O17 for velocities/pressure. Other abbreviations are Ut = added mean wind; scl = 
scalar, vp = velocity/pressure; SF = spatial filter; PD = pressure gradient and divergence; and 
I=interpolations; Oc = comparable order (same order as even order flux and one order higher for odd order 
flux). 
 

Sets Schemes Experiment description ∆x = ∆z (m) Order Flux Order of 
SF / PD / I 

A 
 

Co, Ce, Fo, 
Fe, W 

Co, Ce, Fo, Fe, W 
with Ut = 0 m s–1 

25, 33.33, 50, 66.66, 
100, 133.33, 166.66 

O3,5,9,13,17 
O4,6,10,14,18 O18 / Oc / Oc 

B 
 

Co, Ce, Fo, 
Fe, W 

Co, Fo, Fe, W 
with Ut = –20 m s–1 

25, 33.33, 50, 66.66, 
100, 133.33, 166.66 

O3,5,9,13,17 
O4,6,10,14,18 O18 / Oc / Oc 

C WS 
WR 

WS (w-sine, p = 1) 
WR (p = R)  100 O3,5,9,13,17 O18 / Oc / Oc 

D 
WL c:c:17 
WH17:17:c 

WH PIc 

WL (WH) has low (high) order 
WENO for first two stages of RK3 

time integrations 
100 O3,5,9,13,17 O18 / O18 / O18 

E Ws Fv 
Wv Fs 

Ws Fv is W for scl, Fo for vp 
Wv Fs is W for vp, Fo for scl 100 O3,5,9,13,17 O18 / O18 / O18 

F C2 Co with N=2 derivatives 100 O3,5,9,13,17 O18 / Oc / Oc 

G 
Hy, HS 
Hs Cv 
Hv Cs 

Hy W/Co, Hy W-sine (p=1)/Co  
Hy scl and Co vp 
Hy vp and Co scl 

100 O3,5,9,13,17 O18 / Oc / Oc 

H Fv s17 
Fs v17 

Fo vp, O17 scl  
Fo sc,  O17 vp 100 O3,5,9,13,17 O18 / O18 / O18 
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TABLE III  RMS errors with four significant digits for potential temperature / kinetic energy per unit 
volume in simulation Sets A–H for Δx = Δz = 100 m simulations with errors computed using the O 17, 25 
m reference simulation. The top row indicates odd/even order solutions from O3/4–17/18. Abbreviations 
include: Co = odd order upwind-biased constant grid flux Crowley; Ce = even order constant grid flux 
Crowley; Fo = upwind-biased odd order constant grid flux; Fe = even order constant grid flux; W = WENO 
flux; WS = W with sine-based smoothness indicators; WR = W with smoothness indicator power given by 
p = R, where O = 2R–1; WL c:c:17 = O3, 5, 9, or 13 W for stages one and two of RK3, and O17 W for 
stage three of RK3; WH = (17:17:c) = O17 W for stages one and two of RK3, and O3, 5, 9, or 13 W for 
stage three of RK3; WH PIc = (17:17:c) = O17 W for stages one and two of RK3, and O3, 5, 9, or 13 W 
for stage three of RK3 with comparable order interpolations and pressure gradient/divergence; Ws Fv = W 
for scalars and Fo for velocities/pressure; Fs Wv = Fo for scalars and W for velocities/pressure; Co2 = O3, 
5, 9, 13, or 17 Co with N = 2 derivatives in place of N = order of Crowley scheme; Hy = hybrid 
WENO/Crowley flux; HS = hybrid WENO/Crowley flux with sine-based smoothness indicators (p = 1); 
H2S = hybrid W for scalars and Co with N = 2 derivatives in place of N = order of Crowley scheme; Hs 
Cv =  hybrid W for scalars and Co for velocities/pressure; Hv Cs = hybrid W for velocities/pressure and 
Co for scalars; Fv s17 = lower order Fo (O3, 5, 9, or 13) for velocities/pressure and O17 Fo for scalars; and 
Fs v17 = lower order Fo (O3, 5, 9, or 13) for scalars and O17 Fo for velocities/pressure. NA = not available. 
The bold numbers are the four lowest RMS errors for each set. 
 

 Schemes O3/4 O5/6 O9/10 O13/14 O17/18 
A Co 

Ce 
Fo 
Fe 
W 

0.1399 / 1.768 
0.1980 / 2.472 
0.1420 / 1.811 
0.2106 / 2.623 
0.1909 / 2.429 

0.1064 / 1.302 
0.1352 / 1.439 
0.1069 / 1.302 
0.1413 / 1.497 
0.1200 / 1.527 

0.08396 / 1.088 
0.08735 / 1.075 
0.07862 / 1.035 
0.08670 / 1.058 
0.08947 / 1.163 

0.07378 / 1.024 
0.07347 / 1.001 
0.07149 / 1.002 
0.07183 / 0.9846 
0.08698 / 1.130 

0.07001 / 1.012 
0.06984 / 0.09552 
0.07037 / 1.050 
0.07038 / 1.002 
0.1023 / 1.154 

