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Abstract

The thesis investigates topics on how to improve the estimation and forecasting for
market risk measures (focusing on Value at Risk and Expected Shortfall, denoted
by VaR and ES, jointly) by building superior models with extra information and
by detecting structural changes in risk models (in a retrospective manner and a
real-time manner).

The first contribution is introducing a new framework by incorporating intra-
day information into dynamic semiparametric models to forecast VaR and ES. We
consider the intraday measures including the realized variance and overnight re-
turns. In the practical application, we apply the proposed models to international
stock market indices, then evaluate the forecasting performance via various back-
tests. Our results show that our models outperform the benchmarks consistently
across all indices and various significance levels.

Secondly, this thesis develops a test that can efficiently captures change points
in the (VaR, ES) estimated by (semi)parametric models. We derive the asymp-
totic distribution of the test statistic and adopt a stationary bootstrapping tech-
nique to obtain the p-values of the test statistic. Monte Carlo simulation results
show that our proposed test has better size control and higher power than the
alternative tests. An empirical study of risk measures based on the S&P 500
index illustrates that our proposed test can detect change points associated with
well-known market events.

The third main contribution is proposing a sequential monitoring method to

detect changes in semiparametric risk models for (VaR, ES). We derive the asymp-
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totic theorem for the monitoring scheme under the null hypothesis. Our Monte
Carlo simulations with finite sample sizes show that this test has reasonable size
control under the null hypothesis and high power under alternative hypotheses.
Empirical applications based on the S&P 500 index and the GBP/EUR exchange
rate illustrate that the detected change points often precede the actual market

crashes.
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Chapter 1

Introduction

1.1 Motivation for the Thesis

In the context of the ongoing COVID-19 recession and recent financial crises,
the measurement and forecasting of financial risk have attracted unprecedented
attention from academia and the financial industry. According to Basel III, fi-
nancial risk can be divided into three main categories: market risk, credit risk
and operational risk. Market risk measures the potential losses of portfolios ex-
posed to the fluctuation of market indices or prices at a given significance level.
Credit risk refers to the possibility of a loss caused by a failure to repay loans or
default of contractual obligations by a borrower. Operational risk is associated
with a potential loss resulting from the ineffectiveness or failures in the internal
activities, procedures and systems. In this thesis, we focus on the concept of
market risk and on approaches that accurately estimate and forecast market risk
measures.

From the perspective of financial risk managers, a risk measure can be consid-
ered a map from spaces of probability distributions to actual losses. Risk measures
can provide banks and other financial institutions with specific values of potential
losses so that risk managers can adjust their capital reserves against the down-

side risk. Value at Risk and Expected Shortfall are the prevailing financial risk
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measures that dominate current financial regulation.

Value at Risk (abbreviated as VaR henceforth), as a simple financial risk
measure, can be traced back as far as 1922, when capital requirements were
imposed by the New York Stock Exchange (NYSE) on member firms (Holton,
2004). Since 1996, VaR has been adopted as a market risk measure and attracted
broad interest from market participants and academic researchers in multiple
disciplines. VaR provides banks and other financial institutions with a loss level
that occurs in the worst situation at a given significance level over a certain
period. VaR also facilitates capital requirements computation for practitioners
and regulators to take efficient capital allocation and risk management actions.
Using VaR to measure risk has the main advantages of being intuitive and easily
understood.

However, VaR is sometimes criticized because it cannot capture the tail’s
structure beyond the quantile. Additionally, VaR has another inherent deficiency
due to the absence of sub-additivity for a portfolio, meaning that the portfolio
cannot benefit from asset diversification when we use VaR as the risk measure.
Due to the lack of sub-additivity, VaR is not a coherent risk measure.! Thus,
to overcome the inadequacy of this risk measure, Artzner et al. (1999) propose
a supplementary measure to VaR, named Expected Shortfall (abbreviated as ES
henceforth). ES, computed as the expected value of exceedances beyond VaR,
can capture the size of losses above a certain threshold. Also, ES fulfils all the
properties related to coherence. The Basel Committee on Banking Supervision
(2019) has proposed a transition from 1% VaR to 2.5% ES to formulate the capital
requirements for banks and other financial institutions.

Another property of risk measures discussed in this thesis refers to elicitability.
Based on Gneiting (2011), a risk measure is elicitable if there exists a loss function
(or a scoring function) for the risk measure that can be used to comparatively
evaluate the performance of models. In several semiparametric risk models, the

parameter estimates are obtained by minimizing a consistent loss function, e.g.,
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the “Lin-Lin” (or “tick” loss function) for VaR (more details about the estima-
tion for VaR can be found in Engle and Manganelli (2004)). Gneiting (2011)
documents that ES is elicitable only jointly with VaR2, and thus individual ES
cannot be estimated by this approach minimizing a loss function, nor can models
be compared in terms of ES forecasting performance by evaluating average loss
values. Fissler and Ziegel (2016) propose a class of loss functions (the FZ loss
functions) for VaR and ES considered jointly. Consequently, throughout the the-
sis, we focus on the (VaR, ES) tuple and employ the FZ loss functions for these
market risk measures.

Models used to estimate and forecast VaR and ES in the existing literature
can be classified into three main categories: parametric, semiparametric and non-
parametric (Engle and Manganelli, 2004; Taylor, 2008). Parametric models jointly
predict VaR and ES via a conditional volatility forecast, which commonly relies
on the assumption of the distribution of asset returns. The selection of density
function impacts the estimation and forecasting of risk measures, especially when
using unstable data. Conversely, nonparametric methods make no assumptions
about the conditional distribution of asset returns. These methods estimate VaR
and ES as quantiles of the chosen sample of returns over a specific window at
a given significance level. Nonparametric methods are model-free and easy to
implement (Engle and Manganelli, 2004), but they are often criticized because of
the sensitivity to window size selection. Semiparametric models impose a para-
metric structure on the dynamics of VaR and ES through a dynamic framework
but require no assumptions on the conditional distributions of financial returns
(Patton et al., 2019).

Regarding the extreme losses during the recent crises, e.g., the COVID-19
recession and the cryptocurrency crash in 2021, building improved risk models
that can capture the significant losses in holding portfolios has become one of the
central questions in risk management. Particularly, estimating market risk can

be disrupted by the presence of breaks and dependence on the dataset. Ignoring
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structural breaks can cause estimation bias and forecasting errors, which nega-
tively affect the decisions of regulators and risk managers. To mitigate the effect
of changes in model parameter values, extensive literature documents various so-
lutions, including proposing time-varying parameter models and using statistical
tests to detect changes in the model parameter values.

On the one hand, models with time-varying parameters are well designed to fit
such time series. Creal et al. (2013) propose a set of observation-driven models,
as the generalized autoregressive score (GAS) models based on characteristics
modelled as a function of the scaled score of the likelihood function. Inspired
by Creal et al. (2013), Patton et al. (2019) construct a class of GAS models to
estimate VaR and ES in a dynamic score-driven framework, where the parame-
ters are estimated by minimizing a specified loss function. Motivated by Patton
et al. (2019), we improve the semiparametric GAS models for VaR and ES by
incorporating intraday and overnight measures of return variation.

On the other hand, a strand of literature uses statistical tests to detect changes
in the parameter values of models.® It is worth mentioning that ignoring the pres-
ence of change points may cause misleading statistical inferences. A groundbreak-
ing change detection method has been proposed by Page (1954). This method is
a sequential scheme that compares the local and proportional global mean within
a historical sample. Following this seminal work, structural breaks have been
extensively investigated in the variance and correlation dynamics, as well as in
quantile regressions. In risk management, after detecting change points in a risk
model within a historical sample, practitioners can re-estimate the parameters
by considering the presence of change points. Thus, we propose a new detection
method for change points in the tuple (VaR, ES) estimated by (semi)parametric
models in Chapter 3.

In practical applications, risk managers are more concerned about the tim-
ing to update model parameter values in order to suit the newly arriving data.

However, the tests discussed above are designed to detect change points within
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a historical time series dataset only, rather than continually monitoring whether
a structural change has occurred as new data is revealed. To address this issue,
Chu et al. (1996) propose a novel test paradigm for changes in a time series based
on a detector and a boundary function. Inspired by this work, in Chapter 4, we
extend the sequential monitoring scheme to joint (VaR, ES) risk models.

