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Explainable Meta-Path Based Recommender Systems
THANET MARKCHOM, University of Reading, United Kingdom
HUIZHI LIANG, Newcastle University, United Kingdom
JAMES FERRYMAN, University of Reading, United Kingdom

Meta-paths have been popularly used to provide explainability in recommendations. Although long/complicated
meta-paths could represent complex user-item connectivity, they are not easy to interpret. This work tackles
this problem by introducing a meta-path translation task. The objective is to translate a meta-path to its
comparable explainable meta-paths that perform similarly in terms of recommendation but have higher
explainability compared to the given one. We propose a definition of meta-path explainability to determine
comparable explainable meta-paths and a meta-path grammar that allows comparable explainable meta-paths
to be formed in a similar way as sentences in human languages. Based on this grammar, we propose a meta-path
translation model, a sequence-to-sequence (Seq2Seq) model to translate a long and complicated meta-path to
its comparable explainable meta-paths. Two novel datasets for meta-path translation were generated based on
two real-world recommendation datasets. The experiments were conducted on these generated datasets. The
results show that our model outperformed state-of-the-art Seq2Seq baselines regarding meta-path translation
and maintained a better trade-off between accuracy and diversity/readability in predicting comparable ex-
plainable meta-paths. These results indicate that our model can effectively generate a group of explainable
meta-paths as alternative explanations for those recommendations based on any given long/complicated
meta-path.

CCSConcepts: • Information systems→Recommender systems; Languagemodels; •Computingmethod-
ologies → Machine translation.
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1 INTRODUCTION
The amount of information available for being chosen by users has been exponentially increasing
during the past decade. To avoid bombarding users with a high volume of information, recommender
systems have been developed. These systems select pieces of information or items of interest for
users based on user profiles, item metadata, and their historical interactions. Many recommender
systems are “black-box models” in which their decision-making mechanisms are not transparent.
This results in issues of understanding how they work or justifying the recommendations obtained
from these systems. Some recent regulations such as the General Data Protection Regulation
(GDPR) of the European Union and other countries [13] require artificial intelligence systems to
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2 Markchom et al.

be transparent or explainable to ensure fairness and trust for the users [8, 10]. According to this,
explainability has become another focal point for developing modern recommender systems.
Explainable recommender systems are capable of providing explanations of why the items are

recommended. Such explanations can help users make decisions to accept or reject the recommenda-
tion, knowing that it was based on their preferences or needs [52]. For example, if a user receives a
recommendation but the explanation reveals that it was made based on its popularity rather than the
user’s interests, the user may select other recommendations that are more relevant to their interests.
Apart from this, they can also increase the persuasiveness of recommendations and help maintain
the systems [36]. Several resources have been utilized to achieve both accuracy and explainability
in recommendations including heterogeneous information networks. A heterogeneous information
network (HIN) is a directed graph whose nodes are entities (e.g., users, items, categories, or brands)
and whose edges are relations between entities. Considering HINs, there are two types of relations
that can be observed: single-hop relations and multi-hop relations. Single-hop relations are explicit
and direct relations between two adjacent nodes in a network. Such relations are certainly useful
but they can only provide shallow insights. On the other hand, multi-hop relations are relations
between two non-adjacent nodes that are implicitly connected to each other through a sequence
of nodes and relations (path). In general, multi-hop relations are highly informative. They are
capable of providing new and unforeseen insights within a HIN that single-hop relations cannot
provide. HIN-based recommender systems leverage these multi-hop relations to model high-order
connectivity between nodes in HINs. Many models have been used to extract this information,
for instance, Gated Graph Neural Network (GGNN) [43], Graph Convolutional Neural Network
(GCNN) [47] and Graph Attention Network [40]. These models are highly effective for extracting
multi-hop relations but they typically lack explainability since it is difficult to examine the semantic
meanings of the extracted multi-hop relations [14].
Meta-paths have been proposed to extract semantically meaningful multi-hop relations in a

HIN under certain assumptions [14]. A meta-path based recommender system can generate rec-
ommendations based on specific meta-paths and use these meta-paths as explanations [23, 26, 41].
Depending on the circumstances, different meta-paths with variations in lengths and complexities
can be utilized to achieve intended performances. Some prior studies have shown that long and
complicated meta-paths can be useful and more informative than shorter meta-paths [5, 24, 46, 50].
However, the explainability of long and complicated meta-paths is intuitively low. Explaining
recommendations with these meta-paths could be more difficult to understand than shorter and less
complex ones. For example, given a HIN in Figure 1, let𝑈 , 𝑃 , 𝐶 and 𝐵 denote user, item, category,
and brand node types respectively. In this figure, a meta-path based recommender system based on
meta-path 𝑈𝑃𝐵𝑃𝐶𝑃 recommends “Item A” to “User 2” based on 𝑈𝑃𝐵𝑃𝐶𝑃 . It can be interpreted as
“Item A is recommended to User 2 because it is in the same category as an item (Item B) that has
the same brand as User 2’s item (Item C)”. Similarly, a meta-path based recommender system based
on𝑈𝑃𝐶𝑃 also recommends “Item A” to “User 2”. The explanation is based on𝑈𝑃𝐶𝑃 , i.e., “Item A is
recommended to User 2 because it is in the same category as User 2’s item (Item C)”. Although both
meta-paths can be used to explain this recommendation, the explanation based on𝑈𝑃𝐶𝑃 is more
interpretable than𝑈𝑃𝐵𝑃𝐶𝑃 , as it is shorter. Hence, generating more comprehensible explanations
for those recommendations could lead to better explainability in meta-path based recommender
systems.

To bridge the gap of better explaining meta-path based recommendations, we propose a method
to find more comprehensible explanations for meta-path based recommendations. First, we propose
how to quantifymeta-path explainability based on three aspects, i.e., readability, credibility, and
diversity. Then, given any meta-path, we define comparable explainable meta-paths as meta-
paths that perform recommendation similarly but have higher explainability compared to the given
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Explainable Meta-Path Based Recommender Systems 3

Fig. 1. Toy example of explaining recommendations obtained from meta-path based recommender systems
using meta-path𝑈𝑃𝐵𝑃𝐶𝑃 and meta-path𝑈𝑃𝐶𝑃

meta-path. They can be used as more comprehensible explanations for those recommendations
based on the given meta-path. Depending on the number of candidate meta-paths, identifying
comparable explainable meta-paths manually can be time-consuming. Therefore, we propose a
method for generating comparable explainable meta-paths. Considering meta-paths as languages,
we assume that they can be constructed based on certain grammar rules. We define a meta-
path grammar based on the concept of quasi-synchronous context-free grammar [32]. With
this grammar, we propose a meta-path translation model, a probabilistic model that maps a
meta-path to its comparable explainable ones. Since our task is similar to a machine translation
in natural language processing (NLP), a sequence-to-sequence (Seq2Seq) approach is adopted
to build a meta-path translation model. The proposed meta-path translation model consists of
three parts. The first part is the parser for generating the parse tree of a source meta-path. The
second part is the encoder which extracts latent features of node types in a source meta-path and
hierarchical-structure information from a source meta-path simultaneously. The last part is the
decoder, which is a modified Seq2Seq model based on latent neural grammar [19]. It maps a source
meta-path to a target meta-path based on the meta-path grammar. Unlike most existing Seq2Seq
models, the proposed model is capable of modeling non-hierarchical and hierarchical dependencies
between node types in a meta-path. Also, it is suitable for our problem which is a one-to-many
task compared to other Seq2Seq models. To the best of our knowledge, this is the first work that
considers meta-paths from a linguistic point of view. The contributions of this work are summarized
as follows:

• We introduce the meta-path translation task for recommender systems. The goal is to find
the corresponding comparable explainable meta-paths of a long and complicated one. We
propose how to quantify the explainability of a meta-path. Based on this explainability, we
can then identify comparable explainable meta-paths of any given meta-path.

• Two meta-path translation datasets for meta-path based recommendations were generated
based on two real-world datasets. In these generated datasets, each input is a meta-path
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4 Markchom et al.

and each corresponding output is a group of its comparable explainable meta-paths. These
datasets are publicly available. They are the first of this type of dataset.

• To translate a meta-path, we present a novel view of meta-paths and how they are formed
from a grammatical perspective. We define a meta-path grammar (a set of rules) that allows
us to systematically construct explainable meta-paths in a similar way as sentences in human
languages.

• Based on the meta-path grammar, we propose a meta-path translation model. The key
idea is to use the latent neural grammar based on the meta-path grammar defined in our
work. Also, both non-hierarchical and hierarchical structures of a meta-path are considered
simultaneously to effectively learn the translation.

• We conducted extensive experiments on real-world datasets for generating more comprehen-
sible explanations for the meta-path based recommendations.

2 RELATEDWORK
Collaborative filtering (CF) is one of the popular recommender system approaches using im-
plicit/explicit user-item interactions to make recommendations based on the similarity between
users [51]. Several CF-based models have been proposed, e.g., CF-KNN that uses the K-Nearest-
Neighbor method (KNN) for measuring similarity between users [2], Matrix Factorization (MF)
model [20] that decomposes a user-item interaction matrix into low-dimensional user/item latent
factors and BPR-MF model [28] that combines MF with Bayesian Personalized Ranking (BPR)
scheme. Since these models rely on only user-item interactions, they typically suffer from the lack
of user-item interactions (cold start problem) [30].