B Co 
Ce 
Fo 
Fe 
W 

0.2123 / 3.018 
0.2467 / 3.465 
0.2026 / 2.893 
0.2513 / 3.910 
0.2499 / 3.992 

0.1983 / 2.587 
0.2225 / 3.045 
0.1811 / 2.698 
0.2289 / 3.323 
0.1838 / 2.700 

0.2054 / 2.821 
0.2093 / 2.883 
0.1801 / 2.659 
0.1993 / 2.972 
0.1715 / 2.587 

0.2084 / 2.854 
0.2083 / 2.873 
0.1803 / 2.680 
0.1850 / 2.758 
0.1739 / 2.622 

0.2093 / 2.875 
0.2099 / 2.897 
0.1798 / 2.692 
0.1842 / 2.751 
0.1742 / 2.569 

C 
 

WR 
WS 

0.1909 / 2.429 
NA 

0.1299 / 1.642 
NA 

0.1095 / 1.380 
0.08055 / 1.137 

0.1029 / 1.283 
0.08110 / 1.136 

0.09734 / 1.271 
0.07697 / 1.077 

D WL c:c:17 
WH17:17:c 

WH PIc 

0.1007 / 1.136 
0.1649 / 2.436 
0.1908 / 2.427 

0.1013 / 1.144 
0.1217 / 1.548 
0.1199 / 1.527 

0.1015 / 1.148 
0.09241 / 1.180 
0.08956 / 1.162 

0.1023 / 1.155 
0.08866 / 1.136 
0.08707 / 1.131 

0.1023 / 1.154 
0.1023 / 1.154 
0.1023 / 1.154 

E 
 

Fs Wv 
Fv Ws 

0.1648 / 2.104 
0.1711 / 2.072 

0.1102 / 1.424 
0.1121 / 1.283 

0.08707 / 1.151 
0.08226 / 1.035 

0.08363 / 1.098 
0.07877 / 1.033 

0.08235 / 1.071 
0.09121 / 1.061 

F Co2 0.1399 / 1.768 0.1064 / 1.302 0.08401 / 1.088 0.07380 / 1.024 0.07001 / 1.012 
G 
 

Hy 
HS 

H2S 
Hs Cv 
Hv Cs 

0.1918 / 2.421 
NA 
NA 
0.1715 / 2.066 
0.1640 / 2.078 

0.1204 / 1.525 
NA 
NA 
0.1123 / 1.293 
0.1117 / 1.434 

0.09058 / 1.171 
0.08247 / 1.135 
0.08247 / 1.135 
0.08236 / 1.065 
0.09012 / 1.180 

0.08820 / 1.135 
0.08315 / 1.171 
0.08315 / 1.171 
0.07909 / 1.053 
0.08500 / 1.107 

0.1002 / 1.147 
0.07554 / 1.060 
0.07554 / 1.060 
0.08803 / 1.069 
0.08374 / 1.064 

H 
 

Fv s17 
Fs v17 

0.1452 / 1.820 
0.1143 / 1.372 

0.1109 / 1.318 
0.08570 / 1.060 

0.08671 / 1.140 
0.07148 / 0.9861 

0.08113 / 1.144 
0.07029 / 1.006 

0.07037 / 1.050 
0.07037 / 1.050 
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TABLE IV  CPU times (s) for odd and even order Crowley flux (schemes Co and Ce), odd and even order 
flux (schemes Fo and Fe), and odd order WENO flux (scheme W), using 100, 66.66, and 33.33 m and time 
t = 31.25 s (100, 200, and 300 steps), along with RMS errors for perturbation potential temperature (top 
number in each cell) and kinetic energy per unit volume (bottom number in each cell). Top values for each 
scheme and order are CPU times for only the flux stencil + pressure gradient stencil + divergence stencil + 
interpolation stencil calculations and next to the CPU time in bold is the ratio to the lowest order scheme 
(O3/4) in the row. The second value for each scheme and order are CPU time for only total advection + 
total small step + total buoyancy and next to the CPU time in bold is the ratio to the lowest order scheme 
(O3/4) in the row. The CPU times for the O18 filter (SGS turbulence) are ~0.1, 0.3, and 0.9 s (7, 14, and 
38 s) for Crowley simulations, and 0.2, 0.4, 1.4 s (11, 21, 57 s) for RK3 solutions (both odd and even flux 
and odd WENO) using 100, 66.66, and 33.33 m, respectively. Note with a constant Courant number, 66.66 
and 33.33 m resolution solutions take 1.5 and 3 times more time steps than the 100 m resolution solutions. 
(The flux stencil CPU times were not collected for the WENO solutions and labeled NA or not available, 
however the total advection time was so row two in each cell was available). 
TABLE IV.A  CPU times and RMS errors using a resolution of 100 m 