In the next section, we present an overview of the thesis.*

1.2 Overview of the Thesis

In Chapter 2, we propose a new framework for the joint modelling and forecasting
of dynamic VaR and ES by incorporating intraday information into the semipara-
metric models introduced by Patton et al. (2019). Creal et al. (2013) formulate
the idea by including the scaled score of the conditional observation density with
respect to the time-varying parameters. To examine the improvement of incor-
porating intraday and overnight measures into the GAS framework in forecasting
VaR and ES, we consider four intraday measures: the realized volatility at 5-
min and 10-min sampling frequencies and the overnight return incorporated into
these two realized volatilities. Combining the overnight returns with the realized
volatility can also capture the intraday and overnight information. Thus, Chapter
2 of this thesis sheds light on the extensions of the GAS model and the improve-
ment of forecasting performance by considering models that include intraday and
overnight return information.

In the empirical study, the newly proposed semiparametric models are ap-
plied to four international stock market indices and compared with a range of
parametric, nonparametric and semiparametric models, including historical sim-
ulations, GARCH and the original GAS models. To evaluate the performance of
the risk models, we first employ backtesting approaches for VaR or ES forecasts
individually. The backtests we consider include the unconditional coverage test

introduced by Kupiec (1995) and the dynamic quantile test proposed by Engle



1.2. Overview of the Thesis 6

and Manganelli (2004) for VaR individually and the dynamic ES regression test
used by Patton et al. (2019) for ES individually. Moreover, regarding the joint
(VaR, ES) backtests, we compare the average loss values generated by the FZ0
loss function proposed by Fissler and Ziegel (2016), then employ the Diebold-
Mariano test (Diebold and Mariano, 2002) and the Model Confidence Set test
(Hansen et al., 2011) for the loss values.

The in-sample estimation results indicate that the coefficients for the intraday
and overnight measures are all statistically significantly positive at both 1% and
5% significance levels. Intuitively, larger realized or overnight volatility will lead
to a lower quantile in the next trading day. Our out-of-sample results show that
the GAS models, enhanced with the realized volatility measures, outperform the
benchmark models consistently across all indices and various probability levels,
a = 10%, 5%, 2.5% and 1%. We found that the two-factor GAS model com-
bined with 10-min realized volatility and the overnight returns can provide more
accurate risk measures for risk management purposes than other models.

The semiparametric GAS framework, which captures time variation in pa-
rameters of risk models, is designed to fit the time series with structural breaks.
In order to mitigate the effect of changes through another channel, we investi-
gate change detection in risk models for in-sample and real-time manners in the
following chapters.

Chapter 3 develops a new test to detect change points in (semi)parametric
models for VaR and ES within a historical sample, based on the Wilcoxon test
for the FZ loss values. We explain the intuition behind the test as follows. If
the risk model parameters are well estimated in a stationary process, the optimal
values for VaR and ES are corresponding to the minimum point on the FZ loss
function and generate a stable loss series. However, if there is a change point
in the process, the parameter values estimated from the whole sample are not
suitable for each subsample (before and after the change point), which will result

in breaks in the loss series. Thus, we aim to identify the change points in the loss
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series instead of the time series of the tuple (VaR, ES).

We propose a new test statistic and derive the asymptotic behaviour of this
statistic under weak dependence. To improve the finite sample performance of
the test, we adopt a stationary bootstrap method based on Politis and Romano
(1994) and prove the validity of the bootstrapping method for this test.

Next, we apply the proposed change point detection method in various de-
signed scenarios to evaluate its performance. The Monte Carlo (MC) simulation
results indicate that this test has better size control under the null hypothesis
and higher power under the alternative hypotheses with finite sample sizes than
other benchmark tests. Additionally, our empirical study on the risk measures of
the S&P 500 index returns shows that this test can detect change points within
the selected sample, which are consistent with well-known financial and economic
events.

However, most tests for structural breaks in the literature (including the test
introduced in Chapter 3) are designed to detect change points only within a given
historical dataset rather than for newly arriving data. If we use the historical
observations to obtain the optimal parameter values for a risk model, are the
parameters estimated yesterday able to explain today’s data? When do we need
to adjust the model parameter values to fit the changes in the model parameters?
Can we identify which parameter dominates the change in a risk model? To
answer the questions stated above, we propose a sequential monitoring test for
the structural change in the M-estimators of semiparametric risk models.

Thus, Chapter 4 of this thesis introduces a sequential monitoring procedure
to detect changes in the parameter values of semiparametric VaR and ES joint
risk models. The monitoring scheme depends on a proposed detector and an ad-
equately selected boundary function, i.e., a change is detected when the detector
crosses the boundary, following the study of Chu et al. (1996). In our case, the
detector is based on the cumulative sequence of gradients of the FZ loss function

with respect to (w.r.t.) the model parameters. The boundary function is chosen
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such that the probability of a false detection under the null hypothesis of stable
parameters is fixed. Our test is uniquely proposed for sequentially monitoring
changes in the parameter values of the semiparametric models for VaR and ES.

Following this, we derive the asymptotic behaviour of the stopping time un-
der defined assumptions. We can numerically obtain the critical values with the
corresponding significance levels by simulating the independent Wiener processes
based on our asymptotic theorem. In a simulation analysis, we use MC sim-
ulations to show the advantages of the proposed sequential monitoring test in
identifying change points in the parameters of risk models. We show that our
proposed test has a reasonable size control under the null hypothesis in finite
samples. Additionally, we consider various scenarios for the post-break process
under the alternative hypotheses. Our simulation results reveal that this test can
detect the changes in the parameters of risk models with high empirical power.

We evaluate the empirical density of the stopping time estimated by the se-
quential monitoring manner. The findings show that there is no long delay in the
empirically detected stopping time compared with the location of the simulated
real change point. Moreover, we propose a novel method to identify the dominant
source of the change points in the parameters. The simulation results show that
most of the dominant sources of change points are identified correctly.

In an empirical study, we explore the applications of the sequential monitoring
test on real data. We consider the S&P 500 index returns and the GBP/EUR
exchange returns. The empirical results illustrate that our proposed test can
detect change points associated with well-known market events, and often the
detection precedes the actual market crashes. In particular, the sequential moni-
toring test can detect the change points earlier than the beginning of the financial
crisis and the Black Thursday (12 March 2020) and Black Monday II (16 March
2020) in the COVID-19 pandemic period. According to our findings, we conclude
that practitioners can improve their risk management strategies by monitoring

for change points in their risk models and then adjusting the parameters of the
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models based on the identified change points. Thus, significant losses can be

avoided by adjusting parameter values seasonably.

1.3 Original Contributions

This thesis, including the following three main chapters, contributes to improving
the forecasts of risk measures and proposing in-sample and real-time structural
break detection methods in risk models for VaR and ES.

(1) The first set of original contributions in terms of risk measures forecasting
is:
e we propose a set of novel semiparametric models to forecast VaR and ES jointly
via incorporating the intraday and overnight measures into a GAS framework;
e we construct four proxies for the intraday and overnight information;
e we provide solid empirical evidence that the extended semiparametric models
outperform other benchmarks via various backtesting methods;
e we compare the performance of the intraday and overnight measures with regard
to forecasting VaR and ES when added to the GAS models.

(2) The second set of original contributions, in terms of proposing an in-sample
structural break detection test for (VaR, ES) in risk models, is:
e we propose a test to detect change points in both (semi)parametric VaR and
ES risk measures simultaneously based on the FZ loss functions;
e we derive the asymptotic behavior of the test statistic under weak dependence;
e we verify that the stationary bootstrap method is valid for calculating critical
values for this test;
e we show the advantages of the proposed test in detecting change points in risk
measures in different scenarios;
e we apply the test on risk measures of the S&P500 index returns, and the detected
change points can be associated with well-known market events.

(3) Our third set of original contributions, in terms of proposing a real-time
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detection method for change points in risk models for VaR and ES is given below:
e we develop a new test to sequentially monitor change points in the M-estimators
of semiparametric risk models for VaR and ES joint risk measures;

e we contribute to the current literature on sequential monitoring studies;

e we derive the asymptotic behavior of the test statistic;

e we apply the proposed sequential monitoring test to designed simulations;

e we consider changes in the second to fourth moments (variance, skewness and
kurtosis) for the post-break process, respectively, in the simulation study;

e we show that this test has a good size control under the null hypothesis and
high power under various alternative hypotheses in finite samples;

e we provide empirical applications to demonstrate the practical usage of our
proposed test;

e we show that this test is able to detect change points associated with well-known

market events and often the detection precedes the actual market crashes.