HINs have been widely used to resolve the cold start problem in recommendation [14, 18, 38, 40].
They provide auxiliary information in the form of multi-hop relations between entities in a HIN.
Such high-order relations can be accessed and utilized by many methods, e.g., Graph Convolutional
Neural Network (GCNN) [47], RippleNet [38], and Graph Attention Network [40]. Recently, meta-
paths have become a powerful tool for leveraging multi-hop relations in HINs [14]. They can extract
various multi-hop relation types between user-item pairs with different semantic assumptions.
Most meta-path based recommender systems use meta-path based contexts to model the semantic
connectivity between users and items. For example, PathSim [33] method was applied on meta-path
based contexts to compute the semantic connectivity in [49]. Such connectivity was then used
to enrich the user-item interaction matrix. In [24], metapath2vec [9] method was also applied to
meta-path based contexts to generate user and item representations for a CF-KNN model. Both
PathSim and metapath2vec methods were used in [26] to model the user-item semantic similarities
for a BPR model. In [6], the various meta-path based contexts were attentively combined to learn
user and item representations. Some models learned meta-path representations and integrated
them into the learning frameworks. For instance, a co-attention mechanism was used to learn
user, item, and meta-path representations in [18]. The attention weights were used to identify
the most important meta-path. In [17], user, item, and relation representations were learned to
capture the probabilities of meta-path based interactions between user-item pairs. Depending on the
meta-path used in these methods, the generated user and item representations reflect how similar
they are under the meaningful assumptions [9, 14, 33]. Such assumptions can be used to explain the
recommendations based on these user and item representations. However, if the meta-path is long
and complicated, the users may not fully understand the meaning behind it. Therefore, translating
such meta-paths to more explainable ones could provide more comprehensible explanations for
those recommendations.
The task of meta-path translation can be formulated as a sequence-to-sequence (Seq2Seq) task

where a sequence of nodes and relations is mapped into another sequence of nodes and relations
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that is more interpretable. As a result, this task can be achieved by using a Seq2Seq model. Typi-
cally, a Seq2Seq model is applied to accomplish a Natural Language Processing (NLP) task, e.g.,
machine translation [39], text summarization [31], and style transfer [11]. Some architectures
such as Recurrent Neural Networks (RNNs) [34], Convolutional Neural Networks (CNNs) [12] and
Transformer [37] have been adopted to build Seq2Seq models. They are effective for modeling
latent features between components in a sequence regardless of its hierarchical structure [25].
Recently, a Seq2Seq model using latent neural grammars was proposed [19]. This model applies
the concept of probabilistic quasi-synchronous context-free grammars (QCFGs) on the source and
target sequences allowing a Seq2Seq translation to be done in a hierarchical and grammatical way.
Since meta-paths are sequences, a Seq2Seq model is intuitively suitable for the task of meta-path
translation. However, such context-free grammars have only been used in the NLP area. There is still
a gap in using context-free grammars in the recommendation area, especially for the explainable
recommendation task. To fill the gap, adopting an existing Seq2Seq model to solve the task is
possible. However, existing models either rely on a non-hierarchical structure or a hierarchical
structure of a sequence. Simultaneously leveraging both of them could lead to better performance
for this task.

3 EXPLAINABLE META-PATH
In this section, we discuss the definitions of HIN, meta-path, and explainable meta-path proposed
in this work. Then, we explain how to obtain relatively more explainable meta-paths given a long
and complicated one.

Definition 1. (HIN schema) Let G denote a HIN schema, G = (N,R,W) where N is a set of node
types, R is a set of relation types andW : R→ ℜ is a non-negative weight function mapping each
relation to a non-negative weight in ℜ. Let 𝑁𝑖 , 𝑁 𝑗 ∈ N be any two node types, 𝑅𝑁𝑖 ,𝑁 𝑗

∈ R denotes
the relation type connecting from a node with node type 𝑁𝑖 to a node with node type 𝑁 𝑗 . For any
𝑅𝑁𝑖 ,𝑁 𝑗

∈ R, let 𝑅−1
𝑁𝑖 ,𝑁 𝑗

denote an inverse relation type from 𝑁 𝑗 to 𝑁𝑖 .

Definition 2. (HIN) Given a HIN schema G = (N,R,W), a HIN is defined as a directed graph
G = (N ,R) where N is a set of nodes and R is a set of relations. Each node and relation is associated
with their type mapping function: 𝜙 : N → N and 𝜓 : R → R respectively. Given nodes 𝑥,𝑦 ∈ N ,
𝑟𝑥,𝑦∈ R denotes a relation from 𝑥 to 𝑦 and its weight is denoted by𝑤 (𝑟𝑥,𝑦) =W(𝜓 (𝑟𝑥,𝑦)).

An example of a HIN schema is shown in Figure 1. In this schema, there are 4 node types, i.e.,
user (𝑈 ), item (𝑃 ), category (𝐶), and brand (𝐵) node types, and 6 relation types, i.e., user-item,
item-category and item-brand relation types including their inverse relation types. An example of
a HIN with this schema is also provided in this figure.

Definition 3. (Meta-Path) Given a HIN G with a schema G, a meta-path 𝑚 is defined as

𝑁1
𝑅𝑁1,𝑁2−−−−−→ 𝑁2 · · ·𝑁𝑙

𝑅𝑁𝑙 ,𝑁𝑙+1−−−−−−→ 𝑁𝑙+1 (abbreviated as 𝑁1𝑁2 · · ·𝑁𝑙+1), describes a composite relation
𝑅𝑁1,𝑁2 ◦ · · · ◦𝑅𝑁𝑙 ,𝑁𝑙+1 between node type 𝑁1 and 𝑁𝑙+1 where ◦ is the composition operator on relations. 𝑙
is the length of𝑚, N𝑚 = {𝑁1, 𝑁2, ..., 𝑁𝑙+1} is a set of node types in𝑚 and R𝑚 = {𝑅𝑁1,𝑁2 , · · · , 𝑅𝑁𝑙 ,𝑁𝑙+1 }
is a set of relation types in𝑚.

A meta-path provides meaningful high-order connectivity between users and items for learning
recommendations. Due to its semantic meaning, it can be used as an explanation of why the items
are recommended. For example, let 𝑈 , 𝑃 , and 𝐶 denote the user node type, item node type, and
category node type respectively. Any recommendations based on 𝑈𝑃𝐶𝑃 can be explained that
they are recommended since they have the same categories as the users’ previously interacted
items. Intuitively, some meta-paths are perplexing and hard to understand, especially those that are
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6 Markchom et al.

long and contain various node types. Nonetheless, these meta-paths are still useful for capturing
diversity in users’ preferences [24].
We customize three metrics in [45] that are commonly used to measure sequence (or path)

readability, credibility, and diversity to quantify the explainability of a meta-path. Let 𝑚 be a
meta-path. Meta-path readability R(𝑚) is computed by

R(𝑚) = 1√
𝑙 · |N𝑚 |

(1)

It is inversely proportional to the length of𝑚 and the number of node types in𝑚. The readability
decreases as the length and the total number of node types increase. Meta-path credibility C(𝑚) is
computed by

C(𝑚) = Π𝑙
𝑖=1W(𝑅𝑁𝑖 ,𝑁𝑖+1 ) (2)

whereW(𝑅𝑁𝑖 ,𝑁𝑖+1 ) is the weight of relation 𝑅𝑁𝑖 ,𝑁𝑖+1 in𝑚. It is the accumulated weight of all relation
weights in the meta-path. The higher credibility means that the meta-path is more accountable
based on pre-defined weights in the schema. Meta-path diversity D(𝑚) is defined as

D(𝑚) = log𝑙+1 |R𝑚 | (3)

Some studies have shown that relation sequences with diversity are more comprehensive and
persuasive for humans [1, 45]. Thus, the higher the diversity of𝑚 is, the more explainable.

Definition 4. Explainable Meta-Path Given a meta-path 𝑚, let 𝛿𝑅 , 𝛿𝐶 , and 𝛿𝐷 denote the
thresholds for readability, credibility, and diversity respectively. If R(𝑚) > 𝛿𝑅 , C(𝑚) > 𝛿𝐶 and
D(𝑚) > 𝛿𝐷 , then𝑚 is explainable.

We define the criteria to determine which meta-paths are comparable but more explainable given
a long and complicated meta-path. The key idea is to find a group of explainable meta-paths that
consist of the same node types and perform as well as a given meta-path. These conditions are
summarized in the following definition:

Definition 5. Comparable Explainable Meta-Path Given a meta-path𝑚, a comparable ex-
plainable meta-path is a meta-path𝑚′ satisfying these conditions:

• 𝑚′ is an explainable meta-path
• N𝑚′ ⊆ N𝑚
• 𝑙 ′ ≤ 𝑘 < 𝑙

• |A(𝑚) − A(𝑚′) | < 𝛿
where N𝑚′ is the set of node types of𝑚′, 𝑙 ′ is the length of𝑚′, 𝑘 is the maximum length for selecting
short/interpretable meta-paths, A(𝑚) and A(𝑚′) are any performance evaluation values (e.g., Hit ratio,
Precision, or Recall) based on𝑚 and𝑚′ respectively, and 𝛿 is the pre-defined performance evaluation
threshold. For any𝑚, there can be multiple meta-paths corresponding to these conditions.

Based on this definition, we can find more explainable meta-paths (𝑚′) to explain recommenda-
tions based on a long and complicated meta-path (𝑚). However, the number of possible explainable
meta-paths is directly proportional to the length of𝑚 and the number of unique node types in
𝑚. The higher the length and the number of node types are, the larger the number of explain-
able meta-paths that could be comparable. Thus, instead of considering the entire search space,
we propose a method to find comparable explainable meta-paths for recommendations based on
long/complicated meta-paths.
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4 META-PATH TRANSLATION MODEL
In this section, we discuss the proposed model to translate or map a given meta-path to its compa-
rable explainable meta-paths.

4.1 Problem Formulation
LetM be a set of meta-paths andM ′ be a set of explainable meta-paths. Given a meta-path𝑚 ∈ M,
the problem is to find a function 𝑓 : M → P(M ′) that maps𝑚 to a subset of comparable explainable
meta-paths of𝑚 where P(M ′) denotes the power set of M ′. This problem can be considered as a
one-to-many task in which an input meta-path yields a set of its comparable explainable meta-paths.

4.2 Meta-Path Grammar
To find 𝑓 , we first assume properties of meta-paths in M and M ′. Inspired by the concept of
context-free grammar in NLP, we assume that meta-paths in M and M ′ follow certain grammars.
These grammars represent certain rules of how meta-paths in both M and M ′ are constructed.
Based on Definition 5, each𝑚′ ∈ M ′ is related to its corresponding𝑚 ∈ M. Therefore, the grammar
of𝑚′ should also depend on its corresponding𝑚. To capture this property, we adopt the concept of
quasi-synchronous context-free grammar [32] to define the grammar of meta-paths in M andM ′.

