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Abstract

The thesis investigates topics on how to improve the estimation and forecasting for

market risk measures (focusing on Value at Risk and Expected Shortfall, denoted

by VaR and ES, jointly) by building superior models with extra information and

by detecting structural changes in risk models (in a retrospective manner and a

real-time manner).

The first contribution is introducing a new framework by incorporating intra-

day information into dynamic semiparametric models to forecast VaR and ES. We

consider the intraday measures including the realized variance and overnight re-

turns. In the practical application, we apply the proposed models to international

stock market indices, then evaluate the forecasting performance via various back-

tests. Our results show that our models outperform the benchmarks consistently

across all indices and various significance levels.

Secondly, this thesis develops a test that can efficiently captures change points

in the (VaR, ES) estimated by (semi)parametric models. We derive the asymp-

totic distribution of the test statistic and adopt a stationary bootstrapping tech-

nique to obtain the p-values of the test statistic. Monte Carlo simulation results

show that our proposed test has better size control and higher power than the

alternative tests. An empirical study of risk measures based on the S&P 500

index illustrates that our proposed test can detect change points associated with

well-known market events.

The third main contribution is proposing a sequential monitoring method to

detect changes in semiparametric risk models for (VaR, ES). We derive the asymp-
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totic theorem for the monitoring scheme under the null hypothesis. Our Monte

Carlo simulations with finite sample sizes show that this test has reasonable size

control under the null hypothesis and high power under alternative hypotheses.

Empirical applications based on the S&P 500 index and the GBP/EUR exchange

rate illustrate that the detected change points often precede the actual market

crashes.
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Chapter 1

Introduction

1.1 Motivation for the Thesis

In the context of the ongoing COVID-19 recession and recent financial crises,

the measurement and forecasting of financial risk have attracted unprecedented

attention from academia and the financial industry. According to Basel III, fi-

nancial risk can be divided into three main categories: market risk, credit risk

and operational risk. Market risk measures the potential losses of portfolios ex-

posed to the fluctuation of market indices or prices at a given significance level.

Credit risk refers to the possibility of a loss caused by a failure to repay loans or

default of contractual obligations by a borrower. Operational risk is associated

with a potential loss resulting from the ineffectiveness or failures in the internal

activities, procedures and systems. In this thesis, we focus on the concept of

market risk and on approaches that accurately estimate and forecast market risk

measures.

From the perspective of financial risk managers, a risk measure can be consid-

ered a map from spaces of probability distributions to actual losses. Risk measures

can provide banks and other financial institutions with specific values of potential

losses so that risk managers can adjust their capital reserves against the down-

side risk. Value at Risk and Expected Shortfall are the prevailing financial risk

1



1.1. Motivation for the Thesis 2

measures that dominate current financial regulation.

Value at Risk (abbreviated as VaR henceforth), as a simple financial risk

measure, can be traced back as far as 1922, when capital requirements were

imposed by the New York Stock Exchange (NYSE) on member firms (Holton,

2004). Since 1996, VaR has been adopted as a market risk measure and attracted

broad interest from market participants and academic researchers in multiple

disciplines. VaR provides banks and other financial institutions with a loss level

that occurs in the worst situation at a given significance level over a certain

period. VaR also facilitates capital requirements computation for practitioners

and regulators to take efficient capital allocation and risk management actions.

Using VaR to measure risk has the main advantages of being intuitive and easily

understood.

However, VaR is sometimes criticized because it cannot capture the tail’s

structure beyond the quantile. Additionally, VaR has another inherent deficiency

due to the absence of sub-additivity for a portfolio, meaning that the portfolio

cannot benefit from asset diversification when we use VaR as the risk measure.

Due to the lack of sub-additivity, VaR is not a coherent risk measure.1 Thus,

to overcome the inadequacy of this risk measure, Artzner et al. (1999) propose

a supplementary measure to VaR, named Expected Shortfall (abbreviated as ES

henceforth). ES, computed as the expected value of exceedances beyond VaR,

can capture the size of losses above a certain threshold. Also, ES fulfils all the

properties related to coherence. The Basel Committee on Banking Supervision

(2019) has proposed a transition from 1% VaR to 2.5% ES to formulate the capital

requirements for banks and other financial institutions.

Another property of risk measures discussed in this thesis refers to elicitability.

Based on Gneiting (2011), a risk measure is elicitable if there exists a loss function

(or a scoring function) for the risk measure that can be used to comparatively

evaluate the performance of models. In several semiparametric risk models, the

parameter estimates are obtained by minimizing a consistent loss function, e.g.,
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the “Lin-Lin” (or “tick” loss function) for VaR (more details about the estima-

tion for VaR can be found in Engle and Manganelli (2004)). Gneiting (2011)

documents that ES is elicitable only jointly with VaR2, and thus individual ES

cannot be estimated by this approach minimizing a loss function, nor can models

be compared in terms of ES forecasting performance by evaluating average loss

values. Fissler and Ziegel (2016) propose a class of loss functions (the FZ loss

functions) for VaR and ES considered jointly. Consequently, throughout the the-

sis, we focus on the (VaR, ES) tuple and employ the FZ loss functions for these

market risk measures.

Models used to estimate and forecast VaR and ES in the existing literature

can be classified into three main categories: parametric, semiparametric and non-

parametric (Engle and Manganelli, 2004; Taylor, 2008). Parametric models jointly

predict VaR and ES via a conditional volatility forecast, which commonly relies

on the assumption of the distribution of asset returns. The selection of density

function impacts the estimation and forecasting of risk measures, especially when

using unstable data. Conversely, nonparametric methods make no assumptions

about the conditional distribution of asset returns. These methods estimate VaR

and ES as quantiles of the chosen sample of returns over a specific window at

a given significance level. Nonparametric methods are model-free and easy to

implement (Engle and Manganelli, 2004), but they are often criticized because of

the sensitivity to window size selection. Semiparametric models impose a para-

metric structure on the dynamics of VaR and ES through a dynamic framework

but require no assumptions on the conditional distributions of financial returns

(Patton et al., 2019).

Regarding the extreme losses during the recent crises, e.g., the COVID-19

recession and the cryptocurrency crash in 2021, building improved risk models

that can capture the significant losses in holding portfolios has become one of the

central questions in risk management. Particularly, estimating market risk can

be disrupted by the presence of breaks and dependence on the dataset. Ignoring
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structural breaks can cause estimation bias and forecasting errors, which nega-

tively affect the decisions of regulators and risk managers. To mitigate the effect

of changes in model parameter values, extensive literature documents various so-

lutions, including proposing time-varying parameter models and using statistical

tests to detect changes in the model parameter values.

On the one hand, models with time-varying parameters are well designed to fit

such time series. Creal et al. (2013) propose a set of observation-driven models,

as the generalized autoregressive score (GAS) models based on characteristics

modelled as a function of the scaled score of the likelihood function. Inspired

by Creal et al. (2013), Patton et al. (2019) construct a class of GAS models to

estimate VaR and ES in a dynamic score-driven framework, where the parame-

ters are estimated by minimizing a specified loss function. Motivated by Patton

et al. (2019), we improve the semiparametric GAS models for VaR and ES by

incorporating intraday and overnight measures of return variation.

On the other hand, a strand of literature uses statistical tests to detect changes

in the parameter values of models.3 It is worth mentioning that ignoring the pres-

ence of change points may cause misleading statistical inferences. A groundbreak-

ing change detection method has been proposed by Page (1954). This method is

a sequential scheme that compares the local and proportional global mean within

a historical sample. Following this seminal work, structural breaks have been

extensively investigated in the variance and correlation dynamics, as well as in

quantile regressions. In risk management, after detecting change points in a risk

model within a historical sample, practitioners can re-estimate the parameters

by considering the presence of change points. Thus, we propose a new detection

method for change points in the tuple (VaR, ES) estimated by (semi)parametric

models in Chapter 3.

In practical applications, risk managers are more concerned about the tim-

ing to update model parameter values in order to suit the newly arriving data.

However, the tests discussed above are designed to detect change points within
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a historical time series dataset only, rather than continually monitoring whether

a structural change has occurred as new data is revealed. To address this issue,

Chu et al. (1996) propose a novel test paradigm for changes in a time series based

on a detector and a boundary function. Inspired by this work, in Chapter 4, we

extend the sequential monitoring scheme to joint (VaR, ES) risk models.

In the next section, we present an overview of the thesis.4

1.2 Overview of the Thesis

In Chapter 2, we propose a new framework for the joint modelling and forecasting

of dynamic VaR and ES by incorporating intraday information into the semipara-

metric models introduced by Patton et al. (2019). Creal et al. (2013) formulate

the idea by including the scaled score of the conditional observation density with

respect to the time-varying parameters. To examine the improvement of incor-

porating intraday and overnight measures into the GAS framework in forecasting

VaR and ES, we consider four intraday measures: the realized volatility at 5-

min and 10-min sampling frequencies and the overnight return incorporated into

these two realized volatilities. Combining the overnight returns with the realized

volatility can also capture the intraday and overnight information. Thus, Chapter

2 of this thesis sheds light on the extensions of the GAS model and the improve-

ment of forecasting performance by considering models that include intraday and

overnight return information.

In the empirical study, the newly proposed semiparametric models are ap-

plied to four international stock market indices and compared with a range of

parametric, nonparametric and semiparametric models, including historical sim-

ulations, GARCH and the original GAS models. To evaluate the performance of

the risk models, we first employ backtesting approaches for VaR or ES forecasts

individually. The backtests we consider include the unconditional coverage test

introduced by Kupiec (1995) and the dynamic quantile test proposed by Engle



1.2. Overview of the Thesis 6

and Manganelli (2004) for VaR individually and the dynamic ES regression test

used by Patton et al. (2019) for ES individually. Moreover, regarding the joint

(VaR, ES) backtests, we compare the average loss values generated by the FZ0

loss function proposed by Fissler and Ziegel (2016), then employ the Diebold-

Mariano test (Diebold and Mariano, 2002) and the Model Confidence Set test

(Hansen et al., 2011) for the loss values.

The in-sample estimation results indicate that the coefficients for the intraday

and overnight measures are all statistically significantly positive at both 1% and

5% significance levels. Intuitively, larger realized or overnight volatility will lead

to a lower quantile in the next trading day. Our out-of-sample results show that

the GAS models, enhanced with the realized volatility measures, outperform the

benchmark models consistently across all indices and various probability levels,

α = 10%, 5%, 2.5% and 1%. We found that the two-factor GAS model com-

bined with 10-min realized volatility and the overnight returns can provide more

accurate risk measures for risk management purposes than other models.

The semiparametric GAS framework, which captures time variation in pa-

rameters of risk models, is designed to fit the time series with structural breaks.

In order to mitigate the effect of changes through another channel, we investi-

gate change detection in risk models for in-sample and real-time manners in the

following chapters.

Chapter 3 develops a new test to detect change points in (semi)parametric

models for VaR and ES within a historical sample, based on the Wilcoxon test

for the FZ loss values. We explain the intuition behind the test as follows. If

the risk model parameters are well estimated in a stationary process, the optimal

values for VaR and ES are corresponding to the minimum point on the FZ loss

function and generate a stable loss series. However, if there is a change point

in the process, the parameter values estimated from the whole sample are not

suitable for each subsample (before and after the change point), which will result

in breaks in the loss series. Thus, we aim to identify the change points in the loss
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series instead of the time series of the tuple (VaR, ES).

We propose a new test statistic and derive the asymptotic behaviour of this

statistic under weak dependence. To improve the finite sample performance of

the test, we adopt a stationary bootstrap method based on Politis and Romano

(1994) and prove the validity of the bootstrapping method for this test.

Next, we apply the proposed change point detection method in various de-

signed scenarios to evaluate its performance. The Monte Carlo (MC) simulation

results indicate that this test has better size control under the null hypothesis

and higher power under the alternative hypotheses with finite sample sizes than

other benchmark tests. Additionally, our empirical study on the risk measures of

the S&P 500 index returns shows that this test can detect change points within

the selected sample, which are consistent with well-known financial and economic

events.

However, most tests for structural breaks in the literature (including the test

introduced in Chapter 3) are designed to detect change points only within a given

historical dataset rather than for newly arriving data. If we use the historical

observations to obtain the optimal parameter values for a risk model, are the

parameters estimated yesterday able to explain today’s data? When do we need

to adjust the model parameter values to fit the changes in the model parameters?

Can we identify which parameter dominates the change in a risk model? To

answer the questions stated above, we propose a sequential monitoring test for

the structural change in the M-estimators of semiparametric risk models.

Thus, Chapter 4 of this thesis introduces a sequential monitoring procedure

to detect changes in the parameter values of semiparametric VaR and ES joint

risk models. The monitoring scheme depends on a proposed detector and an ad-

equately selected boundary function, i.e., a change is detected when the detector

crosses the boundary, following the study of Chu et al. (1996). In our case, the

detector is based on the cumulative sequence of gradients of the FZ loss function

with respect to (w.r.t.) the model parameters. The boundary function is chosen
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such that the probability of a false detection under the null hypothesis of stable

parameters is fixed. Our test is uniquely proposed for sequentially monitoring

changes in the parameter values of the semiparametric models for VaR and ES.

Following this, we derive the asymptotic behaviour of the stopping time un-

der defined assumptions. We can numerically obtain the critical values with the

corresponding significance levels by simulating the independent Wiener processes

based on our asymptotic theorem. In a simulation analysis, we use MC sim-

ulations to show the advantages of the proposed sequential monitoring test in

identifying change points in the parameters of risk models. We show that our

proposed test has a reasonable size control under the null hypothesis in finite

samples. Additionally, we consider various scenarios for the post-break process

under the alternative hypotheses. Our simulation results reveal that this test can

detect the changes in the parameters of risk models with high empirical power.

We evaluate the empirical density of the stopping time estimated by the se-

quential monitoring manner. The findings show that there is no long delay in the

empirically detected stopping time compared with the location of the simulated

real change point. Moreover, we propose a novel method to identify the dominant

source of the change points in the parameters. The simulation results show that

most of the dominant sources of change points are identified correctly.

In an empirical study, we explore the applications of the sequential monitoring

test on real data. We consider the S&P 500 index returns and the GBP/EUR

exchange returns. The empirical results illustrate that our proposed test can

detect change points associated with well-known market events, and often the

detection precedes the actual market crashes. In particular, the sequential moni-

toring test can detect the change points earlier than the beginning of the financial

crisis and the Black Thursday (12 March 2020) and Black Monday II (16 March

2020) in the COVID-19 pandemic period. According to our findings, we conclude

that practitioners can improve their risk management strategies by monitoring

for change points in their risk models and then adjusting the parameters of the
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models based on the identified change points. Thus, significant losses can be

avoided by adjusting parameter values seasonably.

1.3 Original Contributions

This thesis, including the following three main chapters, contributes to improving

the forecasts of risk measures and proposing in-sample and real-time structural

break detection methods in risk models for VaR and ES.

(1) The first set of original contributions in terms of risk measures forecasting

is:

• we propose a set of novel semiparametric models to forecast VaR and ES jointly

via incorporating the intraday and overnight measures into a GAS framework;

• we construct four proxies for the intraday and overnight information;

• we provide solid empirical evidence that the extended semiparametric models

outperform other benchmarks via various backtesting methods;

• we compare the performance of the intraday and overnight measures with regard

to forecasting VaR and ES when added to the GAS models.

(2) The second set of original contributions, in terms of proposing an in-sample

structural break detection test for (VaR, ES) in risk models, is:

• we propose a test to detect change points in both (semi)parametric VaR and

ES risk measures simultaneously based on the FZ loss functions;

• we derive the asymptotic behavior of the test statistic under weak dependence;

• we verify that the stationary bootstrap method is valid for calculating critical

values for this test;

• we show the advantages of the proposed test in detecting change points in risk

measures in different scenarios;

• we apply the test on risk measures of the S&P500 index returns, and the detected

change points can be associated with well-known market events.

(3) Our third set of original contributions, in terms of proposing a real-time
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detection method for change points in risk models for VaR and ES is given below:

• we develop a new test to sequentially monitor change points in the M-estimators

of semiparametric risk models for VaR and ES joint risk measures;

• we contribute to the current literature on sequential monitoring studies;

• we derive the asymptotic behavior of the test statistic;

• we apply the proposed sequential monitoring test to designed simulations;

• we consider changes in the second to fourth moments (variance, skewness and

kurtosis) for the post-break process, respectively, in the simulation study;

• we show that this test has a good size control under the null hypothesis and

high power under various alternative hypotheses in finite samples;

• we provide empirical applications to demonstrate the practical usage of our

proposed test;

• we show that this test is able to detect change points associated with well-known

market events and often the detection precedes the actual market crashes.

1.4 Outline of the Thesis

The rest of this thesis proceeds as follows: Chapter 2 studies the extended GAS

models that incorporate intraday information for VaR and ES forecasting; Chap-

ter 3 proposes a new test to detect change points in the (semi)parametric (VaR,

ES) tuple; Chapter 4 develops a sequential monitoring test to detect structural

changes in the M-estimators of risk model parameters. Chapter 5 summarizes the

main findings and discusses further research that builds on the findings presented

in this thesis.

For an improved reading experience, we make each chapter self-contained. We

(re)introduce variables and abbreviations in each chapter. Whenever possible, we

endeavour to follow consistent notations throughout this thesis.
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Notes

1According to Artzner et al. (1999), a risk measure is coherent if it satisfies the following

four properties: translation invariance, sub-additivity, positive homogeneity and monotonicity.

2There is no (strictly) consistent loss function for ES that does not also contain VaR (Fissler

and Ziegel, 2016). ES is typically estimated or predicted jointly with VaR.

3The terminology “change point” has, in general, the same meaning as the “structural break”

in econometrics.

4In this thesis, the nonparametric approaches for VaR and ES discussed above are not

included in the central part of our study. However, we consider several of them as benchmarks

when comparing model performance and leave them for robustness check for our proposed tests.



Chapter 2

Forecasting Risk Measures Using

Intraday Data in a Generalized

Autoregressive Score Framework1

2.1 Introduction

From the perspective of financial risk managers, a risk measure can be considered

a map from the space of probability distributions to real numbers. Risk mea-

sures can provide banks and financial institutions with specific values of potential

losses so that risk managers can adjust their capital reserves against the down-

side risk. Value-at-Risk (VaR) and Expected Shortfall (ES) are two prevailing

measures of financial risk that dominate contemporary financial regulation. VaR

provides banks and investment institutions with a loss level that occurs in the

1A version of this chapter has been published at International Journal of Forecasting with
DOI: 10.1016/j.ijforecast.2019.10.007. This article is co-authored with Dr Emese Lazar, who is
Associate Professor of Quantitative Finance at the University of Reading. Emese has agreed
that the essay can appear within this thesis, and that it represents a significant contribution on
my part.

12

https://doi.org/10.1016/j.ijforecast.2019.10.007
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worst situation at a given confidence level, and it can be defined as:

V aRα
t ≡ inf{rt ∈ R|F (rt|Ft−1) ≥ α},

where F (·|Ft−1) is the cumulative distribution function of asset returns rt over a

horizon given the information set Ft−1, and α ∈ (0, 1) is a given significance level.

As a quantile, VaR can be expressed directly in terms of the inverse cumulative

distribution function: V aRα
t = F−1(α|Ft−1), and as a risk measure, it has the

advantage of being intuitive and easily understood.

However, VaR has inherent deficiencies as it ignores the shape and structure

of the tail and is not a coherent risk measure in the sense of Artzner et al. (1999).

Thus, after the financial crisis of 2007-08, the Basel Committee on Banking Su-

pervision has proposed a transition from VaR with a confidence level of 99% to

ES with a confidence level of 97.5% (Basel Committee on Banking Supervision,

2013). ES is the expectation of returns, conditional on its realization lying below

VaR, and it can be defined as:

ESα
t ≡E[rt|rt ≤ V aRα

t ,Ft−1].

ES is a coherent risk measure (Roccioletti, 2015), and it has been suggested

as an alternative to VaR in risk management applications due to its superior

mathematical properties.

Normally, ES is estimated via a two-stage approach based on VaR estimation.

Whilst ES is itself not elicitable, Fissler et al. (2016) have shown that the pair

(V aRα
t , ESα

t ) is elicitable (see also Acerbi and Székely, 2014). This means that

ES can be estimated jointly with VaR by minimizing a loss function (Ziegel, 2016;

Fissler and Ziegel, 2016).

Following the classification of Engle and Manganelli (2004), models in the

current literature on estimating and forecasting risk measures can be divided
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into three main categories: parametric, nonparametric and semiparametric mod-

els. Previous studies using parametric models to predict VaR and ES assume

that financial returns follow a certain distribution, such as the standard normal

(Gaussian) distribution. In reality, however, it is hardly reasonable to make such

strong assumptions. Nonparametric models do not make assumptions about the

distribution of financial returns, and have the advantage of being model free.

While it is not necessary for such models to make a distributional assumption,

an inherent problem is the difficulty in finding the optimal size of the estimation

window (Engle and Manganelli, 2004). Semiparametric models impose a para-

metric structure on the dynamics of VaR and ES through their relationship with

lagged information, but require no assumptions on the conditional distribution of

financial returns (Patton et al., 2019).

Quantile regression, as an approach for estimating risk measures, has only

recently been considered: Engle and Manganelli (2004) extend the basic quantile

regression model to conditional autoregressive value at risk (CAViaR) models;

these models focus solely on the estimation of VaR, and it is not obvious how

they can be used for ES estimation. In order to estimate ES jointly with VaR in

a semiparametric framework, Taylor (2008) proposes conditional autoregressive

expectile (CARE) models, based on a simple function of expectiles.1 Following

this, Taylor (2019) synthesizes the quantile regression with the maximum likeli-

hood estimation based on an Asymmetric Laplace density proposed by Koenker

and Machado (1999), and estimates VaR and ES jointly. A growing literature

documents a significant improvement in VaR and ES estimation in a quantile

regression framework (Halbleib and Pohlmeier, 2012; Žikeš and Baruńık, 2014;

Wang and Zhao, 2016; Bayer, 2018).

Following the results of Fissler and Ziegel (2016), Patton et al. (2019) present

several novel dynamic models for the joint estimation of VaR and ES. Specifi-

cally, they propose four dynamic semiparametric models for VaR and ES, based

on the generalized autoregressive score (GAS) framework introduced by Creal
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et al. (2013). This model has been successfully applied in risk measures esti-

mation (Patton et al., 2019); CDS spread modelling (Oh and Patton, 2018);

systemic risk modelling (Cerrato et al., 2017; Eckernkemper, 2017; Bernardi and

Catania, 2019); and high-frequency data modelling (Gorgi et al., 2018; Lucas and

Opschoor, 2018).2 However, no studies on risk measures incorporating realized

volatilities into the GAS framework have been considered so far.3 This prompted

the research question of this chapter, namely whether adding intraday measures

of volatility into the GAS framework improves the accuracy of joint VaR and ES

forecasts.

The question whether intraday data can improve the predictive accuracy of

risk measures has already been addressed by academics.4 Several studies extend

quantile regression methods and other semiparametric models by using infor-

mation variables generated from high-frequency data.5 Many realized volatility

measures have been confirmed to perform efficiently. The realized volatility pro-

posed by Andersen and Bollerslev (1998) and Alizadeh et al. (2002) is one of the

most widely used intraday volatility measures. Inspired by Engle and Manganelli

(2004), Fuertes and Olmo (2013) propose a conditional quantile forecast method

combining an effective device to deal with the inter-daily/intra-daily information.

Meng and Taylor (2018) extend the CAViaR model and the Quantile Regres-

sion HAR model with realized volatility, overnight return and intraday range. In

terms of ES estimation, the CARE models of Taylor (2008) have been extended

to allow intraday measures as explanatory variables (Gerlach and Chen, 2014;

Gerlach and Wang, 2022; Gerlach and Chen, 2017; Gerlach and Wang, 2020).

While the improvement from adding intraday variables into a semiparamet-

ric framework has been widely documented, evidence on using the score-driven

model as the framework to estimate risk measures still remains hard to come

by. Therefore, in our study, the first contribution is that we extend the set of

semiparametric GAS models of Patton et al. (2019): the two-factor GAS model,

the one-factor GAS model, the GARCH-FZ model, and the hybrid GAS/GARCH
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model, to investigate whether realized measures can improve the predictive accu-

racy of GAS models. This chapter is the first one to estimate and forecast VaR

and ES jointly by using intraday data in a GAS framework. We shed light on

the potential improvement in risk forecasting from adding intraday information

in the GAS framework for four stock indices using a long forecasting period (that

includes the financial crisis period). Then we perform a thorough analysis to

compare our forecasts with those generated from prevailing benchmarks in the

current literature. Our results show that incorporating intraday data into the

GAS framework outperform other (VaR, ES) forecasts in most cases.

Thus, our second contribution to the literature is that we provide empirical

evidence that semiparametric models enhanced with realized volatility measures

outperform other benchmark models via various backtesting methods. Our pro-

posed models, especially the GAS-2F model, extended with realized volatilities

dominate other benchmarks consistently. Thirdly, we compare four different types

of realized measures with regard to their forecasting ability for risk measures,

when added to GAS models.

The chapter is structured as follows: Section 2.2 briefly introduces the new

GAS models that incorporate intraday information; the data used in our empirical

study and the in-sample estimation results are presented in Section 2.3; Section

2.4 presents the forecasting study and backtesting results; and finally, Section 2.5

concludes the chapter.

2.2 Models

2.2.1 GAS Models for VaR and ES

Several extensions of the GAS models introduced by Creal et al. (2013) are pro-

posed in Patton et al. (2019), which can be estimated by minimizing the loss
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function of Fissler and Ziegel (2016) called FZ0:

ℓFZ0(r, v, e;α) = − 1

αe
1{r ≤ v}(v − r) +

v

e
+ log(−e)− 1, (2.2.1)

where r denotes the daily return, v and e represent the values of VaR and ES,

respectively, and 1 is an indicator function which returns 1 when r ≤ v (i.e.,

the VaR is exceeded), otherwise it returns zero. Fissler and Ziegel (2016) show

the joint elicitability for VaR and ES, despite the fact that ES was known to be

not elicitable on its own. They introduce loss functions, which should be used

for VaR and ES measures, because it allows for this pair to be jointly evaluated.

Based on the article, Patton et al. (2019) introduce new semiparametric models

and derive the consistency and asymptotic normality of the parameter estimators.

Patton et al. (2019) propose four models: the two-factor GAS model, the one-

factor GAS model, the GARCH-FZ model, and the hybrid GAS/GARCH model,

to estimate VaR and ES jointly by minimizing the loss function FZ0. The key

novelty in their framework is the use of the scaled score (that can be computed as

the first order derivative of the objective function6) to drive the time variation in

the target parameter. Patton et al. (2019) present a “news impact curve” to show

the impact of past observations on current forecasts of VaR and ES through the

score variable. When r > v, the realized returns do not affect the estimation. But

when r ≤ v, forecasts of ES and VaR react to realized returns through the score

variable. In the one-factor GAS, the GARCH-FZ and the hybrid GAS/GARCH

models, we treat the ES as a constant multiple of the VaR. This condition is

reasonable when the ES and VaR vary together. This is naturally implied by

some of the models with the error term following a distribution in the location-

scale family (with zero mean), for example, GARCH models with Normal or

Student’s t distributions. However, this condition can be relaxed by allowing a

time-varying factor between VaR and ES, such as in Taylor (2019, 2022). The

GAS-FZ models are specified as below:
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(1.A) One-factor GAS model (GAS-1F):

vt = a exp{κt},

et = b exp{κt}, b < a < 0,

κt = β0 + β1κt−1 + β2H
−1
t−1st−1,

(2.2.2)

where the score variable st is defined as:

st ≡
∂ℓFZ0(rt, a exp{κt}, b exp{κt};α)

∂κ
= − 1

et

(
1

α
1{rt ≤ vt}rt − et

)
, (2.2.3)

and the Hessian factor Ht is set to one for simplicity;

(1.B) Two-factor GAS model (GAS-2F):

 vt

et

 = w+B

 vt−1

et−1

+A

 λv,t−1

λe,t−1

 , (2.2.4)

where w is a (2×1) vector, A is a (2×2) matrix, and B is defined as a diagonal

matrix for parsimony, and

λv,t ≡ −vt(1{rt ≤ vt} − α), (2.2.5)

λe,t ≡
1

α
1{rt ≤ vt}rt − et; (2.2.6)

(1.C) GARCH-FZ model (GARCH-FZ):

vt = a · σt,

et = b · σt, b < a < 0,

σ2
t = β0 + β1σ

2
t−1 + β2r

2
t−1,

(2.2.7)

where σ2
t is the conditional variance and is assumed to follow a GARCH(1,1)

process. The parameters of this model are estimated by minimizing the loss
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function FZ0 in (2.2.1), instead of using (Q)MLE.

(1.D) A hybrid GAS/GARCH model (Hybrid):

vt = a exp{κt},

et = b exp{κt}, b < a < 0,

κt = β0 + β1κt−1 + β2

(
− 1

et−1

(
1

α
1{rt−1 ≤ vt−1}rt−1 − et−1

))
+ β3 log |rt−1|,

(2.2.8)

where the variable κt is the log-volatility, described by the one-day lagged log-

volatility, score factor and the logarithm of absolute return.

2.2.2 Realized Measures

This section provides a brief introduction to various intraday realized measures

(RM) used in this chapter. The most popular measure is the realized volatility

(RV), defined as:

RV∆t =

√√√√ N∑
i=1

(Pt,i·∆ − Pt,(i−1)·∆)2,

∆ =
S

N
,

(2.2.9)

where RV∆t denotes the realized volatility calculated from the sum of N intraday

squared returns, at frequency ∆, within day t. Here, the intraday frequency ∆

divides the whole span of market opening hours S into N equal intervals, and

Pt,i·∆ denotes the log price at time i ·∆ of day t. However, the realized volatility

ignores the information from the market overnight return, which is defined as:

overnightt = log(Pt,0)− log(Pt−1,S), (2.2.10)

where Pt,0 and Pt−1,S denote the opening price on day t and the closing price on

the previous day, respectively. Several studies have proven that incorporating the

overnight return can lead to a more accurate realized measure. In this chapter,
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we consider the approach of incorporating the overnight return in the realized

volatility of Blair et al. (2001), Hua and Manzan (2013) and Meng and Taylor

(2018) as follows:

RN∆t =
√
RV∆2

t + (overnightt)2. (2.2.11)

In the following, we will use frequencies of ∆ = 5min and ∆ = 10min.

As such, in the next section, RM can signify any of the following four realized

measures of volatility: RV 5t, RV 10t, RN5t, and RN10t, and we extend the

models with these measures.

2.2.3 GAS Models for VaR and ES with Realized Mea-

sures

Salvatierra and Patton (2015) propose a GAS model enhanced with high fre-

quency measures to obtain a GRAS model, which has the equation for the de-

pendence parameter, similar to the last row of (2.2.2), replaced with:

κt = β0 + β1κt−1 + β2H
−1
t−1st−1 + c log(RMt−1). (2.2.12)

They use the realized covariance as RMt, computed from the intraday prices

Pt,i·∆ of a set of assets. The authors find that the inclusion of 5-minute realized

covariance significantly improves the in-sample fit and out-of-sample forecasts of

the copula models.

Motivated by the set of GAS models and the GRAS model, our new models

are proposed as:

(2.A) One-factor GAS model with realized measures (GAS-1F-Re):

vt = a exp{κt}

et = b exp{κt}, b < a < 0,
(2.2.13)
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where κt is defined in (2.2.12), and the score variable st is defined in (2.2.3).

Here, the Hessian factor Ht is set to one for simplicity; log(RMt) is the logarithm

of a realized measure which can be: the realized volatility at 5-min and 10-min

sampling frequencies (RV 5 and RV 10), and these two realized volatilities with the

overnight return incorporated into them (RN5 and RN10), as defined in Section

2.2. (2.B) Two-factor GAS model with realized measures (GAS-2F-Re):

 vt

et

 = w+B

 vt−1

et−1

+A

 λv,t−1

λe,t−1

+CRMt−1, (2.2.14)

where w and C are (2×1) vectors, A, and B are both (2×2) matrices, B is defined

as a diagonal matrix to simplify computation. Following Patton et al. (2019), we

also define the forcing variables λv,t and λe,t as the partial derivatives of the given

loss function ℓFZ0 with respect to vt and et, as in (2.2.5) and (2.2.6).