1.4 Outline of the Thesis

The rest of this thesis proceeds as follows: Chapter 2 studies the extended GAS
models that incorporate intraday information for VaR and ES forecasting; Chap-
ter 3 proposes a new test to detect change points in the (semi)parametric (VaR,
ES) tuple; Chapter 4 develops a sequential monitoring test to detect structural
changes in the M-estimators of risk model parameters. Chapter 5 summarizes the
main findings and discusses further research that builds on the findings presented
in this thesis.

For an improved reading experience, we make each chapter self-contained. We
(re)introduce variables and abbreviations in each chapter. Whenever possible, we

endeavour to follow consistent notations throughout this thesis.



NOTES 11

Notes

! According to Artzner et al. (1999), a risk measure is coherent if it satisfies the following
four properties: translation invariance, sub-additivity, positive homogeneity and monotonicity.

2There is no (strictly) consistent loss function for ES that does not also contain VaR (Fissler
and Ziegel, 2016). ES is typically estimated or predicted jointly with VaR.

3The terminology “change point” has, in general, the same meaning as the “structural break”
in econometrics.

4In this thesis, the nonparametric approaches for VaR and ES discussed above are not
included in the central part of our study. However, we consider several of them as benchmarks

when comparing model performance and leave them for robustness check for our proposed tests.



Chapter 2

Forecasting Risk Measures Using
Intraday Data in a (Generalized

Autoregressive Score Framework!

2.1 Introduction

From the perspective of financial risk managers, a risk measure can be considered
a map from the space of probability distributions to real numbers. Risk mea-
sures can provide banks and financial institutions with specific values of potential
losses so that risk managers can adjust their capital reserves against the down-
side risk. Value-at-Risk (VaR) and Expected Shortfall (ES) are two prevailing
measures of financial risk that dominate contemporary financial regulation. VaR

provides banks and investment institutions with a loss level that occurs in the

LA version of this chapter has been published at International Journal of Forecasting with
DOLI: 10.1016/j.ijforecast.2019.10.007. This article is co-authored with Dr Emese Lazar, who is
Associate Professor of Quantitative Finance at the University of Reading. Emese has agreed
that the essay can appear within this thesis, and that it represents a significant contribution on
my part.
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worst situation at a given confidence level, and it can be defined as:

VaR{=1inf{r, € R|F(r¢{|%-1) > a},

where F(-|.%#;_1) is the cumulative distribution function of asset returns r; over a
horizon given the information set .%;_1, and « € (0, 1) is a given significance level.
As a quantile, VaR can be expressed directly in terms of the inverse cumulative
distribution function: VaR® = F~'(a|%#_1), and as a risk measure, it has the
advantage of being intuitive and easily understood.

However, VaR has inherent deficiencies as it ignores the shape and structure
of the tail and is not a coherent risk measure in the sense of Artzner et al. (1999).
Thus, after the financial crisis of 2007-08, the Basel Committee on Banking Su-
pervision has proposed a transition from VaR with a confidence level of 99% to
ES with a confidence level of 97.5% (Basel Committee on Banking Supervision,
2013). ES is the expectation of returns, conditional on its realization lying below

VaR, and it can be defined as:

ESy=E[ri|ry < VaRy, %]

ES is a coherent risk measure (Roccioletti, 2015), and it has been suggested
as an alternative to VaR in risk management applications due to its superior
mathematical properties.

Normally, ES is estimated via a two-stage approach based on VaR estimation.
Whilst ES is itself not elicitable, Fissler et al. (2016) have shown that the pair
(VaRY, ESy) is elicitable (see also Acerbi and Székely, 2014). This means that
ES can be estimated jointly with VaR by minimizing a loss function (Ziegel, 2016;
Fissler and Ziegel, 2016).

Following the classification of Engle and Manganelli (2004), models in the

current literature on estimating and forecasting risk measures can be divided
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into three main categories: parametric, nonparametric and semiparametric mod-
els. Previous studies using parametric models to predict VaR and ES assume
that financial returns follow a certain distribution, such as the standard normal
(Gaussian) distribution. In reality, however, it is hardly reasonable to make such
strong assumptions. Nonparametric models do not make assumptions about the
distribution of financial returns, and have the advantage of being model free.
While it is not necessary for such models to make a distributional assumption,
an inherent problem is the difficulty in finding the optimal size of the estimation
window (Engle and Manganelli, 2004). Semiparametric models impose a para-
metric structure on the dynamics of VaR and ES through their relationship with
lagged information, but require no assumptions on the conditional distribution of
financial returns (Patton et al., 2019).

Quantile regression, as an approach for estimating risk measures, has only
recently been considered: Engle and Manganelli (2004) extend the basic quantile
regression model to conditional autoregressive value at risk (CAViaR) models;
these models focus solely on the estimation of VaR, and it is not obvious how
they can be used for ES estimation. In order to estimate ES jointly with VaR in
a semiparametric framework, Taylor (2008) proposes conditional autoregressive
expectile (CARE) models, based on a simple function of expectiles.! Following
this, Taylor (2019) synthesizes the quantile regression with the maximum likeli-
hood estimation based on an Asymmetric Laplace density proposed by Koenker
and Machado (1999), and estimates VaR and ES jointly. A growing literature
documents a significant improvement in VaR and ES estimation in a quantile
regression framework (Halbleib and Pohlmeier, 2012; Zikes and Barunik, 2014;
Wang and Zhao, 2016; Bayer, 2018).

Following the results of Fissler and Ziegel (2016), Patton et al. (2019) present
several novel dynamic models for the joint estimation of VaR and ES. Specifi-
cally, they propose four dynamic semiparametric models for VaR and ES, based

on the generalized autoregressive score (GAS) framework introduced by Creal
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et al. (2013). This model has been successfully applied in risk measures esti-
mation (Patton et al., 2019); CDS spread modelling (Oh and Patton, 2018);
systemic risk modelling (Cerrato et al., 2017; Eckernkemper, 2017; Bernardi and
Catania, 2019); and high-frequency data modelling (Gorgi et al., 2018; Lucas and
Opschoor, 2018).2 However, no studies on risk measures incorporating realized
volatilities into the GAS framework have been considered so far.® This prompted
the research question of this chapter, namely whether adding intraday measures
of volatility into the GAS framework improves the accuracy of joint VaR and ES
forecasts.

The question whether intraday data can improve the predictive accuracy of
risk measures has already been addressed by academics.* Several studies extend
quantile regression methods and other semiparametric models by using infor-
mation variables generated from high-frequency data.® Many realized volatility
measures have been confirmed to perform efficiently. The realized volatility pro-
posed by Andersen and Bollerslev (1998) and Alizadeh et al. (2002) is one of the
most widely used intraday volatility measures. Inspired by Engle and Manganelli
(2004), Fuertes and Olmo (2013) propose a conditional quantile forecast method
combining an effective device to deal with the inter-daily /intra-daily information.
Meng and Taylor (2018) extend the CAViaR model and the Quantile Regres-
sion HAR model with realized volatility, overnight return and intraday range. In
terms of ES estimation, the CARE models of Taylor (2008) have been extended
to allow intraday measures as explanatory variables (Gerlach and Chen, 2014;
Gerlach and Wang, 2022; Gerlach and Chen, 2017; Gerlach and Wang, 2020).

While the improvement from adding intraday variables into a semiparamet-
ric framework has been widely documented, evidence on using the score-driven
model as the framework to estimate risk measures still remains hard to come
by. Therefore, in our study, the first contribution is that we extend the set of
semiparametric GAS models of Patton et al. (2019): the two-factor GAS model,
the one-factor GAS model, the GARCH-FZ model, and the hybrid GAS/GARCH
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model, to investigate whether realized measures can improve the predictive accu-
racy of GAS models. This chapter is the first one to estimate and forecast VaR
and ES jointly by using intraday data in a GAS framework. We shed light on
the potential improvement in risk forecasting from adding intraday information
in the GAS framework for four stock indices using a long forecasting period (that
includes the financial crisis period). Then we perform a thorough analysis to
compare our forecasts with those generated from prevailing benchmarks in the
current literature. Our results show that incorporating intraday data into the
GAS framework outperform other (VaR, ES) forecasts in most cases.