100 m 
scheme 

O3/4 
CPU 

O3/4 
RMS 

O5/6 
CPU 

O5/6 
RMS 

O9/10 
CPU 

O9/10 
RMS 

O13/14 
CPU 

O13/14 
RMS 

O17/18 
CPU 

O17/18 
RMS 

Co 1.81 / 1.00 
20.8 / 1.00 

0.1399 
1.768 

2.48 / 1.37 
21.2 / 1.02 

0.1064 
1.302 

4.53 / 2.50 
23.9 / 1.15 

0.08396 
1.088 

5.56 / 3.07 
25.2 / 1.21 

0.07378 
1.024 

6.31 / 3.49 
25.3 / 1.22 

0.07001 
1.012 

Ce 1.59 / 1.00 
18.4 / 1.00 

0.1980 
2.472 

2.37 / 1.49 
19.6 / 1.07 

0.1352 
1.439 

3.36 / 2.11 
21.0 / 1.14 

0.08735 
1.075 

4.38 / 2.75 
22.0 / 1.20 

0.07347 
1.001 

5.21 / 3.28 
22.0 / 1.20 

0.06984 
0.9952 

Fo 
 

1.38 / 1.00 
27.0 / 1.00 

0.142 
1.811 

2.22 / 1.61 
28.5 / 1.06 

0.1069 
1.302 

3.12 / 2.26 
30.1 / 1.11 

0.07862 
1.035 

3.91 / 2.83 
30.5 / 1.13 

0.07149 
1.002 

4.96 / 3.59 
31.9 / 1.18 

0.07037 
1.017 

Fe 
 

1.28 / 1.00 
19.0 / 1.00 

0.2106 
2.623 

2.02 / 1.57 
20.1 / 1.06 

0.1413 
1.497 

2.91 / 2.23 
20.6 / 1.08 

0.08670 
1.058 

3.90 / 3.04 
21.9 / 1.15 

0.07183 
0.9846 

4.87 / 3.80 
23.3 / 1.23 

0.07377 
1.003 

W NA 
44.8 / 1.00 

0.1909 
2.429 

NA 
52.0 / 1.16 

0.1200 
1.527 

NA 
56.4 / 1.26 

0.08975 
1.163 

NA 
61.3 / 1.37 

0.08698 
1.130 

NA 
67.4 / 1.50 

0.1023 
1.154 

 
 TABLE IV.B  CPU times and RMS errors as in TABLE IV.A, except using a resolution of 66.66 m 

66 m 
scheme 

O3/4 
CPU 

O3/4 
RMS 

O5/6 
CPU 

O5/6 
RMS 

O9/10 
CPU 

O9/10 
RMS 

O13/14 
CPU 

O13/14 
RMS 

O17/18 
CPU 

O17/18 
RMS 

Co 
 

5.79 / 1.00 
56.3 / 1.00 

0.08712 
1.027 

8.13 / 1.34 
58.8 / 1.04 

0.05272 
0.7156 

14.7 / 2.38 
65.5 / 1.16 

0.04601 
0.6818 

17.7 / 2.80 
70.5 / 1.25 

0.04318 
0.6605 

21.0 / 3.62 
76.1 / 1.35 

0.03923 
0.6025 

Ce 4.94 / 1.00 
50.4 / 1.00 

0.09374 
1.0271 

7.29 / 1.48 
53.8 / 1.07 

0.06561 
0.8279 

11.2 / 2.27 
58.5 / 1.16 

0.04721 
0.6800 

14.2 / 2.87 
62.3 / 1.24 

0.04245 
0.6386 

17.0 / 3.44 
63.9 / 1.27 

0.03915 
0.5873 

Fo 
 

3.93 / 1.00 
76.3 / 1.00 

0.08788 
1.032 

6.68 / 1.70 
80.8 / 1.06 

0.04953 
0.6744 

9.67 / 2.46 
88.3 / 1.16 

0.0403 
0.6150 

12.5 / 3.18 
90.1 / 1.18 

0.03884 
0.6001 

15.8 / 4.02 
95.4 / 1.25 

0.03981 
0.5705 

Fe 
 

3.84 / 1.00 
49.5 / 1.00 

0.09472 
1.063 

5.83 / 1.82 
53.5 / 1.08 

0.06503 
0.7991 

9.53 / 2.48 
57.1 / 1.15 

0.04409 
0.6364 

12.5 / 3.26 
61.3 / 1.24 

0.03973 
0.5988 

15.4 / 4.01 
64.7 / 1.31 

0.03871 
0.5674 

W NA 
133.2 / 1.00 

0.1383 
1.618 

NA 
172.5 / 1.30 

0.06915 
0.9237 

NA 
183.2 / 1.38 

0.04632 
0.6768 

NA 
200.7 / 1.51 

0.04628 
0.6492 

NA 
225.3 / 1.69 

0.04512 
0.6126 

 
 TABLE IV.C  CPU times and RMS errors as in TABLE IV.A, except using a resolution of 33.33 m. 