Definition 6. Meta-Path Quasi-Synchronous Context-Free Grammar Given a meta-path
𝑚 as a source meta-path and𝑚′ as a target meta-path. Let 𝑡 and 𝑡 ′ denote the parse tree of𝑚 and𝑚′

respectively. A meta-path quasi-synchronous context-free grammar (QCFG) is represented as

G[𝑡] = (S,N,P,E,R[𝑡], 𝜃 ) (4)

where S is the distinguished start symbol, N is the set of non-terminals that expand to other non-
terminals, P is the set of non-terminals that expand to terminals (i.e. pre-terminals), E is the set of
terminals which is the set of node types, and R[𝑡] is a set of context-free rules conditioned on the
source tree 𝑡 , where each rule follows one of these following rules:

S→ A[𝛼𝑖 ], A ∈ N, 𝛼𝑖 ⊆ 𝑡 (5)
A[𝛼𝑖 ] → B[𝛼 𝑗 ]C[𝛼𝑘 ], A ∈ N,B,C ∈ N ∪ P, 𝛼𝑖 , 𝛼 𝑗 , 𝛼𝑘 ⊆ 𝑡 (6)

D[𝛼𝑖 ] → 𝑤, D ∈ P,𝑤 ∈ E, 𝛼𝑖 ⊆ 𝑡 (7)

where 𝛼𝑖 ’s are subsets of nodes in the source tree 𝑡 , and 𝜃 is the parameters of the rule probabilities
𝑝𝜃 (𝑟 ) for each 𝑟 ∈ R[𝑡]. These subsets of nodes are aligned with certain nodes in the target tree 𝑡 ′

when performing the translation. Note that B and C are arbitrary non-terminals or pre-terminals in
N ∪ P. D is an arbitrary pre-terminal in P. If B (or C) is a pre-terminal in P, it is equivalent to D in
Eq. 7 and can expands to a terminal𝑤 ∈ E following the grammar rule B[𝛼𝑖 ] → 𝑤 (or C[𝛼𝑖 ] → 𝑤 ).

Figure 2 shows an example of meta-path grammar and how the target tree nodes are aligned with
certain nodes in the source tree in order to translate the source meta-path𝑈𝑃𝐵𝑃𝐶𝑃 to the target
meta-path 𝑈𝑃𝐶𝑃 . Let 𝑡 be the parse tree of the source meta-path 𝑈𝑃𝐵𝑃𝐶𝑃 (i.e., the source tree)
and 𝑡 ′ be the parse tree of the target meta-path 𝑈𝑃𝐶𝑃 (i.e., the target tree). 𝛼0, 𝛼1, ..., 𝛼10 denote
non-terminal nodes of the source tree while A, B, C, and D denote non-terminals of the target tree.
The node types𝑈 , 𝑃 , 𝐵, 𝑃 , 𝐶 and 𝑃 in blue are terminals nodes of 𝑡 while the node types𝑈 , 𝑃 , 𝐶 ,
and 𝑃 in red are terminal nodes of 𝑡 ′. Each non-terminal node in the target tree 𝑡 ′ is transduced by
certain nodes in the source tree 𝑡 and is parsed into other non-terminals or terminals. For instance,
A is transduced by 𝛼10 in the source tree. Then, A is parsed into B which is transduced by 𝛼9 and D
which is transduced by 𝛼5. Since both B and D are non-terminals, they, therefore, have to be parsed
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Fig. 2. The proposed meta-path translation model

again. B is parsed into two non-terminals while D is parsed into a terminal node 𝑃 . By running this
process from the root node until reaching all non-terminal nodes, the target tree 𝑡 ′ which produces
the target meta-path𝑈𝑃𝐶𝑃 is formed as an output for this meta-path translation.

4.3 Meta-Path Translation Model
To build a meta-path translation model, we adopt a Seq2Seq model with latent neural grammar
from [19]. This model was originally proposed for NLP tasks such as machine translation and style
transfer. It is capable of capturing the hierarchical structure of a sequence based on any latent
QCFG. However, latent features extracted from the non-hierarchical structure of a sequence can be
beneficial as well. A non-hierarchical structure is a structure of a sequence that is not in a level-
like or tree-like form based on a specific grammar of the sequence. It represents local and global
dependencies between components in a sequence regardless of the sequence grammar. Relying only
on a hierarchical structure, such dependencies are neglected. Considering both non-hierarchical and
hierarchical structures of a sequence can lead to a more effective meta-path translation model. We,
therefore, adopt this method and modify it to consider non-hierarchical and hierarchical structures
simultaneously.

The proposed meta-path translation model consists of three parts: (1) parser that finds the parse
tree of a source meta-path, (2) encoder that encodes the dependency of tokens (node types) in
a source meta-path in both non-hierarchical and hierarchical perspectives, and (3) decoder that
uses the source parse tree and the source token embeddings from the encoder to translate a source
meta-path based on the meta-path grammar. Figure 2 illustrates the proposed meta-path translation
model given a source meta-path𝑈𝑃𝐵𝑃𝐶𝑃 and its target meta-path𝑈𝑃𝐶𝑃 .

Parser. Typically, there exists a well-defined parser that can be applied to sentences in natural
languages to extract parse trees of these sentences immediately. However, in our case, there is no
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parser developed specifically for meta-paths. Therefore, we adopt the same approach in [19] to
jointly train the parser with the encoder and the decoder. Following [19], a monolingual PCFG with
parameters 𝜙 is adopted to find the distribution of the source tree 𝑡 given the source meta-path𝑚
denoted as 𝑝𝜙 (𝑡 |𝑚). Therefore, given a meta-path𝑚, the source tree 𝑡 of𝑚 can be sampled from
𝑝𝜙 (𝑡 |𝑚). This source tree is then used as an input for the encoder in the next step.

Encoder. The encoder consists of latent feature extractionmodule and hierarchical feature extraction
module. The latent feature extraction module is firstly used to obtain dependency information of
node types (tokens) in a source meta-path regardless of its hierarchical structure. This module can
be any type of architecture such as LSTM, CNN, or Transformer. It takes a source meta-path as an
input and outputs the latent feature embeddings of tokens in a source meta-path. In this way, the
non-hierarchical-structure information is captured within these extracted latent feature embeddings.
These latent feature embeddings are used as inputs for the hierarchical feature extraction module.
They can be considered prior knowledge for hierarchical feature extraction.

As for the hierarchical feature extraction, following [19], TreeLSTM [35] is used to encode the
hierarchical structure of a source meta-path given its source tree from the parser. In their work,
only the token embeddings were used as inputs of TreeLSTM. However, in our case, the same node
types repeatedly appear in a meta-path, for instance, meta-path𝑈𝑃𝐵𝑃𝐶𝑃 has three 𝑃 node types
in three different positions. This could lead to confusion in learning the dependency information.
Thus, we add the positional embeddings along with the token embeddings to differentiate such
repeating tokens based on their positions. A positional embedding is added to each token to indicate
its position in the meta-path. Altogether, the input embeddings of TreeLSTM are the sum of the
token embeddings, the positional embeddings, and the latent feature embeddings. In this way,
TreeLSTM generates final source token embeddings that encode both non-hierarchical-structure
and hierarchical-structure information of a source meta-path.
Given a parse tree, for any node 𝛼𝑖 in this tree, let 𝑁 be the total number of child nodes of 𝛼𝑖

and h𝛼𝑖𝑘 and c𝛼𝑖𝑘 be the hidden state vector and memory cell vector of its 𝑘th child in the tree
respectively. The Tree-LSTM transition equations with the sum of the token embeddings, the
positional embeddings, and the latent feature embeddings as input are as follows:

z𝛼𝑖 = 𝜎𝜎𝜎

(
W(z) (x𝛼𝑖 + x∗𝛼𝑖 + x′𝛼𝑖 ) +

𝑁∑
𝑛=1

U(z)
𝑛 h𝛼𝑖𝑛 + 𝑏 (z)

)
(8)

f𝛼𝑖𝑘 = 𝜎𝜎𝜎

(
W(f) (x𝛼𝑖 + x∗𝛼𝑖 + x′𝛼𝑖 ) +

𝑁∑
𝑛=1

U(f)
𝑘𝑛

h𝛼𝑖𝑛 + 𝑏 (f)
)

(9)

o𝛼𝑖 = 𝜎𝜎𝜎

(
W(o) (x𝛼𝑖 + x∗𝛼𝑖 + x′𝛼𝑖 ) +

𝑁∑
𝑛=1

U(o)
𝑛 h𝛼𝑖𝑛 + 𝑏 (o)

)
(10)

v𝛼𝑖 = tanh

(
W(v) (x𝛼𝑖 + x∗𝛼𝑖 + x′𝛼𝑖 ) +

𝑁∑
𝑛=1

U(v)
𝑛 h𝛼𝑖𝑛 + 𝑏 (v)

)
(11)

c𝛼𝑖 = z𝛼𝑖 ⊙ v𝛼𝑖 +
𝑁∑
𝑘=1

f𝛼𝑖𝑘 ⊙ c𝛼𝑖𝑘 (12)

h𝛼𝑖 = o𝛼𝑖 ⊙ tanh(c𝛼𝑖 ) (13)

where x𝛼𝑖 , x∗𝛼𝑖 and x′𝛼𝑖 denote the token embedding, the positional embedding and the latent
feature embedding of 𝛼𝑖 respectively, 𝜎𝜎𝜎 denotes the logistic sigmoid function and h𝛼𝑖 is the hidden
state vector of 𝛼𝑖 which is used as the embedding of 𝛼𝑖 for the decoder in the next step.
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Decoder. After obtaining the source tree and the source token embeddings, the next step is to
transduce the source tree 𝑡 to the target tree 𝑡 ′ via the decoder based on a QCFG. For each rule
𝑟 ∈ R[𝑡], the rule probability 𝑝𝜃 (𝑟 ) is computed by either one of these following formulas:

𝑝𝜃 (S→ A[𝛼𝑖 ]) = 𝜎 (u𝑇SeA[𝛼𝑖 ]) (14)

𝑝𝜃 (A[𝛼𝑖 ] → B[𝛼 𝑗 ]C[𝛼𝑘 ]) = 𝜎 (𝑓1 (eA[𝛼𝑖 ])𝑇 𝑓2 (eB[𝛼 𝑗 ]) + 𝑓3 (eC[𝛼𝑘 ])) (15)

𝑝𝜃 (D[𝛼𝑖 ] → 𝑤) = 𝜎 (𝑓4 (eD[𝛼𝑖 ])𝑇u𝑤 + 𝑏𝑤) (16)

where 𝜎 denote the softmax function, uS is an embedding of S randomly initialized, 𝑓1, 𝑓2, 𝑓3 and 𝑓4
are feedforward neural networks with residual layers, eA[𝛼𝑖 ] is an embedding of A[𝛼𝑖 ] computed by

eA[𝛼𝑖 ] = uA + h𝛼𝑖 (17)

where uA is an embedding of A randomly initialized and h𝛼𝑖 is the token embedding of 𝛼𝑖 obtained
from the encoder, u𝑤 is a terminal node embedding and 𝑏𝑤 is a terminal bias. These probabilities
altogether define the probability of the target tree 𝑡 ′ given the source tree 𝑡 denoted as 𝑝𝜃 (𝑡 ′ |𝑡).
With both 𝑝𝜙 (𝑡 |𝑚) and 𝑝𝜃 (𝑡 ′ |𝑡). The log marginal likelihood of a target meta-path𝑚′ given a

source meta-path𝑚 with a QCFG G[𝑡] is

log 𝑝 (𝑚′ |𝑚) = log
( ∑
𝑡 ∈T (𝑚)