Hansen et al. (2012) and Hansen et al. (2014) introduce a new framework,

Realized (Beta) GARCH, where the variance follows a GARCH(1,1) process,

with the squared returns replaced with a realized measure of volatility. Following

this model, we propose a GARCH-FZ-Realized model:

(2.C) GARCH-FZ model with realized measures (GARCH-FZ-Re):

vt = a · σt,

et = b · σt, b < a < 0,

σ2
t = β0 + β1σ

2
t−1 + cRM2

t−1,

(2.2.15)

where the daily return rt−1 in the GARCH(1,1) variance equation in (2.2.7) is

replaced with the realized measure RMt−1. This model is estimated by minimizing

the FZ0 loss function.

(2.D) A hybrid GAS/GARCHmodel with realized measures (Hybrid-
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Re):

vt = a exp{κt},

et = b exp{κt}, b < a < 0,

κt = β0 + β1κt−1 + β2

(
− 1

et−1

(
1

α
1{rt ≤ vt}rt−1 − et−1

))
+ β3 log |rt−1|+ c log(RMt−1),

(2.2.16)

where the log-volatility κt follows the hybrid GARCH model with one-day lagged

log-volatility, score factor, realized measures and absolute daily return.

2.3 Data and Empirical Study

2.3.1 Data Description

To evaluate the forecasting performance of the new models and to compare them

with benchmark models, we collected daily opening and closing prices of four

international stock market indices: the S&P 500 (US); Dow Jones Industrial

Average (US); NIKKEI 225 (Japan) and FTSE 100 (UK), from January 2000

to June 2019, from DataStream. To ensure the applicability of every model, we

remove market-specific non-trading days and exactly zero returns from each index

series. Panel A in Table 2.3.1 presents the summary statistics on the four daily

equity return series over the full sample period. From the top panel, average

annualized returns range from 0.544% for the NIKKEI 225 to 4.377% for the

DJIA, and the annualized standard deviation ranges from 18% for the DJIA to

about 24% for the NIKKEI 225. All daily return series exhibit substantial kurtosis

at around 10. The second and third panels of this table show the sample VaR and

ES for four different α levels: 1%, 2.5%, 5% and 10%. The NIKKEI 225 index

proves to be different from the rest since its quantile and ES are lower than the

sample risk measures of the other three indices.
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Panel B presents the estimated parameters of the ARMA(p,q) models where

the lags (p,q) are optimally selected via the BIC method. The ARMA models for

the indices only include a constant except for the S&P 500, which contains an MA

term with one lag. Panel C shows the estimated parameters of the GARCH(1,1)

model, where the residuals are assumed to follow the skewed t distribution. Panel

D presents the parameters of the degree of freedom and skewness in the skewed

t distribution.

The percentage log overnight returns are generated as in (2.2.10). For the

realized volatility, the data is obtained at 5-min and 10-min sampling frequencies

from the Oxford-Man Institute’s realized library7(see Heber et al., 2009). To

generate the new realized measure incorporating the overnight return in realized

volatility, we use (2.2.11).

The entire sample is divided into an in-sample for estimation and an out-of-

sample to backtest the estimated results. We employ a rolling window approach,

where each model is re-estimated every five trading days using a rolling window of

2000 observations. Then the rest of the period until June 2019 of approximately

2900 days, is the out-of-sample period to evaluate one-day ahead VaR and ES

estimates.

2.3.2 Forecasting Models

VaR and ES are predicted via the score forecast for one trading day ahead in

the out-of-sample period for each series, using the proposed GAS-Realized mod-

els and the FZ-GARCH-Realized model, as well as nonparametric models and

parametric models as benchmarks. For nonparametric models, historical simula-

tions are widely used because of their advantages of being model free and easy

to implement. In our study, we select three commonly used rolling window sizes

to forecast VaR and ES: 125, 250 and 500 days. Two popular GARCH models

are employed in this chapter, including the Gaussian (GARCH-G) and skewed t
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Table 2.3.1: Summary statistics and marginal distribution estimates

S&P 500 DJIA NIKKEI FTSE

Panel A: Summary statistics

Mean (Annualized) 3.685 4.377 0.544 0.606
Std dev (Annualized) 18.900 17.821 23.748 18.105
Skewness -0.208 -0.125 -0.429 -0.170
Kurtosis 11.176 10.980 9.341 9.487

VaR-1% -3.427 -3.294 -4.111 -3.264
VaR-2.5% -2.525 -2.361 -3.051 -2.409
VaR-5% -1.885 -1.777 -2.360 -1.788
VaR-10v -1.284 -1.182 -1.682 -1.233

ES-1% -4.849 -4.568 -6.021 -4.546
ES-2.5% -3.678 -3.453 -4.492 -3.457
ES-5% -2.922 -2.750 -3.576 -2.764
ES-10% -2.236 -2.096 -2.788 -2.120

Panel B: Conditional mean

Constant -0.001 0.007 -0.021 -0.003
AR(1) - - - -
MA(1) -0.039 - - -
Panel C: Conditional variance

Constant 0.010 0.010 0.025 0.014
ARCH 0.065 0.069 0.082 0.116
GARCH 0.926 0.922 0.910 0.874

Panel D: skewed t density

DoF 9.020 8.130 12.204 22.177
Skewness -0.092 -0.089 -0.089 -0.162

Note: This table presents the summary statistics of the four daily equity return series studied,
over the full sample period from January 2000 to June 2019, and marginal distribution estimates
over the in-sample period. Panel A reports the annualized mean, standard deviation of these
returns in percentages, skewness, kurtosis, the sample VaR and ES estimates for four choices
of α; Panel B presents the parameter estimates for AR(m) models of the conditional means
of these returns; Panel C shows parameter estimates for GARCH-skewed t(1,1) models of the
conditional variance; Panel D presents parameter estimates for the skewed t density for the
standardized residuals.
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(GARCH-Skt) models as parametric model benchmarks. We also consider other

established models that use high-frequency data (i.e., 5-min realized volatility),

considered to be well-suited to forecast VaR and ES: the HAR model of Corsi

et al. (2008), and the HEAVY model of Shephard and Sheppard (2010). In each

model, after the conditional volatility estimation, we estimate VaR and ES with

Gaussian and skewed t distributions of the errors (HAR-Skt-RV5, HEAVY-G-

RV5, HEAVY-Skt-RV5). We also take the semiparametric approach of Taylor

(2019) based on the asymmetric Laplace distribution (AL-CAViaR-Sym), into

our benchmark set.

To evaluate the performance of the GAS models enhanced with realized mea-

sures, we also implement the four models proposed by Patton et al. (2019) as

benchmarks. Differently from Patton et al. (2019) who used certain parameters

estimated from a fixed in-sample period, we use a rolling window approach, where

each model is re-estimated every five trading days using a window of size 2000

trading days. In this chapter, we consider four sets of GAS models extended with

different realized measures: RV5, RV10, RN5 and RN10 as in Section 2.2. In the

following section, we will show estimation results in these proposed models.

2.3.3 In-sample Estimation

The parameters of the GAS models and the proposed four sets of GAS-Realized

models are estimated by minimizing the loss function in (2.2.1). The existence of

an indicator function in the FZ0 loss function necessitates the use of a numerical

search algorithm, but this algorithm is sensitive to the starting values used in

the search. We optimize the proposed models using the following procedure:

for each model, we first generate 105 vectors of parameters from predetermined

intervals randomly for the parameters of the GAS models. For example, for the

parameters (a and b) used to generate VaR and ES in GAS-1F, GARCH-FZ,

and Hybrid models, we set the intervals as [-2, -3] and [-3, -4], respectively, to
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ensure that ES is always less than VaR.8 We compute the average loss value for

each vector, then select the 10 vectors that generate the lowest average loss as

initial values for the optimization routine. The vectors are selected as the initial

values of the search algorithm for all windows in order to shorten computational

time. We compute the optimal parameters by using a quasi-Newton method and

the function fminunc as optimization algorithms, which are similar routines to

the one used by Engle and Manganelli (2004). Alternatively, one can use the

maximum likelihood estimates of a closely matching parametric model as the set

of starting values.

Table 2.3.2 presents the estimated parameters together with their standard

errors of the GAS models for the S&P 500, estimated using an estimation period

of 2000 days from the beginning of January 2000 for α = 5%. The parameters

of the three two-factor GAS models (GAS-2F, GAS-2F-RV5, and GAS-2F-RN5)

are presented in the first panel of Table 2.3.2; we separate the parameters of VaR

and ES. The b parameters are statistically significantly different from zero at both

1% and 5% significance levels for both VaR and ES,9 which can be explained by

the volatility clustering effect. The four columns on the right side of this panel

show the parameters of GAS-2F extended with the 5-minute realized measures.

Due to adding 5-min realized measures, the degree of clustering decreases for VaR

and ES. Also, the parameters of score av and ae experience a significant decrease

after adding the realized measures. The parameters of the one-day lagged realized

measures RMt−1, c, are statistically significantly negative at the 5% significance

level for both VaR and ES, indicating that larger values of these realized variables

will result in a lower estimated quantile or ES, which is intuitive. The average

loss generated by the GAS-2F model is 0.756, which is larger than the loss of the

GAS-2F models extended with realized measures (0.735 and 0.734).

The second panel in Table 2.3.2 shows the estimated parameters of the other

GAS models extended with the 5-minute realized measures using an estimation
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period of 2000 days from the beginning of January 2000 for the S&P 500, for

α = 5%. Similarly to the b parameters of the GAS-2F models, the β1 param-

eters of the other models are also statistically significantly different from zero

at both 1% and 5% significance levels, which means that the current estimated

risk measures rely heavily on the previous estimation. Also, we find that the pa-

rameters of realized measures (c for the GAS-1F model, the GARCH-FZ model,

and the Hybrid model) are all statistically significantly positive at both 1% and

5% significance levels. Intuitively, a large realized volatility will lead to a low

quantile through the score variable in these models. We obtain that the inclusion

of realized measures in the updating models results in smaller coefficients of the

GAS shocks (β2), which is intuitive. Later, we will see the role that the score

variable plays in forecasting VaR and ES. In the following sections we compare

the forecasting performance of these four sets of extended models, which gives a

total of 16 models, with the 13 benchmark models enlisted above.

2.4 Out-of-sample Forecasting and Backtesting

We evaluate one day-ahead VaR and ES forecasts for the four international stock

indices, and for the following four probability levels: 1%, 2.5%, 5% and 10%.

One-day ahead VaR and ES forecasts are made with parameter values estimated

every 5 days, for each model and probability level, using rolling windows of size

2000 (except for historical simulations). The forecasting sample period for each

index is approximately 2900 days. In this section, we backtest the VaR and ES

forecasts of the proposed models and compare their performance with that of

benchmark models. First, we backtest VaR and ES individually via the Dynamic

Quantile (DQ) regression and the Dynamic Expected Shortfall (DES). Following

these tests, we employ a method based on the FZ0 loss function to backtest VaR

and ES jointly.



2.4. Out-of-sample Forecasting and Backtesting 28

Table 2.3.2: The estimated parameters of the GAS models for the S&P 500
for α = 5%

GAS-2F GAS-2F-RV5 GAS-2F-RN5

VaR ES VaR ES VaR ES

w -0.009 -0.012 -0.009 -0.016 -0.011 -0.023
(s.e.) (0.002) (0.003) (0.030) (0.053) (0.033) (0.045)
b 0.995 0.995 0.833 0.810 0.814 0.849

(s.e.) (0.105) (0.108) (0.084) (0.092) (0.098) (0.072)
av -0.129 -0.140 -0.125 -0.066 -0.114 -0.118

(s.e.) (0.070) (0.103) (0.304) (0.629) (0.416) (0.466)
ae 0.002 0.003 0.002 0.001 0.001 0.001

(s.e.) (0.003) (0.004) (0.011) (0.024) (0.015) (0.017)
c - - -0.323 -0.477 -0.353 -0.360

(s.e.) - - (0.148) (0.208) (0.190) (0.158)

Avg loss 0.756 0.735 0.733

GAS-1F GCH-FZ Hybrid GAS-1F GCH-FZ Hybrid GAS-1F GCH-FZ Hybrid

5min RV 5min RN

β1 0.993 0.922 0.993 0.857 0.857 0.875 0.851 0.761 0.872
(s.e.) (0.002) (0.088) (0.002) (0.116) (0.081) (0.072) (0.143) (0.077) (0.096)
β2 0.008 0.032 0.008 0.004 - 0.004 0.004 - 0.004

(s.e.) (0.001) (0.007) (0.001) (0.009) - (0.007) (0.013) - (0.011)
β3 - - 4.393e-08 - - 0.010 - - 0.009

(s.e.) - - (1.552e-09) - - (0.016) - - (0.018)
c - - - 0.127 0.095 0.141 0.133 0.084 0.142

(s.e.) - - - (0.013) (0.012) (0.056) (0.016) (0.009) (0.051)
a -1.774 -2.269 -1.752 -1.973 -2.818 -2.150 -1.962 -2.987 -2.053

(s.e.) (4.451) (0.393) (5.726) (2.529) (0.410) (2.160) (3.422) (0.430) (2.294)
b -2.401 -3.043 -2.355 -2.599 -3.610 -2.779 -2.601 -3.822 -2.709

(s.e.) (5.987) (0.765) (7.709) (3.310) (0.670) (2.819) (4.467) (0.672) (3.029)

Avg loss 0.761 0.780 0.761 0.737 0.727 0.753 0.734 0.722 0.749

Note: This table presents the parameter estimates and standard errors of the four GAS models
proposed in Patton et al. (2019) and eight GAS models enhanced with 5-min realized volatility
(and overnight returns), for VaR and ES, for the S&P 500 index using the first rolling window
of 2000 days starting with January 2000. The top panel presents the estimated parameters of
the two-factor GAS models. The bottom panel presents the parameters of the one-factor GAS
model, the GARCH model, and the hybrid-factor GAS model, estimated using the FZ0 loss
minimization. The bottom row of each panel presents the average (in-sample) losses from these
models.
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2.4.1 Backtesting VaR

The most popular procedures evaluating the performance of VaR forecasts are

mainly based on VaR exceptions, i.e.,

It = 1{rt ≤ vαt }.

The commonly used VaR backtesting method, known as the unconditional cover-

age (UC) test, is proposed by Kupiec (1995), and uses the proportion of exceptions

as its main tool. In this test, the hit percentage is defined as the proportion of the

returns below the estimated VaR, then the difference between the hit percentage

and its theoretical value of α is examined. Thus, the VaR model is rejected or

not according to the null hypothesis of the UC test below, based on which the

Likelihood Ratio (LR) test is performed:

HV aR
UC : Et−1[It] = α.

Table 2.4.1 presents the number of model rejections of the above null hypoth-

esis for four daily equity return series, over the out-of-sample period, for the 29

different forecasting models, at 1% and 5% significance levels, respectively, and

for different probability levels. To obtain these columns, we perform the uncondi-

tional backtest above for all indices, and count the number of rejections for each

model.

The third and fourth columns of Table 2.4.1 show that the proposed new GAS

models extended with realized measures generally tend to have a lower number

of UC test rejections as compared to the number of rejections of the GAS-FZ

models of Patton et al. (2019), for α = 1%. The GARCH model and HEAVY

model with a skewed t distribution also tend to have a lower number of rejections

at 1% significance level. At 5% significance level, several GAS-FZ models with

overnight returns incorporated in the realized volatility have zero rejections of the
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UC test. In general, adding realized measures into GAS models for predicting

VaR achieves a lower number of test rejections, based on our results on the hit

percentage test.

However, the UC test is statistically weak for small sample size, and is criti-

cized by several studies (see Nieto and Ruiz, 2016) that it ignores the clustering

of VaR exceptions. To address these drawbacks, the conditional coverage (CC)

test is considered, in which the null hypothesis is:

HV aR
CC : Et−1[It|It−1] = α.

We employ the dynamic quantile (DQ) test proposed by Engle and Manganelli

(2004) to implement the CC test. The DQ test has power against the misspec-

ification of ignoring conditionally correlated probabilities and can be extended

to examine other explanatory variables. The DQ test examines whether the hit

variable defined as Hitv,t = 1{rt ≤ vαt }−α, follows an i.i.d. Bernoulli distribution

with probability level α and whether it is independent of the VaR estimator; the

expected value of Hitv,t is 0. Furthermore, from the definition of the quantile

function, the conditional expectation of vαt given any information known at t− 1

must also be 0, which means that the hit function cannot be correlated with other

lagged variables. Also, the Hitv,t must not be autocorrelated. If Hitv,t satisfies

the conditions stated above, then there will be no autocorrelation in the hits, and

no measurement error. We include one lag of Hitv,t in the regression of the test.

Consider the following DQ regression:

Hitv,t = a0 + a1Hitv,t−1 + a2vt−1 + uv,t, (2.4.1)

where a = [a0, a1, a2] is the set of parameters of the regression. Based on the null

hypothesis, we test whether all parameters in the set a are zero. Performing this

DQ test gives a test statistic, which is distributed X 2(3) asymptotically.
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Table 2.4.1: The number of model rejections based on hit percentages of
VaR forecasts (UC test) for the four indices for different α levels

Number Model 1% VaR 2.5% VaR 5% VaR 10% VaR

1% 5% 1% 5% 1% 5% 1% 5%

1 RW-125 3 3 0 0 0 0 0 0
2 RW-250 1 2 0 1 0 0 0 0
3 RW-500 0 2 1 1 0 1 0 0

4 GARCH-G 4 4 3 3 1 1 0 1
5 GARCH-Skt 0 1 0 3 0 0 0 0

6 HAR-Skt-RV5 4 4 4 4 4 4 4 4
7 HEAVY-G-RV5 4 4 4 4 0 3 0 0
8 HEAVY-Skt-RV5 0 1 0 0 0 0 0 0
9 AL-CAViaR-Sym 2 3 1 3 0 0 0 0

10 GAS-2F 3 3 2 2 0 0 1 2
11 GAS-1F 0 3 0 0 0 0 1 1
12 GARCH-FZ 1 2 1 3 0 0 0 1
13 Hybrid 2 2 0 1 0 0 1 1

14 GAS-2F-RV5 0 1 1 1 1 1 1 1
15 GAS-1F-RV5 0 1 0 1 0 1 0 0
16 GARCH-FZ-RV5 0 1 0 1 0 0 0 0
17 Hybrid-RV5 2 3 0 1 0 0 0 0

18 GAS-2F-RV10 1 1 1 1 1 1 1 1
19 GAS-1F-RV10 0 2 1 1 0 1 0 0
20 GARCH-FZ-RV10 1 1 1 1 0 0 0 0
21 Hybrid-RV10 2 3 1 1 0 0 0 1

22 GAS-2F-RN5 2 3 0 1 0 0 0 0
23 GAS-1F-RN5 0 1 0 0 0 0 0 1
24 GARCH-FZ-RN5 0 0 0 0 0 0 0 0
25 Hybrid-RN5 0 0 0 0 0 0 0 1

26 GAS-2F-RN10 0 1 0 0 0 0 0 0
27 GAS-1F-RN10 0 0 0 0 0 0 0 1
28 GARCH-FZ-RN10 0 0 0 0 0 0 0 0
29 Hybrid-RN10 0 1 0 0 0 0 1 1

Note: This table presents the number of model rejections based on hit percentages of VaR
forecasts (UC test) for the four daily equity return series, over the out-of-sample period, for
29 different forecasting models. The first three rows (Models 1-3) correspond to rolling win-
dow historical forecasts, the next two rows (Models 4 and 5) correspond to GARCH forecasts
based on different distributions for the standardized residuals, the next four rows (Models 6-9)
correspond to forecasts using high-frequency data and the CAViaR model based on the asym-
metric Laplace distribution. The next four rows (Models 10-13) correspond to GAS models
proposed by Patton et al. (2019). The last 16 rows (Models 14-29) correspond to the GAS
models extended with the 5-min and 10-min realized measures, respectively.



2.4. Out-of-sample Forecasting and Backtesting 32

The middle panel of Table 2.4.2 shows the p-values of the DQ test of VaR

forecasts for α = 1%, for the four stock indices. The p-values that are greater

than 5% indicate no evidence against the optimality at 5% significance level (in

bold), and values between 1% and 5% are in italics. For the S&P 500, all of

our newly proposed models pass the DQ test at 1% significance level. When we

consider the NIKKEI 225 and FTSE 100 index, we see significant improvements

after adding realized measures in the GAS models. For the DJIA index, using

realized measures we obtain that fewer models fail the DQ test, while the historical

simulations pass the test and the GARCH model with the skewed t distribution

performs well. But for this index, all of the GAS-1F models extended with realized

measures are able to pass the DQ test for all four indices. Overall, adding realized

measures enables GAS-FZ models to reduce the number of rejections of the DQ

test for α = 1%.

For α = 2.5% (see Table 2.4.3), we obtain similar results, namely that adding

realized measures generally reduces the number of rejections of the DQ test. For

the DJIA index, the two-factor GAS model can pass the test after adding realized

measures RN5 and RN10. For α = 5%, in Table 2.4.4, we can see that all original

GAS-FZ models can pass the DQ test across the four indices except the Hybrid

model for the S&P 500 index. After adding realized measures in the GAS models,

it can be seen that the p-values increase and the DQ test is generally passed. Table

2.4.5 presents the number of model rejections at 1% and 5% significance levels for

quantile regression VaR backtests across the four markets, for different probability

levels. It can be concluded that the set of GAS models extended with realized

measures tend to have a lower number of rejections than the original GAS models

and several other benchmarks. It should be noted that the four GAS-1F model

extended with different realized measures have the least number of rejections of

the DQ test, especially for low values of α.
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2.4.2 Backtesting ES

All models that we consider produce both VaR and ES forecasts. From an eco-

nomic point of view, for example, when we compare the 2.5% ES forecasts of

the GAS-1F-RV5 and the 2.5% ES forecasts of the GAS-1F, the first one has,

on average, an ES forecast lower with 13.29% (S&P 500), 17.49% (DJIA), 8.40%

(NIKKEI), and 5.31% (FTSE 100). The results indicates that ignoring realized

measures overestimates risk on average. Looking at the significance of these val-

ues, we follow the backtesting method of Patton et al. (2019) to evaluate the ES

estimates individually, using a dynamic ES (DES) regression test:

λs
e,t = b0 + b1λ

s
e,t−1 + b2et−1 + ue,t, (2.4.2)

where λs
e,t is the standardized version of λe,t defined in (2.2.6) (λs

e,t = λe,t

et
=

1
α
1{rt ≤ vt} rt

et
− 1), and b = [b0, b1, b2] is the set of parameters of the regression.

Based on the null hypothesis, we test whether all parameters in set b are zero.

The right panel of Table 2.4.2 shows the p-values from the DES test of the ES

forecasts for α = 1%, for the four stock indices. Similarly to the result of the DQ

test, incorporating the realized measure RN10 in GAS models seems to reduce

the number of backtest rejections for the NIKKEI 225 and the FTSE 100 indices.

GAS-1F models with realized measures can pass the DES test at 5% significance

level for all indices, which is consistent with the result of the DQ test. The

two-factor GAS model, after adding the risk measure RN10, passes the DES test

for all indices. Almost all of our new models pass the DES test across the four

indices for α = 2.5%, except the GAS-2F for the NIKKEI 225, as can be seen

in the right panel of Table 2.4.3. Table 2.4.4 presents similar results across four

indices using an α of 5%, whilst some benchmarks also have p-values higher than

5%, for example, the HEAVY model with a skewed t distribution. Table 2.4.5

summarizes the total number of model rejections at 1% and 5% significance levels
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for the Dynamic ES regression backtests, across the four markets, for different

probability levels. The GAS-1F models enhanced with realized measures have

the smallest number of backtest rejections.

2.4.3 Joint Backtesting of the (VaR, ES) Risk Measures

In order to compare jointly the VaR and ES forecasts generated by different

models, in this section, a loss function proposed in Fissler and Ziegel (2016) is

employed. The authors discuss how VaR and ES are jointly elicitable and present

a group of loss functions for risk measure estimation and backtesting. We follow

the choice of Patton et al. (2019) for the loss function FZ0, as defined in (2.2.1). To

compare the performance of each model using the FZ0 loss function, we calculate

the average loss value

LFZ0
M =

1

M

∑
1≤t≤M

ℓFZ0
t

for different α values across the four indices.

The left panel of Table 2.4.2 presents the average losses for the four equity

return series, over the out-of-sample period, for 13 different benchmark forecasting

models and 16 newly proposed models that use the 5-min and 10-min realized

measures. The lowest average loss in each column is highlighted in bold, whilst the

second lowest is highlighted in italics. For α = 1%, the GAS-FZ models enhanced

with the realized volatility using overnight returns and the HEAVY-Skt model

perform well, overall.

For α = 2.5% (see Table 2.4.3), the GAS-2F model employing the 10-min

realized volatility and overnight returns (GAS-2F-RN10) outperforms the other

models, with lower loss than most other models for most series and being consis-

tently ranked well, being the best model for the DJIA and FTSE 100 index. In

Table 2.4.4 (α = 5%), the GAS-2F-RN5 and GAS-2F-RN10 models outperform

the other models with the lowest loss for the DJIA and the FTSE 100 index,

respectively. The HEAVY-Skt model has the lowest loss value for the S&P 500.



2.4. Out-of-sample Forecasting and Backtesting 39

Table 2.4.6 presents the rankings (with the best performing model ranked 1

and the worst ranked 29) based on average losses using the FZ0 loss function, for

the four index return series, over the out-of-sample period, for the 29 different

forecasting models. The last two columns in each panel represent the average rank

across the four series and the rank of the average, respectively. For α = 1%, the

best-performing model is the GAS-1F model with the 5-min realized volatility and

overnight returns, followed by the GAS-1F models extended with the other two

realized measures. Considering α = 2.5%, the GAS-2F-RN10, GARCH-FZ-RV5,

and GAS-1F-RN10 are the three models having the lowest average loss values.

For α = 5% and α = 10%, our proposed models have a relatively higher rank

than the benchmarks, except the HEAVY model with a skewed t distribution,

which is ranked second for α = 5%.

Another observation here is that the losses generated from the GAS-FZ models

with realized measures are generally lower than the loss generated from most

benchmark approaches. However, the HEAVY-Skt is always one of best 5 models

considered in the overall ranking for all four probability levels. This suggests

that the variables extracted from intraday data provide useful information for

risk measure forecasting.

In order to analyse the relative performance of each model, we employ the

Diebold-Mariano (DM) test to compare any two models using differences in av-

erage losses. In this chapter, t-statistics from the DM test compare the average

losses, using the FZ0 loss function, for four indices, and for different probability

levels, over the out-of-sample period. A negative t-statistic indicates that the

row model outperforms the column model with a significant loss difference. The

absolute values greater than 1.96 (2.575 or 1.64) indicate that the average loss dif-

ference is significantly different from zero at 95% (99% or 90%) significance level.

In Figure 2.4.1, we present the results for the S&P 500 with the null hypothesis

that the row model and the column model have equal values for the loss function.

The numbering of the models used in the figure is given in the first column of
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Table 2.4.1. Positive test statistics corresponding to darker colors mean that the

row model has larger losses than the column model. The white blocks mean that

the row model dominates the column model in loss comparison at 95% signifi-

cance level; the light green (below white in the color bar) blocks mean that the

row model has lower average loss than the column model, but not significantly so;

and the dark red blocks mean that the row model has higher loss than the column

model at 95% significance level. In Figure 2.4.1, at 1% level, the rows for Model

8 (HEAVY-Skt-RV5), Model 23 (GAS-1F-RN5), and Model 27 (GAS-1F-RN10)

have lighter blocks compared to the other rows, therefore, these are the three best

performing models for the S&P 500 index at 1% level. For 2.5% level, Model 8,

Model 24 (GARCH-FZ-RN5), and Model 27 outperform the others. At 5% and

10% levels, Model 3, Model 24, and Model 28 (GARCH-FZ-RN10) are the three

best performing models for the S&P 500 index.

Following Gerlach and Wang (2020) and Taylor (2019), we use the model

confidence set (MCS) test introduced by Hansen et al. (2011) to compare the

forecasting models via the FZ0 loss function. This approach builds model confi-

dence sets using one-sided elimination based on the Diebold-Mariano test. In this

chapter, we consider the 75% confidence level10 and employ two methods: the R

method using sums of absolute values for calculating the test statistic for MCS;

and the SQ method uses the summed squares.11 Table 2.4.7 presents the number

of models within the MCS test using the block bootstrap with the block length

of 12 and 10,000 replications, based on the losses generated from the FZ0 loss

function. The GAS-2F-RN10 is the best performing model, overall, and the GAS

models extended with realized measures perform better than most of the bench-

mark models. The main finding generated from the MCS test echo the results

from the other backtesting methods. The result that some GAS models enhanced

with realized measures end up more often in the MCS than HAR and HEAVY

models highlights the usefulness of the score function that the GAS models build

on, and we also show evidence that the use of realized measures enhances the risk
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Figure 2.4.1: Color map based on the Diebold-Mariano (DM) test

(a) 1% S&P 500 (b) 2.5% S&P 500

(c) 5% S&P 500 (d) 10% S&P 500
Note: This figure presents the color maps based on the Diebold-Mariano (DM) test comparing
the average losses using the FZ0 loss function over the out-of-sample period for 29 different
models, for the S&P 500. White blocks mean that the row model has lower average loss than
the column model at 5% significance level; light green (below white in the color bar) blocks
mean that the row model has lower average loss than the column model, but not significantly
different from it, and so on. Darker color blocks mean that the row model has higher average
loss than the column model.
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forecasts of GAS models.

2.5 Conclusions

Patton et al. (2019) proposed a set of semiparametric models (GAS-FZ) in a gen-

eralized autoregressive score (GAS) framework to estimate risk measures. This

chapter provides an extension of this, using exogenous information from high

frequency data, in order to improve on the prediction of VaR and ES. This pro-

vides a new semiparametric framework named GAS-FZ-Realized, proposed for

estimating and forecasting VaR and ES jointly. Through incorporating four real-

ized measures (5-min and 10-min realized volatility with or without the overnight

return) into the GAS-FZ models, we observe an improvement in forecasting risk

measures over both in-sample and out-of-sample periods.

We employ the newly proposed models to estimate the VaR and ES of four

international stock indices empirically, over the period 2000 to 2019. The param-

eters of the models are estimated by minimizing the FZ loss function of Fissler

and Ziegel (2016). Then VaR and ES forecasts are built and individually back-

tested using the unconditional coverage test and the dynamic quantile (and ES)

regression tests, as well as the joint loss function is computed. The main finding

is that forecasts generated from the GAS-FZ-Realized models outperform fore-

casts based on GARCH models or historical simulations, even those based on the

original GAS-FZ models. The only exception is the HEAVY-Skt-RV5 which is

difficult to beat.

To conclude, the GAS-FZ-Realized models, especially the GAS-2F combined

with the 10-min realized volatility and the overnight return, can provide more

accurate risk measures for risk management across different stock indices and

probability levels when compared to other models. This work could be potentially

extended by improving the ES component, as the dynamics of VaR may not

change simultaneously with ES, for example, by modelling an AR relationship
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between VaR and ES (Taylor, 2019) or by assuming a dynamic Omega ratio to

describe the relationship between the two measures (Taylor, 2022). Moreover,

this chapter can be extended by using realized volatility at different frequencies

or via other proposed realized measures, for example those found in Meng and

Taylor (2018).
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Notes

1The connection between quantiles, expectiles and ES is originally found in Aigner et al.

(1976), and considered further by Newey and Powell (1987).

2More studies related to the GAS model can be found on: http://www.gasmodel.com/.

3Salvatierra and Patton (2015) use measures of realized covariance to build forecasts for

copula models.

4Both parametric - see Giot and Laurent (2004), Hansen et al. (2012), and Louzis et al.

(2014) - and semiparametric models - see Clements et al. (2008), Fuertes and Olmo (2013),

Žikeš and Baruńık (2014), and Gerlach and Wang (2016).

5See Clements et al. (2008); Fuertes and Olmo (2013); Žikeš and Baruńık (2014); Gerlach

and Chen (2014); Gerlach and Wang (2022), and Gerlach and Chen (2017).

6Normally, the objective function is a probability density function, but here the loss function

FZ0 acts as the objective.

7This realized library can be accessed by: https://realized.oxford-man.ox.ac.uk/

8For parameters in the GAS-2F models, the predetermined intervals for w, b, av, ae, and

c are [-0.1, 0.1], [0.8, 1], [-0.1, 0.1], [-0.1, 0.1], and [-1, 0], respectively. For parameters in the

GAS-1F, GARCH-FZ, and Hybrid models, the predetermined intervals for β1, β2, β3, c, a, and

b are [0.8, 1], [0, 0.1], [0, 0.1], [0, 0.5], [-2, -3], and [-3, -4], respectively.

9We use the Student’s t-test for significance testing.

10The 95% confidence level was considered as well with similar results (results available on

request).