33 m 
scheme 

O3/4 
CPU 

O3/4 
RMS 

O5/6 
CPU 

O5/6 
RMS 

O9/10 
CPU 

O9/10 
RMS 

O13/14 
CPU 

O13/14 
RMS 

O17/18 
CPU 

O17/18 
RMS 

Co 45.0 / 1.00 
364.8 / 1.00 

0.02868 
0.3777 

62.4 / 1.39 
381.3 / 1.05 

0.02401 
0.3125 

108.3 / 2.41 
430.5 / 1.18 

0.02849 
0.3503 

131.1 / 2.91 
461.4 / 1.26 

0.02369 
0.2962 

150.9 / 3.35 
483.6 / 1.33 

0.0115 
0.1639 

Ce 
 

36.0 / 1.00 
316.8 / 1.00 

0.02577 
0.3580 

55.0 / 1.53 
339.0 / 1.07 

0.02441 
0.3146 

81.0 / 2.25 
365.4 / 1.15 

0.02432 
0.3077 

104.7 / 2.76 
391.8 / 1.24 

0.01839 
0.2365 

124.8 / 3.47 
414.3 / 1.31 

0.00885 
0.1355 

Fo 28.0 / 1.00 
459.6 / 1.00 

0.02581 
0.3421 

48.1 / 1.72 
493.2 / 1.07 

0.02026 
0.2674 

69.9 / 2.50 
528.9 / 1.15 

0.02035 
0.2610 

92.1 / 3.30 
564.9 / 1.23 

0.01576 
0.2100 

117.0 / 4.19 
604.5 / 1.32 

0.00755 
0.1163 

Fe 
 

28.1 / 1.00 
311.4 / 1.00 

0.02233 
0.3158 

47.7/ 1.70 
343.5 / 1.10 

0.02070 
0.2702 

69.0 / 2.46 
357.6 / 1.15 

0.02064 
0.2634 

92.1 / 3.23 
380.7 / 1.22 

0.01589 
0.2110 

114.9 / 4.09 
404.4 / 1.30 

0.00758 
0.1165 

W NA 
1088.4 / 1.00 

0.05527 
0.6198 

NA 
1548.0 / 1.42 

0.01941 
0.2487 

NA 
1692.7 / 1.56 

0.02072 
0.2646 

NA 
1860.3 / 1.71 

0.01526 
0.2116 

NA 
2085.9 / 1.92 

0.00768 
0.1234 
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FIGURE 1  Set A perturbation potential temperature (T – Tb; K) fields at t = 1000 s made with grid 
resolution ∆x = ∆z = 25 m with odd/even order O17/18 upwind-biased/centred constant grid flux Crowley 
(Co = odd; Ce = even), upwind-biased/centred constant grid flux (Fo = odd; Fe = even), and WENO (W) 
flux schemes, with O18 interpolations and pressure gradient/divergence, O18 spatial filter, same Courant 
number C, and constant eddy mixing coefficient of Km = 10 m2 s–1 shown in left and centre columns. Kinetic 
Energy per unit volume (KE; 1/100 J m–3) fields shown in the right column. Maximum (Max) and minimum 
(Min) values and contour interval (Cint) values are on each plot. The bold solid line is the 0.2 K perturbation 
potential temperature contour of the simulation in the plot. The bold dashed line in the centre column plots 
is the 0.2 K perturbation potential temperature contour of the upwind-biased constant grid flux O17, 25 m 
reference solution. Only a sub-domain (most of the whole domain) from x = –8 to 8 km and z = 1 to 9 km 
in the left column, x = –6.7 to –2.7 km and z = 3.6 to 7.6 km (left rotor) in the centre column and right 
column are shown.  
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FIGURE 2 Set A objective error measures. Perturbation potential temperature (T – Tb; K; lower curve 
cluster in each panel) and Kinetic Energy (KE; J m–3; upper curve cluster in each panel) Root Mean Square 
errors (RMS; left) and L∞ error norms (right) calculated against the flux O17, 25 m reference solution for 
the odd O3, 5, 9, 13, and 17) and even order (O4, 8, 10,14, and 18) upwind-biased constant grid flux 
Crowley schemes, odd order and even order constant grid flux, and odd order (O3, 5, 9, 13, and 17) WENO 
flux schemes, with comparable order interpolations and pressure gradient/divergence, O18 spatial filter, 
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same Courant number C, and constant eddy mixing coefficient of Km = 10 m2 s–1 versus resolution ∆x = ∆z 
(m). 
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FIGURE 3. Set A perturbation potential temperature (T – Tb; K) fields at t = 1000 s made with grid 
resolution ∆x = ∆z = 100 m, with odd/even order O3/4, 5/6, 9/10, 13/14, and 17/18 upwind-biased/centred 
constant grid flux Crowley (Co = odd; Ce = even), odd/even order upwind-biased/centred constant grid flux 
(Fo = odd; Fe = even), and WENO flux (W) schemes, comparable order interpolations and pressure 
gradient/divergence, O18 spatial filter, same Courant number C, and constant eddy mixing coefficient of 
Km = 10 m2 s–1. Maximum (Max) and minimum (Min) values and contour interval (Cint) values are on each 
plot. The bold dashed line is the 0.2 K perturbation potential temperature contour of the upwind-biased 
constant grid flux O17, 25 m reference solution interpolated to the grid in the plot. Only a left-side sub-
domain from x = –6.7 to –2.7 km and z = 3.6 to 7.6 km is shown.  
 
  

 1477870x, ja, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4579 by <
Shibboleth>

-m
em

ber@
reading.ac.uk, W

iley O
nline L

ibrary on [06/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



A O3/4 O5/6 O9/10 O13/14 O17/18 
Co 
100 
m 

     
Fo 
100 
m 

     
Fe 
100 
m 

     
W 
100 
m 

     
Co 
66 
m 

     
Fo 
66 
m 

     
Fe 
66 
m 

     
W 
66 
m 

     
Co 
33 
m 

     
Fo 
33 
m 

     
Fe 
33 

     
W 
33 
m 

     

 1477870x, ja, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4579 by <
Shibboleth>

-m
em

ber@
reading.ac.uk, W

iley O
nline L

ibrary on [06/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



 
FIGURE 4  Set A perturbation potential temperature (T – Tb; K) fields at t = 1000 s made with grid 
resolutions ∆x = ∆z = 100, 66.66, and 33.33 m, with odd order O3, 5, 9, 13, and 17 upwind-biased constant 
grid flux Crowley (Co), odd/even order O3/4, 5/6, 9/10, 13/14, and 17/18 upwind-biased/centred constant 
grid flux (Fo = odd; Fe = even), and WENO flux (W) schemes, comparable order interpolations and pressure 
gradient/divergence, O18 spatial filter, same Courant number C, and constant eddy mixing coefficient of 
Km = 10 m2 s–1. Maximum (Max) and minimum (Min) values and contour interval (Cint) values are on each 
plot. The bold dashed line is the 0.2 K perturbation potential temperature contour of the upwind-biased 
constant grid flux O17, 25 m reference solution interpolated to the grid in each plot. Only a zoomed-in sub-
domain from x = –5.2 to –3.6 km and z = 6.4 to 7.6 km on the left side of the simulation domain is shown.  
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FIGURE 5  Set A difference between reference and test potential temperature (TRef  – T; K) fields at t = 
1000 s made with grid resolutions ∆x = ∆z = 100, 66.66, and 33.33 m, with odd order O3, 5, 9, 13, and 17 
upwind-biased constant grid flux Crowley (Co), odd/even order O3/4, 5/6, 9/10, 13/14, and 17/18 upwind-
biased/centred constant grid flux (Fo = odd; Fe = even), and WENO flux (W) schemes, comparable order 
interpolations and pressure gradient/divergence, O18 spatial filter, same Courant number C, and constant 
eddy mixing coefficient of Km = 10 m2 s–1. Maximum (Max) and minimum (Min) values and contour 
interval (Cint) are on each plot. The bold dashed line is the 0.2 K perturbation potential temperature contour 
of the upwind-biased constant grid flux O17, 25 m reference solution interpolated to the grid in each plot. 
The bold solid line is the 0.2 K perturbation potential temperature contour of the simulation in the plot. 
Only a zoomed-in sub-domain from x = –5.2 to –3.6 km and z = 6.4 to 7.6 km on the left side of the 
simulation domain is shown. 
 