∑
𝑡 ′∈T (𝑚′)

𝑝𝜃 (𝑡 ′ |𝑡)𝑝𝜙 (𝑡 |𝑚)
)

(18)

where T (𝑚) and T (𝑚′) denote the sets of trees whose yields are𝑚 and𝑚′ respectively. Since∑
𝑡 ′∈T (𝑚′) 𝑝𝜃 (𝑡 ′ |𝑡) = 𝑝𝜃 (𝑚′ |𝑡), Eq. 18 can be rewritten as

log 𝑝 (𝑚′ |𝑚) = log
( ∑
𝑡 ∈T (𝑚)

𝑝𝜃 (𝑚′ |𝑡)𝑝𝜙 (𝑡 |𝑚)
)

= log
(
E𝑡∼𝑝𝜙 (𝑡 |𝑚) [𝑝𝜃 (𝑚′ |𝑡)]

)
(19)

where
𝑝𝜃 (𝑚′ |𝑡) =

∏
𝑟 ∈R[𝑡 ]

𝑝𝜃 (𝑟 ) (20)

where R[𝑡] denotes a set of rules in the source tree 𝑡 and 𝑝𝜃 (𝑟 ) is the probability of rule 𝑟 . Finally,
the loss function is defined as an expected negative log-likelihood,

𝐿(𝜃, 𝜙) = − E𝑡∼𝑝𝜙 (𝑡 |𝑚) [log 𝑝𝜃 (𝑚′ |𝑡)] (21)

In this work, unlike the original model in [19], the regularization terms are also added in the loss
function to ensure the explainability of meta-paths as follows:

𝐿(𝜃, 𝜙) = −E𝑡∼𝑝𝜙 (𝑡 |𝑚)
[
log 𝑝𝜃 (𝑚′ |𝑡)

]
− 𝜆

(
R(𝑚′) + C(𝑚′) + D(𝑚′)

)
where R(𝑚′), C(𝑚′) and D(𝑚′) denote the readability, credibility, and diversity of the target
meta-path𝑚′ respectively, and 𝜆 is a parameter for tuning these regularization terms.

Figure 2 illustrates the whole proposed framework. This figure shows an example of the process
of translating 𝑈𝑃𝐵𝑃𝐶𝑃 to 𝑈𝑃𝐶𝑃 based on G[𝑡] and the node alignment between the parse tree
𝑡 of 𝑈𝑃𝐵𝑃𝐶𝑃 and the parse tree 𝑡 ′ of 𝑈𝑃𝐶𝑃 . As shown in this figure, nodes in 𝑡 ′ are transduced
by certain nodes in 𝑡 . For instance, node A[𝛼10] in 𝑡 ′ is transduced by 𝛼10 in 𝑡 . The grammar rule
A[𝛼10] → B[𝛼9]D[𝛼5] is learned by the decoder. This means that, in the target tree 𝑡 ′, A[𝛼10] is
parsed/divided into B[𝛼9] which is transduced by 𝛼9 and D[𝛼5] which is transduced by 𝛼5.
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Table 1. The statistics of MovieLens and Amazon datasets

Dataset Node type #nodes Relation type #relations

MovieLens

user (𝑈 ) 1,132 𝑅𝑈𝑃 20,255
item (𝑃 ) 3,767 𝑅𝑃𝐺 8,861
genre (𝐺) 19 𝑅𝑃𝐴 97,791
actor (𝐴) 53,472 𝑅𝑃𝐷 3,756
director (𝐷) 1,672 𝑅𝑃𝑇 43,265
tag (𝑇 ) 5,209 𝑅𝑈𝑉 1,126
visual factor (𝑉 ) 100 𝑅𝑃𝑉 3,121

Amazon

user (𝑈 ) 39,387 𝑅𝑈𝑃 214,696
item (𝑃 ) 23,030 𝑅𝑃𝐶 154,833
category (𝐶) 1,193 𝑅𝑃𝐵 3,942
brand (𝐵) 1,181 𝑅𝑃𝐻 65,514
bought together (𝐻 ) 25,207 𝑅𝑈𝑉 39,387
visual factor (𝑉 ) 100 𝑅𝑃𝑉 23,033

Training. The model parameters are updated by using the gradient descent algorithm. The gradi-
ent with respect to 𝜃 is computed by using an unbiased Monte Carlo method and backpropagated
through the usual inside algorithm [3]. For the gradient with respect to 𝜙 , the score function
estimator with a self-critical baseline [29] is applied as follows:

∇𝜙𝐿(𝜃, 𝜙) ≈ − (𝑔(𝑡) − 𝑔(𝑡))∇𝜙 log 𝑝𝜙 (𝑡 |𝑚) (22)

where 𝑔(𝑡) = log 𝑝𝜃 (𝑚′ |𝑡), 𝑡 is a sample from 𝑝𝜙 (𝑡 |𝑚) and 𝑡 = argmax𝑡𝑝𝜙 (𝑡,𝑚) is the MAP tree of
𝑝𝜙 (𝑡 |𝑚).

Inference. Firstly, 𝑡 = argmax𝑡𝑝𝜙 (𝑡,𝑚) is obtained from the parser. Then, 𝐾 target trees are
sampled from 𝑝𝜃 (𝑡 ′ |𝑡). Among these sampled trees, top-𝑁 most-common target trees 𝑡 ′1, ..., 𝑡

′
𝑁
are

selected. Finally, meta-paths𝑚′
1, ...,𝑚

′
𝑁
corresponding with 𝑡 ′1, ..., 𝑡

′
𝑁
are treated as final outputs.

5 EXPERIMENTS
5.1 Dataset Generation
To train the proposed meta-path translation model, we first generate two datasets for meta-path
translation. To generate a meta-path translation dataset, there are three prerequisites as inputs,
i.e., a recommendation dataset, a meta-path based recommendation model, and a set of meta-paths
M for being applied to the selected recommendation model on the selected dataset. Given these
inputs, the process of generation is summarized as follows:

(1) For each𝑚 ∈ M, the selected recommendation model is trained based on𝑚 on the selected
recommendation dataset. Then, each model based on each meta-path is used to compute a
set of recommendations. This results in multiple sets of recommendations in which each set
contains recommendations based on each meta-path.

(2) With all sets of recommendations based on each and every𝑚 ∈ M, the set of all comparable
explainable meta-paths of each𝑚, 𝑓 (𝑚), is identified. This is done by iteratively considering
all possible pairs of meta-paths and validating them based on Definition 5.
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(3) For each comparable explainable meta-path𝑚′ of𝑚, (𝑚,𝑚′) is treated as a sample and added
to the dataset for meta-path translation where𝑚 is an input (source meta-path) and𝑚′ is an
output (target meta-path).

In our experiments, the recommendation model in [24] was adopted to predict recommendations
based on each meta-path in Step (1). All the parameter settings were the same as in the original
paper. This approach uses metapath2vec to find user and item node embeddings and use these
embeddings in a CF-KNN model. Note that any meta-path based recommendation approaches are
applicable. We selected this approach since it is easy to implement and requires less computational
resources than most approaches. Two real-world recommendation datasets were used:

• MovieLens dataset1 [4], an extension of theMovieLens dataset calledHetRec2011-MovieLens-
2K. It contains user tagging history andmovie metadata including genres, actors, and directors.
Apart from metadata, we also consider visual factors from [24]. These visual factors represent
significant image features extracted from movie poster images2.

• Amazon dataset3 [16], an e-commerce dataset consisting of users’ review history and item
metadata divided into various subsets. In this work, we only selected the “Clothing” item
subset for the experiments. We only retained 5-rated reviews to ensure the users’ satisfaction
for learning their preferences. The ratings are converted to implicit feedback to be used in
our proposed model. Also, visual factors from [24] are considered. These visual factors were
generated from item images provided in this dataset.

To reduce the sparsity, those users who have less than two items and those items that have been
interacted with by less than two users were removed. The dataset statistics are summarized in Table
1. ForMovieLens, there are 7 node types and 12 relation types (inverse relation types included).
For Amazon dataset, there are 6 node types and 10 relation types (inverse relation types included).
For simplicity, in this work, all relations have the same weight which is 1, i.e.,𝑤 (𝑟𝑥,𝑦) = 1 for all
𝑟𝑥,𝑦 ∈ R. Assigning different weights for different relations will be considered in future work. For
each dataset, meta-paths based on the node and relation types in Table 1 were selected. We used
meta-paths that start with the user node type𝑈 and end with the item node type 𝑃 . Based on this
condition, the shortest possible meta-path is𝑈𝑃 with a length of 1. However, using meta-path𝑈𝑃
is equivalent to using only user-item interactions which ignore multi-hop relations. Therefore, we
discarded this meta-path and started the range of meta-paths at 2. To determine the maximum
length, we considered the fact that increasing the maximum length would result in a significantly
larger number of meta-paths. For each and every meta-path, the recommendation model based
on this meta-path has to be trained to determine the performance similarities among different
meta-paths. A large amount of time would be needed to train all of these models. Therefore, to
maintain the feasibility of our experiments while considering the exponential growth of possible
meta-paths with increasing length, we set the maximum length of the selected meta-paths to 8. As a
result, the lengths of the chosen meta-paths are varied within the range of 2 to 8. In total, Movielens
dataset consists of 1, 025 meta-paths, while the Amazon dataset consists of 703 meta-paths. For
both datasets, the number of meta-paths of each length can be found in Figure 3.