11Details can be found on page 465 of Hansen et al. (2011); and the Matlab code for MCS

testing can be downloaded from www.kevinsheppard.com/MFE Toolbox.



Chapter 3

Loss Function-based Change

Point Detection in Risk Measures

3.1 Introduction

Measuring market risk plays a central role not only in the area of risk management

but also in the broader context of financial markets. Value-at-Risk (VaR) and

Expected Shortfall (ES) are two prevalent risk measures dominating in contempo-

rary financial regulation (Leung et al., 2021). VaR provides financial institutions

with a loss level that occurs in the worst situations at a given significance level;

ES, as an alternative to VaR, is the expectation of losses, conditional on their re-

alization lying below VaR. As for the estimation of these two measures, Engle and

Manganelli (2004) distinguish three main categories: nonparametric, parametric,

and semiparametric approaches. In a univariate framework, some of the models

for financial risk measures include GARCH family models (Bali and Theodossiou,

2007), score-driven models (Patton et al., 2019), and CAViaR-ES models (Taylor,

2019)1.

It is worth mentioning that the presence of change points in time series may

cause misleading statistical inference under the assumption of stationarity (Stock

and Watson, 1996; Clements and Hendry, 1996; Diebold and Inoue, 2001; Mikosch

48
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and Stărică, 2004; Loschi et al., 2007). Related empirical evidence has been ex-

tensively documented, especially in stock returns (Pástor and Stambaugh, 2001),

volatility (Inclan and Tiao, 1994), correlation dynamics (Barassi et al., 2020), and

macroeconomic time series (Pesaran and Timmermann, 2007). There is a vast

literature of tests for change points in time series; some of these detect changes

in a historical dataset (Csörgő and Horváth, 1997; Aue et al., 2009), whereas

others monitor changes in a sequential manner (Berkes et al., 2004; Dette and

Gösmann, 2020; Horváth et al., 2020a). Also, these tests can differ in terms of

their objective function given by, e.g., the likelihood for volatility models (Chen

and Hong, 2016) and copula models (Ye et al., 2012) or the loss function for

quantile regressions (Qu, 2008). We refer the readers to Aue and Horváth (2013)

for a detailed literature review.

In applications of risk management, the existence of change points can cause

estimation errors for VaR and ES, as argued in Hoga (2017) and Fan et al. (2018).

These papers use an innovative self-normalized estimator à la Zhang and Lavitas

(2018) to detect change points when the risk measures are estimated in a non-

parametric way. Specifically, Hoga (2017) investigates change points in the VaR

process, and Fan et al. (2018) consider changes in the ES process. Since regu-

latory capital requirements in Basel Committee on Banking Supervision (2019)

are linked to ES estimates, it would be prudent to detect change points in this

process. Also, if change points are detected in the ES series alone, then the ef-

fect of VaR on ES is ignored. Since ES is elicitable only jointly with VaR2, it is

meaningful to detect change points in the (VaR, ES) tuple.

To fill this gap, our study extends the current literature by proposing a test to

detect change points in the VaR and ES series simultaneously, which are estimated

by (semi)parametric models. We construct this test using the FZ loss functions

proposed by Fissler and Ziegel (2016). Since the FZ loss functions are minimized

for the true values of VaR and ES, changes in the parameter values of the model

cause breaks in the process of the VaR and ES estimates, which will result in
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breaks in the loss series. Our framework of detecting change points in the VaR

and ES series based on loss values is general and can accommodate for any type

of (semi)parametric estimation models.

Our first contribution is to propose a test to detect change points in both

VaR and ES risk measures simultaneously, based on the FZ loss functions. The

general framework is closely related to the likelihood ratio test to detect changes in

volatility, and the test for structural changes in quantile regressions proposed by

Qu (2008). Due to the dominance of the indicator term in the FZ loss functions,

the presence of extreme values (spikes), when returns exceed VaR, is one of the

main characteristics of the loss series. However, the commonly used CUSUM test

can be affected by the presence of outliers (Fearnhead and Rigaill, 2019). To

address this problem, we adopt a more suitable alternative, namely the Wilcoxon

test (Dehling et al., 2013b) to detect change points in the loss process.3 We call

this procedure the loss-based Wilcoxon test, and we shed light on its advantages

in detecting joint change points in time series of VaR and ES simultaneously.

Secondly, this chapter contributes to the current literature by deriving the

asymptotic behavior of our test statistic under weak dependence. Also, to im-

prove the finite sample performance of the proposed test, we adopt a stationary

bootstrap method based on Politis and Romano (1994), which follows the strand

of literature in the area (Hušková and Kirch, 2008; Quaedvlieg, 2021). Further-

more, we prove that the stationary bootstrap is valid for the loss-based Wilcoxon

test.

Thirdly, using Monte Carlo (MC) simulations, we show the advantages of

the loss-based Wilcoxon test in detecting change points in risk measures. These

advantages include good size control and higher power in finite samples compared

with the alternatives. Additionally, our study on risk measures of the S&P 500

index returns provides an empirical application to demonstrate the practical usage

of our proposed test. We present evidence that the loss-based Wilcoxon test can

detect change points that are consistent with well-known market events.
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The chapter is structured as follows: Section 3.2 briefly introduces the FZ

family of loss functions and the Wilcoxon test statistic, and presents some theo-

retical results related to the asymptotic distribution of this statistic under weak

dependence; Section 3.3 discusses the stationary bootstrap method and provides

the validity of bootstrapping; Section 3.4 shows the simulation results; Section

3.5 contains an empirical application based on the S&P 500 index; Section 3.6

concludes the chapter.

3.2 Test Statistic for Change Point Detection

3.2.1 Loss Functions

Let {rt}Mt=1 be a series of observed returns measured over an arbitrary frequency,

such as daily. (Semi)parametric models can be used to estimate the corresponding

conditional risk measures, VaR and ES, denoted by {vt(θ)}Mt=1 and {et(θ)}Mt=1, at

a specified significance level α, where θ denotes the unknown parameter vector

of the model. Fissler and Ziegel (2016) introduce the FZ family of loss functions

stated below, used to evaluate the (VaR, ES) tuple of risk measures:

ℓFZ(rt, vt, et,θ;α) = (1{rt ≤ vt(θ)} − α)

(
G1(vt(θ))−G1(rt) +

1

α
vt(θ)G2(et(θ))

)
−G2(et(θ))

(
1

α
1{rt ≤ vt(θ)}rt − et(θ)

)
− G2(et(θ)),

(3.2.1)

where G1 is weakly increasing, G2 is strictly increasing and strictly positive, and

G ′
2 = G2 (for more details, see Patton et al., 2019).

For the specification function G1 in (3.2.1), we use G1(z) = 0, which follows

the reasoning of Nolde and Ziegel (2017). We consider the second specification

function G2 with different degrees of positive homogeneity4 b̃ = −1, b̃ = 0, and

b̃ = 0.5, which follow the choices of Dimitriadis and Bayer (2019), specified as:

G2(z) = −1
z
, G2(z) = − log(−z), and G2(z) = −

√
−z, respectively, where z
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must be negative. Positive homogeneity is a crucial property of loss functions,

which means that linear rescaling of the input variables does not alter the ranking

of the losses (Dimitriadis and Bayer, 2019). Nolde and Ziegel (2017) state the

importance of the choice of loss functions for M-estimations, and indicate that

positively homogeneous loss functions outperform others in terms of asymptotic

efficiency.

In our study, we use the three loss functions corresponding to the above spec-

ifications, detailed in Table 3.2.1, to compute the time series of loss values.

Table 3.2.1: Loss functions in the FZ family with different degrees of positive
homogeneity b̃

b̃ FZ loss function

0 ℓFZ0(r, v, e,θ;α) = − 1
αe(θ)

1{r ≤ v(θ)}(v(θ)− r) + v(θ)
e(θ)

+ log(−e(θ))− 1

-1 ℓFZ1(r, v, e,θ;α) = 1
e(θ)2

(
1
α
1{r ≤ v(θ)}(v(θ)− r)− (v(θ)− e(θ))

)
+ 1

e(θ)

0.5 ℓFZ2(r, v, e,θ;α) = 1

2
√

−e(θ)

(
1
α
1{r ≤ v(θ)}(v(θ)− r)− (v(θ)− e(θ))

)
+
√

−e(θ)

To provide some intuition, ℓFZ0 can be reformulated as:

ℓFZ0(r, v, e,θ;α) =

 − 1
αe(θ)

(v(θ)− r) + v(θ)
e(θ)

+ log(−e(θ))− 1, if r ≤ v(θ),

v(θ)
e(θ)

+ log(−e(θ))− 1, if r > v(θ).

The probability of the first outcome is α, and the probability of the second one

is 1−α. Thus, the distribution of the loss value can be generally considered as a

mixing distribution with mixing parameter α.

To get a better understanding of the time series properties of the risk measures

and loss series, we test, using simulations based on a GARCH(1,1)-skewed t data

generating process (DGP), for the presence of (1) autocorrelation, (2) conditional

heteroskedasticity, (3) unit root, and (4) outliers against the normal distribution

in these series.5 The results show that the loss series possibly has weak autocor-
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relation, but we found no evidence of conditional heteroskedasticity. Also, in our

setup we found that the loss series is stationary. Furthermore, the VaR exceptions

cause spikes in the loss series, which lead to rejections of the normality test.

3.2.2 Risk Measure Estimation

In this section, we consider two types of estimation approaches for VaR and

ES: parametric estimation (Francq and Zaköıan, 2015) and semiparametric esti-

mation (Patton et al., 2019). In the first case, parameters are estimated using

conditionally heteroskedastic models by maximizing a specific likelihood function.

Following Francq and Zaköıan (2015), we have:

Assumption 3.2.1. (A) {rt}Mt=1 is strictly stationary, and satisfies E[|rt|s̃] < ∞,

for some s̃ > 4; {rt}Mt=1 is also an ergodic solution of the model rt = σtut, σt =

σ(rt−1, rt−2, . . . ;θ
∗), where σt is a volatility process, θ∗ ∈ Rd is a set of volatility

parameters belonging to a parameter space Θ, and σ : R∞ ×Θ → (0,∞);

(B) There exists a function H̃ such that for any volatility parameters θ∗ ∈ Θ,

for any K̃ > 0, and any sequence {xt}Mt=1

K̃σ(x1, x2, . . . ;θ
∗) = σ(x1, x2, . . . ;θ),

where θ = H̃(θ∗, K̃), which is the risk parameters; the model in (A) can be

reparameterized as rt = σ∗
t u

∗
t , σ

∗
t = σ(rt−1, rt−2, . . . ;θ);

(C) For any real sequence {xt}Mt=1, the function σ(x1, x2, . . . ;u) is continu-

ous. Almost surely, σt(u) ∈ (ω,∞) for any u ∈ Θ ⊂ Rd and for some ω > 0.

Additionally, σt(θ)/σt(u) = 1 a.s. iff θ = u;

(D) E[g̃(u∗
0, σ)] < E[g̃(u∗

0, 1)], ∀σ > 0, σ ̸= 1, where g̃ is a specific likelihood

function;

(E) There exist a random variable C1 measurable with respect to {ru}u≤0 and

a constant ρ̃ ∈ (0, 1) such that supθ∗∈Θ |σt(θ
∗) − σ̃t(θ

∗)| ≤ C1ρ̃
t, where σ̃t(θ

∗)
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denotes the dynamic of the volatility with arbitrary initial values {ỹu}u≤0.

Proposition 3.2.1. (Francq and Zaköıan, 2015) Under Assumption 3.2.1, if the

θ̂M parameters in a GARCH parametric model are estimated via (Q)MLE, the

estimators converge to the true values of the parameters θ when M goes to infinity,

such that θ̂M
P−→ θ as M → ∞;

On the other hand, in the semiparametric approach, parameters in a para-

metric structure are estimated by minimizing the FZ0 loss function. Patton et al.

(2019) prove the consistency of parameters based on the following assumptions:

Assumption 3.2.2. (A) The loss series {ℓt}Mt=1 obeys the uniform law of large

numbers;

(B) The process {rt}Mt=1 is strictly stationary and satisfies E[rt] = 0, E[|rt|s̃] <

∞, for some s̃ > 4; Conditional on all past information Ft−1, the distribution of

rt is F (·|Ft−1) which belongs to a class of distribution functions on R with unique

α-quantiles;

(C) The vector of unknown parameters to be estimated is θ ∈ Θ ⊂ Rd, where

Θ is a compact subset of Rd for d ∈ N;

(D) For any t, both vt(u) and et(u) are Ft−1-measurable and a.s. continuous

in u;

(E) If P ((vt(u) = vt(θ)) ∩ (et(u) = et(θ))) = 1 ∀t, then u = θ.

Proposition 3.2.2. (Patton et al., 2019) Under Assumption 3.2.2, if the θ̂M

parameters in a model are estimated by minimizing the FZ0 loss function, the

estimators converge to the true values of the parameters θ when M goes to infinity,

such that θ̂M
P−→ θ as M → ∞.

Propositions 3.2.1 and 3.2.2 indicate that vt(θ̂M) and et(θ̂M) converge to the

true values of the risk measures (VaR and ES, respectively).6 Thus, in the fol-

lowing sections, we assume that the parameters in a selected (semi)parametric

model are well estimated.
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3.2.3 Hypotheses and Test Statistic

The distribution of {rt}Mt=1 and the values of {vt(θ)}Mt=1 and {et(θ)}Mt=1 all depend

on the model parameter vector which can be time varying, hence it will be de-

noted by θt. Thus, in this case, a procedure for detecting a change point can be

conducted by testing the null hypothesis: θ1 = · · · = θM , against the alternative

hypothesis that there is one unknown break point k∗, that is: θ1 = · · · = θk∗ ̸=

θk∗+1 = · · · = θM . The true values of VaR and ES will lead to the minimal

loss values for the given returns. If there is a change point, the parameter values

estimated using the time period between 1 and k∗ will be different from the pa-

rameter values estimated from the whole sample, so the VaR and ES estimates

based on the parameters obtained from the whole sample will deviate from the

true values, leading to an increase in their loss values.

The setup above can be translated into a testing framework using the loss

series. Thus, we consider the framework with the loss values generated by a

stochastic process ℓt = µt+ εt, where {µt}Mt=1 is the unknown mean and the noise

{εt}Mt=1 has zero mean and finite variance. The null hypothesis of no change point

in the loss series can be written as:

H0 : µ1 = · · · = µM ,

versus the alternative hypothesis7 of one change point in the loss series:

H1 : µ1 = · · · = µk∗ ̸= µk∗+1 = · · · = µM , 1 < k∗ < M.

The CUSUM test is commonly used to detect change points of a process.

However, this test has the limitation that it can be disturbed by the presence of

outliers or extremely heavy-tailed noise (Fearnhead and Rigaill, 2019; Gersten-

berger, 2018). As shown in Section 3.2.1, spikes (against normality) commonly

exist in the loss series, due to the VaR exception, and thus making the CUSUM
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test less suitable to be applied directly on the “raw” loss series. As highlighted by

Gerstenberger (2018), the Wilcoxon test statistic is a rank-type statistic and has

the inherent advantage that it is not affected by spikes. Therefore, we employ the

Wilcoxon test to detect change points in the rank of the loss series. The general

form of the Wilcoxon test statistic is defined as:

WM := max
1≤k≤M

|Wk,M | , where Wk,M :=
k∑

i=1

Ri −
k

M

M∑
i=1

Ri, (3.2.2)

where Ri = rank(ℓi) =
∑M

j=1 1{ℓj ≤ ℓi}, for i = 1, . . . ,M . Inspired by Betken

(2016), our test statistic based on ranks is given below:

WM = max
1≤k≤M

∣∣∣∣∣
k∑

i=1

Ri −
k

M

M∑
i=1

Ri

∣∣∣∣∣ = max
1≤k≤M

∣∣∣∣∣
k∑

i=1

M∑
j=k+1

(
1{ℓi ≤ ℓj} −

1

2

)∣∣∣∣∣ .
(3.2.3)

The location estimator of the Wilcoxon test k̂W is defined as the value that

maximizes the loss-based Wilcoxon test statistic,

k̂W = k̂W (M) := min {k : |Wk,M | = WM} . (3.2.4)

3.2.4 Asymptotic Distribution of the Test Statistic

In this section, we investigate the asymptotic distribution of our proposedWilcoxon-

type statistic in (3.2.3). This can be treated as a U-statistic (Csörgő and Horváth,

1988; Dehling et al., 2017) with the kernel:

hW (X, Y ) = 1{X ≤ Y } − 1

2
. (3.2.5)

We can define the U-process as below:

UM(u) =

⌊uM⌋∑
i=1

M∑
j=⌊uM⌋+1

hW (ℓi, ℓj) =

⌊uM⌋∑
i=1

M∑
j=⌊uM⌋+1

(
1{ℓi ≤ ℓj} −

1

2

)
, (3.2.6)
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where 0 ≤ u ≤ 1, and ⌊·⌋ denotes the integer part of a number. Thus the

Wilcoxon change point test statistic in (3.2.3) can be written as:

WM = max
0≤u≤1

∣∣UM(u)
∣∣. (3.2.7)

The kernel hW (X, Y ) is antisymmetric, so it satisfies:

hW (X, Y ) = −hW (Y,X). (3.2.8)

In this case, E[hW (ℓi, ℓj)] = 0 and similarly to the symmetric case we let h̃W (X) =

E[hW (X, ℓi)]. Following Csörgő and Horváth (1988), it is reasonable to assume

that:

0 < E[h2
W (ℓi, ℓj)] < ∞ and 0 < σ2

W = E[h̃2
W (ℓi)] < ∞. (3.2.9)

To derive the asymptotic distribution of the process UM(u), we consider the

following assumptions.

Assumption 3.2.3. (A) The loss series {ℓt}Mt=1 is strictly stationary and satisfies

E[|ℓt|ξ] < ∞, for some ξ > 0;

(B) For any integer 1 ≤ t ≤ M , the cumulative distribution function F of ℓt

is continuous on the real line with a density f that is bounded;

(C) hW (ℓ1, ℓ2) given in (3.2.5) is an antisymmetric kernel, such that for a

δ > 0, K > 0: ∫ ∫
|hW (ℓ1, ℓ2)|2+δ dF (ℓ1)dF (ℓ2) ≤ K,

∀k ∈ N0 :

∫
|hW (ℓ1, ℓ1+k)|2+δ dP (ℓ1, ℓ1+k) ≤ K;

(D) {rt, vt(θ), et(θ)}Mt=1 is strong mixing (α-mixing) with α∗(M) = O
(
M−(z̃−2)/z̃

)
for some z̃ > 2; {ℓt(rt, vt(θ), et(θ))}Mt=1 is strong mixing with the coefficient

α∗(M) = O (M−ρ) for a ρ > 3ξδ+δ+5ξ+2
2ξδ

.



3.2. Test Statistic for Change Point Detection 58

Assumption 3.2.3 (A) is a standard moment and stationarity condition for the

loss series. Assumption 3.2.3 (B) is the condition on the continuous and bounded

density of the loss series, which supports the proof of P-Lipschitz-continuity for

the kernel. Assumption 3.2.3 (C) requires the moment bound for the given kernel

hW (ℓ1, ℓ2), which is consistent with Borovkova et al. (2001) and Dehling and

Wendler (2010). Patton et al. (2019) provide the same dependence condition as

Assumption 3.2.3 (D) for {rt, vt(θ), et(θ)}Mt=1 to support the central limit theorem

for the loss series; if the first half of Assumption 3.2.3 (D) holds, the sequence

of loss ℓt(rt, vt(θ), et(θ)) is α-mixing with a decay rate at least as fast as that of

{rt, vt(θ), et(θ)}Mt=1 (Patton et al., 2019). Thus, it is reasonable to assume the

mixing condition for the loss series with the coefficient provided by Dehling and

Wendler (2010). In the following, we discuss the P-Lipschitz-continuity property

for the kernel hW (X, Y ).

Definition 3.2.1. (P-Lipschitz-continuity) Let {Xt}t∈N be a stationary process.

A kernel h is called P-Lipschitz-continuous if there is a constant ã > 0 with

E [|h(X, Y )− h(X ′, Y )|1{|X −X ′| ≤ ϵ}] ≤ ãϵ,

for every ϵ > 0, every pair X and Y with the common distribution PX1,Xm for

m ∈ N with m > 1 or PX1 ×PX1 and X ′ and Y also with one of these common

distributions.

Proposition 3.2.3. If Assumption 3.2.3 (B) holds, then the antisymmetric kernel

hW (X, Y ) = 1{X ≤ Y } − 1
2
for the test statistic is P-Lipschitz-continuous.

The proof of this proposition can be found in Appendix 3.A. We then provide

the asymptotic behavior of the UM(u) process.

Theorem 3.2.1. Under the null hypothesis, assume that (3.2.8), (3.2.9), and

Assumption 3.2.3 hold. Additionally, assume that:

i) under a parametric setting, Assumption 3.2.1 holds,
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or

ii) under a semiparametric setting, Assumption 3.2.2 holds.

Then as M → ∞, we have:

sup
0≤u≤1

∣∣∣∣∣ 1

M3/2
UM (u)− σWBM(u)

∣∣∣∣∣ = oP (1),

where BM(u), 0 ≤ u ≤ 1 is a Brownian bridge, and

σ2
W = V ar (F (ℓ1)) + 2

∞∑
j=2

Cov (F (ℓ1), F (ℓj)) .

The proof of Theorem 3.2.1 is provided in Appendix 3.A. One way to imple-

ment such a test is by estimating the long-run variance and using the asymptotic

limit to obtain the p-values. However, as often found in the literature, the empiri-

cal size obtained when relying on the asymptotic limit in finite samples may differ

significantly from the prespecified significance level. Table 3.B.2 of Appendix 3.B

shows that the loss-based Wilcoxon test based on the asymptotic distribution

with two long-run variance estimators is generally oversized, especially for small

samples. As such, instead of estimating the long-run variance σ2
W above, we are

going to use bootstrapping to obtain the p-values. The following section will

elaborate the bootstrapping algorithm.

3.3 Stationary Bootstrap for p-values

3.3.1 Bootstrap Method

It is well known that bootstrap techniques have been widely used to avoid the

finite sample size distortions (see Chen and Hong, 2016; Chen and Fang, 2019;

Barendse and Patton, 2021, for more examples). Thus, we propose to obtain

the p-values of the test statistic WM by using stationary bootstrapping in the
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following way. For a given return series {rt}Mt=1, we calculate the test statistic

WT using (3.2.7). Then, we adopt the stationary bootstrap method of Politis

and Romano (1994) to generate NB bootstrapped return series {r∗t }Mt=1 using

the expected block length bopt.
8 For each bootstrapped series, we estimate the

bootstrapped VaR and ES denoted by {v∗t (θ̂∗
M)}Mt=1 and {e∗t (θ̂∗

M)}Mt=1, where θ̂∗
M

is the parameter vector estimated from the bootstrapped returns {r∗t }Mt=1. Then

we compute the loss series denoted by {ℓ∗t}Mt=1. Applying (3.2.6) and (3.2.7) for

each bootstrapped series j, we compute the bootstrapped U-process, U
∗(j)
M and

the bootstrapped statistic W
∗(j)
M . Then, we define the set of the bootstrapped

statistics W∗
M = {W ∗(1)

M , . . . ,W
∗(NB)
M }. After that, we calculate the frequency

that the statistic WM is below W
∗(j)
M , and this is the bootstrapped p-value. The

detailed procedure can be found in Algorithm 1.

Algorithm 1 Bootstrap procedure to obtain p-value, Bootstrap({rt}Mt=1, WM ,
NB)

Input: {rt}Mt=1, WM , NB

Output: p-value (p)
Initialization: j = 0
repeat //Bootstrap j//

j = j + 1
Generate the bootstrapped returns {r∗t }Mt=1 using the stationary bootstrap

Estimate the bootstrapped risk measure series {v∗t (θ̂∗
M )}Mt=1 and {e∗t (θ̂∗

M )}Mt=1

Compute the bootstrapped loss series {ℓ∗t }Mt=1

Compute the bootstrapped statistic W
∗(j)
M

until j = NB ;

Using {W ∗(1)
M ,. . . ,W

∗(NB)
M } compute p = 1

NB

∑NB

j=1 1{W
∗(j)
M > WM}

return p.

3.3.2 Validity of the Bootstrap Method

To verify the validity of the bootstrap method, we obtain the asymptotic dis-

tribution of the bootstrapped statistic W ∗
M , which is computed based on (3.2.7)

using the bootstrapped data. Then we show that it asymptotically converges to

the limit distribution of the statistic WM under the null hypothesis. To conduct

the verification, we consider the following proposition, which is needed for the
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proof of our results.

Assumption 3.3.1. {r∗t }Mt=1 is generated by the stationary bootstrap with geo-

metric block lengths with success probability pM = ϕM−m and ϕ,m ∈ (0, 1).

Proposition 3.3.1. (Politis and Romano, 1994) If Assumption 3.2.1 (A) or

Assumption 3.2.2 (B) holds, and additionally Assumption 3.3.1 holds, then the

pseudo time series {r∗t }Mt=1 is stationary.

This proposition implies that the stationary bootstrapping ensures the sta-

tionarity of the process. In this chapter, we resample the return series {rt}Mt=1

instead of resampling the loss series {ℓt}Mt=1 directly.9 The following theorem

states the asymptotic behavior of the statistics of the bootstrapped loss series.

Theorem 3.3.1. Under the null hypothesis, assume that Assumptions 3.2.3 and

3.3.1 hold. Additionally, assume that:

i) under a parametric setting, Assumption 3.2.1 holds,

or

ii) under a semiparametric setting, Assumption 3.2.2 holds.

Let bopt be the expected block length with bopt → ∞ and also M/bopt → ∞ as

M → ∞. Then we have the following convergence result for the bootstrapped

process U∗
M obtained with expected block length bopt:

|V ar∗(M−3/2U∗
M(u))− V ar(M−3/2UM(u))| P−→ 0, (3.3.1)

sup
x∈R

|P ∗(M−3/2U∗
M(u) ≤ x)− P (M−3/2UM(u) ≤ x)| P−→ 0, (3.3.2)

where V ar∗ and P ∗ denote the variance and probability with respect to the prob-

ability measure induced by the stationary bootstrap.

The proof of this theorem can be found in Appendix 3.A.

Recall that W
∗(j)
M , 1 ≤ j ≤ NB, denotes the bootstrapped statistic calculated

similarly toWM defined in (3.2.7). Next, we show that the asymptotic distribution
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of the bootstrapped statistic W ∗
M coincides with the asymptotic distribution of

WM under the null hypothesis. The empirical distribution function of W
∗(j)
M is

calculated as:

QM,NB
(w) =

1

NB

∑
1≤j≤NB

1{W ∗(j)
M ≤ w}, w ∈ R. (3.3.3)

Based on equations (3.2.7) and (3.3.3), as well as Theorems 3.2.1 and 3.3.1, we

obtain the following result:

Corollary 3.3.1. If the assumptions of Theorem 3.3.1 hold, then under H0 we

have:

sup
w∈R

|P (WM ≤ w)−QM,NB
(w)| P−→ 0, where NB −→ ∞ and M −→ ∞. (3.3.4)

This corollary demonstrates that the proposed bootstrap methodology is ap-

propriate to be used to obtain the p-value of the loss-based Wilcoxon test statistic.

In the next section, we implement a simulation study to show that the bootstrap

methodology has the correct size under the null hypothesis and has high power

under the alternative hypothesis.

3.4 Simulation Analysis

3.4.1 Simulation Design

We perform a simulation study to investigate the size and power of the proposed

test in finite samples. Under the null hypothesis, the DGP of the return series is

a univariate GARCH process as given below:

rt = σtut, ut ∼ i.i.d. skewed t (ν, λ),

σ2
t = β0 + β1σ

2
t−1 + β2r

2
t−1, t = 1, ...,M,

(3.4.1)
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where rt is the simulated return process generated by the product of ut, which

follows the standardized skewed t distribution of Hansen (1994), with degree

of freedom (DoF) ν and skewness λ, and conditional volatility σt given by a

GARCH(1,1) specification. For the simulations, we choose the sample sizes of

M ∈ {1000, 3000} to study the finite sample properties and convergence of the

test.10

Under the alternative hypothesis, the DGP of returns is the process rt = σtut

with: σ2
t = β0 + β1σ

2
t−1 + β2r

2
t−1, ut ∼ i.i.d. skewed t (ν, λ), if 1 < t ≤ ⌊πM⌋,

σ2
t = β∗

0 + β∗
1σ

2
t−1 + β∗

2r
2
t−1, ut ∼ i.i.d. skewed t (ν∗, λ∗), if ⌊πM⌋ < t ≤ M,

(3.4.2)

where one of the parameters changes its value after ⌊πM⌋ which is the location

of the change point in the process. In this chapter, we consider π ∈ {0.5, 0.75}.

This change in the return series will eventually cause a change point in the VaR

and ES as well, and our main purpose is to investigate the detection of change

points in the VaR and ES processes at α = 1%.11

Regarding parameter values, we set (β0, β1, β2, ν, λ) = (0.05, 0.9, 0.05, 16.5,−0.5).

Under the null hypothesis, (β∗
0 , β

∗
1 , β

∗
2 , ν

∗, λ∗) = (β0, β1, β2, ν, λ) in (3.4.2), mean-

ing no change points in the process. For the alternative hypothesis, we consider

six different scenarios of change points to evaluate the empirical power of the

proposed test. Each break consists of a change in the value of one parameter as

follows:

• HA1
1 : an increase of 0.04 in the volatility persistence parameter, i.e. β∗

1 =

0.94;

• HA2
1 : a decrease of 0.04 in the volatility persistence parameter, i.e. β∗

1 =

0.86;

• HB1
1 : an increase of 0.04 in the volatility reaction parameter, i.e. β∗

2 = 0.09;
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• HB2
1 : a decrease of 0.04 in the volatility reaction parameter, i.e. β∗

2 = 0.01;

• HC1
1 : a decrease of 13.5 in the DoF parameter, i.e. ν∗ = 3;

• HC2
1 : a decrease of 14 in the DoF parameter12, i.e. ν∗ = 2.5.

In addition to the above alternatives, we follow Andreou and Ghysels (2002)

to examine whether the presence of outliers affects our test results under the null

hypothesis. We conjecture that the existence of outliers should not lead to the

rejection of the test, i.e. an effective test would not mistakenly consider outliers

as change points:

• HD
0 : (β∗

0 , β
∗
1 , β

∗
2 , ν

∗, λ∗) = (β0, β1, β2, ν, λ), when 12 randomly selected re-

turns in the simulated process are multiplied by 5.

In the simulation, we consider the eight DGPs detailed above. For the es-

timation of VaR and ES, we use the following three (semi)parametric models:

GARCH(1,1)-skewed t (G-Skt), GARCH(1,1)-Gaussian (G-G) and GAS-Hybrid

(Hybrid).13 In terms of the loss function, we choose loss functions with three

different degrees of positive homogeneity: ℓFZ0, ℓFZ1, and ℓFZ2, given in Table

3.2.1.

For each combination of (DGP, estimation model, loss function) we follow

Algorithm 2 to compute the rejection rates of the proposed test, as explained

in detail below. For each simulation i, we simulate return series of length M ,

denoted by {rt}Mt=1. We then estimate the VaR and ES series using the given

model, and we denote the estimated risk series as {vt(θ̂M)}Mt=1 and {et(θ̂M)}Mt=1.

Following this, we calculate the loss series {ℓt}Mt=1 for the given loss function.

Then, based on (3.2.7) we compute the loss-based Wilcoxon statistic WT for the

loss series. By calling the bootstrap procedure in Algorithm 1 with NB = 1000,

we obtain the p-value of simulation i, denoted by p(i). If p(i) is below the test

significance level q, then the null hypothesis is rejected for simulation i.14 By
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repeating this simulation NS = 1000 times, we obtain the rejection rate ζ as the

frequency of p(i) being lower than q in the total number of simulations.

Algorithm 2 Monte Carlo simulation procedure for Loss-based Wilcoxon test
Input: NS , NB , M , q
Output: rejection rate (ζ)
Initialization: i = 0
repeat //Simulation i//

i = i+ 1
Simulate {rt}Mt=1 using the specified DGP with sample size M

Estimate the risk measure series {vt(θ̂M )}Mt=1 and {et(θ̂M )}Mt=1

Calculate the loss values {ℓt}Mt=1

Calculate:

WT = max
k

∣∣∣∣∣
k∑

m=1

M∑
n=k+1

(
1{ℓm ≤ ℓn} −

1

2

)∣∣∣∣∣.
Obtain p-value by calling Algorithm 1: p(i) = Bootstrap({rt}Mt=1, WM , NB).

until i = NS ;

Using the p-values: {p(1),. . . ,p(NS)} compute the rejection rate ζ = 1
NS

∑NS

i=1 1{p(i) < q}
return ζ.