Suggestion for shorter figure caption: 
FIGURE 5  As in Fig. 4, except for the difference between reference and test potential temperature (TRef  – 
T; K). The bold dashed line is the 0.2 K perturbation potential temperature contour of the upwind-biased 
constant grid flux O17, 25 m reference solution interpolated to the grid in each plot. The bold solid line is 
the 0.2 K perturbation potential temperature contour of the simulation in the plot. 
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FIGURE 6   Set A Kinetic Energy per unit volume (KE; 1/100 J m–3) fields at t = 1000 s made with grid 
resolutions ∆x = ∆z = 100, 66.66, and 33.33 m, with odd order O3, 5, 9, 13, and 17 upwind-biased constant 
grid flux Crowley (Co), odd/even order O3/4, 5/6, 9/10, 13/14, and 17/18 upwind-biased/centred constant 
grid flux (Fo = odd; Fe = even), and WENO flux (W) schemes, comparable order interpolations and pressure 
gradient/divergence, O18 spatial filter, same Courant number C, and constant eddy mixing coefficient of 
Km = 10 m2 s–1. Maximum (Max) and minimum (Min) values and contour interval (Cint) values are on each 
plot. The bold solid line is the 0.2 K perturbation potential temperature contour of the simulation in the plot. 
Only a zoomed-in sub-domain from x = –5.2 to –3.6 km and z = 6.4 to 7.6 km on the left side of the 
simulation domain is shown. 
 
Suggestion for shorter figure caption: 
FIGURE 6  As in Fig. 5, except for Kinetic Energy per unit volume (KE; 1/100 J m–3). The bold solid line 
is the 0.2 K perturbation potential temperature contour of the simulation in the plot. 
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FIGURE 7  Set A vorticity (100 s–1) fields at t = 1000 s made with grid resolutions ∆x = ∆z = 100, 66.66, 
and 33.33 m, with odd order O3, 5, 9, 13, and 17 upwind-biased constant grid flux Crowley (Co), odd/even 
order O3/4, 5/6, 9/10, 13/14, and 17/18 upwind-biased/centred constant grid flux (Fo = odd; Fe = even), 
and WENO flux (W) schemes, comparable order interpolations and pressure gradient/divergence, O18 
spatial filter, same Courant number C, and constant eddy mixing coefficient of Km = 10 m2 s–1. Maximum 
(Max) and minimum (Min) values and contour interval (Cint) values are on each plot. The bold solid line 
is the 0.2 K perturbation potential temperature contour of the simulation in the plot. Only a zoomed-in sub-
domain from x = –5.2 to –3.6 km and z = 6.4 to 7.6 km on the left side of the simulation domain is shown. 
 
Suggestion for shorter figure caption: 
FIGURE 7  As in Fig. 6, except for vorticity (100 s–1). The bold solid line is the 0.2 K perturbation potential 
temperature contour of the simulation in the plot.  
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FIGURE 8  Set A deformation (100 s–1) fields at t = 1000 s made with grid resolutions ∆x = ∆z = 100, 
66.66, and 33.33 m, with odd order O3, 5, 9, 13, and 17 upwind-biased constant grid flux Crowley (Co), 
odd/even order O3/4, 5/6, 9/10, 13/14, and 17/18 upwind-biased/centred constant grid flux (Fo = odd; Fe = 
even), and WENO flux (W) schemes, comparable order interpolations and pressure gradient/divergence, 
O18 spatial filter, same Courant number C, and constant eddy mixing coefficient of Km = 10 m2 s–1. 
Maximum (Max) and minimum (Min) values and contour interval (Cint) values are on each plot. The bold 
solid line is the 0.2 K perturbation potential temperature contour of the simulation in the plot. Only a 
zoomed-in sub-domain from x = –5.2 to –3.6 km and z = 6.4 to 7.6 km on the left side of the simulation 
domain is shown. 
 
Suggestion for shorter figure caption: 
FIGURE 8 As in Fig. 7, except for deformation (100 s–1). The bold solid line is the 0.2 K perturbation 
potential temperature contour of the simulation in the plot.  
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 Scheme O3/4 O5/6 O9/10 O13/14 O17/18 
Total Co 2163 2867 4275 5683 7091 

 Ce 2051 2643 3827 5011 6195 
 Fo 2665 3377 4801 6225 7649 
 Fe 2569 3185 4417 5649 6881 
 W 3025 4529 9553 18225 31697 
 WS NA NA 6097 9537 13745 

FLX Co 420 644 1092 1540 1988 
 Ce 308 420 644 868 1092 
 Fo 432 624 1008 1392 1776 
 Fe 336 528 624 816 1008 
 W 792 1776 5760 13392 25824 
 WS NA NA 2304 4704 7872 

PD RK3 528 704 1056 1408 1760 
 C 576 768 1152 1536 1920 

Int RK3 688 1032 1720 2408 3096 
 C 576 864 1440 2016 2592 

Sum RK3 2233 2753 3793 4833 5873 
 C 1743 2223 3183 4143 5103 

 