Thus, our second contribution to the literature is that we provide empirical
evidence that semiparametric models enhanced with realized volatility measures
outperform other benchmark models via various backtesting methods. Our pro-
posed models, especially the GAS-2F model, extended with realized volatilities
dominate other benchmarks consistently. Thirdly, we compare four different types
of realized measures with regard to their forecasting ability for risk measures,
when added to GAS models.

The chapter is structured as follows: Section 2.2 briefly introduces the new
GAS models that incorporate intraday information; the data used in our empirical
study and the in-sample estimation results are presented in Section 2.3; Section
2.4 presents the forecasting study and backtesting results; and finally, Section 2.5

concludes the chapter.

2.2 Models

2.2.1 GAS Models for VaR and ES

Several extensions of the GAS models introduced by Creal et al. (2013) are pro-

posed in Patton et al. (2019), which can be estimated by minimizing the loss
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function of Fissler and Ziegel (2016) called FZ0:
1
52 v, e;a) = ——1{r <v}lv—7r) + 24 log(—e) — 1, (2.2.1)
ae e

where r denotes the daily return, v and e represent the values of VaR and ES,
respectively, and 1 is an indicator function which returns 1 when r < v (i.e.,
the VaR is exceeded), otherwise it returns zero. Fissler and Ziegel (2016) show
the joint elicitability for VaR and ES, despite the fact that ES was known to be
not elicitable on its own. They introduce loss functions, which should be used
for VaR and ES measures, because it allows for this pair to be jointly evaluated.
Based on the article, Patton et al. (2019) introduce new semiparametric models
and derive the consistency and asymptotic normality of the parameter estimators.
Patton et al. (2019) propose four models: the two-factor GAS model, the one-
factor GAS model, the GARCH-FZ model, and the hybrid GAS/GARCH model,
to estimate VaR and ES jointly by minimizing the loss function FZ0. The key
novelty in their framework is the use of the scaled score (that can be computed as
the first order derivative of the objective function®) to drive the time variation in
the target parameter. Patton et al. (2019) present a “news impact curve” to show
the impact of past observations on current forecasts of VaR and ES through the
score variable. When r > v, the realized returns do not affect the estimation. But
when r < v, forecasts of ES and VaR react to realized returns through the score
variable. In the one-factor GAS, the GARCH-FZ and the hybrid GAS/GARCH
models, we treat the ES as a constant multiple of the VaR. This condition is
reasonable when the ES and VaR vary together. This is naturally implied by
some of the models with the error term following a distribution in the location-
scale family (with zero mean), for example, GARCH models with Normal or
Student’s ¢ distributions. However, this condition can be relaxed by allowing a
time-varying factor between VaR and ES; such as in Taylor (2019, 2022). The
GAS-FZ models are specified as below:
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(1.A) One-factor GAS model (GAS-1F):

vy = aexp{r},
e =bexp{k}, b<a<0, (2.2.2)

ke = Bo + Bikie—r + BoHy si-1,
where the score variable s; is defined as:

FZ0 .
St = ot (Thaexp{aﬁt}?be}{p{ﬁt}’ a) = —l (ll{’l“t < Ut}’l”t - €t) ) (2.2.3)
KR (0%

€t

and the Hessian factor H; is set to one for simplicity;

(1.B) Two-factor GAS model (GAS-2F):

v Vi Avie
"l=wa+B| 7' +A o , (2.2.4)

€t €i—1 )\e,tfl

where w is a (2x1) vector, A is a (2x2) matrix, and B is defined as a diagonal

matrix for parsimony, and
Aot = =0 (H{ry < v} — a), (2.2.5)

1
Aet = —{ry < wvfry —ey; (2.2.6)
a

(1.C) GARCH-FZ model (GARCH-FZ):

v =a-oy,
€ = b- O, b<ac< O, (227)

2 2 2
o; = Po+ P10y + Bari_y,

where o7 is the conditional variance and is assumed to follow a GARCH(1,1)

process. The parameters of this model are estimated by minimizing the loss
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function FZ0 in (2.2.1), instead of using (Q)MLE.
(1.D) A hybrid GAS/GARCH model (Hybrid):

Uy = a exp{’it}a

e =bexp{r}, b<a<0,

1 1
ke = Bo + Bike—1 + 52( T (51{7}1 <y jrig — €t1)> + B3 log |ri_1],

t—1
(2.2.8)
where the variable k; is the log-volatility, described by the one-day lagged log-

volatility, score factor and the logarithm of absolute return.

2.2.2 Realized Measures

This section provides a brief introduction to various intraday realized measures
(RM) used in this chapter. The most popular measure is the realized volatility

(RV), defined as:

N
RVAL‘: PtzA_]th 1)-A )2
2 229

S
N Y
where RV A; denotes the realized volatility calculated from the sum of N intraday

A:

squared returns, at frequency A, within day ¢. Here, the intraday frequency A
divides the whole span of market opening hours S into N equal intervals, and
P, ;.a denotes the log price at time i - A of day ¢. However, the realized volatility

ignores the information from the market overnight return, which is defined as:

overnight, = log(P.o) — log(Pi—1s), (2.2.10)

where P,y and P;_; ¢ denote the opening price on day ¢ and the closing price on
the previous day, respectively. Several studies have proven that incorporating the

overnight return can lead to a more accurate realized measure. In this chapter,
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we consider the approach of incorporating the overnight return in the realized
volatility of Blair et al. (2001), Hua and Manzan (2013) and Meng and Taylor
(2018) as follows:

RNA; = \/RVAf + (overnight,)?. (2.2.11)

In the following, we will use frequencies of A = 5min and A = 10min.
As such, in the next section, RM can signify any of the following four realized
measures of volatility: RV5;, RV10;, RN5;, and RN10;, and we extend the

models with these measures.

2.2.3 GAS Models for VaR and ES with Realized Mea-

sures

Salvatierra and Patton (2015) propose a GAS model enhanced with high fre-
quency measures to obtain a GRAS model, which has the equation for the de-

pendence parameter, similar to the last row of (2.2.2), replaced with:
Rt = 60 -+ ﬁlfit,1 -+ 52Ht:115t,1 + ClOg(RMtfl). (2212)

They use the realized covariance as RM;, computed from the intraday prices
P, ;. of a set of assets. The authors find that the inclusion of 5-minute realized
covariance significantly improves the in-sample fit and out-of-sample forecasts of
the copula models.

Motivated by the set of GAS models and the GRAS model, our new models
are proposed as:

(2.A) One-factor GAS model with realized measures (GAS-1F-Re):

vy = aexp{ri} (2.2.13)

e, = bexp{r}, b<a<0,
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where x; is defined in (2.2.12), and the score variable s; is defined in (2.2.3).
Here, the Hessian factor H; is set to one for simplicity; log(RM,) is the logarithm
of a realized measure which can be: the realized volatility at 5-min and 10-min
sampling frequencies (RV'5 and RV'10), and these two realized volatilities with the
overnight return incorporated into them (RN5 and RN10), as defined in Section
2.2. (2.B) Two-factor GAS model with realized measures (GAS-2F-Re):

Ut Vg—1 Avt—1

—w+B +A | " | + CRM,, (2.2.14)
€t €i—1 >\e7t—1
where w and C are (2x1) vectors, A, and B are both (2x2) matrices, B is defined
as a diagonal matrix to simplify computation. Following Patton et al. (2019), we
also define the forcing variables A, ; and A.; as the partial derivatives of the given
loss function ££%° with respect to v; and e, as in (2.2.5) and (2.2.6).

Hansen et al. (2012) and Hansen et al. (2014) introduce a new framework,
Realized (Beta) GARCH, where the variance follows a GARCH(1,1) process,
with the squared returns replaced with a realized measure of volatility. Following
this model, we propose a GARCH-FZ-Realized model:

(2.C) GARCH-FZ model with realized measures (GARCH-FZ-Re):

v =a- oy,
€ = b - Oy, b <a< 0, (2215)

o7 = Bo+ Bio;_y + cRM? 4,

where the daily return 7, in the GARCH(1,1) variance equation in (2.2.7) is
replaced with the realized measure RM;_;. This model is estimated by minimizing
the FZ0 loss function.