In terms of the simulation results, we expect that the empirical size converges

to q, the test significance level under the null hypothesis, as the number of obser-

vations increases. Under the alternative hypothesis, the expectation is that the

empirical power is high and converges to 1 with the sample size. When adding

outliers to the process without change points, the empirical rejection rate should

be close to q if the change point test is not sensitive to outliers. Our setup allows

us to explore the sensitivity of the test to the choice of risk estimation model,

loss function, type and location of break and sample size.15

3.4.2 Simulation Results

The simulation results commence with the evaluation of the proposed loss-based

Wilcoxon test in identifying change points in risk measures when the underlying

process is generated from the DGP in (3.4.1) and (3.4.2) with the parameter

values given in Section 3.4.1. Table 3.4.1 shows the size and power of the test

based on the bootstrapping procedure at 5% test significance level. The top panel
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of the table shows the empirical sizes under the null hypothesis. As expected, all

of the empirical sizes for the Wilcoxon test are close to the test significance level.

As the sample size increases, the empirical size gets closer to 5% in general.

For the alternative hypotheses, we consider the change points detailed in Sec-

tion 3.4.1. The results in Table 3.4.1 reveal that our test has a strong power in

detecting change points in the volatility parameters (HA1
1 , HA2

1 , HB1
1 , HB2

1 ) and

reasonable power in detecting change points in the DoF (HC1
1 , HC2

1 ). The power

of the test improves when M increases from 1000 to 3000 for all DGPs and loss

functions. The table also shows that the power of the test is sensitive to the

location of change point. The rejection rate modestly falls when the location of

change point moves to ⌊0.75M⌋. However, as the sample size increases, the test

can successfully detect the change point that occurs even at ⌊0.75M⌋. Also, the

results show that our test is not sensitive to the presence of outliers (HD
0 ).

In the following, we compare our proposed loss-based Wilcoxon test with five

alternative tests in terms of size and power, under the same simulation settings

and hypotheses as detailed before. For the first two alternative tests, we con-

sider (i) the self-normalized CUSUM (SN-CUSUM) test for VaR and (ii) the

SN-CUSUM for ES, which detect change points in the VaR and ES processes

individually. Following Shao and Zhang (2010), the two test statistics are defined

as:

V v
M = sup

k

(
M− 1

2

∑k
t=1 vt(θ̂M)− k

M

∑M
t=1 vt(θ̂M)

)2
M−2

[∑k
t=1 S

2
v,t(1, k) +

∑M
t=k+1 S

2
v,t(k + 1,M)

] 1
2

, (3.4.3)

V e
M = sup

k

(
M− 1

2

∑k
t=1 et(θ̂M)− k

M

∑M
t=1 et(θ̂M)

)2
M−2

[∑k
t=1 S

2
e,t(1, k) +

∑M
t=k+1 S

2
e,t(k + 1,M)

] 1
2

, (3.4.4)

where vt(θ̂M) and et(θ̂M) are VaR and ES, and Sv,t(j, k) =
∑t

i=j(vi(θ̂M)− v̄j,k),

v̄j,k = 1
k−j+1

∑k
t=j vt(θ̂M), as well as Se,t(j, k) =

∑t
i=j(ei(θ̂M) − ēj,k), ēj,k =

1
k−j+1

∑k
t=j et(θ̂M). Table 3.4.2 presents the empirical size and power simulation
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Table 3.4.1: Empirical size and power of the loss-based Wilcoxon test for a
change point

π = 0.5 π = 0.75

M=1000 M=3000 M=1000 M=3000

G-Skt G-G Hybrid G-Skt G-G Hybrid G-Skt G-G Hybrid G-Skt G-G Hybrid

H0: Univariate GARCH(1,1)-skewed t, with (β0, β1, β2, ν, λ) = (0.05, 0.9, 0.05, 16.5,−0.5)

ℓFZ0 0.045 0.044 0.030 0.047 0.063 0.039 0.045 0.044 0.030 0.047 0.063 0.039
ℓFZ1 0.045 0.044 0.030 0.047 0.064 0.039 0.045 0.044 0.030 0.047 0.064 0.039
ℓFZ2 0.045 0.044 0.030 0.047 0.064 0.038 0.045 0.044 0.030 0.047 0.064 0.038

HA1
1 : An increase of 0.04 in the volatility persistence parameter, i.e. β∗

1 = 0.94

ℓFZ0 0.992 0.992 0.923 1.000 1.000 1.000 0.788 0.769 0.326 0.996 0.975 0.919
ℓFZ1 0.992 0.992 0.923 1.000 1.000 1.000 0.788 0.770 0.326 0.996 0.975 0.918
ℓFZ2 0.992 0.992 0.923 1.000 1.000 1.000 0.788 0.773 0.328 0.996 0.975 0.918

HA2
1 : A decrease of 0.04 in the volatility persistence parameter, i.e. β∗

1 = 0.86

ℓFZ0 0.627 0.623 0.373 0.988 0.963 0.770 0.232 0.220 0.118 0.712 0.695 0.355
ℓFZ1 0.627 0.623 0.373 0.988 0.963 0.770 0.232 0.220 0.117 0.712 0.695 0.354
ℓFZ2 0.627 0.623 0.373 0.988 0.963 0.770 0.232 0.221 0.117 0.712 0.695 0.355

HB1
1 : An increase of 0.04 in the volatility reaction parameter, i.e. β∗

2 = 0.09

ℓFZ0 0.912 0.911 0.715 1.000 1.000 0.985 0.608 0.605 0.225 0.939 0.898 0.747
ℓFZ1 0.912 0.911 0.715 1.000 1.000 0.985 0.608 0.604 0.225 0.939 0.898 0.747
ℓFZ2 0.912 0.911 0.715 1.000 1.000 0.985 0.608 0.604 0.225 0.939 0.898 0.747

HB2
1 : A decrease of 0.04 in the volatility reaction parameter, i.e. β∗

2 = 0.01

ℓFZ0 0.529 0.524 0.350 0.987 0.951 0.731 0.196 0.194 0.114 0.694 0.644 0.363
ℓFZ1 0.529 0.524 0.349 0.987 0.951 0.731 0.196 0.194 0.114 0.694 0.643 0.363
ℓFZ2 0.528 0.524 0.349 0.987 0.951 0.730 0.196 0.194 0.113 0.694 0.643 0.363

HC1
1 : A decrease of 13.5 in the DoF parameter, i.e. ν∗ = 3

ℓFZ0 0.293 0.290 0.176 0.777 0.758 0.283 0.164 0.159 0.092 0.393 0.354 0.169
ℓFZ1 0.293 0.290 0.176 0.777 0.758 0.281 0.165 0.159 0.093 0.393 0.354 0.169
ℓFZ2 0.293 0.290 0.176 0.776 0.757 0.282 0.166 0.159 0.093 0.393 0.354 0.169

HC2
1 : A decrease of 14 in the DoF parameter, i.e. ν∗ = 2.5

ℓFZ0 0.636 0.627 0.358 0.996 0.988 0.449 0.330 0.326 0.164 0.593 0.552 0.389
ℓFZ1 0.636 0.627 0.357 0.996 0.987 0.448 0.331 0.324 0.165 0.593 0.552 0.389
ℓFZ2 0.636 0.627 0.358 0.996 0.987 0.448 0.331 0.324 0.164 0.593 0.552 0.389

HD
0 : 12 randomly selected returns in the simulated process multiplied by 5

ℓFZ0 0.041 0.042 0.041 0.035 0.052 0.039 0.041 0.042 0.041 0.035 0.052 0.039
ℓFZ1 0.041 0.042 0.040 0.035 0.052 0.039 0.041 0.042 0.040 0.035 0.052 0.039
ℓFZ2 0.041 0.042 0.041 0.035 0.052 0.039 0.041 0.042 0.041 0.035 0.052 0.039

Note: Empirical size and power, for q = 5%, of the loss-based Wilcoxon test under vari-
ous hypotheses via 1000 simulations, for three types of risk measures (GARCH(1,1)-skewed t,
GARCH(1,1)-Gaussian and GAS-Hybrid) and three FZ loss functions with different degrees of
positive homogeneity. We consider two sample sizes: 1000 and 3000, and different locations of
the change point at ⌊πM⌋ with π = 0.5 and 0.75.
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results of the SN-CUSUM tests for VaR and ES. The sizes of the SN-CUSUM

tests are close to the test significance level, but their powers are generally less

than the power of our test for all loss functions considered.

One disadvantage of the standard CUSUM test is the low power in detecting

change points occurring in relatively early or late segments of the sample period.

As an alternative, Horváth et al. (2020b) propose a Rényi-type statistic for break

detection to mitigate this problem. However, when the change point happens

around the middle of the sample period, the detecting power of the Rényi-type

test is relatively low. The Rényi-type test works under the assumption that there

is no change point occurring within the two trimmed domains, at the beginning

and at the end of the sample defined by the trimming parameter u0. Thus,

we consider the alternative test (iii) a Rényi-type test based on the rank of loss

values. Specifically, the test statistic is a Rényi-type formulation of the loss-based

Wilcoxon test statistic:

DM := max
⌊u0M⌋≤k≤M−⌊u0M⌋

∣∣∣∣∣1k
k∑

i=1

Ri −
1

M − k

M∑
i=k+1

Ri

∣∣∣∣∣ (3.4.5)

with trimming parameter u0.
16

In addition to these, we consider the following two recently developed tests:

(iv) the break point test for VaR of Hoga (2017), and (v) the break point test

for ES of Fan et al. (2018).17 These two tests are based on the self-normalized

variance estimator of Shao and Zhang (2010).

Table 3.4.3 presents the simulations results for alternative tests (iii) to (v)

(in columns Rényi, Hoga, and FGP, respectively). The results highlight that

our test outperforms tests (iv) and (v) in all cases. We outperform the Rényi-

type test (iii) when the change point occurs at ⌊0.5M⌋, but when the change

point occurs at ⌊0.75M⌋, test (iii) has better power properties than our test.

This meets our expectation that the Rényi-type test has high power in detecting

change points occurring relatively early or late in the sample, but has lower power
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Table 3.4.2: Empirical size and power of the SN-CUSUM test for a change
point

π = 0.5 π = 0.75

M=1000 M=3000 M=1000 M=3000

G-Skt G-G Hybrid G-Skt G-G Hybrid G-Skt G-G Hybrid G-Skt G-G Hybrid

H0: Univariate GARCH(1,1)-skewed t, with (β0, β1, β2, ν, λ) = (0.05, 0.9, 0.05, 16.5,−0.5)

VaR 0.034 0.034 0.037 0.066 0.066 0.044 0.034 0.034 0.037 0.066 0.066 0.044
ES 0.034 0.034 0.043 0.066 0.066 0.043 0.034 0.034 0.043 0.066 0.066 0.043

HA1
1 : An increase of 0.04 in the volatility persistence parameter, i.e. β∗

1 = 0.94

VaR 0.629 0.629 0.548 0.772 0.772 0.765 0.724 0.724 0.595 0.924 0.924 0.884
ES 0.629 0.629 0.546 0.772 0.772 0.765 0.724 0.724 0.600 0.924 0.924 0.884

HA2
1 : A decrease of 0.04 in the volatility persistence parameter, i.e. β∗

1 = 0.86

VaR 0.361 0.361 0.307 0.783 0.783 0.676 0.100 0.100 0.104 0.353 0.353 0.317
ES 0.361 0.361 0.305 0.783 0.783 0.675 0.100 0.100 0.100 0.353 0.353 0.313

HB1
1 : An increase of 0.04 in the volatility reaction parameter, i.e. β∗

2 = 0.09

VaR 0.372 0.372 0.362 0.558 0.558 0.847 0.518 0.518 0.421 0.776 0.776 0.744
ES 0.372 0.372 0.361 0.558 0.558 0.847 0.518 0.518 0.421 0.776 0.776 0.743

HB2
1 : A decrease of 0.04 in the volatility reaction parameter, i.e. β∗

2 = 0.01

VaR 0.295 0.295 0.303 0.769 0.769 0.683 0.091 0.091 0.092 0.338 0.338 0.296
ES 0.295 0.295 0.296 0.769 0.769 0.687 0.091 0.091 0.093 0.338 0.338 0.297

HC1
1 : A decrease of 13.5 in the DoF parameter, i.e. ν∗ = 3

VaR 0.161 0.161 0.208 0.268 0.268 0.225 0.076 0.076 0.155 0.171 0.171 0.226
ES 0.161 0.161 0.210 0.268 0.268 0.223 0.076 0.076 0.157 0.171 0.171 0.225

HC2
1 : A decrease of 14 in the DoF parameter, i.e. ν∗ = 2.5

VaR 0.392 0.392 0.352 0.606 0.606 0.322 0.180 0.180 0.225 0.337 0.340 0.303
ES 0.392 0.392 0.341 0.606 0.606 0.319 0.180 0.180 0.223 0.337 0.340 0.302

HD
0 : 12 randomly selected returns in the simulated process multiplied by 5

VaR 0.033 0.033 0.047 0.046 0.046 0.048 0.033 0.033 0.047 0.046 0.046 0.048
ES 0.033 0.033 0.047 0.046 0.046 0.047 0.033 0.033 0.047 0.046 0.046 0.047

Note: Empirical size and power, for q = 5%, of the SN-CUSUM test for VaR and ES, considered
individually, under various hypotheses via 1000 simulations, for three types of risk measures
(GARCH(1,1)-skewed t, GARCH(1,1)-Gaussian and GAS-Hybrid). We consider two sample
sizes: 1000 and 3000, and different locations of the change point at ⌊πM⌋ with π = 0.5 and
0.75.
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in the middle. For our simulation setup, we find the Hoga and FGP tests to be

oversized under the null hypothesis and to have less power than the Rényi-type

loss-based Wilcoxon test.18

To offer a visual demonstration, Figure 3.4.1 compares the loss-basedWilcoxon

test using the FZ0 loss function with tests (i) to (v), from the point of view of

size and power. The five alternatives are denoted by VaR, ES, Rényi-type, Hoga,

and FGP, respectively. For the loss-based Wilcoxon test and alternative tests

(i)-(iii), the VaR and ES are obtained using the GARCH(1,1)-skewed t model.

The tests are performed at 5% test significance level, and we assume that the

change point occurs at ⌊0.5M⌋ under the alternative hypotheses. Based on the

empirical sizes of the Hoga and FGP tests under H0 and HD
0 , it can be concluded

that these tests are oversized for the DGP considered. The loss-based Wilcoxon

test has higher power than the alternatives for all scenarios of change points

corresponding to the different alternative hypotheses. The SN-CUSUM tests

work relatively well when volatility changes, but have lower power when the DoF

parameter decreases. Overall, our proposed test can identify change points in the

risk measures of time series with the correct size and stronger power than all five

alternatives considered.19

3.5 Empirical Application

In this section, we apply our proposed Wilcoxon change point test to S&P 500

index daily log returns. The index data is collected from Datastream and spans

the period from January 2, 1990 to December 31, 2019, in total 7559 observations.

We apply the proposed loss-based Wilcoxon test to detect change points in the

VaR and ES risk measures estimated by the GARCH(1,1)-skewed t model. Based

on our simulations above that consider the Wilcoxon tests based on loss functions

with different degrees of positive homogeneity, it can be concluded that our test

is not sensitive to the choice of loss function. As such, in the empirical section
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Table 3.4.3: Empirical size and power of alternative tests for a change point

π = 0.5 π = 0.75

M=1000 M=3000 M=1000 M=3000

Rényi Hoga FGP Rényi Hoga FGP Rényi Hoga FGP Rényi Hoga FGP

H0: Univariate GARCH(1,1)-skewed t, with (β0, β1, β2, ν, λ) = (0.05, 0.9, 0.05, 16.5,−0.5)

0.045 0.148 0.104 0.044 0.107 0.105 0.045 0.148 0.104 0.044 0.107 0.105

HA1
1 : An increase of 0.04 in the volatility persistence parameter, i.e. β∗

1 = 0.94

0.966 0.602 0.596 1.000 0.736 0.749 0.967 0.758 0.728 1.000 0.934 0.924

HA2
1 : A decrease of 0.04 in the volatility persistence parameter, i.e. β∗

1 = 0.86

0.396 0.318 0.291 0.854 0.507 0.465 0.391 0.186 0.137 0.934 0.208 0.162

HB1
1 : An increase of 0.04 in the volatility reaction parameter, i.e. β∗

2 = 0.09

0.794 0.488 0.486 0.968 0.617 0.644 0.799 0.631 0.646 0.988 0.863 0.863

HB2
1 : A decrease of 0.04 in the volatility reaction parameter, i.e. β∗

2 = 0.01

0.338 0.344 0.290 0.851 0.559 0.529 0.337 0.164 0.134 0.914 0.213 0.172

HC1
1 : A decrease of 13.5 in the DoF parameter, i.e. ν∗ = 3

0.193 0.209 0.211 0.461 0.194 0.264 0.268 0.200 0.244 0.648 0.196 0.348

HC2
1 : A decrease of 14 in the DoF parameter, i.e. ν∗ = 2.5

0.445 0.263 0.210 0.833 0.210 0.220 0.576 0.196 0.243 0.907 0.173 0.279

HD
0 : 12 randomly selected returns in the simulated process multiplied by 5

0.044 0.144 0.115 0.039 0.104 0.099 0.044 0.144 0.115 0.039 0.104 0.099

Note: Empirical size and power, for q = 5%, of three alternative tests (iii), (iv) and (v) under
various hypotheses via 1000 simulations. We consider two sample sizes: 1000 and 3000, and
different locations of the change point at ⌊πM⌋ with π = 0.5 and 0.75. For the Rényi-type test,
we choose the loss values computed by the FZ0 loss function with VaR and ES estimated by
the GARCH(1,1)-skewed t model.
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Figure 3.4.1: Size and power of the loss-based Wilcoxon test and alternatives

Note: Empirical size and power of the loss-based Wilcoxon test with five alternative tests (i)-
(v) under various hypotheses described in Section 3.4.1 at 5% test significance level when the
change point occurs at ⌊0.5M⌋. For the Wilcoxon test and Rényi-type test, we use the FZ0
loss function to compute the loss values. For all tests except Hoga and FGP, VaR and ES are
estimated by the GARCH(1,1)-skewed t model.

we only use the FZ0 loss function to compute loss values, following Dimitriadis

and Schnaitmann (2021).

In order to find change points in the risk measures, we first compute the

loss-based Wilcoxon test statistic WM . Then, we bootstrap the return process

1000 times via the stationary bootstrap method with the optimal block length

(Politis and White, 2004; Patton et al., 2009), obtain the empirical distribution

of the Wilcoxon statistic and get the 95% critical values. If the test statistic WM

is larger than the critical value, we reject the null hypothesis of no change. In

such cases, a change point is detected, and we follow the binary segmentation

method discussed by Inclan and Tiao (1994) and Ye et al. (2012) to find further

change points. Specifically, the data can be split into sub-periods according to
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the locations of the detected change points until no further change point can be

found. The detailed algorithm and procedure of detecting multiple change points

can be found in Figure 3.B.5 of Appendix 3.B.

Based on our test, the earliest change point we detect in the estimated risk

measures occurred in June 1992 (following the early 1990s recession in the United

States). The second change point occurred in December 1996 (the start of the

dot-com bubble). Then another change point is identified in June 2003 (after the

burst of the dot-com bubble), and the following change points are in July 2007

(the beginning of the subprime mortgage crisis), September 2008 (the bankruptcy

of Lehman Brothers), July 2009, and January 2012 (the start and end of the

European debt crisis). We also successfully detect change points associated with

the 2015–16 stock market selloff20 and the 2018 cryptocurrency crash21. Figure

3.5.1 presents the returns as well as the risk estimates, highlighting the detected

change points. Additionally, we apply this test for other estimation approaches

(GAS-Hybrid and historical simulations) and compare the empirical results with

alternative tests applied for the same sample (more details can be found in Tables

3.B.6 and 3.B.7 of Appendix 3.B).

Table 3.5.1 reports the GARCH(1,1)-skewed t parameter estimates and stan-

dard errors obtained by the QMLE method for each sub-period, the average VaR

and ES estimates, and the average loss values. Firstly, it can be seen that the

volatility parameters and the DoF estimates experience large changes across the

sub-periods, which leads to change points in the VaR and ES processes as well.

For instance, after the burst of the dot-com bubble, we can observe a decline in

the level of the volatility. Moreover, we can see a large reduction in the value

of the DoF parameter from 11.1 to 6.5 during the European debt crisis period.

Secondly, during a crisis or a crash period, VaR and ES are high in absolute

values, as can be seen in the 2007-2008 financial crisis and the European debt

crisis. The average loss values are also found to be generally higher during crisis

periods than during stable periods. Finally, when change points are taken into
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Figure 3.5.1: Daily S&P 500 index returns and risk estimates at 1% level

Note: Daily S&P 500 index returns and 1% VaR and ES estimates obtained by the GARCH
skewed t model. The vertical dash lines are at the estimated change points.

consideration, the loss values are typically lower than the ones computed when

the change points are ignored (this can be seen comparing Loss and Loss NC in

Table 3.5.1). According to our findings, it can be concluded that risk manage-

ment practitioners can improve on the risk estimates by first identifying change

points in the loss series of risk measures and then computing model parameter

values based on the identified change points.

3.6 Conclusions

We propose a new test, named the loss-based Wilcoxon test, to detect change

points in the series of VaR and ES risk measures considered jointly. Our test is

based on the Wilcoxon test (Dehling et al., 2013b) applied to the FZ loss functions

proposed by Fissler and Ziegel (2016). The framework of our test is general and

can accommodate for any type of (semi)parametric estimation methods for VaR

and ES. We perform extensive simulations based on various types of change point
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Table 3.5.1: Subsample estimation results

1990/01 - 1992/05 1992/05 - 1996/12 1996/12 - 2003/06 2003/06 - 2007/07 2007/07 - 2008/09

β0 0.031 (0.012) 0.013 (0.006) 0.084 (0.022) 0.021 (0.007) 0.153 (0.075)
β1 0.924 (0.023) 0.925 (0.024) 0.862 (0.024) 0.924 (0.023) 0.881 (0.032)
β2 0.037 (0.013) 0.039 (0.013) 0.092 (0.017) 0.031 (0.014) 0.032 (0.036)
ν 7.343 (1.992) 5.567 (0.817) 9.943 (2.264) 11.137 (4.338) 14.078 (11.435)
λ 0.001 (0.002) -0.008 (0.039) -0.042 (0.037) -0.076 (0.030) -0.081 (0.066)
VaR -2.237 -1.491 -3.270 -1.719 -3.424
ES -2.805 -1.952 -4.000 -2.097 -4.095
Loss 1.038 0.747 1.431 0.702 1.244
Loss NC 1.135 0.736 1.475 0.815 1.400

2008/09 - 2009/07 2009/07 - 2012/01 2012/01 - 2016/07 2016/07 - 2018/01 2018/01 - 2019/12

β0 0.012 (0.154) 0.036 (0.013) 0.075 (0.016) 0.059 (0.052) 0.042 (0.012)
β1 0.930 (0.072) 0.860 (0.024) 0.723 (0.041) 0.692 (0.276) 0.773 (0.038)
β2 0.063 (0.059) 0.119 (0.028) 0.170 (0.034) 0.047 (0.089) 0.181 (0.042)
ν 11.378 (9.630) 6.736 (1.683) 8.019 (1.819) 3.814 (0.684) 6.189 (1.830)
λ -0.047 (0.067) -0.151 (0.042) -0.089 (0.035) 0.113 (0.059) -0.211 (0.062)
VaR -7.044 -3.223 -2.074 -1.071 -2.532
ES -8.517 -4.138 -2.601 -1.517 -3.299
Loss 1.973 1.270 0.916 0.748 1.181
Loss NC 2.109 1.362 1.011 0.827 1.435

Note: Estimated parameter values and standard errors for β0, β1, β1, ν, and λ in the
GARCH(1,1)-skewed t model: σ2

t = β0 + β1σ
2
t−1 + β2r

2
t−1, ut ∼ i.i.d. skewed t (ν, λ) for the

S&P 500 index in 10 sub-periods. We also report the average VaR and ES at 1% level and the
associated average loss values using the parameters estimated within the sub-periods (Loss) and
the average loss using parameters estimated over the whole sample period without consideration
of change points (Loss NC).

scenarios, including different locations for the change points and different changes

in the volatility and DoF parameters. Our results show that the proposed test

has better size under the null hypothesis and higher power properties under the

considered alternative hypotheses, compared with five different alternative tests.

We present an application of the loss-based Wilcoxon test on the S&P 500 index

returns. The empirical results show that the test can detect the change points

associated with well-known financial events.



Appendices

3.A Proofs

Proof of Theorem 3.2.1

Proof. In general, the Hoeffding decomposition can be applied to a U-statistic

with a kernel h(x, y), so that we have:

h(x, y) = θ̃ + h1(x) + h2(y) + g̃(x, y),

where θ̃ = E[h(X, Y )], h1(x) = E[h(x, Y )−θ̃], h2(y) = E[h(X, y)−θ̃] and g̃(x, y) =

h(x, y)− h1(x)− h2(y)− θ̃.

We have the properties for these three terms:

E[h1(X)] = E[h2(X)] = 0, (3.A.1)

and

E[g̃(x, Y )] = E[g̃(X, y)] = 0. (3.A.2)

The proof of Theorem 3.2.1 is based on a lemma introduced below.

Lemma 3.A.1. (Dehling and Wendler (2010)) Let h be a P-Lipschitz-continuous

kernel with 2 + δ moments for some δ > 0, {Xt}t∈N be a stationary strong mix-

ing process with E[|X1|ξ] < ∞ for some ξ > 0 and α∗(M) = O(M−ρ) with

76
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ρ > 3ξδ+2δ+5ξ+2
2ξδ

, then for VM(g̃) = 2√
M(M−1)

∑
1≤i<j≤M g̃(Xi, Xj), we have

E
[
MV 2

M(g̃)
]
≤ 4

M(M − 1)2

∑
1≤i1<i2≤M

∑
1≤i3<i4≤M

|E[g̃(Xi1 , Xi2)g̃(Xi3 , Xi4)]|

≤ 4

M3

M∑
i1,i2,i3,i4=1

|E[g̃(Xi1 , Xi2)g̃(Xi3 , Xi4)]| = O(M−η)

where η = min
{
ρ 2ξδ
3ξδ+δ+5ξ+2

− 1, 1
}
> 0.

The proof of this lemma can be found in Dehling and Wendler (2010) as the

proof for Lemma 3.6.

Recall hW (ℓi, ℓj) is antisymmetric with θ̃ = 0. In order to prove the asymptotic

normality of this U-process, we use the Hoeffding decomposition for the kernel

hW (ℓi, ℓj):

hW (ℓi, ℓj) = h1(ℓi) + h2(ℓj) + g̃(ℓi, ℓj).

Thus, based on (3.2.6), we have the decomposed U-process:

1

M3/2
UM(u) =

1

M3/2

⌊uM⌋∑
i=1

M∑
j=⌊uM⌋+1

(h1(ℓi) + h2(ℓj) + g̃(ℓi, ℓj))

=
1

M3/2

(M − ⌊uM⌋)
⌊uM⌋∑
i=1

h1(ℓi) + ⌊uM⌋
M∑

j=⌊uM⌋+1

h2(ℓj) +

⌊uM⌋∑
i=1

M∑
j=⌊uM⌋+1

g̃(ℓi, ℓj)


By Lemma 3.A.1, we have that for a given u ∈ [0, 1], the upper boundary of the

variance of 1
M3/2

∑⌊uM⌋
i=1

∑M
j=⌊uM⌋+1 g̃(ℓi, ℓj):

1

M3

∑
i1=1:⌊uM⌋

i2=⌊uM⌋+1:M

∑
i3=1:⌊uM⌋

i4=⌊uM⌋+1:M

|E[g̃(ℓi1 , ℓi2)g̃(ℓi3 , ℓi4)]|

≤ 1

M3

∑
1≤i1<i2≤M

∑
1≤i3<i4≤M

|E[g̃(ℓi1 , ℓi2)g̃(ℓi3 , ℓi4)]|

<
1

M3

M∑
i1,i2,i3,i4=1

|E[g̃(ℓi1 , ℓi2)g̃(ℓi3 , ℓi4)]| = O(M−η).

(3.A.3)
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Hence, the variance of 1
M3/2

∑⌊uM⌋
i=1

∑M
j=⌊uM⌋+1 g̃(ℓi, ℓj) vanishes as M increases.

By (3.A.2) and (3.A.3), we have

1

M3/2
sup

0≤u≤1

∣∣∣∣∣∣
⌊uM⌋∑
i=1

M∑
j=⌊uM⌋+1

g̃(ℓi, ℓj)

∣∣∣∣∣∣→ 0

in probability.

Thus, by the Lemma of Slutsky, it is enough to show that the sum of the first

two terms M − ⌊uM⌋
M3/2

⌊uM⌋∑
i=1

h1(ℓi) +
⌊uM⌋
M3/2

M∑
j=⌊uM⌋+1

h2(ℓj)


0≤u≤1

converges in distribution to the limit process of Theorem 3.2.1. Because the kernel

hW (ℓi, ℓj) is antisymmetric, we have that h2(ℓj) = −h1(ℓj). Thus, we can rewrite

the representation as

M − ⌊uM⌋
M3/2

⌊uM⌋∑
i=1

h1(ℓi)−
⌊uM⌋
M3/2

M∑
i=⌊uM⌋+1

h1(ℓi) =
1

M1/2

⌊uM⌋∑
i=1

h1(ℓi)−
⌊uM⌋
M3/2

M∑
i=1

h1(ℓi).

To obtain the limit of the process, we state the theorem below, which is a

direct consequence of Theorem 4 in Borovkova et al. (2001) and Theorem 3.1 in

Davidson and De Jong (2000).

Theorem 3.A.1. Let {Yk}k∈Z be a L2 near-epoch dependent (NED) with respect

to a strong mixing process. Also, suppose that E[Yi] = 0 and E[|Yi|4+δ] ≤ ∞ for

some δ > 0. Then, as T → ∞,

1√
Y

Y∑
i=1

Yi
d−→ N (0, σ2),

where σ2 = V ar(Y1) + 2
∑∞

k=2 Cov(Y1, Yk).
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The proof of the theorem follows immediately from Borovkova et al. (2001)

and Davidson and De Jong (2000).

Applying Theorem 3.A.1 on the partial sum process, using similar arguments

as in Chapter 4 of Csörgő and Horváth (1997) and Donsker’s theorem, it can

be shown that 1
M1/2

∑⌊uM⌋
i=1 h1(ℓi)− ⌊uM⌋

M3/2

∑M
i=1 h1(ℓi) converges to a limit process

{σW (W (u)− uW (1))}0≤u≤1, where {W (u)}0≤u≤1 is a Wiener process, and

σ2
W = V ar(h1(ℓ1)) + 2

∞∑
k=2

Cov(h1(ℓ1), h1(ℓk)).

Additionally, we have that h1(x) =
1
2
− F (x). Thus,

σ2
W = V ar(F (ℓ1)) + 2

∞∑
k=2

Cov(F (ℓ1), F (ℓk)).

By the Lemma of Slutsky, we obtain that as M → ∞, 1
M3/2UM(u) converges

in distribution to {σWB(u)}0≤u≤1, where B(u) = W (u) − uW (1) is a Brownian

bridge and σ2
W = V ar(F (ℓ1)) + 2

∑∞
k=2Cov(F (ℓ1), F (ℓk)).

Proof of Proposition 3.2

Proof. The kernel hW (X, Y ) is P-Lipschitz-continuous, if there is a constant

ã > 0, so that for all ϵ > 0 and every common distribution of X, X ′ and Y ,

E [|hW (X, Y )− hW (X ′, Y )|1 {|X −X ′| ≤ ϵ}] < ãϵ.

For random variables X, X ′ and Y , we have:

E [|hW (X, Y )− hW (X ′, Y )|1 {|X −X ′| ≤ ϵ}]

= E [|1 {X ≤ Y } − 1 {X ′ ≤ Y } |1 {|X −X ′| ≤ ϵ}] .
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We have:

E [|1 {X ≤ Y } − 1 {X ′ ≤ Y } |1 {|X −X ′| ≤ ϵ}] ≤ P (−ϵ ≤ X −X ′ ≤ ϵ)

Based on Assumption 3.2.3 (B) on the continuous distribution function, there

exists a constant ã = 2 sup(f) that satisfies the following:

P (X ′ − ϵ ≤ X ≤ X ′ + ϵ) = F (X ′ + ϵ)− F (X ′ − ϵ) =

∫ X′+ϵ

X′−ϵ

f(t)dt ≤ ã

2
· 2ϵ = ãϵ.