For Step (2), to identify explainable meta-paths, the maximum length of comparable explainable
meta-paths (𝑘), the readability threshold (𝛿𝑅), the credibility threshold (𝛿𝐶 ) and the diversity thresh-
old (𝛿𝐷 ) have to be determined.We varied𝑘 from 2 to 7 and 𝛿𝑅 , 𝛿𝐶 , and 𝛿𝐷 among {0, 0.25, 0.5, 0.75, 1}
to examine the number of explainable meta-paths obtained from each combination. Note that since
the relation weights of HINs of both datasets were set identically to 1, the credibility was then

1https://grouplens.org, http://www.rottentomatoes.com, http://www.imdb.com
2http://www.omdbapi.com
3http://jmcauley.ucsd.edu/data/amazon/
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(a) MovieLens (b) Amazon

Fig. 3. The number of meta-paths of each length ranging from 2 to 8 used in our experiments on (a) MovieLens
and (b) Amazon datasets

(a) MovieLens (b) Amazon

Fig. 4. The number of source meta-paths with 𝑛 comparable explainable meta-paths in our meta-path
translation datasets based on (a) MovieLens and (b) Amazon datasets

Table 2. Examples of source meta-paths and their corresponding target meta-paths (i.e., their comparable
explainable meta-paths) on each dataset

Dataset Source meta-path Target meta-path(s)

Movielens
𝑈𝑃𝑉𝑃𝑉𝑃𝐴𝑃 𝑈𝑉𝑈𝑃

𝑈𝑃𝐷𝑃𝑉𝑃𝑇𝑃 𝑈𝑃𝑈𝑃 ,𝑈𝑃𝑉𝑃
𝑈𝑉𝑈𝑃𝑇𝑃𝑈𝑉𝑃 𝑈𝑃𝑉𝑃 ,𝑈𝑉𝑈𝑃

Amazon
𝑈𝑃𝑈𝑃𝐶𝑃𝐻𝑃 𝑈𝑃𝐶𝑃 ,𝑈𝑃𝑈𝑃
𝑈𝑃𝐻𝑃𝐵𝑃𝐻𝑃 𝑈𝑃𝐵𝑃 ,𝑈𝑃𝑈𝑃
𝑈𝑉𝑃𝐻𝑃𝐵𝑃𝐻𝑃 𝑈𝑉𝑃 ,𝑈𝑉𝑈𝑃 ,𝑈𝑃𝐵𝑃 ,𝑈𝑃𝑉𝑃

identical for every meta-path. This means that different values of 𝛿𝐶 did not affect the number
of explainable meta-paths. Therefore, we only considered the outcomes when varying 𝑘 , 𝛿𝑅 , and
𝛿𝐷 . Figure 5 shows the number of explainable meta-paths when different 𝑘 , 𝛿𝑅 , and 𝛿𝐷 were used
onMovieLens and Amazon datasets. To ensure explainability, 𝑘 should be as short as possible.
However, when 𝑘 = 2, there is only one explainable meta-path available for both datasets. There-
fore, we selected 𝑘 = 3, which is the second shortest length for both datasets. Then, to include as
many explainable meta-paths as possible, we selected the highest thresholds that would allow the
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Table 3. The statistics of our meta-path translation datasets generated based on MovieLens and Amazon
datasets

Dataset
#total
source
meta-
paths

#total
target
meta-
paths

Training set Test set

#samples #source #target #samples #source #target
meta-
paths

meta-
paths

meta-
paths

meta-
paths

MovieLens 1,003 8 1,738 698 8 709 305 8
Amazon 696 7 2,038 487 7 874 209 7

(a) MovieLens (b) Amazon

Fig. 5. The number of explainable meta-paths when different 𝑘 , 𝛿𝑅 , and 𝛿𝐷 were used

highest number of explainable meta-paths when 𝑘 = 3, i.e., 𝛿𝑅 = 0.25, and 𝛿𝐷 = 0.25. As a result,
the explainable meta-paths for MovieLens dataset are 𝑈𝑉𝑃 , 𝑈𝑃𝑈𝑃 , 𝑈𝑃𝐺𝑃 , 𝑈𝑃𝐴𝑃 , 𝑈𝑃𝐷𝑃 , 𝑈𝑃𝑇𝑃 ,
𝑈𝑃𝑉𝑃 and𝑈𝑉𝑈𝑃 . ForAmazon dataset, the explainable meta-paths are𝑈𝑉𝑃 ,𝑈𝑃𝑈𝑃 ,𝑈𝑃𝐶𝑃 ,𝑈𝑃𝐵𝑃 ,
𝑈𝑃𝐻𝑃 , 𝑈𝑃𝑉𝑃 and𝑈𝑉𝑈𝑃 . Comparing these explainable meta-paths with the meta-paths used in
the literature [6, 15, 17, 18, 21, 22, 24, 42, 44, 48, 53], we found that they are corresponding with the
majority of the shortest meta-paths that were commonly used. Intuitively, shorter meta-paths are
easier to comprehend. Since our chosen meta-paths are the shortest meta-paths commonly used,
this observation suggests that they are practical and explainable. From Definition 5, at least one
performance evaluation metric is required to identify comparable explainable meta-paths. In our
experiments, Mean Average Precision@100 (MAP@100) and Mean Recall@100 (Recall@100) were
selected to compare performance evaluation values. The last condition in Definition 5 then can be
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specified as follows: |Ap (𝑚) −Ap (𝑚′) | < 𝛿1 or |Ar (𝑚) −Ar (𝑚′) | < 𝛿2 where Ap (𝑚) and Ap (𝑚′) are
the MAP@N values of the recommendations based on𝑚 and𝑚′ respectively, 𝛿1 is the pre-defined
precision threshold, Ar (𝑚) and Ar (𝑚′) are the Recall@N values of the recommendations based on
𝑚 and𝑚′ respectively and 𝛿2 is the pre-defined recall threshold. To avoid including or excluding
too many comparable explainable meta-paths, the parameters 𝛿1 and 𝛿2 were determined by the
mean of |Ap (𝑚) − Ap (𝑚′) | and the mean of |Ar (𝑚) − Ar (𝑚′) |. As a result, 𝛿1 and 𝛿2 were set to
0.0001 and 0.01 respectively.
Lastly, in Step (3), each sample was created as aforementioned. In total, there are 1, 003 source

meta-paths inMovieLens dataset and 696 source meta-paths in Amazon dataset. For clarification,
these datasets are meta-path translation datasets, not recommendation datasets. For both datasets,
the length of source meta-paths ranges from 4 to 8 while the length of target meta-paths ranges
from 2 to 3. Each source meta-path corresponds to one or more target meta-paths. The number
of source meta-paths with a different number of target meta-paths is shown in Figure 4. On
average, one source meta-path corresponds to 2.44 target meta-paths inMovieLens dataset and
4.25 target meta-paths in Amazon dataset. Table 2 shows some examples of source meta-paths
(long and complicated meta-paths in this work) and their corresponding target meta-paths (i.e.,
their comparable explainable meta-paths). For each dataset, we split 70% of source meta-paths for
training and 30% of them for testing. The statistics of our generated datasets are summarized in
Table 3. It should be noted that there are certain meta-paths for which no comparable explainable
meta-path exists that satisfies the given conditions. Thus, the number of source meta-paths in our
meta-path translation datasets is less than the number of all possible meta-paths used for predicting
recommendations. The datasets and the implementation of our meta-path translation model can be
found in this link4 with an access request required.

5.2 Training Meta-Path Translation Model
As for the proposed meta-path translation model, two deep learning architectures, i.e., CNN [12]
and Transformer, [37] were adopted for latent feature extraction. For training, 𝜆 was set to 0.5. The
weight decay rate was varied among {10−3, 10−5, 10−7, 10−10}. The weight decay 10−5 and 10−7 were
selected for MT-CNN and MT-TF on MovieLens dataset respectively. Meanwhile, the weight
decay 10−5 and 10−3 were selected for MT-CNN and MT-TF on Amazon dataset respectively. For
sampling the target trees, 𝐾 was varied among {10, 30, 50, 70, 100}, and 𝐾 = 50 was used for both
models on both datasets.

Baselines. Most state-of-the-art machine translation models heavily relied on pre-training on
large corpora [27, 39]. Since pre-training is not applicable in our case, we only compared the
proposed meta-path translation model with some Seq2Seq baselines that do not require pre-training
as follows:

• LSTM5 [7]: a simple Seq2Seq model based on an LSTM network. Both encoder and decoder
embedding sizes were set to 16. The model was trained for 50 epochs. The other parameters
were set as in the original model.

• RLSTM6 [34]: a Seq2Seq model based on an LSTM network using reverse-order tokens as
input. Both encoder and decoder embedding sizes were set to 16. The model was trained for
50 epochs. The other hyperparameters were set as in the original model.

4https://bit.ly/meta-path-translation-model
5https://github.com/bentrevett/pytorch-seq2seq
6https://pypi.org/project/pytorch-beam-search
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• TF7 [37]: a Seq2Seq model based on a standard Transformer model. Both encoder and
decoder embedding sizes were set to 16. The model was trained for 100 epochs. The other
hyperparameters were set as in the original model.

• NQCFG8 [19]: the original latent neural grammar model based on QCFG without considering
the latent feature embedding and the positional embeddings. The embedding size was set to
16 as the other baselines. The rest of the hyperparameters were the same as in the original
paper. The model was trained for 50 epochs.

• MT-CNN: our proposed meta-path translation model using a CNN9 [12] for latent feature
extraction. As for the CNN module, 2 convolutional layers were used as hidden layers. The
number of input and output channels were set to 16 and 32 respectively with the kernel size
3 and the dropout rate 0.25. The hidden output from the last convolutional layer was passed
through a linear transformation to obtain a final latent feature embedding. The size of token,
positional, and latent feature embeddings was set to 16. The regularization parameter 𝜆 was
set to 0.9. The model was trained for 50 epochs. The number of samples 𝐾 = 50 was used for
inference.

• MT-TF: our proposed meta-path translation model using Transformer10 [37] for latent feature
extraction. Two hidden layers with two attention heads were used in the Transformer module.
The size of the hidden layer was 16 with a dropout rate of 0.2. All other hyperparameters
were as inMT-CNN.

During the inference step of LSTM, RLSTM and TF, a beam search strategy [34] was adopted
to generate top-𝑁 predictions. In this way, it is possible to compare the performances of predicting
a set of comparable explainable meta-paths.

Evaluation. Two evaluation metrics, Mean Hit Ratio@N (HR@N) and Mean Recall@N (Re-
call@N), were used for the comparison of accuracy. Also, Mean Readability@N (RD@N) and Mean
Diversity@N (DV@N) were used to evaluate the explainability of the translated meta-paths. These
metrics can be computed as follows:

𝑅𝐷@𝑁 =
∑

𝑚∈M𝑁

R(𝑚)
|M𝑁 |

and 𝐷𝑉@𝑁 =
∑

𝑚∈M𝑁

D(𝑚)
|M𝑁 |

(23)

where R(𝑚) and D(𝑚) denote the readability and diversity of𝑚 defined in Eq. 1 and 3 and M𝑁

denote the set of top-𝑁 predicted meta-paths. Since, in this work, all relation weights are identical,
the credibility of the translated meta-path was not considered. The use of varied relation weights
and the result regarding credibility be investigated further in future work.