(2.D) A hybrid GAS/GARCH model with realized measures (Hybrid-
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Re):

vy = aexp{k},

e; = bexp{ri}, b<a<0,

e (2.2.16)
ke = o+ Biki—1 + Ba (_e_ (—1{7’t < vtreg — 6t—1>)

t—1 \¥

+ Bslog |ri—1| + clog(RM;_y),

where the log-volatility ; follows the hybrid GARCH model with one-day lagged

log-volatility, score factor, realized measures and absolute daily return.

2.3 Data and Empirical Study

2.3.1 Data Description

To evaluate the forecasting performance of the new models and to compare them
with benchmark models, we collected daily opening and closing prices of four
international stock market indices: the S&P 500 (US); Dow Jones Industrial
Average (US); NIKKEI 225 (Japan) and FTSE 100 (UK), from January 2000
to June 2019, from DataStream. To ensure the applicability of every model, we
remove market-specific non-trading days and exactly zero returns from each index
series. Panel A in Table 2.3.1 presents the summary statistics on the four daily
equity return series over the full sample period. From the top panel, average
annualized returns range from 0.544% for the NIKKEI 225 to 4.377% for the
DJIA, and the annualized standard deviation ranges from 18% for the DJIA to
about 24% for the NIKKEI 225. All daily return series exhibit substantial kurtosis
at around 10. The second and third panels of this table show the sample VaR and
ES for four different « levels: 1%, 2.5%, 5% and 10%. The NIKKEI 225 index
proves to be different from the rest since its quantile and ES are lower than the

sample risk measures of the other three indices.
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Panel B presents the estimated parameters of the ARMA (p,q) models where
the lags (p,q) are optimally selected via the BIC method. The ARMA models for
the indices only include a constant except for the S&P 500, which contains an MA
term with one lag. Panel C shows the estimated parameters of the GARCH(1,1)
model, where the residuals are assumed to follow the skewed ¢ distribution. Panel
D presents the parameters of the degree of freedom and skewness in the skewed
t distribution.

The percentage log overnight returns are generated as in (2.2.10). For the
realized volatility, the data is obtained at 5-min and 10-min sampling frequencies
from the Oxford-Man Institute’s realized library”(see Heber et al., 2009). To
generate the new realized measure incorporating the overnight return in realized
volatility, we use (2.2.11).

The entire sample is divided into an in-sample for estimation and an out-of-
sample to backtest the estimated results. We employ a rolling window approach,
where each model is re-estimated every five trading days using a rolling window of
2000 observations. Then the rest of the period until June 2019 of approximately
2900 days, is the out-of-sample period to evaluate one-day ahead VaR and ES

estimates.

2.3.2 Forecasting Models

VaR and ES are predicted via the score forecast for one trading day ahead in
the out-of-sample period for each series, using the proposed GAS-Realized mod-
els and the FZ-GARCH-Realized model, as well as nonparametric models and
parametric models as benchmarks. For nonparametric models, historical simula-
tions are widely used because of their advantages of being model free and easy
to implement. In our study, we select three commonly used rolling window sizes
to forecast VaR and ES: 125, 250 and 500 days. Two popular GARCH models
are employed in this chapter, including the Gaussian (GARCH-G) and skewed ¢
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Table 2.3.1: Summary statistics and marginal distribution estimates

S&P 500 DJIA NIKKEI FTSE

Panel A: Summary statistics

Mean (Annualized) 3.685 4.377 0.544 0.606
Std dev (Annualized) 18.900 17.821 23.748 18.105
Skewness -0.208 -0.125 -0.429 -0.170
Kurtosis 11.176 10.980 9.341 9.487
VaR-1% -3.427 -3.294 -4.111 -3.264
VaR-2.5% -2.525 -2.361 -3.051 -2.409
VaR-5% -1.885 -1.777 -2.360 -1.788
VaR-10v -1.284 -1.182 -1.682 -1.233
ES-1% -4.849 -4.568 -6.021 -4.546
ES-2.5% -3.678 -3.453 -4.492 -3.457
ES-5% -2.922 -2.750 -3.576 -2.764
ES-10% -2.236 -2.096 -2.788 -2.120
Panel B: Conditional mean

Constant -0.001 0.007 -0.021 -0.003
AR(1) - - - -
MA(1) -0.039 - - -
Panel C: Conditional variance

Constant 0.010 0.010 0.025 0.014
ARCH 0.065 0.069 0.082 0.116
GARCH 0.926 0.922 0.910 0.874
Panel D: skewed t density

DoF 9.020 8.130 12.204 22177
Skewness -0.092 -0.089 -0.089 -0.162

Note: This table presents the summary statistics of the four daily equity return series studied,
over the full sample period from January 2000 to June 2019, and marginal distribution estimates
over the in-sample period. Panel A reports the annualized mean, standard deviation of these
returns in percentages, skewness, kurtosis, the sample VaR and ES estimates for four choices
of «; Panel B presents the parameter estimates for AR(m) models of the conditional means
of these returns; Panel C shows parameter estimates for GARCH-skewed ¢(1,1) models of the
conditional variance; Panel D presents parameter estimates for the skewed ¢ density for the
standardized residuals.
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(GARCH-Skt) models as parametric model benchmarks. We also consider other
established models that use high-frequency data (i.e., 5-min realized volatility),
considered to be well-suited to forecast VaR and ES: the HAR model of Corsi
et al. (2008), and the HEAVY model of Shephard and Sheppard (2010). In each
model, after the conditional volatility estimation, we estimate VaR and ES with
Gaussian and skewed t distributions of the errors (HAR-Skt-RV5, HEAVY-G-
RV5, HEAVY-Skt-RV5). We also take the semiparametric approach of Taylor
(2019) based on the asymmetric Laplace distribution (AL-CAViaR-Sym), into
our benchmark set.

To evaluate the performance of the GAS models enhanced with realized mea-
sures, we also implement the four models proposed by Patton et al. (2019) as
benchmarks. Differently from Patton et al. (2019) who used certain parameters
estimated from a fixed in-sample period, we use a rolling window approach, where
each model is re-estimated every five trading days using a window of size 2000
trading days. In this chapter, we consider four sets of GAS models extended with
different realized measures: RV5, RV10, RN5 and RN10 as in Section 2.2. In the

following section, we will show estimation results in these proposed models.

2.3.3 In-sample Estimation

The parameters of the GAS models and the proposed four sets of GAS-Realized
models are estimated by minimizing the loss function in (2.2.1). The existence of
an indicator function in the FZ0 loss function necessitates the use of a numerical
search algorithm, but this algorithm is sensitive to the starting values used in
the search. We optimize the proposed models using the following procedure:
for each model, we first generate 10° vectors of parameters from predetermined
intervals randomly for the parameters of the GAS models. For example, for the
parameters (@ and b) used to generate VaR and ES in GAS-1F, GARCH-FZ,
and Hybrid models, we set the intervals as [-2, -3] and [-3, -4], respectively, to
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ensure that ES is always less than VaR.® We compute the average loss value for
each vector, then select the 10 vectors that generate the lowest average loss as
initial values for the optimization routine. The vectors are selected as the initial
values of the search algorithm for all windows in order to shorten computational
time. We compute the optimal parameters by using a quasi-Newton method and
the function fminunc as optimization algorithms, which are similar routines to
the one used by Engle and Manganelli (2004). Alternatively, one can use the
maximum likelihood estimates of a closely matching parametric model as the set
of starting values.

Table 2.3.2 presents the estimated parameters together with their standard
errors of the GAS models for the S&P 500, estimated using an estimation period
of 2000 days from the beginning of January 2000 for o = 5%. The parameters
of the three two-factor GAS models (GAS-2F, GAS-2F-RV5, and GAS-2F-RN5)
are presented in the first panel of Table 2.3.2; we separate the parameters of VaR
and ES. The b parameters are statistically significantly different from zero at both
1% and 5% significance levels for both VaR and ES,° which can be explained by
the volatility clustering effect. The four columns on the right side of this panel
show the parameters of GAS-2F extended with the 5-minute realized measures.
Due to adding 5-min realized measures, the degree of clustering decreases for VaR
and ES. Also, the parameters of score a, and a. experience a significant decrease
after adding the realized measures. The parameters of the one-day lagged realized
measures RM;_1, ¢, are statistically significantly negative at the 5% significance
level for both VaR and ES, indicating that larger values of these realized variables
will result in a lower estimated quantile or ES, which is intuitive. The average
loss generated by the GAS-2F model is 0.756, which is larger than the loss of the
GAS-2F models extended with realized measures (0.735 and 0.734).