Thus, based on Definition 3.2.1, the antisymmetric kernel of the Wilcoxon test

statistic hW (X, Y ) is P-Lipschitz-continuous.

Proof of Theorem 3.1

Proof. In order to obtain the asymptotic behavior of the bootstrapped U-process,

we use the Hoeffding decomposition for the bootstrapped kernel hW (ℓ∗i , ℓ
∗
j):

hW (ℓ∗i , ℓ
∗
j) = h1(ℓ

∗
i ) + h2(ℓ

∗
j) + g̃(ℓ∗i , ℓ

∗
j).

Thus, we have the decomposed bootstrapped U-process:

1

M3/2
U∗
M(u) =

1

M3/2

⌊uM⌋∑
i=1

M∑
j=⌊uM⌋+1

(
h1(ℓ

∗
i ) + h2(ℓ

∗
j) + g̃(ℓ∗i , ℓ

∗
j)
)

=
1

M3/2

(M − ⌊uT ⌋)
⌊uM⌋∑
i=1

h1(ℓ
∗
i ) + ⌊uM⌋

M∑
j=⌊uM⌋+1

h2(ℓ
∗
j) +

⌊uM⌋∑
i=1

M∑
j=⌊uM⌋+1

g̃(ℓ∗i , ℓ
∗
j)

 .

(3.A.4)

In the following, we are going to use the result below:

Lemma 3.A.2. (Hwang and Shin (2015)) Let h be a P-Lipschitz-continuous

kernel with 2+ δ moments for some δ > 0 , {X∗
n}n∈N be a stationary bootstrapped

strong mixing process with E[|X∗
1 |ξ] < ∞ for some ξ > 0 and α∗(M) = O(M−ρ)



3.A. Proofs 81

with ρ > 3ξδ+2δ+5ξ+2
2ξδ

, then for V ∗
M(g̃) = 2√

M(M−1)

∑
1≤i<j≤M g̃(X∗

i , X
∗
j ):

E
[
MV ∗2

M (g̃)
]
= O(M−η),

where η = min
{
ρ 2ξδ
3ξδ+δ+5ξ+2

− 1, 1
}
> 0.

The proof of this lemma can be found in Hwang and Shin (2015) as the proof

for Lemma 2.

As shown in Lemma 3.A.2, the variance of the last term in (3.A.4) vanishes

as M increases:

V ar∗

 1

M3/2

⌊uM⌋∑
i=1

M∑
j=⌊uM⌋+1

g̃(ℓ∗i , ℓ
∗
j)

 P−→ 0.

Thus, by Lemma of Slutsky and the property of kernel shown in (3.A.2), it is

enough to show thatM − ⌊uM⌋
M3/2

⌊uM⌋∑
i=1

h1(ℓ
∗
i ) +

⌊uM⌋
M3/2

M∑
j=⌊uM⌋+1

h2(ℓ
∗
j)


0≤u≤1

converges in distribution to the limit process ofM − ⌊uM⌋
M3/2

⌊uM⌋∑
i=1

h1(ℓi) +
⌊uM⌋
M3/2

M∑
j=⌊uM⌋+1

h2(ℓj)


0≤u≤1

.

Because the kernel hW (ℓ∗i , ℓ
∗
j) is antisymmetric, we have that h2(ℓ

∗
j) = −h1(ℓ

∗
j).

Thus, we can rewrite the representation as:

M − ⌊uM⌋
M3/2

⌊uM⌋∑
i=1

h1(ℓ
∗
i )−

⌊uM⌋
M3/2

M∑
i=⌊uM⌋+1

h1(ℓ
∗
i ) =

1

M1/2

⌊uM⌋∑
i=1

h1(ℓ
∗
i )−

⌊uM⌋
M3/2

M∑
i=1

h1(ℓ
∗
i ).

To obtain the limit of the process, we state the theorems of Calhoun (2018).
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Theorem 3.A.2. Let {Yk}k∈Z be a L2 near-epoch dependent (NED) with respect

to a strong mixing process. Additionally, suppose that µnt − µ̄n is uniformly

bounded, where µnt = E[Ynt] and µ̄n = n−1
∑n

t=1 µnt. Then we have:

sup
x∈R

∣∣P ∗(
√
n(Ȳ ∗

n − E∗[Ȳ ∗
n ]) ≤ x)− P (

√
n(Ȳn − E[Ȳn]) ≤ x)

∣∣ P−→ 0,

where Ȳn = 1
n

∑n
t=1 Ynt, and Ȳ ∗

n = 1
n

∑n
t=1 Y

∗
nt.

Theorem 3.A.3. Suppose that the conditions of Theorem 3.A.2 hold and let d

be any distance function that metricizes weak convergence. Then we have:

P ∗(d(Z∗
n, σW ) > δ∗)

P−→ 0, (3.A.5)

for all positive δ∗, where Z∗
n(u) = 1√

n

∑⌊un⌋
t=1 (Y

∗
nt − E∗[Ȳ ∗

n ]), and σW denotes a

Brownian motion scaled by the positive constant σ. If, in addition, supt=1,...,n |µnt−

µ̄n| = o(n−1/2) and

n−1

⌊ξ∗n⌋∑
s,t=1

Cov(Yns, Ynt) → σ2ξ∗

for all ξ∗ ∈ [0, 1], then

P ∗(d(Zn, σW ) > δ∗)
P−→ 0, (3.A.6)

for any positive δ∗, where Zn(u) =
1√
n

∑⌊un⌋
t=1 (Ynt − µ̄n).

If both (3.A.5) and (3.A.6) hold, then the distribution of bootstrapped values

Z∗
n can be used to approximate the distribution of Zn, because they have the

same distribution asymptotically.

The assumptions listed in Theorem 1 of Calhoun (2018) are satisfied under

Assumptions 3.2.3 and 3.3.1 in our study. Applying Theorem 3.A.2 and Theorem

3.A.3 for h1(ℓt), we have:
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sup
x∈R

∣∣∣∣∣P ∗

(
⌊uM⌋
M3/2

M∑
i=1

h1(ℓ
∗
i ) ≤ x

)
− P

(
⌊uM⌋
M3/2

M∑
i=1

h1(ℓi) ≤ x

)∣∣∣∣∣ P−→ 0,

sup
x∈R

∣∣∣∣∣∣P ∗

 1

M1/2

⌊uM⌋∑
i=1

h1(ℓ
∗
i ) ≤ x

− P

 1

M1/2

⌊uM⌋∑
i=1

h1(ℓi) ≤ x

∣∣∣∣∣∣ P−→ 0,

Thus, based on the Lemma of Slutsky, we have:

sup
x∈R

∣∣∣∣∣P ∗

 1

M1/2

⌊uM⌋∑
i=1

h1(ℓ
∗
i )−

⌊uM⌋
M3/2

M∑
i=1

h1(ℓ
∗
i ) ≤ x


− P

 1

M1/2

⌊uM⌋∑
i=1

h1(ℓi)−
⌊uM⌋
M3/2

M∑
i=1

h1(ℓi) ≤ x

∣∣∣∣∣ P−→ 0,

Thus, we obtain the convergence in probability in (3.3.2):

sup
x∈R

∣∣P ∗(M−3/2U∗
M(u) ≤ x)− P (M−3/2UM(u) ≤ x)

∣∣ P−→ 0.
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3.B Tables and Figures

Table 3.B.1: Rejection rates of tests on the properties of simulated loss
series

Ljung-Box ARCH ADF Grubb’s

ℓFZ0 0.167 0.063 1.000 1.000
ℓFZ1 0.194 0.085 1.000 1.000
ℓFZ2 0.113 0.042 1.000 1.000

Note: We simulate returns using the DGP of GARCH(1,1)-skewed t model (β0 = 0.05, β1 = 0.9,
β2 = 0.05, ν = 16.5, λ = −0.5), then use the given model to estimate 1% VaR and ES, and
substitute into the FZ loss functions to calculate the loss series. We run the simulation 1000
times with sample size of 3000. We calculate the rejection frequency as the number of rejections
divided by the number of simulations. We show the rejection frequencies obtained from the
Ljung-Box test for autocorrelation, Engle’s ARCH test for conditional heteroskedasticity, the
Augmented Dickey-Fuller (ADF) test for unit root and Grubbs’s test for the existence of outliers
respectively, with 10 lags. All tests are performed at 5% test significance level.
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Figure 3.B.1: Autocorrelation function (ACF) plots for the risk measures
(VaR, ES), loss values, and the square of loss values

Note: This figure displays the autocorrelation function of the risk measures, the loss series,
and the square of loss series under the null hypothesis. We simulate returns using the DGP
of GARCH(1,1)-skewed t model (β0 = 0.05, β1 = 0.9, β2 = 0.05, ν = 16.5, λ = −0.5), then
use the given model to estimate 1% VaR and ES, and substitute into the FZ loss functions to
calculate the loss series. We run the simulation 1000 times with sample size of 3000.
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Table 3.B.2: Empirical size for q = 5% of the loss-based Wilcoxon test using
the asymptotic distribution with long-run variance estimators

M=1000 M=3000

G-Skt G-G Hybrid G-Skt G-G Hybrid

Bartlett estimator with bandwidth bBT = ⌊4(M/100)2/9⌋

ℓFZ0 0.747 0.739 0.733 0.736 0.737 0.736
ℓFZ1 0.747 0.740 0.733 0.736 0.737 0.736
ℓFZ2 0.747 0.739 0.733 0.736 0.737 0.736

Bartlett estimator with bandwidth bBT = 0.02M

ℓFZ0 0.315 0.313 0.373 0.184 0.173 0.241
ℓFZ1 0.315 0.313 0.371 0.184 0.173 0.241
ℓFZ2 0.315 0.313 0.368 0.184 0.173 0.240

Bartlett estimator with bandwidth bBT = 0.05M

ℓFZ0 0.107 0.112 0.126 0.079 0.080 0.106
ℓFZ1 0.107 0.112 0.124 0.079 0.080 0.106
ℓFZ2 0.107 0.112 0.123 0.079 0.080 0.105

DFSVW estimator with bandwidth bDFSVW = ⌊4(M/100)2/9⌋

ℓFZ0 0.764 0.759 0.770 0.707 0.707 0.731
ℓFZ1 0.764 0.759 0.768 0.707 0.707 0.731
ℓFZ2 0.764 0.759 0.765 0.707 0.707 0.731

DFSVW estimator with bandwidth bDFSVW = 0.02M

ℓFZ0 0.229 0.230 0.301 0.096 0.096 0.102
ℓFZ1 0.229 0.230 0.300 0.096 0.096 0.102
ℓFZ2 0.229 0.230 0.301 0.096 0.096 0.102

DFSVW estimator with bandwidth bDFSVW = 0.05M

ℓFZ0 0.075 0.075 0.102 0.039 0.039 0.049
ℓFZ1 0.075 0.075 0.100 0.039 0.039 0.049
ℓFZ2 0.075 0.075 0.100 0.039 0.039 0.049

Note: We simulate returns using the DGP of GARCH(1,1)-skewed t model (β0 = 0.05, β1 = 0.9,
β2 = 0.05, ν = 16.5, λ = −0.5). Empirical size for q = 5% of the loss-based Wilcoxon test
under the null hypothesis is generated via 1000 simulations, for three types of risk measures
(GARCH(1,1)-skewed t, GARCH(1,1)-Gaussian and GAS-Hybrid) and three FZ loss functions
with different degrees of positive homogeneity. We consider two sample sizes: 1000 and 3000,
and VaR and ES are computed at α = 1% level. In this test, we implement the loss-based
Wilcoxon test for a change point by using the asymptotic distribution with two long-run variance
estimators: the Bartlett estimator and the DFSVW estimator of Dehling et al. (2013a). The
bandwidth bBT = ⌊4(M/100)2/9⌋ for the Bartlett estimator according to Newey and West
(1994); and the bandwidths 0.02T and 0.05T for the DFSVW estimator are recommended by
Dehling et al. (2013a).
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Table 3.B.3: Empirical size and power of the loss-based Wilcoxon test for a
change point by bootstrapping loss series directly

π = 0.5 π = 0.75

M=1000 M=3000 M=1000 M=3000

G-Skt G-G Hybrid G-Skt G-G Hybrid G-Skt G-G Hybrid G-Skt G-G Hybrid

H0: Univariate GARCH(1,1)-skewed t, with (β0, β1, β2, ν, λ) = (0.05, 0.9, 0.05, 16.5,−0.5)

ℓFZ0 0.165 0.170 0.176 0.095 0.091 0.096 0.165 0.170 0.176 0.095 0.091 0.096
ℓFZ1 0.173 0.175 0.177 0.093 0.095 0.097 0.173 0.175 0.177 0.093 0.095 0.097
ℓFZ2 0.177 0.171 0.181 0.107 0.091 0.091 0.177 0.171 0.181 0.107 0.091 0.091

HA1
1 : An increase of 0.04 in the volatility persistence parameter, i.e. β∗

1 = 0.94

ℓFZ0 0.998 0.999 0.979 1.000 1.000 1.000 0.914 0.920 0.780 0.998 0.999 0.973
ℓFZ1 0.997 0.999 0.978 1.000 1.000 1.000 0.919 0.920 0.785 0.999 0.999 0.977
ℓFZ2 0.997 0.999 0.980 1.000 1.000 1.000 0.922 0.922 0.774 0.999 0.999 0.978

HA2
1 : A decrease of 0.04 in the volatility persistence parameter, i.e. β∗

1 = 0.86

ℓFZ0 0.799 0.796 0.672 0.996 0.995 0.961 0.423 0.434 0.364 0.791 0.793 0.669
ℓFZ1 0.798 0.803 0.674 0.994 0.994 0.960 0.422 0.429 0.373 0.792 0.793 0.659
ℓFZ2 0.793 0.801 0.670 0.995 0.994 0.958 0.426 0.422 0.374 0.793 0.782 0.672

HB1
1 : An increase of 0.04 in the volatility reaction parameter, i.e. β∗

2 = 0.09

ℓFZ0 0.940 0.942 0.886 0.999 0.999 0.989 0.740 0.748 0.592 0.952 0.962 0.889
ℓFZ1 0.945 0.944 0.885 0.999 0.999 0.993 0.741 0.749 0.593 0.959 0.960 0.878
ℓFZ2 0.939 0.945 0.888 0.999 0.999 0.990 0.744 0.753 0.589 0.953 0.961 0.883

HB2
1 : A decrease of 0.04 in the volatility reaction parameter, i.e. β∗

2 = 0.01

ℓFZ0 0.819 0.831 0.688 0.998 0.996 0.944 0.434 0.429 0.363 0.820 0.816 0.688
ℓFZ1 0.826 0.831 0.691 0.997 0.997 0.947 0.437 0.429 0.367 0.812 0.811 0.691
ℓFZ2 0.824 0.831 0.691 0.996 0.997 0.948 0.427 0.434 0.372 0.808 0.817 0.689

HC1
1 : A decrease of 13.5 in the DoF parameter, i.e. ν∗ = 3

ℓFZ0 0.614 0.622 0.512 0.851 0.854 0.465 0.358 0.359 0.365 0.515 0.515 0.389
ℓFZ1 0.617 0.625 0.517 0.853 0.853 0.462 0.358 0.363 0.360 0.520 0.511 0.384
ℓFZ2 0.620 0.631 0.508 0.854 0.854 0.463 0.359 0.359 0.365 0.509 0.514 0.393

HC2
1 : A decrease of 14 in the DoF parameter, i.e. ν∗ = 2.5

ℓFZ0 0.897 0.897 0.648 0.987 0.988 0.623 0.598 0.588 0.541 0.866 0.866 0.587
ℓFZ1 0.899 0.900 0.649 0.986 0.988 0.622 0.595 0.599 0.537 0.863 0.877 0.593
ℓFZ2 0.899 0.901 0.645 0.988 0.989 0.622 0.604 0.592 0.545 0.870 0.864 0.592

HD
0 : 12 randomly selected returns in the simulated process multiplied by 5

ℓFZ0 0.182 0.183 0.173 0.112 0.112 0.116 0.182 0.183 0.173 0.112 0.112 0.116
ℓFZ1 0.175 0.183 0.185 0.116 0.113 0.122 0.175 0.183 0.185 0.116 0.113 0.122
ℓFZ2 0.183 0.183 0.179 0.114 0.117 0.119 0.183 0.183 0.179 0.114 0.117 0.119

Note: Empirical size and power, for q = 5%, of the loss-based Wilcoxon test under various
hypotheses via 1000 simulations, for three types of 1% risk measures (GARCH(1,1)-skewed t,
GARCH(1,1)-Gaussian and GAS-Hybrid) and three FZ loss functions with different degrees of
positive homogeneity. We consider two sample sizes: 1000 and 3000, and different locations
of the change point: ⌊0.5M⌋ and ⌊0.75M⌋. In this test, we bootstrap the loss series directly,
instead of resampling returns.
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Table 3.B.5: Empirical size and power of the loss-based Wilcoxon test for a
change point in risk measures estimated by historical simulations

0.5M 0.75M

M=1000 M=3000 M=1000 M=3000

H0: (β0, β1, β2, ν, λ) = (0.05, 0.9, 0.05, 16.5,−0.5)

ℓFZ0 0.064 0.042 0.064 0.042
ℓFZ1 0.092 0.075 0.092 0.075
ℓFZ2 0.076 0.065 0.076 0.065
HA1

1 : β∗
1 = 0.94

ℓFZ0 0.878 0.999 0.418 0.800
ℓFZ1 0.862 0.999 0.375 0.805
ℓFZ2 0.875 0.999 0.455 0.804
HA2

1 : β∗
1 = 0.86

ℓFZ0 0.479 0.914 0.270 0.429
ℓFZ1 0.415 0.913 0.213 0.417
ℓFZ2 0.424 0.917 0.255 0.431
HB1

1 : β∗
2 = 0.09

ℓFZ0 0.715 0.987 0.365 0.728
ℓFZ1 0.652 0.985 0.318 0.731
ℓFZ2 0.680 0.988 0.263 0.721
HB2

1 : β∗
2 = 0.01

ℓFZ0 0.490 0.951 0.252 0.439
ℓFZ1 0.479 0.945 0.253 0.434
ℓFZ2 0.521 0.952 0.252 0.448
HC1

1 : ν∗ = 3

ℓFZ0 0.191 0.419 0.180 0.337
ℓFZ1 0.165 0.448 0.157 0.341
ℓFZ2 0.138 0.400 0.131 0.328
HC2

1 : ν∗ = 2.5

ℓFZ0 0.229 0.336 0.173 0.312
ℓFZ1 0.233 0.339 0.177 0.310
ℓFZ2 0.228 0.337 0.178 0.313
HD

0 : 12 randomly selected returns multiplied by 5

ℓFZ0 0.073 0.050 0.073 0.050
ℓFZ1 0.090 0.075 0.090 0.075
ℓFZ2 0.071 0.069 0.071 0.069

Note: Empirical size and power, for q = 5%, of the loss-based Wilcoxon test under various
hypotheses via 1000 simulations, for the 1% risk measures estimated by historical simulations
and three FZ loss functions with different degrees of positive homogeneity. We consider two
sample sizes: 1000 and 3000, and different locations of the change point: ⌊0.5M⌋ and ⌊0.75M⌋.
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Figure 3.B.2: Power curves of the loss-based Wilcoxon test and alternative
tests

(a) The change in β1, π = 0.5 (b) The change in β1, π = 0.75

(c) The change in β2, π = 0.5 (d) The change in β2, π = 0.75
Note: Power curves (empirical size and power) of the loss-based Wilcoxon test for three (semi-
)parametric estimation methods with alternative tests under various hypothesis at 5% test
significance level in the given GARCH(1,1)-skewed t process via 1000 simulations. For the
loss-based Wilcoxon test, we choose the loss values computed by the FZ0 loss function with
1% VaR and ES estimated by the GARCH(1,1)-skewed t, GARCH(1,1)-Gaussian, and GAS-
Hybrid model (denoted by GARCH-Skt, GARCH-G and Hybrid in legend). Regarding the
self-normalized CUSUM test for 1% VaR and ES, we use the 1% VaR and ES estimated by
GARCH(1,1)-skewed t (denoted by VaR/ES in legend). Because the estimation results for VaR
and ES are the same with each other, we select one of them. Panel (a) and (b) consider the
change in parameter β1 from 0.90 to 0.86 (and 0.94) when the change point occurs at ⌊0.5M⌋
and ⌊0.75M⌋, respectively; Panel (c) and (d) consider the change in parameter β2 from 0.05 to
0.01 (and 0.09) when the change point occurs at ⌊0.5M⌋ and ⌊0.75M⌋, respectively.
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Figure 3.B.3: Change point tests for AR(1) process and ARCH(1) process

Note: Left: Change point tests for AR(1) process. Relationship between empirical detection
probability and degrees of freedom ν of t-distributed innovations after the change point. Before
the change point, ν = 16.5. Right: Change point tests for ARCH(1) process. Relationship
between empirical detection probability and ARCH(1) parameter β2 after the change point.
Before the change point, β2 = 0.2. In both cases, change point testing is conducted with 5%
test significance level using risk measures at the 1% level. For both the AR(1) and ARCH(1)
processes, the abrupt change occurs at ⌊0.5M⌋. Each plotted point is an average over 1000
replications, and the sample size is 3000. We simulate AR(1) process: rt = 0.5rt−1 + t(ν) and

ARCH(1) process: rt =
√
1 + β2r2t−1ut−1, where ut−1 follows the Gaussian distribution. Under

the null hypothesis, we set ν = 16.5 and β1 = 0.2. Under the alternative hypothesis, we adjust
the parameter values ν and β2 in the two processes from 16.5 to 2.5 and 0.2 to 0.9, respectively.
For the loss-based Wilcoxon test, we choose the loss values computed by the FZ0 loss function
with VaR and ES estimated by the GARCH(1,1)-skewed t model.
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Figure 3.B.4: Size and power of the loss-based Wilcoxon test and alterna-
tives with the change point at ⌊0.75M⌋

Note: Empirical size and power of the loss-based Wilcoxon test with five alternative tests under
various hypotheses at 5% test significance level when the change point occurs at ⌊0.75M⌋ via
1000 simulations. For the Wilcoxon test and Rényi-type test, we use the FZ0 loss function to
compute the loss values. For all tests except Hoga and FGP, 1% VaR and ES are estimated by
the GARCH(1,1)-skewed t model.
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Figure 3.B.5: Sequence of the loss-based Wilcoxon algorithm based on the
GARCH(1,1)-skewed t model, applied to the S&P 500 index

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

(17) (18) (19)
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Figure 3.B.6: Daily returns and 1% (VaR, ES) estimated by the GAS-
Hybrid

Note: The vertical dash lines are the detected change points by using the binary segmentation
method.

Table 3.B.6: Subsample estimation results of GAS-Hybrid model

1990/01-1992/01 1992/01-1997/02 1997/02-2003/08 2003/08-2007/02 2007/02-2012/08 2012/08-2019/12

β1 0.820(0.097) 0.976(0.007) 0.912(0.083) 0.835(0.382) 0.942(0.068) 0.798(0.039)
β2 0.012(0.005) 0.000(0.001) 0.005(0.004) 0.001(0.001) 0.006(0.004) 0.008(0.001)
β3 1.09E-08(1.66E-08) 0.017(0.001) 0.006(0.006) 0.006(0.005) 0.028(0.049) 0.027(0.008)
a -2.017(5.905) -3.883(13.324) -3.236(14.339) -1.584(9.298) -4.164(30.9862) -2.493(0.624)
b -2.825(8.271) -4.919(16.960) -4.314(19.165) -1.785(10.441) -4.843(37.294) -3.074(0.879)
VaR -2.465 -1.815 -3.216 -1.928 -3.312 -2.162
ES -3.136 -2.309 -4.091 -2.452 -4.214 -2.751
Loss 1.036 0.684 1.411 0.515 1.299 0.973
Loss NC 1.149 0.716 1.493 0.688 1.394 1.031

Note: Estimated parameter values for β1, β2, and β3 in the GAS-Hybrid model: κt = β0 +
β1κt−1 + β2(− 1

et−1
( 1
α1{rt ≤ vt}rt−1 − et−1)) + β3 log |rt−1|, vt = a · exp{κt}, et = b · exp{κt}

for the S&P 500 index in 6 sub-periods. We also report the average VaR and ES at 1% level
and the associated average loss values using the parameters estimated within the sub-periods
(Loss) and the average loss using parameters estimated over the whole sample period without
consideration of change points (Loss NC).
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Figure 3.B.7: Daily returns and 1% (VaR, ES) estimated by historical sim-
ulations

Note: The vertical dash lines are the estimated change points by the loss-based Wilcoxon test
based on historical simulations with a rolling window of size 125.
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Notes

1This class of semiparametric models has been extended to incorporate the intraday or high-

frequency information (Meng and Taylor, 2020; Lazar and Xue, 2020; Gerlach and Wang, 2020)

and combine with networks (Bonaccolto et al., 2022).

2There is no (strictly) consistent loss function for ES that does not also contain VaR (Fissler

and Ziegel, 2016).

3In order to construct the Wilcoxon test statistic, we initially obtain the ranks of loss values

and then feed the ranks into the CUSUM procedure. More details can be found in Section 2.2.

4A loss function ℓ is called positive homogeneous of degree b̃ if for all r, v and e, L(c̃r, c̃v, c̃e) =

c̃b̃L(r, v, e), for all c̃ > 0.

5The simulation setup and results are reported in Table 3.B.1 of Appendix 3.B. We use the

Ljung-Box test, Engle’s ARCH test, the Augmented Dickey-Fuller (ADF) test and Grubb’s test.

6Boucher et al. (2014) and Lazar and Zhang (2019) discuss that the model risk of risk

measures can be decomposed into estimation bias and model misspecification. When using the

true model (the one used to generate the data process) with the true parameters to estimate

risk measures, model risk is not present.

7For simplicity, in this chapter we consider the alternative hypothesis that there exists only

one change point k∗ occurring in the series.

8In this chapter, we follow Hoga (2017) to set the expected block length as 0.08T , which can

consistently produce satisfactory results in various settings. It is possible to select the optimal

block length for stationary bootstrapping, please see Politis and White (2004) and Patton et al.

(2009) for more details.

9We found that resampling the loss series {ℓt(r∗t )}Mt=1 directly would lead to a higher empirical

size, especially for small sample sizes (the related simulation results can be found in Table 3.B.3

of Appendix 3.B).

10These sample sizes are in line with the sample sizes used in the literature on risk measure-

ment (see Patton et al., 2019).

11Results for α = 5% are consistent with the results reported here, and are available upon

request.

12We are aware that these values of ν∗ mean that the fourth moment of the simulated returns

does not exist. Nevertheless, these values of ν∗ are useful for illustrative purposes. The literature
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considers DGPs with less than four finite moments, such as in Berkes et al. (2003).

13More details about the models can be found in Table 3.B.4 of Appendix 3.B.

14Here, we only consider the case of q = 5%; the results for other values of q are available on

request.

15If model misspecification risk is present, then the ordering of models is affected by the choice

of loss function (Patton, 2020); in this case, the size and power properties of our proposed test

might be affected by the choice of loss function.

16We use the FZ0 loss function to compute the loss values for GARCH(1,1)-skewed t risk

estimates. We implement the stationary bootstrapping based MC simulation for the Rényi-

type loss-based Wilcoxon test, instead of applying the asymptotic distribution that assumes

normally distributed loss values.

17We choose the historical quantile to estimate VaR and ES, in line with Fan et al. (2018),

instead of applying the Weissman estimator for VaR used by Hoga (2017). Based on our

simulations, the critical value at 5% test significance level is 80.21 for u0 = 0.2, which is very

close to the one given by Hoga (2017).

18In Table 3.B.5 of Appendix 3.B, we show that the loss-based Wilcoxon test has strong power

in detecting the change point in the series of VaR and ES estimated by historical simulations.

In Figure 3.B.2 we present the power curves of this test for three (semi)parametric models with

alternative tests to show the detection power in terms of the marginal change in parameters.

Figure 3.B.3 compares our test with alternative tests in terms of size and power for AR(1) and

ARCH(1) processes, which are the DGPs used by Fan et al. (2018). Our results are consistent

with the results in Table 3.4.1 and 3.4.3.

19In Figure 3.B.4 of Appendix 3.B we present the results when the break occurs at ⌊0.75M⌋.
20Between August 2015 and early 2016, the S&P 500 and DJIA dropped more than 10%

twice.

21The S&P 500 index dropped almost 20% between September and December 2018.



Chapter 4

Sequential Monitoring for

Changes in M-estimators of Risk

Models

4.1 Introduction

In the ongoing recession following the COVID-19 pandemic and past financial

crises, there is an increasing demand for more effective risk measures. Risk mea-

sures have become essential in supporting asset management decisions for banks

and other financial institutions, especially under market turmoil. Value-at-Risk

(VaR) and Expected Shortfall (ES) are two prevailing measures of financial risk

that dominate current financial regulation. VaR measures how much a certain

portfolio can lose at a given significance level within a given period. As a supple-

mentary measure to VaR, ES captures the expected value of exceedances beyond

the quantile. In the current literature, the estimation and forecasting approaches

for joint VaR and ES can be classified into three main categories: nonparametric,

semiparametric and parametric. Regarding the (semi)parametric models, the es-

timation method is based on the theory for M-estimators (see White (1996) and

Newey and McFadden (1994) for example).

99
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Ignoring change points in model parameters will likely lead to biased statisti-

cal inference and inaccurate forecasts. This situation has often been encountered

in time series analysis. A strand of literature considers tests for parameter sta-

bility in a wide class of both linear and nonlinear parametric models (Andrews,

1993; Stock and Watson, 1996; Bai and Perron, 1998). Empirically, the mis-

leading results caused by change points in time series has been documented in

stock returns (Smith and Timmermann, 2021), conditional and unconditional

variance (Andreou and Ghysels, 2002; Inclan and Tiao, 1994), correlation dy-

namics (Barassi et al., 2020), quantile regression (Qu, 2008), VaR (Hoga, 2017)

and (semi)parametric models for risk measures (Lazar et al., 2021). We refer the

readers to Hansen (2001) and Aue and Horváth (2013) for a detailed literature

review of the change point detection methods for historical observations.

However, most literature mentioned above is designed to detect change points

within a given historical dataset. In addition to this paradigm of historical de-

tection of change points, another practical research question is whether newly

arriving data is consistent with a well-trained relationship between series based

on historical data because change points in the model can trigger such inconsis-

tencies. As a milestone in the literature of real-time detection, Chu et al. (1996)

propose an innovative test for changes in a time series based on a sequential de-

tector and a boundary function. This monitoring scheme detects a change point

when the proposed detector exceeds the boundary curve. Following this seminal

work, several studies document the use of sequential monitoring in other models,

e.g., the GARCH (p,q) models (Berkes et al., 2004), the functional linear mod-

els with dependent errors (Aue et al., 2014) and the dynamic linear models for

real estate prices (Horváth et al., 2021b). Additionally, Horváth et al. (2020a)

develop sequential monitoring procedures for changes from stationarity to mild

non-stationarity of a time series. Horváth et al. (2021a) propose a sequentially

monitoring scheme for a change point in a sequence of distributions. Regarding

sequential monitoring for changes in the tail behaviour of time series, Hoga and
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Wied (2017) propose a real-time detection procedure for changes in the nonpara-

metric tail index of weakly dependent random variables.

In academia and the financial industry, (semi)parametric models are widely

applied to forecast VaR and ES jointly instead of nonparametric methods. Un-

like parametric models, which require a conditional distribution of returns for

estimation and prediction, the construction of semiparametric models eliminate

the need to specify and estimate a conditional density but rely on minimizing a

specified loss function (Engle and Manganelli, 2004; Patton et al., 2019). The

timing of parameter adjustments for risk models has become an essential part of

risk management. However, sequentially detecting change points in risk models

for VaR and ES has remained unexplored in the current literature.

To fill this gap, our contribution is that we propose a sequential monitoring

scheme to detect changes in the parameter values of (semi)parametric models.