 
FIGURE 9   Set A approximate (Total) Floating-Point Operations (FPOs) per grid point per time 
step for each scheme (left chart), constant grid flux Crowley (Co = odd; Ce = even), flux (Fo = 
odd; Fe = even), WENO flux (W), and WENO with sine wave-based smoothness indicator (WS; 
for R≥4, which is ≥O7). The table (right) includes the approximate total floating-point operations 
(FPO) per grid point per time step (Total) and the FPO for advection (FLX). The bottom six rows 
of the table contain the approximate FPO for WS02 forward mode-split Crowley (C) and mode-
split RK3 time integrations for pressure gradient/divergence (PD); all non-flux interpolations (Int), 
and the sum (Sum) of FPOs for PD, Int, buoyancy, and filter terms. The FPO values for Sum of 
PD, Int, buoyancy, and filter terms using O2 and O4 numerical approximations are 1713 and 2233 
for mode-split RK3, and 1263 and 1743 for WS02 forward mode-split Crowley, respectively. 
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FIGURE 10  Set A log-log charts of the computational cost (total Floating-Point Operations FPO) 
versus Root Mean Square errors (RMS) for Perturbation potential temperature (T – Tb; K; left-
most curve cluster in each panel) and Kinetic Energy (KE; J m–3; right-most curve cluster in each 
panel) calculated against the upwind-biased constant grid flux O17, 25 m reference solution for 
the odd/even order O3/4, 5/6, 9/10, 13/14, and 17/18 upwind-biased/centred constant grid flux (Co 
= odd, upper left; Ce = even, upper right) odd/even order O3/4, 5/6, 9/10, 13/14, and 17/18 upwind-
biased/centred constant grid flux (Fo = odd, middle left; Fe = even, middle right) and WENO flux 
(W; bottom) schemes comparable order interpolations and pressure gradient/divergence, O18 
spatial filter, same Courant number C, and constant eddy mixing coefficient of Km = 10 m2 s–1 for 
grid resolutions of ∆x = ∆z = 25, 33.33, 50, 66.66, 100, 133.33, and 166.66 m (legend). The total 
FPO values (for all grid points and all timesteps, i.e., the entire simulation) are all normalised by 
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the FPO value for the centred constant grid flux O4 ∆x = ∆z = 166.66 m simulation for comparison 
purposes. 
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FIGURE 11 Set B perturbation potential temperature (T – Tb; K) fields at t = 1000 s made with grid 
resolution ∆x = ∆z = 100 m, with an added mean wind of Ut = –20 m s–1, odd/even order O3/4, 5/6, 9/10, 
13/14, and 17/18 order upwind-biased/centred constant grid flux Crowley (Co = odd; Ce = even), odd/even 
order upwind-biased/centred constant grid flux (Fo = odd; Fe = even), and WENO flux (W) schemes, 
comparable order interpolations and pressure gradient/divergence, O18 spatial filter, same Courant number 
C, and constant eddy mixing coefficient of Km = 10 m2 s–1. Maximum (Max) and minimum (Min) values 
and contour interval (Cint) are on each plot. The bold dashed line is the 0.2 K perturbation potential 
temperature contour of the upwind-biased constant grid flux O17, 25 m reference solution interpolated to 
the grid in each plot. Only a left-side sub-domain from x = –6.7 to –2.7 km and z = 3.6 to 7.6 km is shown.  
 
Suggestion for shorter figure caption: 
FIGURE 11  As in Fig. 3, except for Perturbation potential temperature (T - Tb K) fields at t = 1000 s for 
simulations in Set B (i.e., with an added mean wind of Ut = –20 m s–1). The bold dashed line is the 0.4 K 
perturbation potential temperature contour of the simulation in the plot.  
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FIGURE 12  Set B perturbation potential temperature (T – Tb; K) fields at t = 1000 s made with grid 
resolutions ∆x = ∆z = 100, 66.66, and 33.33 m, with an added mean wind of Ut = –20 m s–1, odd order O3, 
5, 9, 13, and 17 upwind-biased constant grid flux Crowley (Co = odd; Ce = even), odd/even order O3/4, 
5/6, 9/10, 13/14, and 17/18 upwind-biased/centred constant grid flux (Fo = odd; Fe = even), and WENO 
flux (W) schemes, comparable order interpolations and pressure gradient/divergence, O18 spatial filter, 
same Courant number C, and constant eddy mixing coefficient of Km = 10 m2 s–1. Maximum (Max) and 
minimum (Min) values and contour interval (Cint) values are on each plot. The bold dashed line is the 0.2 
K perturbation potential temperature contour of the upwind-biased constant grid flux O17, 25 m reference 
solution interpolated to the grid in each plot. Only a zoomed-in sub-domain from x = –5.2 to –3.6 km and 
z = 6.4 to 7.6 km on the left side of the simulation domain is shown.  
 
Suggestion for shorter figure caption: 
FIGURE 12  As in Fig. 4, except for Perturbation potential temperature (T - Tb K) fields at t = 1000 s for 
simulations in Set B (i.e., with an added mean wind of Ut = –20 m s–1). The bold dashed line is the 0.4 K 
perturbation potential temperature contour of the simulation in the plot.  
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FIGURE 13  Set B Kinetic Energy per unit volume (KE; 1/100 J m–3) fields at t = 1000 s for simulations 
made with grid resolutions ∆x = ∆z = 100, 66.66, and 33.33 m, with an added mean wind of Ut = –20 m s–

1, odd order O3, 5, 9, 13, and 17 upwind-biased constant grid flux Crowley (Co = odd; Ce = even), odd/even 
order O3/4, 5/6, 9/10, 13/14, and 17/18 upwind-biased/centred constant grid flux (Fo = odd; Fe = even), 
and WENO flux (W) schemes, comparable order interpolations and pressure gradient/divergence, O18 
spatial filter, same Courant number C, and constant eddy mixing coefficient of Km = 10 m2 s–1. Maximum 
(Max) and minimum (Min) values and contour interval (Cint) values are on each plot. The bold solid line 
is the 0.2 K perturbation potential temperature contour of the simulation in the plot. Only a zoomed-in sub-
domain from x = –5.2 to –3.6 km and z = 6.4 to 7.6 km on the left side of the simulation domain is shown. 
 