5.3 Performance Evaluation
Figure 6a and Figure 6b show the results on MovieLens dataset and Amazon dataset respectively.
To validate the results, a two-tailed paired sample t-test was conducted with 𝛼 = 0.05. The HR@N
and Recall@N improvements of MT-CNN andMT-TF over the baselines onMovieLens dataset
and Amazon dataset can be found in Table 4 and Table 5 in Appendix A respectively. Overall,
on both datasets, our model MT-TF performed better than MT-CNN and the other baselines
including TF. On MovieLens dataset, LSTM and RLSTM performed similarly while they both
outperformedTF. The reason could be that LSTM andRLSTM can better capture short dependency
in short sequences compared to TF. TF performed well when 𝑁 = 1 which means it effectively
7https://pypi.org/project/pytorch-beam-search
8https://github.com/yoonkim/neural-qcfg
9https://github.com/bentrevett/pytorch-seq2seq
10https://github.com/guocheng2018/Transformer-Encoder
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(a) MovieLens

(b) Amazon

Fig. 6. Comparison of HR@N, Recall@N, RD@N and DV@N of the proposed approaches and other baselines

predicted a single target meta-path given a source meta-path. It failed to predict a group of target
meta-paths since it performed worse than most baselines including our models when 𝑁 increased.
NQCFG performed similarly toTF except when𝑁 = 1. Considering our model,MT-CNN generally
performed worse than both LSTM and RLSTM. However, it significantly outperformed TF and
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NQCFG when 𝑁 = 4 and 5. This indicates that the latent features extracted by MT-CNN may
not be effective on MovieLens dataset. Meanwhile, MT-TF significantly outperformed LSTM
and RLSTM in terms of both HR@N and Recall@N for every 𝑁 except when 𝑁 = 1. MT-TF
also significantly outperformed TF when 𝑁 = 3, 4 and 5. This suggests that LSTM, RLSTM, and
TF are effective at predicting correct target meta-paths in top-1 and top-2 predictions but they
failed to predict a group of correct target meta-paths when 𝑁 increased on this dataset. MT-TF
clearly outperformed NQCFG in terms of both HR@N and Recall@N. This suggests that adding
the positional embeddings and the latent features extracted from a CNN and Transformer improved
the performance of meta-path translation. Comparing MT-TF andMT-CNN,MT-TF performed
better than MT-CNN in terms of both HR@N and Recall@N for every 𝑁 . This suggests that using
Transformer is more effective than a CNN for extracting latent features in the proposed model for
MovieLens dataset.

On Amazon dataset, LSTM and RLSTM performed similarly to each other. They outperformed
TF which is a state-of-the-art model in terms of Recall@N. However, they performed worse than
all of the baselines in terms of HR@N. On the other hand, TF performed particularly well in
terms of HR@N but performed worse than the other models including both of our models in
terms of Recall@N. This indicates that TF is highly effective in predicting one of the correct
target meta-paths given a source meta-path but not effective in predicting a group of target
meta-paths. NQCFG performed similarly toMT-TF in terms of Recall@N. However, in terms of
HR@N,MT-TF significantly outperformed NQCFG when 𝑁 = 1. This indicates the effectiveness
of including positional embeddings and latent embeddings to correctly predict the correct target
meta-path given a source meta-path on the first try.MT-CNN did not perform well on this dataset.
It performed worse thanNQCFG in terms of both HR@N and Recall@N for every 𝑁 . It significantly
outperformed LSTM and RLSTM only in terms of HR@2 and HR@3 and outperformed TF only
in terms of Recall@N when 𝑁 = 3, 4 and 5. On the other hand, MT-TF significantly performed
better than both LSTM and RLSTM in terms of HR@N for every 𝑁 and Recall@N when 𝑁 = 1, 2
and 3. This suggests that, given a source meta-path,MT-TF can predict one of its corresponding
target meta-paths more effectively than these two models. MT-TF also performed better than TF
in terms of Recall@N when 𝑁 = 2, 3, 4 and 5. This indicates thatMT-TF is better than TF when
predicting a group of target meta-paths. Comparing our two models, MT-TF performed better
thanMT-CNN in terms of both HR@N and Recall@N. This suggests that using Transformer to
extract latent features for meta-path translation is more effective than using a CNN model which
corresponds with the results on MovieLens dataset.

In summary, on both datasets, our modelMT-TF predicted the target meta-paths more effectively
thanMT-CNN and the other baselines including TF, which is a state-of-the-art model. This shows
the effectiveness of the proposed model.MT-TF also outperformed NQCFG. This demonstrates
the improved performance of the latent neural grammar model using the positional embeddings
and the latent features from a CNN and Transformer.

5.4 Readability and Diversity Evaluation
The results of RD@N and DV@N onMovieLens dataset andAmazon dataset are shown in Figure
6a and Figure 6b respectively. A two-tailed paired sample t-test was conducted with 𝛼 = 0.05. The
RD@N and DV@N improvements of MT-CNN and MT-TF over the baselines on MovieLens
dataset andAmazon dataset can be found in Table 6 and Table 7 in Appendix A respectively. Overall,
on both datasets,MT-CNN produced target meta-paths with low Diversity but high Readability
whileMT-TF produced target meta-paths with high Diversity but low Readability. OnMovieLens
dataset, LSTM, RLSTM and TF performed similarly. They underperformed the others in terms
of RD@N but outperformed the others in terms of DV@N. On the contrary, NQCFG performed
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best in terms of RD@N but it performed worse than the others in terms of DV@N. Comparing our
models with the baselines, from Table 6, our modelMT-CNN performed similarly to NQCFG with
no significant differences in terms of both RD@N and DV@N. It significantly outperformed the
other baselines in terms of RD@N but performed worse than them in terms of DV@N. This suggests
that MT-CNN tends to predict shorter target meta-paths with high Readability but low Diversity
as NQCFG. MT-TF performed worse than NQCFG while slightly outperformed LSTM, RLSTM,
and TF in terms of RD@N. In terms of DV@N, MT-TF only performed better than NQCFG
while performing slightly worse than LSTM, RLSTM, and TF. Overall, the results indicate that
those models based on LSTM and Transformer networks predicted the target meta-paths with
lower Readability but higher Diversity compared to the others. Meanwhile, NQCFG andMT-CNN
predicted the target meta-paths with higher Readability but lower Diversity than the others. This
suggests that NQCFG andMT-CNN prioritized predicting shorter meta-paths with less number
of node and relation types compared to the others. Comparing our models,MT-CNN performed
better thanMT-TF in terms of Readability but the result is the opposite in terms of Diversity on
this dataset.
On Amazon dataset, LSTM and RLSTM performed similarly in terms of both RD@N and

DV@N. They produced target meta-paths with high Diversity but low Readability. Their results on
this dataset are similar to those of MovieLens dataset. They show that both LSTM and RLSTM
prioritized Diversity over Readability for meta-path translation. TF, on the other hand, predicted
target meta-paths with higher Readability but lower Diversity compared to LSTM and RLSTM.
This is opposite to the result on MovieLens dataset. One possible reason is that Amazon dataset
contains fewer node and relation types than MovieLens dataset. This results in less diverse meta-
paths in the training set. As a result, this training set may not be sufficient for TF to learn the
diversity of node and relation types in meta-path translation. Thus, it failed to predict target
meta-paths with high Diversity on Amazon dataset. NQCFG underperformed both of our models
in terms of RD@N but outperformed them in terms of DV@N. Table 7 shows that MT-CNN
significantly outperformed LSTM and RLSTM in terms of RD@N for every 𝑁 except 𝑁 = 4 and
NQCFG in terms of RD@N for every 𝑁 except 𝑁 = 1. Similarly,MT-TF significantly outperformed
LSTM and RLSTM in terms of RD@N when 𝑁 = 1, 2 and 3. and also NQCFG in terms of RD@N
for every 𝑁 except 𝑁 = 5. This indicates the effectiveness of MT-CNN andMT-TF in predicting
target meta-paths with high Readability compared to LSTM, RLSTM, and NQCFG. However, in
terms of DV@N, bothMT-CNN andMT-TF performed worse than most of the baselines except
TF. Comparing our two models, MT-CNN performed better than MT-TF in terms of RD@N.
Conversely, MT-TF performed better than MT-CNN in terms of DV@N.

Overall, on both datasets, it can be seen that MT-CNN focused on predicting short target meta-
paths with low Diversity to achieve high Readability. Meanwhile,MT-TF focused on predicting
target meta-paths consisting of various relation types resulting in high Diversity. Considering
all HR@N, Recall@N, RD@N, and DV@N results, it can be inferred that MT-TF exhibits greater
accuracy and the ability to predict target meta-paths with higher Diversity compared to MT-CNN.
However, if the priority is Readability, MT-CNN is more suitable than MT-TF.

5.5 Error Analysis
This section examines the meta-path error predicted by the proposed models and the other baselines.
Besides being comparable explainable meta-paths, predicted target meta-paths must hold two
properties: (1) they must start with the user node type (𝑈 ) and end with the item node type (𝑃 ),
i.e., they should follow𝑈𝑁1𝑁2, ..., 𝑁𝑙𝑃 and (2) they must consist of existing relation type(s) defined
in the graph, i.e., given a graph schema G = (N,R,W), for any target meta-path 𝑈𝑁1𝑁2, ..., 𝑁𝑙𝑃 ,
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(a) MovieLens (b) Amazon

Fig. 7. Comparisons of the percentages of improper meta-paths in the top-𝑁 predictions obtained from the
proposed approaches and other baselines

𝑅𝑈𝑁1 , 𝑅𝑁1,𝑁2 , ..., 𝑅𝑁𝑙 ,𝑃 ∈ R. A meta-path that holds these properties is referred to as a proper meta-
path. Meanwhile, a meta-path that does not hold these properties is considered an improper meta-
path. The percentage of improper meta-paths in the top-𝑁 predictions obtained from each model
was computed to examine the error of predicting improper target meta-paths. The results are shown
in Figure 7. From this figure, there is no improper meta-path predicted by LSTM, RLSTM, and TF
on bothMovieLens and Amazon datasets for every 𝑁 . This demonstrates their effectiveness in
modeling dependencies between the first and the last node types and also two consecutive node
types in the target meta-paths. For MovieLens, our models MT-CNN and MT-TF predicted more
improper meta-paths than LSTM,RLSTM, and TF. However, bothMT-CNN andMT-TF predicted
substantially fewer improper meta-paths than NQCFG which is the original latent neural grammar
model without using the latent feature and positional embeddings. This indicates the effectiveness of
using the latent feature embeddings from both CNN and Transformer models and also the positional
embeddings. The latent feature embeddings from both CNN and Transformer models play the
role of capturing linear dependencies between node types in the meta-paths to avoid predicting
nonexistent relation types. Meanwhile, the positional embeddings distinguish the starting and
ending node types from the others which helps the model to predict the first and the last node
types in the target meta-paths. In the case of Amazon dataset, NQCFG and MT-TF performed
similarly.MT-TF predicted slightly more improper meta-paths than NQCFG when 𝑁 = 1, 2 and
3. However,MT-CNN failed to predict proper target meta-paths. One possible reason is that the
number of training samples in Amazon dataset is less than the number of training samples in
MovieLens dataset. This may not be sufficient forMT-CNN to capture the dependencies between
node types effectively. On both datasets,MT-TF predicted improper meta-paths less than 5% of the
predicted meta-paths for every 𝑁 which is less than MT-CNN. This suggests that MT-TF is more
effective than MT-CNN in predicting proper target meta-paths. This corresponds to the accuracy
results in Section 5.3.