This procedure is based on evaluating the gradients of the FZ loss function (Fissler

and Ziegel, 2016) with respect to (w.r.t.) the model parameters, instead of relying

solely on the time series of risk measures. Our detection procedure mainly follows

Chu et al. (1996) where a change is detected when a proposed detector exceeds a

defined boundary function. In our case, the detector is based on the cumulative

sum process of gradients of the FZ loss function. The boundary curve is chosen

such that the probability of a false detection under the null hypothesis of stable

parameters is fixed. Our proposed detector is similar to two tests for change

points proposed by Qu (2008) and Berkes et al. (2004). A unifying view of the

fluctuation-type statistic based on the gradient estimated from historical samples

is presented in Qu (2008). However, this test is proposed for detecting change

points ex-post instead of real-time detection. This gradient-based test for quantile

regression can be extended to sequential monitoring for change points in nonlinear

risk models for VaR and ES. This chapter is also relevant to Berkes et al. (2004),

who derive a sequential test for the changes in the parameters of a GARCH

sequence. However, we propose an extension of their test by considering risk
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models for VaR and ES jointly.

Additionally, using Monte Carlo (MC) simulations, we show the advantages

of the proposed sequential monitoring test in identifying change points in risk

models. Under the null hypothesis, our test is shown to have suitable size control

in finite samples. Regarding the alternative hypotheses, we consider changes in

VaR and ES caused by the varying second to fourth moments (variance, skew-

ness and kurtosis) individually, and our test has high power under those various

scenarios.

Lastly, we empirically demonstrate the practical usage of our proposed test

on risk measures of the S&P 500 index returns and the GBP/EUR exchange

rate returns. We present evidence that the test can detect change points in risk

models earlier than the financial crisis when we apply the test to the S&P 500

index returns. Also, the change points detected by the test are consistent with

well-known market events, such as the Black Monday in the US stock market

caused by the COVID-19 pandemic and the sterling depreciation after the Brexit

referendum.

The chapter is structured as follows: Section 4.2 formulates the detection prob-

lem in the framework of sequential change point hypothesis testing and presents

some theoretical results related to the asymptotic distribution of the proposed test

statistic; Section 4.3 discusses the MC simulation setup under various scenarios,

and presents the simulation results; Section 4.4 contains the empirical applica-

tions based on the S&P 500 index and the GBP/EUR exchange rate return; and

Section 4.5 concludes the chapter.
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4.2 Sequential Monitoring for Changes in Semi-

parametric Risk Models

4.2.1 Semiparametric Models Formulation

We start by briefly reviewing the general risk model for VaR and ES estimation

and forecasting. Suppose that we observe a series of asset returns in a training

(historical) sample {rt}Mt=1. Let v
α
t and eαt denote the VaR and ES at a specified

significance level α. Then for α ∈ (0, 1), the conditional VaR and ES of y are

given by

vαt ≡F−1(α|Ft−1) = inf{rt ∈ R|F (rt|Ft−1) ≥ α}, (4.2.1)

and

eαt ≡E[rt|rt ≤ vαt ,Ft−1], (4.2.2)

respectively, where F (·|Ft−1) is the cumulative distribution function of observa-

tions rt over a horizon given the information set Ft−1.

Let xt be a (K×1) vector of time t exogenous variables given the information

set Ft, and let θα be a (d × 1) vector of unknown parameters. Then, we let

vαt (θ
α) ≡ v(θα,xt−1) and eαt (θ

α) ≡ e(θα,xt−1) denote the estimated VaR and ES

at the significance level α at time t, given past information up to time t − 1. In

the following, we suppress the superscript α from θα, vαt and eαt for notational

convenience.

Patton et al. (2019) define a generic dynamic semiparametric model for con-

ditional VaR and ES at significance level α in the following framework: vt(θ)

et(θ)

≡

 v(rt−1, h
∗(xt−1), . . . , r1, h

∗(x1);θ)

e(rt−1, h
∗(xt−1), . . . , r1, h

∗(x1);θ)

 , t = 1, . . . ,M, (4.2.3)

where h∗(·) is a function that links the quantiles vt(θ) and et(θ) to exogenous

variables that belong to the information set.
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Unlike using (Quasi-) maximum likelihood estimation ((Q)MLE) to estimate

the parameters of a parametric model, the estimation of the unknown parameters

θ for a semiparametric risk model is based on the FZ0 loss function introduced

by Fissler and Ziegel (2016):

ℓ̂t (u) = − 1

αêt (u)
1 {rt ≤ v̂t(u)} (v̂t(u)− rt) +

v̂t(u)

êt(u)
+ log (−êt(u))− 1, (4.2.4)

where u is a possible set of parameter values in the generic parameter space Θ,

u ∈ Θ ⊂ Rd. We also have that θ ∈ Θ. For a given set u of parameter values,

v̂t(u) and êt(u) are the estimated VaR and ES at time t.

The estimator for the unknown parameter θ is obtained by

θ̂M = argmin{L̂M (u) : u ∈ Θ}, (4.2.5)

where

L̂M (u) =
1

M

∑
1≤t≤M

ℓ̂t (u) . (4.2.6)

When we construct our detector function based on the estimated parameters,

we are exposed to parameter estimation uncertainty. This uncertainty could cause

misleading detection results, for example, spurious break detection or biased de-

tected locations. Thus, in this chapter, we would like to note that neglecting pa-

rameter estimation uncertainty in the calculation of the detector in finite samples

means that we are effectively assuming that we have the true value. Patton et al.

(2019) show that the M-estimation of these parameters via FZ loss minimization

leads to a consistent and asymptotically normal estimator. The conditions for

the proof are provided in the following section.
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4.2.2 Sequential Monitoring for Change Points

Consider a financial return time series from which we have observed a “stable”

historical sample of length M , r1, ..., rM , which is referred to the training sample.

Based on this training sample, we can estimate a semiparametric model for (VaR,

ES). As additional observations of the series, rM+1, rM+2, ... are revealed in an

online manner, we are interested in detecting whether the parameters of the

semiparametric model for (VaR, ES) have changes in the incoming observations.

To sequentially monitor for changes in the parameters of a risk model, the

procedure has the null hypothesis that:

H0 : θM+k = θ, 1 ≤ k < ∞,

against the alternative hypothesis that a change in the parameters occurred at

k∗ and the parameters after k∗ are θ∗:

HA : ∃k∗ ∈ N : θM+k =

 θ, 1 ≤ k ≤ k∗,

θ∗, k∗ + 1 ≤ k < ∞.

To test the hypotheses, we sequentially evaluate the change in the mean of

gradient of the FZ loss function w.r.t. parameters θ. We construct a test based

on the intuition that a parameter change must have occurred if the gradient of

the loss function persistently deviate from zero. If such a change occurs in the

monitoring horizon, then the parameter estimates based on the training sample

cannot characterize the incoming observations, leading to a non-zero expectation

of gradient. Consequently, it is no longer valid to use the parameters estimated

based on the training sample to make risk forecasts after the change.

Here, we define ℓ̂′t (u) as the vector of the first-order derivatives of the FZ0
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loss function w.r.t. the parameters of the model at t:

ℓ̂′t (u) =
∂ℓ̂t (u)

∂u
= v̂′t(u)

1

−êt(u)

(
1

α
1{rt ≤ v̂t(u)} − 1

)
+ ê′t(u)

1

êt(u)2

(
1

α
1{rt ≤ v̂t(u)}(v̂t(u)− rt)− v̂t(u) + êt(u)

)
,

(4.2.7)

where v̂′t(u) and ê′t(u) denote the first-order derivative of v̂t(u) and êt(u) w.r.t.

the set of parameters u, respectively.

To derive the asymptotic results for this test, we consider the following as-

sumption for the time series of the gradient.

Assumption 4.2.1. {ℓ′t(u)} is a stationary ergodic martingale difference se-

quence.

A key observation is that under the null hypothesis of no structural change,

in the sequence {ℓ′t(u)}, 1 {rt ≤ v̂t(u)} is a pivotal statistic, i.e., a sequence of

independent binary random variables with mean α and variance α(1− α).

Then, we consider the covariance matrix estimator:

D̂M =
1

M

∑
1≤i≤M

ℓ̂′i

(
θ̂M

)⊤
ℓ̂′i

(
θ̂M

)
, (4.2.8)

where ⊤ denotes the transpose of a vector.

The monitoring scheme follows from the nonnegative definite property of the

matrix D̂M given in (4.2.8). In the following, we show that D̂M is nonsingular

with probability tending to one as M → ∞. Hence D̂
−1/2
M exists with probability

tending to one as M → ∞.

We also define:

D(u) = E[ℓ′0(u)⊤ℓ′0(u)],

and

D = D(θ). (4.2.9)
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To derive the main theoretical results, we consider the assumptions below.

Assumption 4.2.2. (A) The loss sequence {ℓ̂t (u)} obeys the uniform law of

large numbers;

(B) Θ is a compact subset of Rd for d < ∞;

(C) {rt}∞t=1 is a strictly stationary process. Conditional on all the past in-

formation Ft−1, the distribution of rt is F (·|Ft−1) which, for all t, belongs to

a class of distribution functions on R with finite first moments and the unique

α-quantiles.

(D) For any t, both vt(u) and et(u) are Ft−1-measurable and a.s. continuous

in u;

(E) If P ((vt(u) = vt(θ)) ∩ (et(u) = et(θ))) = 1 ∀t, then u = θ.

Assumption 4.2.3. (A) For all t, we have (i) vt(u) and et(u) are a.s. twice

continuously differentiable in u, (ii) et(θ) < vt(θ) ≤ 0;

(B) For all t, we have (i) conditional on all the past information Ft−1, rt

has a continuous density ft(·|Ft−1) that satisfies ft(y|Ft−1) ≤ K < ∞ and

|ft(y′|Ft−1)− ft(y
′′|Ft−1)| ≤ K|y′ − y′′|, (ii) E

[
|rt|4+δ

]
≤ K < ∞, for some

0 < δ < 1;

(C) There exists a neighborhood of θ, N (θ), such that for all t we have (i)

|1/et(u)| ≤ K < ∞, ∀u ∈ N (θ), (ii) there exist some (possibly stochastic)

Ft−1-measurable functions V (Ft−1), V1(Ft−1), H1(Ft−1), V2(Ft−1), H2(Ft−1)

that satisfy u ∈ N (θ) : |vt(u)| ≤ V (Ft−1), ||v′t(u)|| ≤ V1(Ft−1), ||e′t(u)|| ≤

H1(Ft−1), ||v′′t (u)|| ≤ V2(Ft−1), and ||e′′t (u)|| ≤ H2(Ft−1);

(D) For 0 < δ < 1 and for all t we have (i) E
[
V1(Ft−1)

3+δ
]
, E
[
H1(Ft−1)

3+δ
]
,

E
[
V2(Ft−1)

3+δ
2

]
, E
[
H2(Ft−1)

3+δ
2

]
≤ t, (ii) E

[
V (Ft−1)

2+δV1(Ft−1)H1(Ft−1)
2+δ
]

≤ t, (iii) E
[
H1(Ft−1)

1+δH2(Ft−1)|rt|2+δ
]
,E
[
H1(Ft−1)

3+δ|rt|2+δ
]
≤ t;

(E)

G = E
[
ft (vt(θ)|Ft−1))

−et(θ)α
v′t(θ)

⊤v′t(θ) +
1

et(θ)2
e′t(θ)

⊤e′t(θ)

]
is a (strictly) positive definite, nonsingular matrix;
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(F) {rt, vt(θ), et(θ), v′t(θ), e′t(θ)} is α-mixing with
∑∞

m=1 α(m)(q−2)q < ∞ for

some q > 2;

(G) supu

∑M
t=1 1{rt = vt(u)} ≤ t a.s.

Assumption 4.2.4. (A) The deterministic positive sequence cT satisfies cT =

o(1) and c−1
T = o(T 1/2).

(B) (i) 1
M

∑M
t=1 ℓ

′
t(θ)

⊤ℓ′t(θ)−D
p−→ 0, where D is defined in (4.2.9).

(ii) 1
M

∑M
t=1

1
et(θ)2

e′t(θ)
⊤e′t(θ)− E

[
1

et(θ)2
e′t(θ)

⊤e′t(θ)
]

p−→ 0.

(iii) 1
M

∑M
t=1

ft(vt(θ)|Ft−1)
−αet(θ)

v′t(θ)
⊤v′t(θ)− E

[
ft(vt(θ)|Ft−1)

−αet(θ)
v′t(θ)

⊤v′t(θ)
]

p−→ 0.

Patton et al. (2019) derive the asymptotic normality of
√
M
(
θ̂M − θ

)
, if

Assumptions 4.2.4 - 4.2.3 hold. Also, based on Theorem 3 in Patton et al. (2019),

we have the following proposition:

Proposition 4.2.1. If Assumptions 4.2.2 - 4.2.4 hold, then

D̂M −D
P−→ 0.

To simplify the monitoring scheme, we define a detector:

Γ
(
M,k; θ̂M

)
=

∣∣∣∣∣
∣∣∣∣∣ ∑
M<t≤M+k

ℓ̂′t

(
θ̂M

)
D̂

−1/2
M

∣∣∣∣∣
∣∣∣∣∣
∞

, (4.2.10)

and a boundary function:

g(M,k) = cM1/2

(
1 +

k

M

)
b

(
k

M

)
, (4.2.11)

where ||·||∞ denotes the maximum norm of a vector, i.e., for a generic vector

z = (z1, . . . , zd), ||z||∞ = max {|z1|, . . . , |zd|}, where d measures the size of vector,

c is the critical value and b(·) is a selected function, defined as:

b

(
k

M

)
=

(
k

M + k

)γ

,
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where 0 ≤ γ < 1
2
(as in Chu et al., 1996; Horváth et al., 2020a, 2021a).

Here, we define the stopping time k̂∗ as:

k̂∗ = min

{
k : Γ

(
M,k; θ̂M

)
> cM1/2

(
1 +

k

M

)
b

(
k

M

)}
, (4.2.12)

If k̂∗ < ∞, we say that a change occurs, so that under the null hypothesis,

lim
M→∞

PH0

(
k̂∗ < ∞

)
= lim

M→∞
PH0

Γ
(
M,k; θ̂M

)
g(M,k)

> 1 for some k ≥ 1

 = q,

(4.2.13)

where 0 < q < 1 is a prescribed significance level, and under the alternative

hypothesis,

lim
M→∞

PHA

(
k̂∗ < ∞

)
= lim

M→∞
PHA

Γ
(
M,k; θ̂M

)
g(M,k)

> 1 for some k ≥ 1

 = 1.

(4.2.14)

We impose the following conditions on the function b(t):

Assumption 4.2.5.

b(t) is continuous on (0,∞), (4.2.15)

and

inf
0<t<∞

b(t) > 0. (4.2.16)

Theorem 4.2.1. If Assumptions 4.2.1 - 4.2.5 hold, then

lim
M−→∞

PH0{k∗ < ∞} = 1− P

(
sup

0≤u≤1

|W (u)|
b(u/(1− u))

≤ c

)d

, (4.2.17)

where {W (u), 0 ≤ u ≤ 1} denotes a Wiener process.

An outline of the proof of this theorem is given in Appendix 4.B.
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4.2.3 Critical Values

In this section, we will demonstrate how to obtain the critical value c in (4.2.17)

and how to tune the detector and boundary to improve the false positive rate in

finite samples.

Based on Theorem 4.2.1, the values of c(γ, q) are defined below:

1− P

(
sup

0≤u≤1

|W (u)|
uγ

≤ c(γ, q)

)d

= q, (4.2.18)

which depends on the selection of boundary functions with parameter γ, the

prescribed significance level q and the dimension of the parameter vector d.

Table 4.2.1 provides the critical values c(γ, q) defined in (4.2.18) based on

1,000,000 replications of sup0≤u≤1 |W (u)|/uγ. The Wiener process is approxi-

mated on a grid of 10,000 equally spaced points in [0, 1].1

However, it is not realistic to monitor the change in an infinite horizon. In

practice, the monitoring is done for 1 ≤ k ≤ T . Thus, we consider the close-end

procedure in which the length of the training sample M and the termination time

T are asymptotically proportional.

Assumption 4.2.6. The time to termination of the sequential procedure T =

T (M), and:

lim
M→∞

T

T +M
= θ.

Remark 4.2.1. Given Assumption 4.2.6, for 0 ≤ γ < 1/2, the scale transforma-

tion of the Wiener process gives:

sup
0≤u≤θ

|W (u)|
uγ

= sup
0≤u∗≤1

|W (u∗θ)|
(u∗θ)γ

D
= θ1/2−γ sup

0≤u∗≤1

|W (u∗)|
u∗γ .

We provide the distribution of θ1/2−γ|W (u∗)|/u∗γ for γ = 0, .15, .25, .35, .45

and .49, d = 4 and T = τM , with τ ∈ {0.2, 0.4, 0.6, 0.8, 1} in Table 4.C.1 of

Appendix 4.C.



4.2. Sequential Monitoring 111

Table 4.2.1: Critical values c(γ, q) obtained via 1,000,000 simulations

γ = 0 γ = 0.15

q 0.10 0.05 0.01 0.10 0.05 0.01

d=3 2.378 2.630 3.142 2.444 2.691 3.198
d=4 2.480 2.725 3.226 2.544 2.785 3.283
d=5 2.558 2.796 3.289 2.622 2.857 3.341

γ = 0.25 γ = 0.35

q 0.10 0.05 0.01 0.10 0.05 0.01

d=3 2.513 2.755 3.254 2.633 2.866 3.349
d=4 2.613 2.850 3.337 2.728 2.960 3.433
d=5 2.688 2.919 3.400 2.801 3.028 3.497

γ = 0.45 γ = 0.49

q 0.10 0.05 0.01 0.10 0.05 0.01

d=3 2.925 3.143 3.594 3.280 3.491 3.928
d=4 3.013 3.226 3.672 3.365 3.572 4.001
d=5 3.081 3.288 3.730 3.430 3.633 4.055

Our preliminary results show that the monitoring scheme with the decision

functions defined in (4.2.10) and (4.2.11) over rejects when H0 holds. The over-

sized rejection rates are presented in the left panel of Table 4.3.2. To improve the

false positive rates, we follow Horváth et al. (2006) to modify the detector func-

tion by normalizing the gradient by a sequentially updated covariance estimator

D̃M,k, and we use this instead of the covariance estimator obtained based on the

fixed initial M observations D̂M . The sequentially updated covariance estimator

is defined as:

D̃M,k =
1

M + k

∑
1≤t≤M+k

ℓ̂′t

(
θ̂M

)⊤
ℓ̂′t

(
θ̂M

)
. (4.2.19)

Our modified detector function is:

Γ̃
(
M,k; θ̂M

)
=

∣∣∣∣∣
∣∣∣∣∣ ∑
M<t≤M+k

ℓ̂′t

(
θ̂M

)
D̃

−1/2
M,k

∣∣∣∣∣
∣∣∣∣∣
∞

. (4.2.20)
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Then, the corresponding version of the stopping time k∗∗ can be defined as:

k∗∗ = min

k :

∣∣∣∣∣
∣∣∣∣∣ ∑
M<t≤M+k

ℓ̂′t

(
θ̂M

)
D̃

−1/2
M,k

∣∣∣∣∣
∣∣∣∣∣
∞

> M1/2

(
1 +

k

M

)
b

(
k

M

) .

(4.2.21)

Remark 4.2.2. If Assumptions 4.2.1 - 4.2.5 hold, then:

lim
M−→∞

PH0(k
∗∗ < ∞) = 1− P

(
sup

0≤u≤1

|W (u)|
b(u/(1− u))

≤ c

)d

, (4.2.22)

where {W (u), 0 ≤ u ≤ 1} denotes a Wiener process.

Additionally, we follow Horváth et al. (2020a) and Horváth et al. (2021b) to

tune the boundary function from (4.2.11) to:

g̃(M,k) = c
(
1 +

γ

M1/2

)
M1/2

(
1 +

k

M

)(
k

k +M

)γ

. (4.2.23)

Since the tuning term in (4.2.23) converges to 1:

(
1 +

γ

M1/2

)
P−→ 1,

under the null hypothesis with the conditions of Theorem 4.2.1, we also have that:

lim
M→∞

PH0

 Γ̃
(
M,k; θ̂M

)
g̃(M,k)

> 1 for some k ≥ 1

 = q, (4.2.24)

and under the alternative hypothesis, we obtained that:

lim
M→∞

PHA

 Γ̃
(
M,k; θ̂M

)
g̃(M,k)

> 1 for some k ≥ 1

 = 1. (4.2.25)
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4.2.4 Long-run Covariance Estimators

It is also possible to improve the finite sample performance by considering the

weak dependence in {ℓ′t(u)}Mt=1 and using a long-run covariance given by:

D =
+∞∑

j=−∞

δj, δj = E[ℓ′t(u)⊤ℓ′t+j(u)]. (4.2.26)

The long-run covariance can be estimated by:

D̂M =
M

M − 1

M−1∑
j=−M+1

k

(
j

W

)
δ̂j(M), (4.2.27)

and by the matrix below:

D̃M+k =
M + k

M + k − 1

M+k−1∑
j=−M−k+1

k

(
j

W

)
δ̂j(M + k), k ≥ 0, (4.2.28)

where k(·) is a real-valued kernel function, W is the bandwidth parameter, and

δ̂j(M) is the sample autocovariance of {ℓ′t(u)}Mt=1. These estimators are extensions

of (4.2.8) and (4.2.19).

In this chapter, we consider the following three kernel functions for the long-

run covariance estimation:

(1) Bartlett (abbreviated by “BT”):

kBT (z) =

 1− |z|, for|z| ≤ 1,

0, otherwise,
(4.2.29)

(2) Truncated (abbreviated by “TR”):

kTR(z) =

 1, for |z| ≤ 1,

0, otherwise,
(4.2.30)
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(3) Quadratic spectral (abbreviated by “QS”):

kQS(z) =
25

12π2z2

(
sin(6πz/5)

6πz/5
− cos(6πz/5)

)
. (4.2.31)

We follow Newey and West (1994) to select the optimal bandwidth W for

these kernels, shown as:

WBT = ⌊4(M/100)2/9⌋, WTR = ⌊4(M/100)1/5⌋, WQS = ⌊4(M/100)2/25⌋.

4.3 Monte Carlo Simulations

In this section, we investigate the finite sample performance of the proposed mon-

itoring test in well-defined simulation setups, by illustrating how critical values

are obtained, designing simulations and presenting the results on empirical size

and power.

4.3.1 Simulation Design

Under the null hypothesis, we consider the following data generating process

(DGP):

rt = σtut, ut ∼ i.i.d. N (0, 1),

σ2
t = β0 + β1σ

2
t−1 + β2y

2
t−1, t = 1, ...,M,M + 1, . . . , T,

(4.3.1)

where rt is the simulated return process generated as the product of innovation

ut, which follows the Gaussian distribution, and conditional volatility σt given by

a GARCH(1,1) specification.

In our simulations, we use the boundary function g̃(M,k) given in (4.2.23) with

γ = {0, 0.15, 0.25, 0.35, 0.45, 0.49}, and the training sample sizes ofM = 1000 cor-

responding to 4 years of daily returns. The large sample size enables us to consider
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risk model estimations for quantiles as low as 1%, which are often used in risk

management (Patton et al., 2019). In simulations, we consider the testing sample

sizes of T = τM , with τ ∈ {0.2, 0.4, 0.6, 0.8, 1}. The parameter values are set

as (β0, β1, β2) = (0.05, 0.90, 0.05). Regarding the long-run covariance estimation,

we consider the estimators with the following kernels: Bartlett, Truncated, and

Quadratic Spectral, which are abbreviated as “BT”, “TR” and “QS” in Table

4.3.2. The results are based on 5000 repetitions.

Under the alternative hypothesis, we consider the following DGP before the

break [1,M + k∗):

rt = σtut, ut ∼ i.i.d. N (0, 1),

σ2
t = β0 + β1σ

2
t−1 + β2y

2
t−1, 1 ≤ t < M + k∗,

(4.3.2)

Regarding the post-break DGP, we consider the following setups:

• HA,1 : rt = σtut, ut ∼ N (0, 1), σ2
t = β0 + β∗

1σ
2
t−1 + β2y

2
t−1, M + k∗ ≤

t ≤ M + T ;

• HA,2 : rt = σtut, ut ∼ t(ν∗), σ2
t = β0 + β1σ

2
t−1 + β2y

2
t−1, M + k∗ ≤ t ≤

M + T ;

• HA,3 : rt = σtut, ut ∼ SN(λ∗), σ2
t = β0 + β1σ

2
t−1 + β2y

2
t−1, M + k∗ ≤

t ≤ M + T .

Under the hypothesis HA,2, t(ν
∗) denotes the Student’s t distribution with the

degree of freedom (DoF) parameter ν∗. Under the hypothesis HA,3, SN(λ∗) de-

notes the skewed Normal distribution with the skewness parameter λ∗. Regarding

the location of change point in the monitoring horizon, we consider k∗ = 1 and

0.5T . The former choice indicates that the change happens at the beginning of

the monitoring horizon, and the latter one means that the change occurs in the

middle of the monitoring horizon.
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We first elaborate on the behavior of the monitoring scheme under the various

alternative scenarios described above. Under the alternative hypothesis HA,1, the

persistence parameter changes from β1 = 0.90 in the GARCH(1,1) model to

β∗
1 = 0.94 after the training sample in increments of size 0.01, meaning that the

unconditional variance level gradually increases from 1 to 5.

In the following setups, we consider changes in the conditional distribution

of the returns. The alternative hypothesis HA,2 considers a change in the heavy-

tailedess of the underlying distribution of the DGP from the Gaussian distri-

bution N (0, 1) to the Student’s t distribution t(ν∗) with the DoF parameters

ν∗ = {9.5, . . . , 4.5}. This means that the process becomes more heavy-tailed after

the break. Additionally, under the alternative hypothesis HA,3, we use the skewed

Normal distribution with varying skewness parameters λ∗ = {−0.1, . . . ,−0.5} af-

ter the break to replace the original Gaussian distribution. In this scenario, the

process becomes more negatively skewed after the training sample.

In the simulations, we employ the GARCH-FZ model proposed by Patton

et al. (2019)2 to forecast VaR and ES jointly at 5% significance level3:

vt = a · σt,

et = b · σt, b < a < 0,

σ2
t = β0 + β1σ

2
t−1 + β2r

2
t−1,

(4.3.3)

where θ = (β1, β2, a, b) is the parameter vector of this model.4

4.3.2 Simulation Results

This section presents the empirical size and power of the proposed sequential

monitoring test under the null hypothesis and alternative hypotheses illustrated

in Section 4.3.1.

Table 4.3.2 shows the empirical sizes of the proposed test for the DGP dis-

cussed above at test significance levels of 10%, 5% and 1% with a range of values
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Table 4.3.2: Empirical size of Γ
(
M,k; θ̂M

)
for the GARCH-FZ model with

α = 5%

D̂M D̃M,k

Kernel q γ \ T 0.2M 0.4M 0.6M 0.8M M 0.2M 0.4M 0.6M 0.8M M

Cov 10% 0 0.186 0.153 0.163 0.173 0.186 0.104 0.107 0.108 0.115 0.104
0.15 0.155 0.144 0.135 0.148 0.155 0.098 0.104 0.098 0.097 0.098
0.25 0.203 0.179 0.186 0.192 0.203 0.092 0.104 0.094 0.100 0.092
0.35 0.202 0.181 0.191 0.197 0.202 0.160 0.164 0.158 0.156 0.160
0.45 0.267 0.247 0.252 0.259 0.267 0.166 0.164 0.168 0.168 0.166
0.49 0.251 0.225 0.236 0.243 0.251 0.152 0.150 0.151 0.152 0.152

5% 0 0.132 0.109 0.124 0.132 0.132 0.062 0.072 0.075 0.062 0.062
0.15 0.111 0.100 0.102 0.105 0.111 0.054 0.075 0.065 0.056 0.054
0.25 0.166 0.138 0.140 0.158 0.166 0.054 0.065 0.063 0.061 0.054
0.35 0.160 0.145 0.156 0.157 0.160 0.108 0.120 0.117 0.112 0.108
0.45 0.215 0.201 0.208 0.209 0.215 0.127 0.128 0.127 0.130 0.127
0.49 0.223 0.204 0.214 0.216 0.223 0.131 0.133 0.133 0.132 0.131

1% 0 0.069 0.066 0.062 0.072 0.069 0.023 0.034 0.025 0.024 0.023
0.15 0.066 0.059 0.059 0.062 0.066 0.018 0.026 0.026 0.023 0.018
0.25 0.096 0.084 0.093 0.093 0.096 0.021 0.030 0.027 0.020 0.021
0.35 0.105 0.095 0.093 0.100 0.105 0.049 0.066 0.059 0.051 0.049
0.45 0.146 0.142 0.142 0.142 0.146 0.084 0.088 0.086 0.084 0.084
0.49 0.178 0.163 0.173 0.176 0.178 0.089 0.091 0.091 0.091 0.089

BT 10% 0 0.152 0.153 0.173 0.183 0.188 0.092 0.090 0.083 0.085 0.085
0.15 0.141 0.144 0.141 0.156 0.160 0.089 0.084 0.076 0.073 0.072
0.25 0.167 0.192 0.193 0.204 0.214 0.105 0.083 0.081 0.074 0.071
0.35 0.193 0.203 0.207 0.206 0.215 0.151 0.146 0.143 0.142 0.141
0.45 0.245 0.252 0.260 0.266 0.270 0.158 0.152 0.152 0.154 0.156
0.49 0.220 0.242 0.255 0.266 0.270 0.143 0.152 0.149 0.148 0.148

5% 0 0.116 0.120 0.127 0.139 0.146 0.061 0.056 0.048 0.044 0.047
0.15 0.103 0.111 0.112 0.120 0.127 0.058 0.048 0.049 0.040 0.040
0.25 0.124 0.152 0.156 0.164 0.168 0.069 0.046 0.046 0.040 0.036
0.35 0.159 0.153 0.162 0.168 0.172 0.115 0.101 0.101 0.098 0.093
0.45 0.201 0.210 0.218 0.222 0.228 0.130 0.128 0.122 0.116 0.116
0.49 0.192 0.215 0.228 0.236 0.242 0.112 0.111 0.111 0.110 0.110

1% 0 0.066 0.067 0.075 0.083 0.076 0.029 0.022 0.015 0.016 0.016
0.15 0.063 0.066 0.066 0.070 0.074 0.016 0.020 0.016 0.010 0.010
0.25 0.074 0.087 0.101 0.102 0.104 0.029 0.020 0.016 0.015 0.014
0.35 0.108 0.099 0.102 0.104 0.106 0.067 0.050 0.043 0.039 0.038
0.45 0.130 0.148 0.150 0.151 0.154 0.092 0.084 0.081 0.081 0.080
0.49 0.152 0.172 0.180 0.183 0.188 0.083 0.083 0.083 0.081 0.081

(Continued on the next page)
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(Continued) Empirical size of Γ
(
M,k; θ̂M

)
for the GARCH-FZ model with

α = 5%

D̂M D̃M,k

Kernel q γ \ T 0.2M 0.4M 0.6M 0.8M M 0.2M 0.4M 0.6M 0.8M M

TR 10% 0 0.188 0.156 0.177 0.185 0.188 0.090 0.097 0.087 0.091 0.090
0.15 0.159 0.147 0.141 0.159 0.159 0.077 0.091 0.078 0.082 0.077
0.25 0.215 0.190 0.195 0.211 0.215 0.076 0.084 0.082 0.079 0.076
0.35 0.212 0.204 0.210 0.212 0.212 0.145 0.152 0.151 0.148 0.145
0.45 0.278 0.258 0.265 0.272 0.278 0.156 0.154 0.156 0.155 0.156
0.49 0.274 0.247 0.259 0.269 0.274 0.149 0.150 0.150 0.149 0.149

5% 0 0.146 0.121 0.133 0.143 0.146 0.050 0.057 0.055 0.050 0.050
0.15 0.124 0.109 0.113 0.119 0.124 0.046 0.049 0.052 0.043 0.046
0.25 0.170 0.154 0.156 0.165 0.170 0.039 0.052 0.049 0.046 0.039
0.35 0.176 0.155 0.161 0.166 0.176 0.097 0.107 0.106 0.100 0.097
0.45 0.230 0.212 0.222 0.228 0.230 0.123 0.129 0.126 0.124 0.123
0.49 0.241 0.217 0.227 0.236 0.241 0.114 0.114 0.115 0.114 0.114

1% 0 0.076 0.070 0.077 0.086 0.076 0.016 0.022 0.015 0.016 0.016
0.15 0.073 0.066 0.069 0.071 0.073 0.012 0.022 0.021 0.013 0.012
0.25 0.102 0.090 0.100 0.102 0.102 0.014 0.020 0.019 0.017 0.014
0.35 0.106 0.099 0.101 0.103 0.106 0.040 0.051 0.047 0.042 0.040
0.45 0.156 0.149 0.149 0.151 0.156 0.081 0.086 0.082 0.081 0.081
0.49 0.190 0.173 0.182 0.184 0.190 0.083 0.084 0.083 0.083 0.083

QS 10% 0 0.192 0.154 0.176 0.182 0.192 0.093 0.099 0.090 0.101 0.093
0.15 0.158 0.156 0.146 0.154 0.158 0.091 0.099 0.085 0.090 0.091
0.25 0.217 0.190 0.198 0.212 0.217 0.081 0.092 0.084 0.089 0.081
0.35 0.221 0.209 0.213 0.216 0.221 0.148 0.163 0.163 0.156 0.148
0.45 0.290 0.278 0.282 0.283 0.290 0.155 0.156 0.163 0.157 0.155
0.49 0.273 0.244 0.258 0.265 0.273 0.149 0.151 0.150 0.149 0.149

5% 0 0.146 0.120 0.127 0.142 0.146 0.053 0.055 0.059 0.054 0.053
0.15 0.125 0.115 0.111 0.117 0.125 0.050 0.057 0.055 0.045 0.050
0.25 0.169 0.150 0.158 0.163 0.169 0.043 0.056 0.053 0.049 0.043
0.35 0.174 0.161 0.168 0.169 0.174 0.098 0.111 0.109 0.104 0.098
0.45 0.249 0.230 0.239 0.242 0.249 0.123 0.129 0.123 0.123 0.123
0.49 0.247 0.218 0.232 0.240 0.247 0.124 0.126 0.124 0.124 0.124

1% 0 0.077 0.069 0.075 0.082 0.077 0.018 0.025 0.018 0.019 0.018
0.15 0.074 0.061 0.070 0.072 0.074 0.017 0.024 0.024 0.016 0.017
0.25 0.103 0.090 0.099 0.103 0.103 0.016 0.022 0.020 0.019 0.016
0.35 0.105 0.103 0.103 0.104 0.105 0.042 0.055 0.050 0.044 0.042
0.45 0.178 0.165 0.171 0.174 0.178 0.087 0.095 0.089 0.088 0.087
0.49 0.196 0.178 0.187 0.190 0.196 0.087 0.087 0.087 0.087 0.087

Note: Empirical size of the sequential monitoring scheme for the change points in the GARCH-
FZ model via 5000 simulations generated by the GARCH(1,1)-Gaussian model. VaR and ES
are jointly estimated at 5% level. We consider that M = 1000 and monitoring sample sizes
of {0.2M, . . . ,M}. Regarding the long-run covariance estimator, we consider the following
estimator kernels: Bartlett (BT), Truncated (TR) and Quadratic Spectral (QS).
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of γ and monitoring horizon sizes. Overall, there are four major findings. First,

the monitoring manner with the fixed covariance estimator D̂M is oversized com-

pared with the prescribed significance levels: 10%, 5% and 1%. However, when

we replace the fixed estimator with the sequentially updated covariance estimator

D̃M,k, we can see an improvement in the empirical size. Second, the selection of

the boundary parameter matters for the empirical size results. We obtain an im-

proved empirical size control when select lower values of the boundary parameter,

e.g., γ = 0, 0.15 or 0.25. It is interesting to observe a discontinuity between the

empirical size with γ = 0.25 and 0.35. This finding may be associated with model

misspecification. In this case, using the GARCH-FZ model for empirical applica-

tions requires γ = 0, 0.15 or 0.25 to avoid false positives. The selection of γ based

on other semiparametric risk models requires further investigations. Third, the

results are consistent across different monitoring horizons. Thus, the proposed

monitoring scheme can be applied to different monitoring horizons. Fourth, the

choice of long-run covariance estimator for this test has noticeable impact on the

empirical size. In particular, when the Bartlett kernel is used to construct the

covariance estimator, the empirical sizes are reasonable, especially at 1% signifi-

cance level. The empirical size results shown in the table are visualized in Figures

4.3.1 and 4.3.2.