The second panel in Table 2.3.2 shows the estimated parameters of the other

GAS models extended with the 5-minute realized measures using an estimation
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period of 2000 days from the beginning of January 2000 for the S&P 500, for
a = 5%. Similarly to the b parameters of the GAS-2F models, the 5, param-
eters of the other models are also statistically significantly different from zero
at both 1% and 5% significance levels, which means that the current estimated
risk measures rely heavily on the previous estimation. Also, we find that the pa-
rameters of realized measures (¢ for the GAS-1F model, the GARCH-FZ model,
and the Hybrid model) are all statistically significantly positive at both 1% and
5% significance levels. Intuitively, a large realized volatility will lead to a low
quantile through the score variable in these models. We obtain that the inclusion
of realized measures in the updating models results in smaller coefficients of the
GAS shocks (f3), which is intuitive. Later, we will see the role that the score
variable plays in forecasting VaR and ES. In the following sections we compare
the forecasting performance of these four sets of extended models, which gives a

total of 16 models, with the 13 benchmark models enlisted above.

2.4 QOut-of-sample Forecasting and Backtesting

We evaluate one day-ahead VaR and ES forecasts for the four international stock
indices, and for the following four probability levels: 1%, 2.5%, 5% and 10%.
One-day ahead VaR and ES forecasts are made with parameter values estimated
every 5 days, for each model and probability level, using rolling windows of size
2000 (except for historical simulations). The forecasting sample period for each
index is approximately 2900 days. In this section, we backtest the VaR and ES
forecasts of the proposed models and compare their performance with that of
benchmark models. First, we backtest VaR and ES individually via the Dynamic
Quantile (DQ) regression and the Dynamic Expected Shortfall (DES). Following
these tests, we employ a method based on the FZ0 loss function to backtest VaR
and ES jointly.
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Table 2.3.2: The estimated parameters of the GAS models for the S&P 500
for a =5%

GAS-2F GAS-2F-RV5 GAS-2F-RN5
VaR ES VaR ES VaR ES
w -0.009  -0.012 -0.009  -0.016 -0.011  -0.023
(s.e.) (0.002) (0.003) (0.030) (0.053) (0.033) (0.045)
b 0.995  0.995 0.833  0.810 0.814  0.849
(s.e.) (0.105) (0.108) (0.084) (0.092) (0.098) (0.072)
y -0.129  -0.140 -0.125  -0.066 -0.114  -0.118
(s.e.) (0.070) (0.103) (0.304) (0.629) (0.416) (0.466)
e 0.002  0.003 0.002  0.001 0.001  0.001
(s.e.) (0.003) (0.004) (0.011) (0.024) (0.015) (0.017)
c - - -0.323  -0.477 -0.353  -0.360
(s.e.) - - (0.148) (0.208) (0.190) (0.158)
Avg loss 0.756 0.735 0.733

GAS-1F GCH-FZ Hybrid GAS-1F GCH-FZ Hybrid GAS-1F GCH-FZ Hybrid

5min RV 5min RN
51 0.993 0.922 0.993 0.857 0.857 0.875 0.851 0.761 0.872
(s.e.) (0.002) (0.088) (0.002) (0.116) (0.081) (0.072)  (0.143) (0.077) (0.096)
B 0.008 0.032 0.008 0.004 - 0.004 0.004 - 0.004
(s.e.) (0.001) (0.007) (0.001) (0.009) - (0.007)  (0.013) - (0.011)
B3 - - 4.393e-08 - - 0.010 - - 0.009
(s.e.) - - (1.552e-09) - - (0.016) - - (0.018)
c - - - 0.127 0.095 0.141 0.133 0.084 0.142
(s.e.) - - - (0.013) (0.012) (0.056)  (0.016) (0.009) (0.051)
a -1.774 -2.269 -1.752 -1.973 -2.818 -2.150 -1.962 -2.987 -2.053
(se)  (4451)  (0.393)  (5726)  (2520)  (0410)  (2.160) (3422)  (0.430)  (2.204)
b -2.401 -3.043 -2.355 -2.599 -3.610 -2.779 -2.601 -3.822 -2.709

(se)  (5.987)  (0.765)  (7.709)  (3310)  (0.670)  (2.819)  (4467)  (0.672)  (3.029)

Avgloss  0.761 0.780 0.761 0.737 0.727 0.753 0.734 0.722 0.749

Note: This table presents the parameter estimates and standard errors of the four GAS models
proposed in Patton et al. (2019) and eight GAS models enhanced with 5-min realized volatility
(and overnight returns), for VaR and ES, for the S&P 500 index using the first rolling window
of 2000 days starting with January 2000. The top panel presents the estimated parameters of
the two-factor GAS models. The bottom panel presents the parameters of the one-factor GAS
model, the GARCH model, and the hybrid-factor GAS model, estimated using the FZ0 loss
minimization. The bottom row of each panel presents the average (in-sample) losses from these
models.
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2.4.1 Backtesting VaR

The most popular procedures evaluating the performance of VaR forecasts are

mainly based on VaR exceptions, i.e.,
I = 1{r, < v}

The commonly used VaR backtesting method, known as the unconditional cover-
age (UC) test, is proposed by Kupiec (1995), and uses the proportion of exceptions
as its main tool. In this test, the hit percentage is defined as the proportion of the
returns below the estimated VaR, then the difference between the hit percentage
and its theoretical value of « is examined. Thus, the VaR model is rejected or
not according to the null hypothesis of the UC test below, based on which the
Likelihood Ratio (LR) test is performed:

HYEE B, (L] = a.

Table 2.4.1 presents the number of model rejections of the above null hypoth-
esis for four daily equity return series, over the out-of-sample period, for the 29
different forecasting models, at 1% and 5% significance levels, respectively, and
for different probability levels. To obtain these columns, we perform the uncondi-
tional backtest above for all indices, and count the number of rejections for each
model.

The third and fourth columns of Table 2.4.1 show that the proposed new GAS
models extended with realized measures generally tend to have a lower number
of UC test rejections as compared to the number of rejections of the GAS-FZ
models of Patton et al. (2019), for « = 1%. The GARCH model and HEAVY
model with a skewed ¢ distribution also tend to have a lower number of rejections
at 1% significance level. At 5% significance level, several GAS-FZ models with

overnight returns incorporated in the realized volatility have zero rejections of the
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UC test. In general, adding realized measures into GAS models for predicting
VaR achieves a lower number of test rejections, based on our results on the hit
percentage test.

However, the UC test is statistically weak for small sample size, and is criti-
cized by several studies (see Nieto and Ruiz, 2016) that it ignores the clustering
of VaR exceptions. To address these drawbacks, the conditional coverage (CC)

test is considered, in which the null hypothesis is:
HYEE By [L|1-1) = .

We employ the dynamic quantile (DQ) test proposed by Engle and Manganelli
(2004) to implement the CC test. The DQ test has power against the misspec-
ification of ignoring conditionally correlated probabilities and can be extended
to examine other explanatory variables. The DQ test examines whether the hit
variable defined as Hit,; = 1{r, < v} —a, follows an i.i.d. Bernoulli distribution
with probability level o and whether it is independent of the VaR estimator; the
expected value of Hit,; is 0. Furthermore, from the definition of the quantile
function, the conditional expectation of v{* given any information known at ¢t — 1
must also be 0, which means that the hit function cannot be correlated with other
lagged variables. Also, the Hit,; must not be autocorrelated. If Hit,, satisfies
the conditions stated above, then there will be no autocorrelation in the hits, and
no measurement error. We include one lag of Hit,, in the regression of the test.