5.6 Hyperparameter Analysis
In the following sections, we explore the analysis of hyperparameters to examine their effects on
the performance of the proposed models. The examination focuses on two hyperparameters, i.e.,
the number of sampled target trees (𝐾 ) and weight decay (𝑤𝑑 ).
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(a) MovieLens (b) Amazon

Fig. 8. Comparison of HR@N and Recall@N when using different𝐾 for sampling the target trees inMT-CNN

(a) MovieLens (b) Amazon

Fig. 9. Comparison of HR@N and Recall@N when using different 𝐾 for sampling the target trees in MT-TF

5.6.1 Effect of the number of sampled target trees (𝐾). In this section, the effect of the parameter
𝐾 (the number of sampled target trees from the decoder) is discussed. This parameter was varied
among 10, 30, 50, 70, and 100 to examine the differences in HR@N, Recall@N, RD@N, and DV@N
values. The results of MT-CNN when varying 𝐾 on both datasets are shown in Figure 8. From
this figure, the higher values of 𝐾 generally lead to better HR@N and Recall@N on both datasets,
as they increase with an increase in 𝐾 for every value of 𝑁 . However, when comparing 𝐾 = 50,
70, and 100, the differences in HR@N and Recall@N are almost negligible. This suggests that
using 𝐾 = 50 is sufficient to achieve accurate outcomes. Regarding Readability and Diversity
on MovieLens dataset, RD@N of the predicted target meta-paths by MT-CNN decreases as 𝐾
increases. Conversely, DV@N of these meta-paths increases with an increase in 𝐾 . On Amazon
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dataset, RD@N generally decreases as 𝐾 increases, following a similar pattern as observed on
MovieLens dataset. However, there is some inconsistency in this pattern for RD@3. In terms of
DV@N, it also tends to increase with an increase in 𝐾 , except for DV@3. The results obtained
from MT-TF on both datasets are presented in Figure 9. This figure illustrates that as the value
of 𝐾 increases, MT-TF predicts target meta-paths with higher HR@N and Recall@N on both
datasets. Regarding Readability, onMovieLens dataset, RD@N increases with the increment of
𝐾 , whereas DV@N decreases. Conversely, on Amazon dataset, the results are opposite to those
of MovieLens dataset. RD@N decreases with the increase in 𝐾 , while DV@N increases. Overall,
for bothMT-CNN andMT-TF, HR@N and Recall@N improve with the increase in 𝐾 . However,
using larger values of 𝐾 is computationally expensive, and therefore, using 𝐾 = 50 is sufficient as it
yields similar results to 𝐾 = 100 in most cases. On the other hand, the trends observed in RD@N
and DV@N vary among different models and datasets. Generally, using 𝐾 = 50 achieves moderate
results balancing between RD@N and DV@N.

5.6.2 Effect of weight decay (𝑤𝑑 ). The effect of weight decay (𝑤𝑑 ) when training the proposed
models was also examined. We varied weight decay among {10−3, 10−5, 10−7, and 10−10} and
examined the results of our models. Figures 10a and 10b show the results of using different
values of weight decay in MT-CNN on MovieLens dataset and Amazon dataset respectively.
On MovieLens dataset, MT-CNN using 𝑤𝑑 = 10−5 achieved the highest HR@N and Recall@N
compared to the other models. On Amazon dataset, MT-CNN using𝑤𝑑 = 10−5 achieved only the
highest Recall@N compared to the others. In terms of HR@N,MT-CNN using𝑤𝑑 = 10−3 generally
performed better than the others. However, the difference in HR@N between using𝑤𝑑 = 10−3 and
𝑤𝑑 = 10−5 is smaller than the difference in Recall@N between using 𝑤𝑑 = 10−3 and 𝑤𝑑 = 10−5.
Therefore, 𝑤𝑑 = 10−5 was chosen for comparison with the baselines on the Amazon dataset.
Regarding RD@N and DV@N, on MovieLens dataset, MT-CNN using 𝑤𝑑 = 10−10 generally
performed better than the others in terms of RD@N while performing worse than the others
in terms of DV@N. On the other hand, MT-CNN using 𝑤𝑑 = 10−5 performed best in terms of
DV@N but performed worst in terms of RD@N. On Amazon dataset, MT-CNN using𝑤𝑑 = 10−10
gave higher DV@N and lower RD@N than the others. Meanwhile, the model using 𝑤𝑑 = 10−7
gave the higher RD@N and lower DV@N than the others. The model using 𝑤𝑑 = 10−5 gave
the second-best DV@N and the second-worst RD@N. As forMT-TF, the results onMovieLens
dataset andAmazon dataset are shown in Figures 11a and 11b respectively. OnMovieLens dataset,
reducing𝑤𝑑 resulted in higher HR@N and Recall@N until they peaked at𝑤𝑑 = 10−7. Conversely,
on Amazon dataset, reducing𝑤𝑑 resulted in lower HR@N and Recall@N and𝑤𝑑 = 10−3 yielded
the best performance. In terms of RD@N, on MovieLens dataset, MT-TF using 𝑤𝑑 = 10−10
outperformed the others when 𝑁 = 1 while the model using𝑤𝑑 = 10−3 outperformed the others
for 𝑁 = 2, 3, 4 and 5. The model using𝑤𝑑 = 10−7 performed worst compared to the others. On the
contrary, in terms of DV@N, the model using𝑤𝑑 = 10−7 performed best while the models using
𝑤𝑑 = 10−3 and𝑤𝑑 = 10−10 performed worse than the others. On Amazon dataset, MT-TF using
𝑤𝑑 = 10−5 gave the highest DV@N and lowest RD@N compared to the others. On the contrary,
the model using𝑤𝑑 = 10−3 gave the highest RD@N and lowest DV@N. Overall, the results suggest
that using too-high or too-low weight decay may result in low accuracy. OnMovieLens dataset,
using a smaller weight decay generally resulted in better performance. Meanwhile, on Amazon
dataset, using a higher weight decay resulted in better performance, especially for MT-TF.

5.7 Computational Complexity Analysis
Let 𝑙 and 𝑙 ′ be the length of a source meta-path𝑚 and a target meta-path𝑚′ respectively. For the
parser, sampling the tree 𝑡 and the argmax tree 𝑡 requires 𝑂 (𝑙3) by dynamic programming. For the
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(a) MovieLens (b) Amazon

Fig. 10. Comparison of HR@N and Recall@N when using different weight decay𝑤𝑑 for training MT-CNN

(a) MovieLens (b) Amazon

Fig. 11. Comparison of HR@N and Recall@N when using different weight decay𝑤𝑑 for training MT-TF

encoder, each CNN layer requires𝑂 (𝑙 ·𝑆 ·𝐸2) while each self-attention layer of Transformer requires
𝑂 (𝑙2 · 𝐸) where 𝑆 is the kernel size of convolutions and 𝐸 is the size of the embeddings. TreeLSTM
requires𝑂 (𝑙) to generate the final token representations. For the decoder, by dynamic programming,
computing log 𝑝𝜙 (𝑡 |𝑚) requires𝑂 (𝑙3). Similarly, computing log 𝑝𝜃 (𝑚′ |𝑡) and log 𝑝𝜃 (𝑚′ |𝑡) requires
𝑂 (𝑙3𝑙 ′3). Thus, the complexity of both MT-CNN and MT-TF is still dominated by 𝑂 (𝑙3𝑙 ′3) as
the original latent neural grammar model NQCFG. This suggests that using the latent feature
extraction module and the positional and latent feature embeddings does not severely affect the
overall complexity.
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6 CONCLUSIONS
Meta-path based recommendations can be intuitively explained by the meta-paths that are used for
predicting these recommendations. However, recommendations based on long and complicated
meta-paths can be difficult to explain. In this work, we proposed a method to better explain meta-
path based recommendations. First, we introduced the definition of meta-path explainability
based on meta-path readability, credibility, and diversity. Based on this definition, we proposed how
to find comparable explainablemeta-paths of a given meta-path. These comparable explainable
meta-paths can be used as alternative explanations that are easier to understand than the given
one. To find comparable explainable meta-paths of any meta-path, the meta-path translation
model was proposed. Specifically, inspired by QCFG, the meta-path grammar was first introduced.
Based on the meta-path grammar, a Seq2Seq model that maps a given meta-path to its comparable
explainable ones was proposed. This model leverages both latent features extracted by CNN and
Transformer models and hierarchical features extracted by TreeLSTM simultaneously.

Two meta-path translation datasets were generated based on two real-world datasets. In these
datasets, each input is a source meta-path and each output is a group of its comparable explainable
meta-paths (target meta-paths). These datasets allow us to learn how to explain recommendations
of real-world datasets by mapping a source meta-path to target meta-paths. This mapping can
be considered as a one-to-many task where one source meta-path can yield multiple target meta-
paths. Extensive experiments were conducted on these two generated datasets. The results show
that our proposed model performed better than other baselines in terms of both HR@N and
Recall@N for both datasets. This indicates the effectiveness of using both latent features extracted
from CNN/Transformer and hierarchical features from the TreeLSTM model. Moreover, compared
to the baselines, our models predicted a group of target meta-paths with higher HR@N and
Recall@N when 𝑁 > 1. Apart from accuracy, the meta-path readability and diversity were also
evaluated based on two metrics, Readability@N and Diversity@N. According to the results, the
proposed approach using a CNN model performed better in terms of Readability. On the other
hand, the proposed approach using a Transformer model produced the target meta-paths with
higher Diversity. Both approaches show a capability of maintaining a better trade-off between
accuracy and readability/diversity in translating meta-paths. Also, by including the latent feature
embeddings and positional embeddings, our models predicted fewer improper target meta-paths
compared to the original latent neural grammar model. This indicates the effectiveness of the latent
features and positional embeddings.