Figure 4.3.3 shows the convergence of sample sizes of the detection method

with the sequentially updated covariance estimator D̃M,k for 5% (VaR, ES) to

justify Theorem 4.2.1 and Remark 4.2.2. In this case, we consider that the training

sample size M varies from 1000 to 5000, and the monitoring horizon has the same

sample size of the training sample (T = M). In general, it is noticeable that the

empirical sizes are more likely to approach the prescribed significance levels q

when M goes larger. Additionally, the results are consistent across different

selections for the long-run covariance estimation kernel function and the boundary

parameter. In particular, the convergence of the empirical size is more obvious

when we select boundary parameter γ = 0.35. Whilst the rates of false detections
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are generally oversized when we choose γ = 0.45 and 0.49, we still can notice

decreasing trends of the empirical sizes when M → ∞.

Figures 4.3.4 and 4.3.5 present the power curve for the sequential monitoring

scheme for change points in the GARCH-FZ model for 5% (VaR, ES) under the

alternative HA,1 for k∗ = 1 and 0.5T at the test significance level 5%. In this

case, we consider the training sample size of M = 1000 and the same size for the

monitoring horizon. The empirical probability of stopping under the alternative

is high in all cases of γ we considered. It is clear that the empirical power is

approaching 1 as β∗
1 goes to 0.94, i.e., the unconditional variance increases to 5,

which is consistent with our expectations.

Next, we evaluate the empirical distribution of the stopping time k̂∗ estimated

by the proposed sequential monitoring scheme. The empirical density functions

of k̂∗ for a change point in the GARCH-FZ for 5% (VaR, ES) with q = 5% with

M = T = 1000 and β∗
1 = 0.94 are exhibited in Figures 4.3.6 and 4.3.7.5 In Fig-

ure 4.3.6, we observe that in the case of a change occurring immediately in the

monitoring horizon, the higher value of γ, the faster the detection of the change

point. However, the detection scheme with a higher γ is not recommended in

empirical applications, due to possible spurious detections before the theoretical

change point in the scenario of k∗ = 0.5T .6 This false positive problem is vi-

sualized as the “humps” at the start of the monitoring sample in Figure 4.3.7.

Overall, for k∗ = 0.5T , the monitoring scheme with γ = 0.15 provides the shortest

delay in detection. Thus, in general, γ = 0.15 (displayed as the solid red line) is

recommended because it gives a good balance between the length of delay and

the proportion of false early detections.

In this chapter, we also propose a novel way to identify the dominant source

of the change point by linking it to the parameter that has the largest absolute
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value in the vector below:

∑
M<t≤M+k̂∗

ℓ̂′t

(
θ̂M

)
D̂

−1/2
M ,

after the stopping time k̂∗ is first detected.7 Figure 4.3.8 and 4.3.9 show the

dominant source of the change point in the GARCH-FZ model for 5% (VaR, ES)

at 5% test significance level with M = T = 1000 and k∗ = 1. In this setting,

we consider gradual increases in the value of β∗
1 from 0.90 to 0.94 and keep the

other parameter values unchanged. Also, we assume that the multipliers for VaR

and ES stay constant. The simulation results displayed in Figure 4.3.8 indicate

that the structural break is mainly caused by a change in β∗
1 instead of the other

parameters. Figure 4.3.9 shows that the dominant source is correctly identified

as β∗
1 for various locations of the change point. Overall, the results are consistent

for different values of γ.

We next consider changes in the underlying distribution in the DGP, from the

Gaussian distribution to the Student’s t distribution with the DoF parameters

ν∗ = {9.5, . . . , 4.5}, meaning that the process becomes more heavy-tailed after

the break. In this scenario, the change of tailedness is not likely to be reflected in

the monitoring sample immediately after the break. To improve the simulation

results, we use larger sample sizes for the historical sample and testing sample in

this setting, i.e., M = T = 2000. Figure 4.3.10 shows the empirical power of the

test with the change occurring at k∗ = 1 in the GARCH-FZ model for 5% VaR

and ES with different boundary curves. It is obvious from this figure that the

sequential monitoring scheme with a lower value of γ generates a higher power

than the scheme with γ =0.45 or 0.49.

It is worthwhile to highlight the dominant source of the change point when the

underlying distribution of the process switches from the Gaussian to the Student’s

t with ν∗ = 4.5. Based on the setup under the alternative hypothesis HA,1, we



4.3. Monte Carlo Simulations 125

Figure 4.3.4: Empirical power of the monitoring scheme for a change point
in the GARCH-FZ with k∗ = 1 under HA,1

Note: This figure presents the empirical power of the sequential monitoring scheme for a change
point in the GARCH-FZ for 5% (VaR, ES) at 5% test significance level with M = T = 1000
and k∗ = 1 under HA,1
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Figure 4.3.5: Empirical power of the monitoring scheme for a change point
in the GARCH-FZ with k∗ = 0.5T under HA,1

Note: This figure presents the empirical power of the sequential monitoring scheme for a change
point in the GARCH-FZ for 5% (VaR, ES) at 5% test significance level with M = T = 1000
and k∗ = 0.5T under HA,1

Figure 4.3.6: Empirical density functions of the stopping time k̂∗ for a change
point in the GARCH-FZ with k∗ = 1 and β∗

1 = 0.94

Note: This figure presents the empirical density functions of the stopping time k̂∗ estimated by
the sequential monitoring scheme for a change point in the GARCH-FZ for 5% (VaR, ES) at
5% test significance level with M = T = 1000, k∗ = 1 and β∗

1 = 0.94
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Figure 4.3.7: Empirical density functions of the stopping time k̂∗ for a change
point in the GARCH-FZ with k∗ = 0.5T and β∗

1 = 0.94

Note: This figure presents the empirical density functions of the stopping time k̂∗ estimated by
the sequential monitoring scheme for a change point in the GARCH-FZ for 5% (VaR, ES) at
5% test significance level with M = T = 1000, k∗ = 0.5T and β∗

1 = 0.94

Figure 4.3.8: The dominant source of the change in the GARCH-FZ for
5% (VaR, ES) at 5% test significance level with M = T = 1000, k∗ = 1 and
β∗
1 = 0.94
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Figure 4.3.9: The dominant source of the change in the GARCH-FZ for 5%
(VaR, ES) at 5% test significance level with M = T = 1000, k∗ = 0.5T and
β∗
1 = 0.94

expect that the change point only causes a change in the multipliers for VaR and

ES in the GARCH-FZ model, instead of the parameters in the GARCH process.

Figure 4.3.11 reveals that the dominant source for the change point under the

hypothesis HA,2 is mainly the parameters a and b, which are the multipliers for

VaR and ES in the model. Meanwhile, the identified dominant source of structural

break is rarely β1 or β2. Additional figures illustrating the empirical power curve,

the estimated densities of the stopping time and the identified dominant source

of change points for another location of the change point, i.e., k∗ = 0.5T , are

provided in Appendix 4.D.

Under the alternative hypothesis HA,3, we investigate the performance of the

proposed test to identify changes in the skewness of the residuals. Figure 4.3.12

shows the empirical power curve for the alternative HA,3 for K∗ = 1 at 5% test

significance level with the sample sizes M = T = 2000. It is clear that the

empirical power of our test increases as the skewness gets more negative. In
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general, the choice of γ has a minor effect on the empirical power, but when

γ =0, 0.15 or 0.25, the test seems to have a higher power. This finding also

motivates us to select γ with a lower value in practical applications. Regarding

the dominant source of the change point, Figure 4.3.13 illustrates that the change

point is mainly caused by a change in the multiplier b for ES in the GARCH-FZ

model, and this finding is more salient with γ =0.45 or 0.49. While the test can

identify the change of the other parameters, e.g., β2 with a good success rate, in

the simulations with a low value of γ, the multiplier b for ES is still identified

most often as the dominant source of the change point. The simulation results

with k∗ = 0.5T are reported in Appendix 4.D.

Figure 4.3.10: Empirical power of the monitoring scheme for a change point
in the GARCH-FZ with k∗ = 1 under HA,2

Note: This figure presents the empirical power of the sequential monitoring scheme for a change
point in the GARCH-FZ for 5% (VaR, ES) at 5% test significance level with M = T = 2000
and k∗ = 1 under HA,2
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Figure 4.3.11: The dominant source of the change in the GARCH-FZ for
5% (VaR, ES) at 5% test significance level with M = T = 2000, k∗ = 1 and
ν∗ = 4.5

Figure 4.3.12: Empirical power of the monitoring scheme for a change point
in the GARCH-FZ with k∗ = 1 under HA,3

Note: This figure presents the empirical power of the sequential monitoring scheme for a change
point in the GARCH-FZ for 5% (VaR, ES) at 5% test significance level with M = T = 2000
and k∗ = 1 under HA,3
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Figure 4.3.13: The dominant source of the change in the GARCH-FZ for
5% (VaR, ES) at 5% test significance level with M = T = 2000, k∗ = 1 and
λ∗ = −0.5

4.4 Empirical Applications

In this section, we apply the proposed monitoring scheme to identify change

points in risk models applied for financial returns. Our main aim is to investigate

whether this test is able to detect in real time well-known events that are known

to have caused shocks in financial markets. Here, we consider the daily log returns

of: the S&P 500 index and the GBP/EUR exchange rate, which are collected from

Datastream and Bloomberg, respectively. The risk model for (VaR, ES) used in

our empirical applications is the GARCH-FZ model proposed by Patton et al.

(2019), which is the same as the one used in the simulation study. We consider

the semiparametrically estimated (VaR, ES) at 5% test significance level.8

To verify the condition that there is no break in the selected training samples,

we firstly apply the two-sample Kolmogorov-Smirnov (KS) test to check whether

the first and second half of the training sample are identically distributed. Addi-

tionally, we test that there is no break in the time series of (VaR, ES) in training

samples by employing the loss-based Wilcoxon test (Lazar et al., 2021). Table
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4.4.1 displays the results for the selected periods, specifically the KS test statis-

tics, loss-based Wilcoxon test statistics and the average values of 5% VaR and

ES. These results suggest that there is no break in the series of training samples.

In the subsections below, we apply our proposed test for change point detection.

Table 4.4.1: Description of the selected time series of training and testing
samples

Time span KS Stat Wilcoxon Stat 5% VaR 5% ES

Sample A: S&P 500 Index

Pre financial crisis period
Training 23/May/2003-20/Dec/2005 0.058 0.782 -1.229 -1.498
Testing 21/Dec/2005-23/Feb/2007 0.101 1.790 -1.037 -1.407

Event I: Financial crisis
Training 23/May/2003-20/Dec/2005 0.073 1.524 -1.121 -1.414
Testing 21/Dec/2005-16/July/2010 0.146∗∗∗ 2.043∗∗∗ -2.909 -4.476

Event II: COVID pandemic
Training 06/Feb/2018-01/Oct/2019 0.067 0.688 -1.877 -2.566
Testing 02/Oct/2019-31/Dec/2020 0.137∗∗∗ 1.327∗∗ -2.954 -5.092

Sample B: GBP/EUR exchange rate

Event III: Brexit
Training 18/Aug/2010-12/Feb/2014 0.084 2.490 -0.795 -1.004
Testing 13/Feb/2014-09/Apr/2018 0.097∗∗∗ 2.398∗∗ -0.939 -1.357

Note: This table includes the time span, the Kolmogorov-Smirnov test statistics, the loss-based
Wilcoxon test statistics and the 5% VaR and ES estimated by historical simulations. The two-
sample Kolmogorov-Smirnov test is conducted for the first and second half of each training and
testing samples. The loss-based Wilcoxon test is conducted for the training and testing samples
based on Lazar et al. (2021), and the critical values can be found in Table 4.C.2 of Appendix
4.C. ∗∗∗ and ∗∗ indicate values significant at 1% and 5% significance level. All samples are daily
log returns.

4.4.1 Application 1: the S&P 500 Index

In this application, we consider monitoring for change points in the GARCH-FZ

model applied on the daily log returns of the S&P 500 index during three selected

periods: (1) 23 May 2003 to 23 February 2007, (2) 23 May 2003 to 16 July 2010,

and (3) 6 February 2018 to 31 December 2020. The testing samples of these

selected periods cover the pre-financial crisis period, the great financial crisis and

the COVID pandemic, respectively.9
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Pre-financial Crisis Period

The training sample spans from 23 May 2003 to 20 December 2005, containing

observations after the burst of the dot-com bubble. Then we monitor the detector

from 21 December 2005 to 23 February 2007, which is before the financial crisis.

The KS statistic indicates that the log returns in the training sample generally

follow the same distribution. Also, there is no significant change in the time series

of (VaR, ES) in both samples based on the loss-based Wilcoxon test statistics.

The daily log returns of the S&P 500 index are displayed in the upper panel

of Figure 4.4.1, where the observations with the white background are in the

training sample used for parameter estimation, and the observations with the

gray background are in the testing sample used to monitor for change points.

We present the trajectory of the detector and the boundary in the lower panel of

Figure 4.4.1. The detector never crosses the boundary curve during the testing

period, indicating that no changes in the risk model parameters can be detected

during the monitoring horizon. The result can be interpreted to mean that the

parameters in the GARCH-FZ model estimated from the training sample are still

valid in the testing sample. For practitioners, it is not necessary to adjust the

risk model parameters in this case.

Financial Crisis

Next, we extend the testing sample to include the Great Recession from the end

of 2007 to 2009. In this application, the training sample spans from 23 May 2003

to 20 December 2005, which is the same as the one for the pre-financial crisis

period. Here we consider the testing sample from the end of the training sample

until 16 July 2010. We are interested in checking whether this monitoring scheme

is able to detect the start of the financial crisis in December 2007. In Figure

4.4.2, the detector Γ
(
M,k; θ̂M

)
exceeds the selected boundary curve g(M,k) on

8 March 2007, which is earlier than the beginning of the financial crisis. This
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Figure 4.4.1: Real-time detection for the S&P 500 index within the pre-
financial crisis period

Note: Upper panel: The log return of the S&P 500 during 15/Oct/2003 to 23/Feb/2007; lower
panel: Real-time detector based on the GARCH-FZ model versus the boundary function with
γ = 0.15 in the testing period (gray shaded area).

finding indicates that the sequential monitoring scheme enables us to identify

change points even before the actual crisis unfolds. This early detection provides

practitioners with a timing to adjust the parameter values of their risk models

in order to measure the risk more effectively during the financial crisis. Next, we

estimate the parameters of the GARCH-FZ model and we calculate the average

values of the time series of VaR, ES and loss values for both pre-break and post-

break samples. Also, for the sample following the break detection, we compute

the average loss for the (VaR, ES) estimated by the model with parameter values

based on the pre-break sample, which is denoted by Loss NC in the table. This is

followed by their identification of the dominant source of the change points. All

statistics and results discussed above are displayed in Table 4.4.2.

The left panel of Table 4.4.2 shows the parameter estimates. After the detected

change point, we can observe an increase in the value of β2 from 0.015 to 0.088,

which leads to a higher level of volatility. This observation is consistent with the
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identified dominant source of the change point, i.e., β2 dominates the others in

the parameters vector at the detected change point. There is no big difference

in the multipliers a and b for VaR and ES before and after the identified change

point, but still the higher volatility level post-break will result in a lower level

of VaR and ES consequently. The average FZ loss value for (VaR, ES) based

on the parameters estimated in the post-break sample is 1.261, which is almost

half of the average loss value calculated by using the parameters based on the

pre-break sample (2.481). The large difference in the average loss values indicates

the importance of accurate change point detection.

Additionally, we provide the detection results based on the GARCH-Gaussian

model for VaR and ES in Appendix 4.F. Figure 4.F.1 shows that the detected

change point is 13 November 2007. The test based on the GARCH-Gaussian

model can detect the change point later than the one based on the GARCH-FZ

model, due to likely model misspecification issues.

Figure 4.4.2: Real-time detection for the S&P 500 index within the financial
crisis period

Note: Upper panel: The log return of the S&P 500 during 12/Jan/2004 to 09/Dec/2009; lower
panel: Real-time detector based on the GARCH-FZ model versus the boundary function with
γ = 0.15 in the testing period (gray shaded area). The vertical dash line denotes the estimated
change point for 5% VaR and ES.
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COVID Pandemic

In this section, we investigate the effect of the COVID pandemic on the US

stock market by detecting change points in risk models. Regarding the training

sample, we select a relatively more stable period before the pandemic from 6

February 2018 to 1 October 2019 to ensure that there is no structural break in

the sample.10 Then we consider the testing sample following the training sample

up to 31 December 2020. Figure 4.4.3 shows that the detector Γ
(
M,k; θ̂M

)
for

1% VaR and ES is above the boundary curve after 9 March 2020, when the US

stock market declined the most in a week since the financial crisis of 2007–2008.

If risk managers adjusted their reserves against risk, they could have avoided the

large losses that occurred on Black Thursday (12 March 2020) and Black Monday

II (16 March 2020).

The middle panel of Table 4.4.2 indicates that after the detected change point,

the multipliers for VaR and ES in this model experience an increase. Even though

the unconditional volatility decreases after the detection, the change in the pa-

rameter values of a and b dominates and leads to a decline in the level of risk

measures. It is worthwhile to mention that if we keep using the parameters es-

timated in the training sample, the average loss would be 1.892, which is much

higher than the average loss computed taking the change point into consideration,

1.332.

Figure 4.F.2 shows that the detected change point based on the GARCH-

Gaussian model is 16 March 2020, when the third trading curb occurred. The

detected date is somewhat compared with the one based on the GARCH-FZ

model. This finding indicates that the GARCH-FZ model is more efficient than

the GARCH-Gaussian model in this case because it is able to detect change points

much earlier.
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Figure 4.4.3: Real-time detection for the S&P 500 index within the COVID-
19 pandemic period

Note: Upper panel: The log return of the S&P 500 during 06/Feb/2018 to 31/Dec/2020; lower
panel: Real-time detector based on the GARCH-FZ model versus the boundary function with
γ = 0.15 in the testing period (gray shaded area). The vertical dash line denotes the estimated
change point for 5% VaR and ES.

4.4.2 Application 2: the GBP/EUR Exchange Rate

At last, we focus on the impact of Brexit on the fluctuations of the GBP/EUR

exchange rates. In this case, we select the training sample as spanning from 18

August 2010 to 12 February 2014 to ensure no change points in this period. Next,

we apply the proposed monitoring test for the testing sample from 13 February

2014 to 9 April 2018. Figure 4.4.4 shows that the detectors Γ
(
M,k; θ̂M

)
for

1%, 2.5% and 5% risk measures cross the boundary curve on 24 August 2015, 24

February 2016 and 24 June 2016, respectively.

When we consider α = 5%, we can identify the change point located on the

day after the Brexit referendum, when the sterling was at a 31-year low, having

fallen 11% in two trading days, and the FTSE 100 index had surrendered 85 bil-

lion pounds. However, if we consider risk estimates at lower significance levels,

i.e., 1% and 2.5% risk measures, we can detect change points in the GARCH-FZ
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model even earlier than the Brexit referendum. Also, the lower the significance

level we consider, the earlier the change point can be detected. This observa-

tion implies that the GBP/EUR exchange rates already contained information

about the uncertainty associated with the likely vote outcome before the Brexit

referendum.

Figure 4.4.4: Real-time detection for the GBP/EUR exchange rate

Note: Upper panel: The log return of the GBP/EUR exchange rate during 18/Aug/2010 to
09/Apr/2018; lower panel: Real-time detector based on the GARCH-FZ model versus the
boundary function with γ = 0.15 in the testing period (gray shaded area). The vertical solid
line denotes the estimated change point for the 1% risk measures; the vertical dash-dot line
denotes the estimated change point for the 2.5% risk measures; the vertical dash line denotes
the estimated change point for the 1% risk measures.

4.5 Conclusions

In this chapter, we propose a new test to sequentially monitor change points in

the M-estimators of semiparametric risk models for VaR and ES risk measures

jointly by evaluating the change in the gradient of the FZ loss function introduced

by Fissler and Ziegel (2016). When the gradient-based detector exceeds a selected

boundary function, a change point is detected. We perform MC simulations for
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Table 4.4.2: Estimated coefficients of the GARCH-FZ model in both train-
ing and monitoring samples

Financial crisis COVID Pandemic Brexit (α = 5%)

Variables
Before After Before After Before After

detection detection detection detection detection detection

β1 0.926 0.914 0.707 0.494 0.974 0.707
(0.120) (0.050) (0.203) (0.207) (0.024) (0.192)

β2 0.015 0.088 0.210 0.053 0.015 0.013
(0.021) (0.050) (0.138) (0.030) (0.011) (0.031)

a -2.108 -1.771 -1.957 -4.204 -2.628 -4.117
(2.092) (0.295) (0.976) (1.017) (1.604) (0.309)

b -2.650 -2.177 -2.948 -5.888 -3.087 -4.905
(2.609) (0.218) (1.255) (1.384) (1.861) (0.530)

VaR -1.100 -3.204 -1.641 -3.061 -1.174 -1.466
ES -1.382 -3.938 -2.473 -4.287 -1.379 -1.817
Loss 0.322 1.261 0.820 1.332 0.308 0.595
Loss NC - 2.481 - 1.408 - 0.628
Dominant Source β2 β1 a

Table 4.4.3: Estimated coefficients of the GARCH-FZ model in both train-
ing and monitoring samples of Case IV (COVID Pandemic) for risk measures
with different α

α = 1% α = 2.5% α = 5%

Variables
Training Before After Training Before After Training Before After
sample detection detection sample detection detection sample detection detection

β1 0.930 0.963 0.753 0.930 0.969 0.776 0.930 0.974 0.707
(0.162) (0.036) (0.049) (0.162) (0.011) (0.048) (0.162) (0.024) (0.192)

β2 0.021 0.014 0.129 0.021 0.032 0.364 0.021 0.015 0.013
(0.034) (0.011) (0.249) (0.034) (0.011) (0.361) (0.034) (0.011) (0.031)

a -2.992 -2.995 -2.948 -2.992 -2.215 -1.986 -2.992 -2.628 -4.117
(4.501) (1.979) (1.444) (4.501) (0.161) (0.541) (4.501) (1.604) (0.309)

b -3.334 -3.324 -4.964 -3.334 -2.506 -3.191 -3.334 -3.087 -4.905
(5.009) (2.244) (2.240) (5.009) (0.234) (0.457) (5.009) (1.861) (0.530)

VaR -1.156 -1.149 -1.426 -1.156 -1.215 -1.458 -1.156 -1.174 -1.466
ES -1.288 -1.275 -2.402 -1.288 -1.375 -2.342 -1.288 -1.379 -1.817
Loss 0.237 0.235 0.835 0.237 0.301 0.785 0.237 0.308 0.595

Dominant Source a β1 a
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various scenarios with finite sample sizes. The monitoring scheme exhibits a

reasonable size control under the null hypothesis and high empirical power in all

cases across different selections of boundary curves. We recommend a boundary

function by comparing the empirical size, power, and stopping time distribution.

In an empirical study, we apply the monitoring scheme for the S&P 500 index

and the GBP/EUR exchange rate to sequentially monitor the possible change

points in the selected samples. For each case, we consider the VaR and ES

estimated by a selected semiparametric model at 1%, 2.5% and 5% significance

levels, respectively. The main finding indicates that the lower the significance

level, the earlier the detected change point. In most cases, our test can identify

structural changes even before a market crash occurs. Most detected change

points can be associated with well-known financial or economic events, such as

the day after the Brexit referendum and the Black Thursday in the COVID-19

recession period. According to our findings, we can conclude that practitioners

can improve their risk management strategies by monitoring for change points in

their risk models and then adjusting the parameters of the models based on the

identified change points.

Our proposed sequential monitoring test for change points in the M-estimators

of semiparametric risk models for VaR and ES contribute to the ongoing debate

on the structural breaks in risk measures and the tail index. However, this chapter

only considers models for VaR and ES jointly. It would be of interest to extend

this test to models of other measures of uncertainty: volatility, individual VaR and

expectile. It might also be interesting to formulate tests to sequentially monitor

change points in the tail dependence, modelled by copula functions.



Appendices

4.A First-order Derivatives of the FZ0 Loss Func-

tion

The FZ0 loss function is:

ℓ(y, v, e;α) = − 1

αe
1{y ≤ v}(v − y) +

v

e
+ log(−e)− 1. (4.A.1)

First, we take the first-order derivatives of this loss function w.r.t. risk mea-

sures v and e, respectively. These are:

v′ =
∂ℓ

∂v
= − 1

αe
1{y ≤ v}+ 1

e
= − 1

αe
(1{y ≤ v} − α) (4.A.2)

e′ =
∂ℓ

∂e
=

1

αe2
1{y ≤ v}(v − y)− v

e2
+

1

e
(4.A.3)

In the simulation study and empirical work, we select the GARCH-FZ model

to forecast VaR and ES. The model can be expressed as:

vt = a · σt,

et = b · σt, b < a < 0,

σ2
t = β0 + β1σ

2
t−1 + β2r

2
t−1,

(4.A.4)

where σ2
t is the conditional variance and is assumed to follow a GARCH(1,1)

141



4.A. First-order Derivatives of the FZ0 Loss Function 142

process. The parameters of this model are estimated by minimizing the loss

function FZ0, instead of using (Q)MLE.

In the second step, we take the first derivatives of the risk measures vt and et

w.r.t. each parameter in the GARCH-FZ model. Thus, we have the first-order

derivatives of vt:

∂vt
∂β1

= a · 1
2
(β0 + β1σ

2
t−1 + β2r

2
t−1)

−1/2 ·
(
σ2
t−1 + β1

∂σ2
t−1

∂β1

)
=

1

2
aσ−1

t ·
(
σ2
t−1 + β1

∂σ2
t−1

∂β1

)
=

1

2

vt
σ2
t

(
σ2
t−1 + β1

∂σ2
t−1

∂β1

)
;

(4.A.5)

∂vt
∂β2

= a · 1
2
(β0 + β1σ

2
t−1 + β2r

2
t−1)

−1/2 ·
(
β1

∂σ2
t−1

∂β2

+ r2t−1

)
=

1

2
aσ−1

t ·
(
β1

∂σ2
t−1

∂β2

+ r2t−1

)
=

1

2

vt
σ2
t

(
β1

∂σ2
t−1

∂β2

+ r2t−1

)
;

(4.A.6)

∂vt
∂a

= σt + a · 1
2
(β0 + β1σ

2
t−1 + β2r

2
t−1)

−1/2 · β1

∂σ2
t−1

∂a

= σt;

(4.A.7)

∂vt
∂b

= a · 1
2
(β0 + β1σ

2
t−1 + β2r

2
t−1)

−1/2 · β1

∂σ2
t−1

∂b

= 0;

(4.A.8)

and the first-order derivatives of et:

∂et
∂β1

= b · 1
2
(β0 + β1σ

2
t−1 + β2r

2
t−1)

−1/2 ·
(
σ2
t−1 + β1

∂σ2
t−1

∂β1

)
=

1

2
bσ−1

t ·
(
σ2
t−1 + β1

∂σ2
t−1

∂β1

)
=

1

2

et
σ2
t

(
σ2
t−1 + β1

∂σ2
t−1

∂β1

)
;

(4.A.9)
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∂et
∂β2

= b · 1
2
(β0 + β1σ

2
t−1 + β2r

2
t−1)

−1/2 ·
(
β1

∂σ2
t−1

∂β2

+ r2t−1

)
=

1

2
bσ−1

t ·
(
β1

∂σ2
t−1

∂β2

+ r2t−1

)
=

1

2

et
σ2
t

(
β1

∂σ2
t−1

∂β2

+ r2t−1

)
;

(4.A.10)

∂et
∂a

= b · 1
2
(β0 + β1σ

2
t−1 + β2r

2
t−1)

−1/2 · β1

∂σ2
t−1

∂a

= 0;

(4.A.11)

∂et
∂b

= σt + b · 1
2
(β0 + β1σ

2
t−1 + β2r

2
t−1)

−1/2 · β1

∂σ2
t−1

∂b

= σt.

(4.A.12)

Finally, by using the Chain Rule for the derivations, we have the first-order

derivatives of the FZ0 loss function w.r.t. each parameter in the GARCH-FZ

model as follows:
∂ℓ

∂β1

=
∂ℓ

∂vt

∂vt
∂β1

+
∂ℓ

∂et

∂et
∂β1

∂ℓ

∂β2

=
∂ℓ

∂vt

∂vt
∂β2

+
∂ℓ

∂et

∂et
∂β2

∂ℓ

∂a
=

∂ℓ

∂vt

∂vt
∂a

+
∂ℓ

∂et

∂et
∂a

∂ℓ

∂b
=

∂ℓ

∂vt

∂vt
∂b

+
∂ℓ

∂et

∂et
∂b

(4.A.13)
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4.B Outline of Proof of Theorem 4.2.1

The proof of Theorem 4.2.1 is based on the lemmas stated below.