Consider the following DQ regression:
HZ‘twt = ag + alHitvyt,l + agvi_1 + Uyt (241)

where a = [ag, a1, as] is the set of parameters of the regression. Based on the null
hypothesis, we test whether all parameters in the set a are zero. Performing this

DQ test gives a test statistic, which is distributed X?(3) asymptotically.
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Table 2.4.1: The number of model rejections based on hit percentages of
VaR forecasts (UC test) for the four indices for different « levels

Number Model 1% VaR 2.5% VaR 5% VaR 10% VaR
1% 5% 1% 5% 1% 5% 1% 5%
1 RW-125 3 3 0 0 0 0 0 0
2 RW-250 1 2 0 1 0 0 0 0
3 RW-500 0 2 1 1 0 1 0 0
4 GARCH-G 4 4 3 3 1 1 0 1
5 GARCH-Skt 0 1 0 3 0 0 0 0
6 HAR-Skt-RV5 4 4 4 4 4 4 4 4
7 HEAVY-G-RV5 4 4 4 4 0 3 0 0
8 HEAVY-Skt-RV5 0 1 0 0 0 0 0 0
9 AL-CAViaR-Sym 2 3 1 3 0 0 0 0
10 GAS-2F 3 3 2 2 0 0 1 2
11 GAS-1F 0 3 0 0 0 0 1 1
12 GARCH-FZ 1 2 1 3 0 0 0 1
13 Hybrid 2 2 0 1 0 0 1 1
14 GAS-2F-RV5 0 1 1 1 1 1 1 1
15 GAS-1F-RV5 0 1 0 1 0 1 0 0
16 GARCH-FZ-RV5 0 1 0 1 0 0 0 0
17 Hybrid-RV5 2 3 0 1 0 0 0 0
18 GAS-2F-RV10 1 1 1 1 1 1 1 1
19 GAS-1F-RV10 0 2 1 1 0 1 0 0
20 GARCH-FZ-RV10 1 1 1 1 0 0 0 0
21 Hybrid-RV10 2 3 1 1 0 0 0 1
22 GAS-2F-RN5 2 3 0 1 0 0 0 0
23 GAS-1F-RN5H 0 1 0 0 0 0 0 1
24 GARCH-FZ-RN5 0 0 0 0 0 0 0 0
25 Hybrid-RN5 0 0 0 0 0 0 0 1
26 GAS-2F-RN10 0 1 0 0 0 0 0 0
27 GAS-1F-RN10 0 0 0 0 0 0 0 1
28 GARCH-FZ-RN10 O 0 0 0 0 0 0 0
29 Hybrid-RN10 0 1 0 0 0 0 1 1

Note: This table presents the number of model rejections based on hit percentages of VaR
forecasts (UC test) for the four daily equity return series, over the out-of-sample period, for
29 different forecasting models. The first three rows (Models 1-3) correspond to rolling win-
dow historical forecasts, the next two rows (Models 4 and 5) correspond to GARCH forecasts
based on different distributions for the standardized residuals, the next four rows (Models 6-9)
correspond to forecasts using high-frequency data and the CAViaR model based on the asym-
metric Laplace distribution. The next four rows (Models 10-13) correspond to GAS models
proposed by Patton et al. (2019). The last 16 rows (Models 14-29) correspond to the GAS
models extended with the 5-min and 10-min realized measures, respectively.
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The middle panel of Table 2.4.2 shows the p-values of the DQ test of VaR
forecasts for o = 1%, for the four stock indices. The p-values that are greater
than 5% indicate no evidence against the optimality at 5% significance level (in
bold), and values between 1% and 5% are in italics. For the S&P 500, all of
our newly proposed models pass the DQ test at 1% significance level. When we
consider the NIKKEI 225 and FTSE 100 index, we see significant improvements
after adding realized measures in the GAS models. For the DJIA index, using
realized measures we obtain that fewer models fail the DQ test, while the historical
simulations pass the test and the GARCH model with the skewed ¢ distribution
performs well. But for this index, all of the GAS-1F models extended with realized
measures are able to pass the DQ test for all four indices. Overall, adding realized
measures enables GAS-FZ models to reduce the number of rejections of the DQ
test for a = 1%.

For oo = 2.5% (see Table 2.4.3), we obtain similar results, namely that adding
realized measures generally reduces the number of rejections of the DQ test. For
the DJIA index, the two-factor GAS model can pass the test after adding realized
measures RN5 and RN10. For a = 5%, in Table 2.4.4, we can see that all original
GAS-FZ models can pass the DQ test across the four indices except the Hybrid
model for the S&P 500 index. After adding realized measures in the GAS models,
it can be seen that the p-values increase and the DQ test is generally passed. Table
2.4.5 presents the number of model rejections at 1% and 5% significance levels for
quantile regression VaR backtests across the four markets, for different probability
levels. It can be concluded that the set of GAS models extended with realized
measures tend to have a lower number of rejections than the original GAS models
and several other benchmarks. It should be noted that the four GAS-1F model
extended with different realized measures have the least number of rejections of

the DQ test, especially for low values of a.
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2.4.2 Backtesting ES

All models that we consider produce both VaR and ES forecasts. From an eco-
nomic point of view, for example, when we compare the 2.5% ES forecasts of
the GAS-1F-RV5 and the 2.5% ES forecasts of the GAS-1F, the first one has,
on average, an ES forecast lower with 13.29% (S&P 500), 17.49% (DJIA), 8.40%
(NIKKEI), and 5.31% (FTSE 100). The results indicates that ignoring realized
measures overestimates risk on average. Looking at the significance of these val-
ues, we follow the backtesting method of Patton et al. (2019) to evaluate the ES

estimates individually, using a dynamic ES (DES) regression test:

)‘fz,t =bo + bMZ,H + baey_1 + Uey, (2.4.2)
where A7, is the standardized version of A.; defined in (2.2.6) (\J;, = A;vt =
il{rt < Ut}g—z — 1), and b = [by, by, by] is the set of parameters of the regression.

Based on the null hypothesis, we test whether all parameters in set b are zero.
The right panel of Table 2.4.2 shows the p-values from the DES test of the ES
forecasts for a = 1%, for the four stock indices. Similarly to the result of the DQ
test, incorporating the realized measure RN10 in GAS models seems to reduce
the number of backtest rejections for the NIKKEI 225 and the FTSE 100 indices.
GAS-1F models with realized measures can pass the DES test at 5% significance
level for all indices, which is consistent with the result of the DQ test. The
two-factor GAS model, after adding the risk measure RN10, passes the DES test
for all indices. Almost all of our new models pass the DES test across the four
indices for a@ = 2.5%, except the GAS-2F for the NIKKEI 225, as can be seen
in the right panel of Table 2.4.3. Table 2.4.4 presents similar results across four
indices using an « of 5%, whilst some benchmarks also have p-values higher than
5%, for example, the HEAVY model with a skewed ¢ distribution. Table 2.4.5

summarizes the total number of model rejections at 1% and 5% significance levels
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for the Dynamic ES regression backtests, across the four markets, for different
probability levels. The GAS-1F models enhanced with realized measures have

the smallest number of backtest rejections.

2.4.3 Joint Backtesting of the (VaR, ES) Risk Measures

In order to compare jointly the VaR and ES forecasts generated by different
models, in this section, a loss function proposed in Fissler and Ziegel (2016) is
employed. The authors discuss how VaR and ES are jointly elicitable and present
a group of loss functions for risk measure estimation and backtesting. We follow
the choice of Patton et al. (2019) for the loss function FZ0, as defined in (2.2.1). To
compare the performance of each model using the FZ0 loss function, we calculate

the average loss value
1
[ FZ0 — Z ¢r20

1<t<M
for different o values across the four indices.

The left panel of Table 2.4.2 presents the average losses for the four equity
return series, over the out-of-sample period, for 13 different benchmark forecasting
models and 16 newly proposed models that use the 5-min and 10-min realized
measures. The lowest average loss in each column is highlighted in bold, whilst the
second lowest is highlighted in italics. For a = 1%, the GAS-FZ models enhanced
with the realized volatility using overnight returns and the HEAVY-Skt model
perform well, overall.