Suggestion for shorter figure caption: 
FIGURE 13  As in Fig. 12 (i.e., with an added mean wind of Ut = –20 m s–1), except for Kinetic Energy per 
unit volume (KE; 1/100 J m–3). The bold solid line is the 0.2 K perturbation potential temperature contour 
of the simulation in the plot. 
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FIGURE 14  Set C perturbation potential temperature (T – Tb; K; rows one, four, five, six, seven, and ten), 
difference between reference and test solution potential temperature (TRef  – T; K; rows two and eight), and 
Kinetic Energy per unit volume (KE; 1/100 J m–3; rows three and six) fields at t = 1000 s made with grid 
resolution of ∆x = ∆z = 100 m, with O3, 5, 9, 13, and 17 WENO-R (WR) and O9, 13, and 17 WENO-Sine 
(WS) flux schemes, comparable order interpolations and pressure gradient/divergence, O18 spatial filter, 
same Courant number C, and constant eddy mixing coefficient of Km = 10 m2 s–1. The top six rows are for 
the WR solutions with the smoothness indicator exponent parameter given by p = R (G09; order of accuracy 
given by O = 2R – 1), rather than the traditional value of p = 2 (JS96; S97), with rows four, five, and six 
WR solutions using 100, 66.66, and 50 m. Rows seven–ten are for the WENO solutions with sine wave-
based smoothness indicators (WS in left-hand table) made with p = 1. Row seven is as in row four for 
perturbation potential temperature (T – Tb; K) for the efficient sine wave-exact WENO-Sine (WS) 
smoothness indicators and p = 1 solution but in the larger sub-domain (compare with Fig. 3; notice the 
absence of anomalous perturbation potential temperature found for the WENO solutions). Maximum (Max) 
and minimum (Min) values and contour interval (Cint) are on each plot. The bold solid line is the 0.2 K 
perturbation potential temperature contour of the simulation in the plot. The bold dashed line is the 0.2 K 
perturbation potential temperature contour of the upwind-biased constant grid flux O17, 25 m reference 
solution interpolated to the grid in each plot. Only a zoomed-in sub-domain from x = –5.2 to –3.6 km and 
z = 6.4 to 7.6 km on the left side of the simulation domain is shown, except in the bottom row where a sub-
domain is from x = –6.7 to –2.7 km and z = 3.6 to 7.6 km on the left side of the simulation domain is shown. 
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FIGURE 15  Set D perturbation potential temperature (T – Tb; K; rows one and four), difference between 
reference and test solution potential temperature (TRef  – T; K; rows two and five), and Kinetic Energy per 
unit volume (KE; 1/100 J m–3; rows three and six) fields at t = 1000 s made with grid resolution ∆x = ∆z = 
100 m, with mixed orders of WENO flux for scalars, velocity and pressure, O18 for all interpolations and 
pressure gradient/divergence, O18 spatial filter, same Courant number C, and constant eddy mixing 
coefficient of Km = 10 m2 s–1. Rows one–three are WENO flux solutions with orders for RK3 time 
integrations stages one, two and three given by O3:3:17; O5:5:17, O9:9:17, O13:13:17, and O17:17:17 
(WL). Rows four– six are WENO flux solutions with orders for RK3 time integrations stages one, two and 
three given by O17:17:3; O17:17:5, O17:17:9, O17:17:13 (WH). Maximum (Max) and minimum (Min) 
values and contour interval (Cint) values are on each plot. The bold solid line is the 0.2 K perturbation 
potential temperature contour of the simulation in the plot. The bold dashed line is the 0.2 K perturbation 
potential temperature contour of the upwind-biased constant grid flux O17, 25 m reference solution 
interpolated to the grid in each plot. Only a zoomed-in sub-domain from x = –5.2 to –3.6 km and z = 6.4 to 
7.6 km on the left side of the simulation domain is shown.  
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FIGURE 16  Set E perturbation potential temperature (T – Tb; K; rows one and four), difference between 
reference and test solution potential temperature (TRef  – T; K; rows two and five), and Kinetic Energy per 
unit volume (KE; 1/100 J m–3; rows three and six) fields at t = 1000 s made with grid resolution ∆x = ∆z = 
100 m, with hybrids of order O3, 5, 9, 13 and 17 WENO flux schemes and comparable odd order upwind- 
biased constant grid flux, O18 for all interpolations and pressure gradient/divergence, O18 spatial filter, 
same Courant number C, and constant eddy mixing coefficient of Km = 10 m2 s–1. The top three rows are 
for order O3, 5, 9, 13, and O17 WENO flux for scalars (Ws) and comparable order constant grid flux for 
velocity and pressure (Fv). The bottom three rows are for O3, 5, 9, 13, and 17 WENO flux for velocity and 
pressure (Wv) and comparable order constant grid flux for scalars (Fs). Maximum (Max) and minimum 
(Min) values and contour interval (Cint) values are on each plot. The bold dashed line is the 0.2 K 
perturbation potential temperature contour of the upwind-biased constant grid flux O17, 25 m reference 
solution interpolated to the grid in each plot. The bold solid line is the 0.2 K perturbation potential 
temperature contour of the simulation in the plot. Only a zoomed-in sub-domain from x = –5.2 to –3.6 km 
and z = 6.4 to 7.6 km on the left side of the simulation domain is shown. 
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FIGURE 17 Sets F and G Perturbation potential temperature (T – Tb; K; rows one, three, five, seven, and 
nine) and difference between reference and test solution potential temperature (TRef  – T; K; rows two, four, 
six, eight and ten) at t = 1000 s made with grid resolution ∆x = ∆z = 100 m, with odd order O3, 5, 9, 13, 
and 17 upwind-biased constant grid flux Crowley and hybrid-WENO/Crowley schemes, comparable order 
interpolations and pressure gradient/divergence, O18 spatial filter, same Courant number C, and constant 
eddy mixing coefficient of Km = 10 m2 s–1. The top two rows are for upwind-biased odd order O3, 5, 9, 13, 
and 17 constant grid flux Crowley scheme using only the stabilizing second derivative (C2), rather than N 
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derivatives for an Nth order scheme. Rows three and four are for hybrid-WENO/Crowley (Hy) flux schemes 
(Set G in rows three and four and all remaining rows). Rows five and six are for hybrid-WENO/Crowley 
flux schemes made with sine wave-based WENO-s smoothness indicators and p = 1 (HS). Rows seven and 
eight are for hybrid-WENO/Crowley flux schemes for scalars (Hs) and Crowley for velocity and pressure 
(Cv). Rows nine and ten for hybrid-WENO/Crowley fluxes on velocities and pressure (Hv) and Crowley 
on scalars (Cs). Maximum (Max) and minimum (Min) values and contour interval (Cint) values are on each 
plot. The bold dashed line is the 0.2 K perturbation potential temperature contour of the upwind-biased 
constant grid flux O17, 25 m reference solution interpolated to the grid in each plot. The bold solid line is 
the 0.2 K perturbation potential temperature contour of the simulation in the plot. Only a zoomed-in sub-
domain from x = –5.2 to –3.6 km and z = 6.4 to 7.6 km on the left side of the simulation domain is shown. 
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FIGURE 18  Set H perturbation potential temperature (T – Tb; K; rows one and four), difference between 
reference and test solution potential temperature (TRef  – T; K; rows two and five), and Kinetic Energy per 
unit volume (KE; 1/100 J m–3; rows three and six) fields at t = 1000 s made with grid resolution ∆x = ∆z = 
100 m, with O3, 5, 9, 13, and 17 constant grid flux schemes, all with O18 interpolations and pressure 
gradient/divergence, O18 spatial filter, same Courant number C, and eddy mixing coefficient of Km = 10 
m2 s–1. The top three rows are for odd order O3, 5, 9, 13, and 17 constant grid flux schemes for velocity and 
pressure (Fv) and the O17 constant grid flux scheme for scalars (s17). The second three rows are for odd 
order O3, 5, 9, 13, and 17 constant grid flux schemes for scalars (Fs) and the odd order O17 upwind-biased 
constant grid flux scheme for velocity and pressure (v17). Maximum (Max) and minimum (Min) values 
and contour interval (Cint) values are on each plot. The bold dashed line is the 0.2 K perturbation potential 
temperature contour of the upwind-biased constant grid flux O17, 25 m reference solution interpolated to 
the grid in each plot. The bold solid line is the 0.2 K perturbation potential temperature contour of the 
simulation in the plot. Only a zoomed-in sub-domain from x = –5.2 to –3.6 km and z = 6.4 to 7.6 km on the 
left side of the simulation domain is shown. 
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APPENDIX A  
 