Lemma 4.B.1. If Assumptions 4.2.2 - 4.2.4 hold, then:

sup
1≤k<∞

∣∣∣∣∣ ∑
M<t≤M+k

ℓ′t(θ̂M)−
∑

M<t≤M+k

ℓ′t(θ)

∣∣∣∣∣
M1/2

(
1 + k

M

)
b
(

k
M

) a.s.
= O

(
M−1/2

)
,

as M → ∞.

Proof. By the proof of Patton et al. (2019), we have:∣∣∣∣∣ ∑
M<t≤M+k

(
ℓ′t(θ̂M)− ℓ′t(θ)

)∣∣∣∣∣ a.s.= o (1) ,

implying Lemma 4.B.1.

Let

ℓ′′t (u) =
1

et(u)2
e′t(u)

⊤e′t(u) +
ft(vt(u)|Ft−1)

−αet(u)
v′t(u)

⊤v′t(u), (4.B.1)

and

Λ(u) = E[ℓ′′0(u)]. (4.B.2)

Lemma 4.B.2. If Assumptions 4.2.2 - 4.2.4 hold, then:∣∣∣∣∣ 1M ∑
1≤t≤M

ℓ′′t (θ)−Λ(θ)

∣∣∣∣∣→ 0 a.s.
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Proof. Suppose that Assumptions 4.2.4 (B) (ii) and (iii) hold, we have:

∣∣∣∣∣ 1M
M∑
t=1

(
1

et(θ)2
e′t(θ)

⊤e′t(θ) +
ft(vt(θ)|Ft−1)

−αet(θ)
v′t(θ)

⊤v′t(θ)

)

− E
[

1

et(θ)2
e′t(θ)

⊤e′t(θ) +
ft(vt(θ)|Ft−1)

−αet(θ)
v′t(θ)

⊤v′t(θ)

] ∣∣∣∣∣ P−→ 0

The proof follows Theorem 3 of Patton et al. (2019).

Lemma 4.B.3. If the assumptions of Theorem 4.2.1 are satisfied, then:

sup
1≤k<∞

∣∣∣∣∣ ∑
M<t≤M+k

ℓ′t(θ̂M)−

( ∑
M<t≤M+k

ℓ′t(θ) +
(
θ̂M − θ

)
kΛ(θ)

)∣∣∣∣∣
M1/2

(
1 + k

M

)
b
(

k
M

) = oP (1),

as M → ∞.

Proof. First we show that:

sup
1≤k<∞

∣∣∣∣∣ ∑
M<t≤M+k

ℓ′′t (θ)− kΛ(θ)

∣∣∣∣∣
M
(
1 + k

M

)
b
(

k
M

) = oP (1), (4.B.3)

as M → ∞. Since ℓ′′t (θ) is a stationary sequence, by Assumption 4.2.5, (4.B.3)

implies that:

sup
1≤k<∞

∣∣∣∣∣ ∑
M<t≤M+k

ℓ′′t (θ)− kΛ(θ)

∣∣∣∣∣
M + k

= oP (1), (4.B.4)

as M → ∞. According to Lemma 4.B.2, we can derive (4.B.4).

Then Theorem 2 of Patton et al. (2019) implies that:

∣∣∣θ̂M − θ
∣∣∣ = OP (M

−1/2). (4.B.5)

Using the mean value theorem for
∑

ℓ′t(θ̂M) and (4.B.3) and (4.B.5) for
∑

ℓ′′t (θ̂M),

we have Lemma 4.B.3.



4.B. Outline of Proof of Theorem 4.2.1 146

Lemma 4.B.4. If Assumptions 4.2.2 - 4.2.4 hold, then:

√
M(θ̂M − θ) = −Λ−1(θ)

1√
M

M∑
t=1

ℓ′t(θ) + oP (1).

Proof. Lemma 4.B.4 follows from Lemma 1 of Patton et al. (2019).

Lemma 4.B.5. If the assumptions of Theorem 4.2.1 hold, then:

sup
1≤k<∞

∣∣∣∣∣ ∑
M<t≤M+k

ℓ′t(θ̂M)−

( ∑
M<t≤M+k

ℓ′t(θ)− k
M

∑
1≤t≤M

ℓ′t(θ)

)∣∣∣∣∣
M1/2

(
1 + k

M

)
b
(

k
M

) = oP (1),

as M → ∞.

Proof. The Lemma 7 of Patton et al. (2019) states the asymptotic normality of

M−1/2
∑

1≤t≤M ℓ′t(θ). If Assumption 4.2.5 holds, we have:

max
1<k≤M

∣∣ k
M

∑
1≤t≤M ℓ′t(θ)

∣∣
M1/2

(
1 + k

M

)
b
(

k
M

)
≤ sup

1≤k<∞

k
M

1 + k
M

sup
1≤j<∞

1

b
(
j
k

)M−1/2

∣∣∣∣∣ ∑
1≤t≤M

ℓ′t(θ)

∣∣∣∣∣ = oP (1).

Hence combining Lemmas 4.B.3 and 4.B.4, we have the results in Lemma 4.B.5.

Lemma 4.B.6. If the assumptions of Theorem 4.2.1 hold, then:

sup
1≤k<∞

∣∣∣∣∣ ∑
M<t≤M+k

ℓ′t(θ)− k
M

∑
1≤t≤M

ℓ′t(θ)

∣∣∣∣∣
M1/2

(
1 + k

M

)
b
(

k
M

) D−→ sup
0<u<∞

|WD(1 + u)− (1 + u)WD(1)|
(1 + u)b(u)

,

as M → ∞, where WD(s) is a Gaussian process with the mean E[WD(s)] = 0

and E[WD(s)⊤WD(s′)] = min(s, s′)D.

Proof. As is shown in Assumption 4.2.1, ℓ′t(θ) is a stationary ergodic martingale
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difference sequence. We also have Cov(ℓ′t(θ)) = D. Thus, based on the Cramér-

Wold device, we have that, for any τ̃ > 0,

M−1/2
∑

1≤t≤uM

ℓ′t(θ)
D(0,τ̃)−−−→ WD(u) as M → ∞. (4.B.6)

Hence,

M−1/2

 ∑
M<t≤(1+u)M

ℓ′t(θ)− u
∑

1≤t≤M

ℓ′t(θ)

 D(0,τ̃)−−−→ WD(1 + u)− (1 + u)WD(1),

(4.B.7)

for any τ̃ > 0 as M → ∞. By the Hájek-Rényi-Chow inequality, we have:

lim
τ̃→∞

lim sup
M→∞

P

(
sup

τ̃M≤k<∞

∣∣∣∣∣ ∑
1≤t≤M+k

ℓ′t(θ)

∣∣∣∣∣
/(

M1/2

(
1 +

k

M

)
b

(
k

M

))
≥ x

)
= 0,

(4.B.8)

for any x > 0. The coordinates of WD(u) are Brownian motions, so by the law

of the itegrated logarithm, we have:

sup
τ̃≤u<∞

WD(1 + u)

(1 + u)b(u)
→ 0 a.s. τ̃ → ∞. (4.B.9)

By using (4.B.7) and (4.B.9), we can prove the Lemma 4.B.6

Proof. Proof of Theorem 4.2.1. Putting together Lemmas, we have:

sup
1≤t<∞

∣∣∣∣∣ ∑
M<i≤M+k

ℓ′t(θM)D̂
−1/2
M

∣∣∣∣∣
M1/2

(
1 + t

M

)
b
(

t
M

) D−→ sup
0<u<∞

∣∣(WD(1 + u)− (1 + u)WD(1))D−1/2
∣∣

(1 + u)b(u)
.

Elementary arguments show that:

E
[(
(WD(1 + u)− (1 + u)WD(1))D−1/2

)⊤ (
(WD(1 + u)− (1 + u)WD(1))D−1/2

)]
= u(1 + s)Id, u ≤ s,
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where Id is the identity matrix in Rd. Computing the covariances one can verify

that:

(WD(1 + u)− (1 + u)WD(1))D−1/2

D
=

{
(1 + u)W1

(
u

1 + u

)
, . . . , (1 + u)Wd

(
u

1 + u

)}
, u ≥ 0,

where W1,W2, . . . ,Wd are independent Wiener processes. Hence,

sup
0<u<∞

∣∣(WD(1 + u)− (1 + u)WD(1))D−1/2
∣∣

(1 + u)b(u)
D
= max

1≤i≤d
sup
0<s<1

|Wi(s)|
b
(

s
1−s

) ,
completing the proof of Theorem 4.2.1.
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4.C Tables

Table 4.C.1: Critical values for θ1/2−γ |W (u∗)|/u∗γ for γ = 0, .15, .25, .35, .45 and
.49, with the parameter vector dimension of d = 4

γ q \ T 0.2M 0.4M 0.6M 0.8M M

0 10% 1.013 1.326 1.519 1.654 1.754
5% 1.113 1.457 1.669 1.817 1.927
1% 1.317 1.725 1.976 2.151 2.281

0.15 10% 1.359 1.641 1.805 1.916 1.996
5% 1.487 1.796 1.975 2.097 2.185
1% 1.753 2.117 2.329 2.471 2.575

0.25 10% 1.670 1.910 2.045 2.134 2.197
5% 1.821 2.083 2.230 2.327 2.396
1% 2.132 2.440 2.612 2.725 2.806

0.35 10% 2.085 2.261 2.355 2.416 2.459
5% 2.262 2.453 2.555 2.621 2.668
1% 2.624 2.845 2.963 3.040 3.094

0.45 10% 2.755 2.830 2.869 2.894 2.911
5% 2.950 3.030 3.072 3.098 3.116
1% 3.357 3.449 3.496 3.526 3.547

0.49 10% 3.305 3.323 3.332 3.338 3.342
5% 3.508 3.527 3.537 3.543 3.547
1% 3.930 3.951 3.962 3.968 3.973

Note: The critical values c(γ, q) are based on 1,000,000 replications of sup0≤u∗≤1 |W (u∗)|/u∗γ .
The Wiener process is approximated on a grid of 10,000 equally spaced points in [0, 1].
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Table 4.C.2: Critical values of the loss-based Wilcoxon test for each selected
training and testing samples

Time span 10% 5% 1%

Sample A: S&P 500 Index

Case I: no break
Training 23/May/2003-20/Dec/2005 2.442 2.469 2.525
Testing 21/Dec/2005-23/Feb/2007 2.231 2.269 2.325

Case II: financial crisis
Training 23/May/2003-20/Dec/2005 3.104 3.142 3.197
Testing 21/Dec/2005-16/July/2010 1.246 1.478 1.768

Case III: COVID Pandemic
Training 06/Feb/2018-01/Oct/2019 2.193 2.253 2.341
Testing 02/Oct/2019-31/Dec/2020 0.991 1.125 1.649

Sample B: GBP/USD exchange rate

Case IV: Brexit
Training 18/Aug/2010-12/Feb/2014 3.329 3.364 3.434
Testing 13/Feb/2014-09/Apr/2018 1.451 1.675 3.597

Note: The critical values of the loss-based Wilcoxon test for each sample are computed via 1000
times stationary bootstrapping with the optimal block length proposed by Patton et al. (2009).

Table 4.C.3: Estimated coefficients of the GARCH-Gaussian model in both
training and monitoring samples

Financial crisis COVID Pandemic Brexit

Variables
Training Before After Training Before After Training Before After
sample detection detection sample detection detection sample detection detection

β0 0.019 0.014 0.030 0.047 0.042 0.068 0.006 0.001 0.022
(0.013) (0.009) (0.015) (0.012) (0.042) (0.038) (0.003) (0.001) (0.012)

β1 0.913 0.923 0.885 0.771 0.720 0.777 0.932 0.961 0.893
(0.044) (0.034) (0.022) (0.046) (0.039) (0.058) (0.022) (0.007) (0.052)

β2 0.043 0.044 0.107 0.186 0.280 0.204 0.043 0.034 0.024
(0.018) (0.016) (0.021) (0.045) (0.046) (0.074) (0.013) (0.006) (0.015)

VaR -1.043 -1.027 -2.812 -1.472 -1.583 -2.437 -0.771 -0.816 -0.929
ES -1.316 -1.296 -3.521 -1.854 -1.988 -3.101 -0.966 -1.024 -1.148
Loss 0.311 0.303 1.297 0.802 0.833 1.289 0.004 0.060 0.228

Dominant Source β0 β2 β1



4.D. Figures for the GARCH-FZ Model 151

4.D Figures for Simulations Results Based on

the GARCH-FZ Model

Figure 4.D.1: Empirical power of the monitoring scheme for a change point
in the GARCH-FZ with k∗ = 0.5T under HA,2

Note: This figure presents the empirical power of the sequential monitoring scheme for a change
point in the GARCH-FZ for 5% (VaR, ES) at 5% test significance level with M = T = 2000
and k∗ = 0.5T under HA,2.
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Figure 4.D.2: Empirical density functions of the stopping time k̂∗ for a
change point in the GARCH-FZ with k∗ = 1 and ν∗ = 4.5

Note: This figure presents the empirical density functions of the stopping time k̂∗ estimated
by the sequential monitoring scheme for a change point in the GARCH-FZ for 5% (VaR, ES)
at 5% test significance level with M = T = 2000, k∗ = 1 and ν∗ = 4.5.

Figure 4.D.3: Empirical density functions of the stopping time k̂∗ for a
change point in the GARCH-FZ with k∗ = 0.5T and ν∗ = 4.5

Note: This figure presents the empirical density functions of the stopping time k̂∗ estimated
by the sequential monitoring scheme for a change point in the GARCH-FZ for 5% (VaR, ES)
at 5% test significance level with M = T = 2000, k∗ = 0.5T and ν∗ = 4.5.
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Figure 4.D.4: The dominant source of the change in the GARCH-FZ for
5% (VaR, ES) at 5% test significance level with M = T = 2000, k∗ = 0.5T and
ν∗ = 4.5
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Figure 4.D.5: Empirical power of the monitoring scheme for a change point
in the GARCH-FZ with k∗ = 0.5T under HA,3

Note: This figure presents the empirical power of the sequential monitoring scheme for a change
point in the GARCH-FZ for 5% (VaR, ES) at 5% test significance level with M = T = 2000
and k∗ = 0.5T under HA,3.
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Figure 4.D.6: Empirical density functions of the stopping time k̂∗ for a
change point in the GARCH-FZ with k∗ = 1 and λ∗ = −0.5

Note: This figure presents the empirical density functions of the stopping time k̂∗ estimated
by the sequential monitoring scheme for a change point in the GARCH-FZ for 5% (VaR, ES)
at 5% test significance level with M = T = 2000, k∗ = 1 and λ∗ = −0.5.

Figure 4.D.7: Empirical density functions of the stopping time k̂∗ for a
change point in the GARCH-FZ with k∗ = 0.5T and λ∗ = −0.5

Note: This figure presents the empirical density functions of the stopping time k̂∗ estimated
by the sequential monitoring scheme for a change point in the GARCH-FZ for 5% (VaR, ES)
at 5% test significance level with M = T = 2000, k∗ = 0.5T and λ∗ = −0.5.
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Figure 4.D.8: The dominant source of the change in the GARCH-FZ for
5% (VaR, ES) at 5% test significance level with M = T = 2000, k∗ = 0.5T and
λ∗ = −0.5
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4.E Figures for Simulations Results Based on

the GARCH-skewed t Model

Figure 4.E.1: The dominant source of change point when β1 increases to
0.94

Note: We use the GARCH(1,1)-skewed t: rt = σtut, ut ∼ i.i.d. skewed t (ν, λ), σ2
t = β0 +

β1σ
2
t−1+β2y

2
t−1, where (β0, β1, β2, ν, λ) = (0.05, 0.9, 0.05, 20.5, 0) to simulate 3000 times for the

training sample. After the change point k∗ = 1, we increase the value of β1 to 0.94. Here, the
monitoring sample size T is equal to the training sample size M , which is 1000.
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Figure 4.E.2: The dominant source of change point when β2 increases to
0.09

Note: We use the GARCH(1,1)-skewed t: rt = σtut, ut ∼ i.i.d. skewed t (ν, λ), σ2
t = β0 +

β1σ
2
t−1+β2y

2
t−1, where (β0, β1, β2, ν, λ) = (0.05, 0.9, 0.05, 20.5, 0) to simulate 3000 times for the

training sample. After the change point k∗ = 1, we increase the value of β2 to 0.09. Here, the
monitoring sample size T is equal to the training sample size M , which is 1000.

Figure 4.E.3: The dominant source of change point when ν decreases to 4.5

Note: We use the GARCH(1,1)-skewed t: rt = σtut, ut ∼ i.i.d. skewed t (ν, λ), σ2
t = β0 +

β1σ
2
t−1+β2y

2
t−1, where (β0, β1, β2, ν, λ) = (0.05, 0.9, 0.05, 20.5, 0) to simulate 3000 times for the

training sample. After the change point k∗ = 1, we decrease the value of ν to 4.5. Here, the
monitoring sample size T is equal to the training sample size M , which is 1000.



4.E. Figures for the GARCH-skewed t Model 159

Figure 4.E.4: The dominant source of change point when λ decreases to -0.5

Note: We use the GARCH(1,1)-skewed t: rt = σtut, ut ∼ i.i.d. skewed t (ν, λ), σ2
t = β0 +

β1σ
2
t−1+β2y

2
t−1, where (β0, β1, β2, ν, λ) = (0.05, 0.9, 0.05, 20.5, 0) to simulate 3000 times for the

training sample. After the change point k∗ = 1, we decrease the value of λ to -0.5. Here, the
monitoring sample size T is equal to the training sample size M , which is 1000.
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4.F Empirical Results Based on the GARCH-

Gaussian Model

Figure 4.F.1: Real-time detection based on the GARCH-Gaussian model
for the S&P 500 index within the financial crisis period

Note: Upper panel: The log return of the S&P 500 during 23 May 2003 to 16 July 2010; lower
panel: Real-time detector based on the GARCH-Gaussian model versus the boundary function
with γ = 0.15 in the testing period (gray shaded area). The vertical dash line denotes the
estimated volatility change point.



4.F. Empirical Results Based on the GARCH-Gaussian Model 161

Figure 4.F.2: Real-time detection based on the GARCH-Gaussian model
for the S&P 500 index within the COVID-19 pandemic period

Note: Upper panel: The log return of the S&P 500 during 6 February 2018 to 31 December
2020; lower panel: Real-time detector based on the GARCH-Gaussian model versus the
boundary function with γ = 0.15 in the testing period (gray shaded area). The vertical dash
line denotes the estimated volatility change point.

Figure 4.F.3: Real-time detection based on the GARCH-Gaussian model
for the GBP/EUR exchange rate

Note: Upper panel: The log return of the GBP/EUR exchange rate during 18 August 2010 to
9 April 2018; lower panel: Real-time detector based on the GARCH-Gaussian model versus
the boundary function with γ = 0.15 in the testing period (gray shaded area). The vertical
dash line denotes the estimated volatility change point.
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Notes

1In the table, we only consider risk models with 3 to 5 parameters. More selected critical

values are available upon request.

2The GARCH-FZ model is one of the semiparametric models for VaR and ES, which has a

similar framework with the standard GARCH(1,1) model, but has an extension for VaR and

ES modelling. Rather than estimating the parameters of this model using (Q)MLE, parameter

estimates are obtained via FZ loss minimization.

3Results for other significance levels are available on request.

4In this model, we have β0 = 1 − β1 − β2, so the parameter vector to be estimated is

θ = (β1, β2, a, b).

5The empirical densities of the stopping time are displayed by using kernel smoothing func-

tion estimates with a select bandwidth.

6The sequential monitoring scheme with a high value of γ is not applicable for the GARCH-

FZ model to estimate 5% VaR and ES. The choice of the boundary parameter γ depends on

model selection as well as the significance levels for VaR and ES.

7We also perform the identification of the dominant source of the change in the GARCH-

skewed Normal model for 5% VaR and ES. More details can be found in Appendix 4.E.

8In the case of the effect of Brexit on the GBP/EUR exchange rate market, we compare

change point detection in (VaR, ES) at 1%, 5% and 10% separately.

9According to the National Bureau of Economic Research (NBER), the Great Recession

and the COVID-19 recession are during the period from December 2007 to June 2009, and the

period from February 2020 to April 2020, respectively.

10The KS test statistic in Table 4.4.1 shows that the log returns in the training sample are

probably from the same distribution. The loss-based Wilcoxon test indicates no change points

detected in the time series of VaR and ES for the training sample.



Chapter 5

Conclusions and Further

Research

5.1 Summary of the Findings

This thesis contributes to risk measurement and management by proposing im-

proved estimation and forecasting methods for two widely used risk measures,

VaR and ES. It also provides valuable suggestions regarding model construction

and the timing of parameter adjustments for risk managers, regulators and other

practitioners.

Chapter 2 introduces a set of risk models, which are extended from the dy-

namic semiparametric models proposed by Patton et al. (2019) to forecast the

tuple (VaR, ES) jointly. These models incorporate the intraday and overnight in-

formation into the semiparametric GAS framework. We use the realized volatility

at 5-min and 10-min frequencies and combine them with the overnight returns,

respectively, to proxy the market fluctuation during the trading time as well as

overnight. We observe an improvement in the estimation and forecasting per-

formance of risk measures over both in-sample and out-of-sample horizons. In

estimating the in-sample parameters, we show that, in general, the (VaR, ES)

forecasts produced by the extended semiparametric models can generate rela-

163
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tively low in-sample losses compared with the forecasts of the original models.

Additionally, the coefficients of intraday and overnight variables in each com-

prehensive framework are statistically significant at 1% significance levels. This

finding indicates that the in-sample estimation can benefit from adding intraday

and overnight information into semiparametric risk models. We employ prevail-

ing backtests in the current literature for the forecasts generated by our proposed

models and benchmarks regarding the out-of-sample results. The out-of-sample

results provide substantial evidence of the outperformance of our extended models

for each backtest. Especially the semiparametric GAS two-factor model combined

with the realized volatility at 10-min frequency and the overnight return can pro-

vide more accurate risk forecasts across different assets and probability levels.

This chapter contributes to the literature on forecasting risk measures and the

use of intraday information by providing solid empirical evidence.

Chapter 3 proposes an in-sample detection method for the change points in

(semi)parametric models used for risk measure estimations. This method is based

on the Wilcoxon test applied to the FZ loss functions for joint (VaR, ES), so we

call it the loss-based Wilcoxon test. The general framework of the proposed test

can accommodate any (semi)parametric models for VaR and ES if the consistency

of the estimated parameters can hold. We derive the asymptotic behaviour of the

proposed test statistic with specified conditions as the sample size converges to

infinity. However, using the asymptotic limit to obtain p-values for a test statistic

has been often criticized due to the oversized empirical results for small finite

samples. To address the finite sample size distortions, we use the stationary

bootstrap method to obtain the p-values. We also verify the validity of using

stationary bootstrap for this test. The MC simulations are performed based

on various setups: no change point in a stationary GARCH process, changes

in the volatility and heavy-tailedness of the returns with different locations of

change points. The simulation results reveal that the loss-based Wilcoxon test has

better size control under the null hypothesis and higher power under alternative
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hypotheses compared with alternative tests. Using the log returns of the S&P 500

index for the empirical application, we show the advantages of the proposed test

with real data. Our test can identify the change points within the in-sample data,

and each identified change point can be associated with a well-known market

event. We contribute to the current literature on change point detection by

proposing a method to identify changes in (semi)parametric (VaR, ES) jointly.

Chapter 4 investigates the sequential monitoring scheme for changes in M-

estimators of semiparametric risk models for (VaR, ES). The proposed test is

based on evaluating the change in the normalized gradient of the FZ loss func-

tion. This monitoring scheme detects a change point when the gradient-based

detector crosses a selected boundary curve. In our simulations, we design a set

of scenarios to evaluate the performance of our proposed test for finite sample

sizes. The simulation results exhibit that this test has a reasonable size control

under the null hypothesis and high empirical test power under various alternative

hypotheses. In addition to examining the empirical size and power, we study

the empirical density of the stopping time estimated by the proposed sequential

monitoring scheme. The results point out that there is not much delay for the

detected change point when we compare it with the location of the actual change

point. Moreover, we explore the dominant source of the change point among the

parameters of a semiparametric risk model in an innovative way. The dominant

source of the change points can be identified when we modify the volatility, skew-

ness or kurtosis of the simulated process. In the empirical analysis, we apply

the proposed monitoring scheme for log returns of the S&P 500 index and the

GBP/EUR exchange rate. Overall, the detected change point based on our pro-

posed scheme can be associated with financial or economic events, and in some

cases, the detection precedes the actual market crash, for example, the Black

Thursday in the Covid-19 recession period. Our proposed sequential monitor-

ing test can contribute to the ongoing debate on the structural breaks in risk

measures and the tail index.
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The main findings shown in this thesis can provide several practical sugges-

tions for practitioners in financial markets. First, risk managers can incorporate

the realized measures and overnight returns into the semiparametric observation-

driven models to yield more robust VaR and ES forecasts. Also, banks and other

financial institutions can adjust their minimum capital requirements according to

the predicted 1% VaR and 2.5% ES. Based on the forecasts, asset managers can

construct optimal portfolios by solving the mean-VaR or mean-ES optimization

problem to achieve a reasonable trade-off between profit and risk. Furthermore,

we conclude that risk management practitioners can improve the in-sample risk

estimates by first identifying change points in the loss series for (VaR, ES) risk

measures and then computing model parameter values based on the identified

change points. Considering change points improves the plain (semi)parametric

risk models in terms of risk measure estimation and forecasting. Finally, risk

managers can benefit from using the sequential monitoring scheme to detect real-

time change points in a risk model. By adjusting the parameter values of their

risk models based on the timing identified by the monitoring scheme, practition-

ers can be aware of significant losses in their portfolios during market crashes and

make corresponding preparations.

5.2 Suggestions for Future Research

While this thesis contributes to the ongoing debate on market risk measurement

and the topics of risk estimation and forecasting from several perspectives, we

still leave research gaps to be filled. We now discuss potential topics for further

studies based on the main findings of this thesis.

Risk Forecasting Chapter 2 indicates that incorporating intraday and overnight

information into a semiparametric risk model for joint (VaR, ES) can improve the

forecasting accuracy of the risk models. However, our study only considers the
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realized measures and overnight returns as explanatory variables. Along this line

of research, one could rely on other intraday proxies, such as the realized volatility

at other frequencies, realized bipower variation estimates (Barndorff-Nielsen and

Shephard, 2004), good/bad realized volatility (Patton and Sheppard, 2015), or

intraday ranges (Meng and Taylor, 2020). Additionally, one could use other

exogenous information in the semiparametric risk model, e.g., the information

from options markets (implied volatility or variance risk premium), the market

sentiment extracted from news or firms announcements based on textual analysis,

or low-frequency macroeconomic variables (one could solve the mixed frequency

issue by employing the MIDAS framework by Engle et al. (2013)).

Another exciting research question is to develop the dynamic relationship be-

tween VaR and ES in a semiparametric model. One could follow the work of

Taylor (2019) which models an AR relationship between VaR and ES and the

study of Taylor (2022) which proposes a dynamic Omega ratio to describe the

gap between VaR and ES. It would be helpful to construct new dynamics to model

the ratio of VaR over ES.

Change Point Detection for Other Risk Measures Chapters 3 and 4 pro-

pose in-sample and real-time change points detection methods in risk measures.

However, we only consider models for VaR and ES jointly in this thesis. Thus,

it would be natural to propose change points detection methods for other mar-

ket risk measures (volatility, expectile, and VaR individually) in both in-sample

and real-time schemes. As discussed in the Introduction, elicitable risk measures

have loss (scoring) functions. The forecasts of volatility are often backtested in

a Q-LIKE framework that is based on the Gaussian or Student’s t likelihood

function. The generalized piecewise linear loss function introduced by Koenker

and Bassett (1978) is the loss function to be used for VaR measures taken in

isolation. Regarding the expectile, the asymmetric least squares loss function,

proposed by Newey and Powell (1987), can be used. From a theoretical point of
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view, the loss-based Wilcoxon test and the sequential monitoring test introduced

in Chapters 3 and 4 can be extended to other risk measures based on the specified

loss functions discussed above.

Change Point Detection for Tail Dependence In Chapters 3 and 4, we only

consider the change points detection within a univariate process but ignore the

dependence between the tails of bivariate processes. Ye et al. (2012) use an in-

novative change point testing method for structural changes in the dependence

between time series of two equity index returns within an in-sample period. How-

ever, the sequential monitoring for real-time changes in tail dependence remains

unexplored. To fill this gap, one may construct a novel method to identify the

changes occurring in the tail dependence during the out-of-sample period, with

the dependence modelled using copula functions.

Change Point Detection Method with Forward-looking Information To

enhance the change point detection methods proposed in Chapters 3 and 4, it

would be worthwhile to propose monitoring schemes that rely on forward-looking

information (e.g., VIX and risk-neutral moments). In the existing literature,

a strand of studies confirm the improvement of forecasting by using forward-

looking information extracted from options markets (see Huggenberger et al.,

2018; Molino and Sala, 2021, for example). Bauer and Huggenberger (2021) doc-

ument that the risk estimates that incorporate information from options markets

can quickly react to changing market conditions. The inclusion of forward-looking

information is likely to improve the detection of change points, especially in fast

moving markets.

Empirical Applications for Other Assets This thesis only considers stock in-

dices and foreign exchange rates in the empirical studies. The in-depth theoretical

results presented in each chapter could be applied to other types of assets, e.g.,
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corporate bonds, options, commodities, commodity futures, and cryptocurrencies.

As documented in several other studies (see Lazar and Zhang, 2019; Christoffersen

et al., 2019; Liu et al., 2022, for more details), the log returns of commodities,

commodity futures and cryptocurrencies are fat-tailed and negatively skewed. As

such, it is worthwhile to apply the semiparametric models proposed in Chapter

2 for other asset classes. Also, another promising direction for further studies

could be applying the change point detection methods in Chapters 3 and 4 to the

market risk measures of the asset classes mentioned above.
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Horváth, L., Liu, Z., Rice, G., Wang, S., 2020a. Sequential monitoring for changes

from stationarity to mild non-stationarity. Journal of Econometrics 215, 209–

238.
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Hušková, M., Kirch, C., 2008. Bootstrapping confidence intervals for the change-

point of time series. Journal of Time Series Analysis 29, 947–972.

Hwang, E., Shin, D. W., 2015. Stationary bootstrap for U-statistics under strong

mixing. Communications for Statistical Applications and Methods 22, 81–93.

Inclan, C., Tiao, G. C., 1994. Use of cumulative sums of squares for retrospective

detection of changes of variance. Journal of the American Statistical Association

89, 913–923.

Koenker, R., Bassett, G., 1978. Regression quantiles. Econometrica 46, 33–50.

Koenker, R., Machado, J. A., 1999. Goodness of fit and related inference pro-

cesses for quantile regression. Journal of the American Statistical Association

94, 1296–1310.

Kupiec, P. H., 1995. Techniques for verifying the accuracy of risk measurement

models. Journal of Derivatives 3, 73–84.

Lazar, E., Wang, S., Xue, X., 2021. Loss function-based change point detection

in risk measures .



REFERENCES 179

Lazar, E., Xue, X., 2020. Forecasting risk measures using intraday data in a gen-

eralized autoregressive score framework. International Journal of Forecasting

36, 1057–1072.

Lazar, E., Zhang, N., 2019. Model risk of expected shortfall. Journal of Banking

& Finance 105, 74–93.

Leung, M., Li, Y., Pantelous, A. A., Vigne, S. A., 2021. Bayesian value-at-risk

backtesting: The case of annuity pricing. European Journal of Operational

Research 293, 786–801.

Liu, Y., Tsyvinski, A., Wu, X., 2022. Common risk factors in cryptocurrency.

Journal of Finance Forthcoming.

Loschi, R. H., Iglesias, P. L., Arellano-Valle, R. B., Cruz, F. R., 2007. Full predic-

tivistic modeling of stock market data: Application to change point problems.

European Journal of Operational Research 180, 282–291.

Louzis, D. P., Xanthopoulos-Sisinis, S., Refenes, A. P., 2014. Realized volatility

models and alternative value-at-risk prediction strategies. Economic Modelling

40, 101–116.

Lucas, A., Opschoor, A., 2018. Fractional integration and fat tails for realized

covariance kernels. Journal of Financial Econometrics 17, 66–90.

Meng, X., Taylor, J. W., 2018. An approximate long-memory range-based ap-

proach for value at risk estimation. International Journal of Forecasting 34,

377–388.

Meng, X., Taylor, J. W., 2020. Estimating value-at-risk and expected shortfall us-

ing the intraday low and range data. European Journal of Operational Research

280, 191–202.



REFERENCES 180
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