6.1 Limitations
The limitations of this work lie in the experiments. Generating a dataset for meta-path translation
requires training multiple recommender systems for each and every meta-path considered. Conse-
quently, with an increase in the number of meta-paths, the process of generating a new dataset
becomes increasingly time-consuming. This leads to the small number of meta-paths in the gener-
ated datasets and the limited number of datasets. Another limitation is the baseline comparison.
State-of-the-art Seq2Seq models for machine translation rely heavily on pre-training on large text
corpora. In contrast, the task of meta-path translation cannot leverage such pre-training as there
are no corpora of meta-paths. As a result, the proposed approach was compared with baselines that
also do not utilize pre-training on corpora. These baselines may exclude several state-of-the-art
models such as Large Language Models (LLMs). In terms of evaluation, we compared the readability
and diversity of the generated target meta-paths across different models. This comparison ensures
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that the target meta-paths produced by our proposed models have higher readability and diver-
sity compared to the baselines. However, we did not validate whether the generated comparable
explainable meta-paths are conducive to explaining the recommendations.

6.2 Future Work
For future work, we aim to explore other real-world datasets to generate more datasets for explaining
meta-path based recommendations. Assigning different relation weights in graphs to examine the
proposed approach performance will also be considered. To improve the meta-path translation
model, it is worth exploring other neural network architectures for extracting the latent features
from a meta-path. The potential adoption of Large Language Models to enhance meta-path based
and HIN-based recommendations will be investigated. Furthermore, human user studies will be
conducted in addition to empirical evaluations.
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A PERFORMANCE, READABILITY, AND DIVERSITY IMPROVEMENTS OF THE
PROPOSED MODELS OVER THE BASELINES

Table 4. HR@N and Recall@N improvements over the baselines on MovieLens dataset. The improvements
that are statically significant are in bold. The value indicated with a star (*) is a positive and statistically
significant value.

Baseline MT-CNN

Δ HR@1 Δ HR@2 Δ HR@3 Δ HR@4 Δ HR@5 Δ Recall@1 Δ Recall@2 Δ Recall@3 Δ Recall@4 Δ Recall@5

LSTM -0.2098 -0.1180 -0.0033 0.0262* 0.0164 -0.0825 -0.1943 -0.0810 -0.0332 -0.0157
RLSTM -0.2852 -0.1180 -0.0033 0.0262* 0.0164 -0.1139 -0.1943 -0.0810 -0.0332 -0.0157
TF -0.2689 -0.1967 -0.0295 0.0393* 0.0492* -0.1227 -0.2399 -0.0950 0.0492* 0.1496*
NQCFG 0.0131 -0.0361 0.0361 0.0721* 0.0525* 0.0071 -0.0117 0.0466* 0.1062* 0.1387*

Baseline MT-TF

Δ HR@1 Δ HR@2 Δ HR@3 Δ HR@4 Δ HR@5 Δ Recall@1 Δ Recall@2 Δ Recall@3 Δ Recall@4 Δ Recall@5

LSTM 0.0689* 0.0787* 0.0656* 0.0361* 0.0197* 0.0377 0.0683* 0.1292* 0.0920* 0.0313*
RLSTM -0.0066 0.0787* 0.0656* 0.0361* 0.0197* 0.0063 0.0683* 0.1292* 0.0920* 0.0313*
TF 0.0098 0.0000 0.0393* 0.0492* 0.0525* -0.0025 0.0226 0.1152* 0.1744* 0.1966*
NQCFG 0.2918* 0.1607* 0.1049* 0.0820* 0.0557* 0.1273* 0.2508* 0.2568* 0.2314* 0.1857*

Table 5. HR@N and Recall@N improvements over the baselines on Amazon dataset. The improvements
that are statically significant are in bold. The value indicated with a star (*) is a positive and statistically
significant value.

Baseline MT-CNN

Δ HR@1 Δ HR@2 Δ HR@3 Δ HR@4 Δ HR@5 Δ Recall@1 Δ Recall@2 Δ Recall@3 Δ Recall@4 Δ Recall@5

LSTM 0.0096 0.0622* 0.0718* 0.0096 -0.0096 0.0092 0.0172 -0.0025 -0.0651 -0.1006
RLSTM 0.0000 0.0622* 0.0718* 0.0096 -0.0096 0.0060 0.0172 -0.0025 -0.0651 -0.1006
TF -0.1005 -0.0478 -0.0383 -0.0287 -0.0287 -0.0518 -0.0229 0.0890* 0.2128* 0.2546*
NQCFG -0.0383 -0.0383 -0.0383 -0.0287 -0.0287 -0.0187 -0.0439 -0.0830 -0.0802 -0.0678

Baseline MT-TF

Δ HR@1 Δ HR@2 Δ HR@3 Δ HR@4 Δ HR@5 Δ Recall@1 Δ Recall@2 Δ Recall@3 Δ Recall@4 Δ Recall@5

LSTM 0.1100* 0.1100* 0.1100* 0.0383* 0.0191* 0.0610* 0.0768* 0.0717* 0.0158 -0.0222
RLSTM 0.1005* 0.1100* 0.1100* 0.0383* 0.0191* 0.0578* 0.0768* 0.0717* 0.0158 -0.0222
TF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0367* 0.1632* 0.2937* 0.3330*
NQCFG 0.0622* 0.0096 0.0000 0.0000 0.0000 0.0331* 0.0157* -0.0089 0.0006 0.0106
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Table 6. RD@N and DV@N improvements over the baselines on MovieLens dataset. The improvements
that are statically significant are in bold. The value indicated with a star (*) is a positive and statistically
significant value.

Baseline MT-CNN

Δ RD@1 Δ RD@2 Δ RD@3 Δ RD@4 Δ RD@5 Δ DV@1 Δ DV@2 Δ DV@3 Δ DV@4 Δ DV@5

LSTM 0.0321* 0.0255* 0.0191* 0.0141* 0.0112* -0.1445 -0.1168 -0.0881 -0.0701 -0.0600
RLSTM 0.0321* 0.0255* 0.0191* 0.0141* 0.0112* -0.1445 -0.1168 -0.0881 -0.0701 -0.0600
TF 0.0321* 0.0253* 0.0188* 0.0138* 0.0109* -0.1445 -0.1158 -0.0867 -0.0687 -0.0587
NQCFG -0.0036 -0.0012 -0.0016 -0.0005 -0.0002 0.0116 0.0043 0.0078 0.0054 0.0053

Baseline MT-TF

Δ RD@1 Δ RD@2 Δ RD@3 Δ RD@4 Δ RD@5 Δ DV@1 Δ DV@2 Δ DV@3 Δ DV@4 Δ DV@5

LSTM 0.0009 0.0014* 0.0046* 0.0055* 0.0060* -0.0036 -0.0064 -0.0208 -0.0250 -0.0283
RLSTM 0.0009 0.0014* 0.0046* 0.0055* 0.0060* -0.0036 -0.0064 -0.0208 -0.0250 -0.0283
TF 0.0009 0.0012* 0.0043* 0.0052* 0.0057* -0.0036 -0.0053 -0.0194 -0.0236 -0.0269
NQCFG -0.0348 -0.0253 -0.0160 -0.0090 -0.0054 0.1525* 0.1147* 0.0751* 0.0505* 0.0371*

Table 7. RD@N and DV@N improvements over the baselines on Amazon dataset. The improvements that
are statically significant are in bold. The value indicated with a star (*) is a positive and statistically significant
value.

Baseline MT-CNN

Δ RD@1 Δ RD@2 Δ RD@3 Δ RD@4 Δ RD@5 Δ DV@1 Δ DV@2 Δ DV@3 Δ DV@4 Δ DV@5

LSTM 0.0256* 0.0296* 0.0172* 0.0013 0.0047* -0.1109 -0.1250 -0.0800 -0.0056 -0.0197
RLSTM 0.0256* 0.0296* 0.0172* 0.0013 0.0047* -0.1109 -0.1250 -0.0800 -0.0056 -0.0197
TF -0.0187 -0.0065 -0.0015 -0.0047 -0.0067 0.0714* 0.0230* 0.0036 0.0175* 0.0261*
NQCFG 0.0031 0.0096* 0.0126* 0.0070* 0.0038* -0.0266 -0.0499 -0.0575 -0.0320 -0.0188

Baseline MT-TF

Δ RD@1 Δ RD@2 Δ RD@3 Δ RD@4 Δ RD@5 Δ DV@1 Δ DV@2 Δ DV@3 Δ DV@4 Δ DV@5

LSTM 0.0387* 0.0263* 0.0092* -0.0027 0.0025 -0.1415 -0.0990 -0.0403 0.0147* -0.0069
RLSTM 0.0387* 0.0263* 0.0092* -0.0027 0.0025 -0.1415 -0.0990 -0.0403 0.0147* -0.0069
TF -0.0056 -0.0098 -0.0095 -0.0087 -0.0090 0.0408* 0.0490* 0.0433* 0.0379* 0.0389*
NQCFG 0.0162* 0.0062* 0.0046* 0.0030* 0.0016 -0.0572 -0.0238 -0.0177 -0.0117 -0.0060

, Vol. 1, No. 1, Article . Publication date: October 2023.


	Abstract
	1 Introduction
	2 Related Work
	3 Explainable Meta-Path
	4 Meta-Path Translation Model
	4.1 Problem Formulation
	4.2 Meta-Path Grammar
	4.3 Meta-Path Translation Model

	5 Experiments
	5.1 Dataset Generation
	5.2 Training Meta-Path Translation Model
	5.3 Performance Evaluation
	5.4 Readability and Diversity Evaluation
	5.5 Error Analysis
	5.6 Hyperparameter Analysis
	5.7 Computational Complexity Analysis

	6 Conclusions
	6.1 Limitations
	6.2 Future Work

	References
	A Performance, Readability, and Diversity improvements of the proposed models over the baselines