TABLE AI   CFL and critical wave number at which instability appears first based for O1–19 linear odd 
order upwind biased (by one point) advection schemes with WSO2 O3 Runge-Kutta (LRK3) time 
integration using and extending the procedures described by Baldauf (2008).  
 

LRK3 
ODD 

O1 O3 O5 O7 O9 O11 O13 O15 O17 O19 

CFL 1.256373 1.625891 1.434983 1.243779 1.127174 1.049315 0.9935351 0.9514629 0.9184809 0.8918446 

Kcrit 3.141593 2.472898 1.693186 1.763554 1.847447 1.922732 1.988061 2.044338 2.093085 2.135942 

 
 
TABLE AII  CFL and critical wave number at which instability appears first based for O2–20 linear even 
order centred advection schemes with WSO2 O3 Runge-Kutta (LRK3) time integration using and extending 
the procedures described by Baldauf (2008).  
 

LRK3 
EVEN 

O2 O4 O6 O8 O10 O12 O14 O16 O18 O20 

CFL 1.732051 1.262224 1.092102 1.000839 0.942644 0.901712 0.8710421 0.8470229 0.8275891 0.8114673 

Kcrit 1.570796 1.797478 1.936074 2.033371 2.107086 2.165720 2.213967 2.254671 2.289680 2.320252 

 
 
TABLE AIII  CFL at which instability appears first based for O2–20 linear even order centred advection 
with (LLF) time integration to compare to LRK3. As can be shown, the CFLs for O2–20 linear even order 
centred advection schemes with WSO2 O3 Runge-Kutta time integrations (see TABLE AII) are always 
~1.732051 more than the same order advection and leapfrog time integrations.  
 

LLF 
EVEN 

O2 O4 O6 O8 O10 O12 O14 O16 O18 O20 

CFL 1.0 0.7287451 0.6305261 0.5778348 0.5442359 0.5206038 0.5028964 0.4890290 0.4778089 0.4685009 
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APPENDIX B 
 

 

 
APPENDIX B   Locations of flow structures in the perturbation potential temperature field for the colliding 
plumes circulation in a solution made with O17 constant grid fluxes, O18 interpolations and pressure 
gradient/divergence, O18 spatial filter, and constant eddy mixing coefficient of Km = 10 m2 s-1using ∆x = 
∆z = 16.66... m and ∆t = 0.0520833… (adapted from SWK2023). 
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