For @ = 2.5% (see Table 2.4.3), the GAS-2F model employing the 10-min
realized volatility and overnight returns (GAS-2F-RN10) outperforms the other
models, with lower loss than most other models for most series and being consis-
tently ranked well, being the best model for the DJIA and FTSE 100 index. In
Table 2.4.4 (o = 5%), the GAS-2F-RN5 and GAS-2F-RN10 models outperform
the other models with the lowest loss for the DJIA and the FTSE 100 index,
respectively. The HEAVY-Skt model has the lowest loss value for the S&P 500.
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Table 2.4.6 presents the rankings (with the best performing model ranked 1
and the worst ranked 29) based on average losses using the FZ0 loss function, for
the four index return series, over the out-of-sample period, for the 29 different
forecasting models. The last two columns in each panel represent the average rank
across the four series and the rank of the average, respectively. For o = 1%, the
best-performing model is the GAS-1F model with the 5-min realized volatility and
overnight returns, followed by the GAS-1F models extended with the other two
realized measures. Considering o = 2.5%, the GAS-2F-RN10, GARCH-FZ-RV5,
and GAS-1F-RN10 are the three models having the lowest average loss values.
For a = 5% and a = 10%, our proposed models have a relatively higher rank
than the benchmarks, except the HEAVY model with a skewed ¢ distribution,
which is ranked second for a@ = 5%.

Another observation here is that the losses generated from the GAS-FZ models
with realized measures are generally lower than the loss generated from most
benchmark approaches. However, the HEAVY-Skt is always one of best 5 models
considered in the overall ranking for all four probability levels. This suggests
that the variables extracted from intraday data provide useful information for
risk measure forecasting.

In order to analyse the relative performance of each model, we employ the
Diebold-Mariano (DM) test to compare any two models using differences in av-
erage losses. In this chapter, t-statistics from the DM test compare the average
losses, using the FZ0 loss function, for four indices, and for different probability
levels, over the out-of-sample period. A negative t-statistic indicates that the
row model outperforms the column model with a significant loss difference. The
absolute values greater than 1.96 (2.575 or 1.64) indicate that the average loss dif-
ference is significantly different from zero at 95% (99% or 90%) significance level.
In Figure 2.4.1, we present the results for the S&P 500 with the null hypothesis
that the row model and the column model have equal values for the loss function.

The numbering of the models used in the figure is given in the first column of
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Table 2.4.1. Positive test statistics corresponding to darker colors mean that the
row model has larger losses than the column model. The white blocks mean that
the row model dominates the column model in loss comparison at 95% signifi-
cance level; the light green (below white in the color bar) blocks mean that the
row model has lower average loss than the column model, but not significantly so;
and the dark red blocks mean that the row model has higher loss than the column
model at 95% significance level. In Figure 2.4.1, at 1% level, the rows for Model
8 (HEAVY-Skt-RV5), Model 23 (GAS-1F-RN5), and Model 27 (GAS-1F-RN10)
have lighter blocks compared to the other rows, therefore, these are the three best
performing models for the S&P 500 index at 1% level. For 2.5% level, Model 8,
Model 24 (GARCH-FZ-RN5), and Model 27 outperform the others. At 5% and
10% levels, Model 3, Model 24, and Model 28 (GARCH-FZ-RN10) are the three
best performing models for the S&P 500 index.

Following Gerlach and Wang (2020) and Taylor (2019), we use the model
confidence set (MCS) test introduced by Hansen et al. (2011) to compare the
forecasting models via the FZ0 loss function. This approach builds model confi-
dence sets using one-sided elimination based on the Diebold-Mariano test. In this
chapter, we consider the 75% confidence level'® and employ two methods: the R
method using sums of absolute values for calculating the test statistic for MCS;
and the SQ method uses the summed squares.'! Table 2.4.7 presents the number
of models within the MCS test using the block bootstrap with the block length
of 12 and 10,000 replications, based on the losses generated from the FZ0 loss
function. The GAS-2F-RN10 is the best performing model, overall, and the GAS
models extended with realized measures perform better than most of the bench-
mark models. The main finding generated from the MCS test echo the results
from the other backtesting methods. The result that some GAS models enhanced
with realized measures end up more often in the MCS than HAR and HEAVY
models highlights the usefulness of the score function that the GAS models build

on, and we also show evidence that the use of realized measures enhances the risk
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Figure 2.4.1: Color map based on the Diebold-Mariano (DM) test
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Note: This figure presents the color maps based on the Diebold-Mariano (DM) test comparing
the average losses using the FZ0 loss function over the out-of-sample period for 29 different
models, for the S&P 500. White blocks mean that the row model has lower average loss than
the column model at 5% significance level; light green (below white in the color bar) blocks
mean that the row model has lower average loss than the column model, but not significantly
different from it, and so on. Darker color blocks mean that the row model has higher average
loss than the column model.
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forecasts of GAS models.

2.5 Conclusions

Patton et al. (2019) proposed a set of semiparametric models (GAS-FZ) in a gen-
eralized autoregressive score (GAS) framework to estimate risk measures. This
chapter provides an extension of this, using exogenous information from high
frequency data, in order to improve on the prediction of VaR and ES. This pro-
vides a new semiparametric framework named GAS-FZ-Realized, proposed for
estimating and forecasting VaR and ES jointly. Through incorporating four real-
ized measures (5-min and 10-min realized volatility with or without the overnight
return) into the GAS-FZ models, we observe an improvement in forecasting risk
measures over both in-sample and out-of-sample periods.

We employ the newly proposed models to estimate the VaR and ES of four
international stock indices empirically, over the period 2000 to 2019. The param-
eters of the models are estimated by minimizing the FZ loss function of Fissler
and Ziegel (2016). Then VaR and ES forecasts are built and individually back-
tested using the unconditional coverage test and the dynamic quantile (and ES)
regression tests, as well as the joint loss function is computed. The main finding
is that forecasts generated from the GAS-FZ-Realized models outperform fore-
casts based on GARCH models or historical simulations, even those based on the
original GAS-FZ models. The only exception is the HEAVY-Skt-RV5 which is
difficult to beat.

To conclude, the GAS-FZ-Realized models, especially the GAS-2F combined
with the 10-min realized volatility and the overnight return, can provide more
accurate risk measures for risk management across different stock indices and
probability levels when compared to other models. This work could be potentially
extended by improving the ES component, as the dynamics of VaR may not

change simultaneously with ES, for example, by modelling an AR relationship
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between VaR and ES (Taylor, 2019) or by assuming a dynamic Omega ratio to
describe the relationship between the two measures (Taylor, 2022). Moreover,
this chapter can be extended by using realized volatility at different frequencies
or via other proposed realized measures, for example those found in Meng and

Taylor (2018).
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Notes

IThe connection between quantiles, expectiles and ES is originally found in Aigner et al.
(1976), and considered further by Newey and Powell (1987).

2More studies related to the GAS model can be found on: http://www.gasmodel.com/.

3Salvatierra and Patton (2015) use measures of realized covariance to build forecasts for
copula models.

4Both parametric - see Giot and Laurent (2004), Hansen et al. (2012), and Louzis et al.
(2014) - and semiparametric models - see Clements et al. (2008), Fuertes and Olmo (2013),
Zikes and Barunik (2014), and Gerlach and Wang (2016).

5See Clements et al. (2008); Fuertes and Olmo (2013); Zikes and Barunik (2014); Gerlach
and Chen (2014); Gerlach and Wang (2022), and Gerlach and Chen (2017).

6Normally, the objective function is a probability density function, but here the loss function
FZ0 acts as the objective.

"This realized library can be accessed by: https://realized.oxford-man.ox.ac.uk/

8For parameters in the GAS-2F models, the predetermined intervals for w, b, a,, a., and
c are [-0.1, 0.1], [0.8, 1], [-0.1, 0.1], [-0.1, 0.1], and [-1, 0], respectively. For parameters in the
GAS-1F, GARCH-FZ, and Hybrid models, the predetermined intervals for 51, B2, 83, ¢, a, and
b are [0.8, 1], [0, 0.1], [0, 0.1], [0, 0.5], [-2, -3], and [-3, -4], respectively.

9We use the Student’s t-test for significance testing.

10The 95% confidence level was considered as well with similar results (results available on
request).

HDetails can be found on page 465 of Hansen et al. (2011); and the Matlab code for MCS

testing can be downloaded from www.kevinsheppard.com/MFE Toolbox.



Chapter 3

Loss Function-based Change

Point Detection in Risk Measures

3.1 Introduction

Measuring market risk plays a central role not only in the area of risk management
but also in the broader context of financial markets. Value-at-Risk (VaR) and
Expected Shortfall (ES) are two prevalent risk measures dominating in contempo-
rary financial regulation (Leung et al., 2021). VaR provides financial institutions
with a loss level that occurs in the worst situations at a given significance level;
ES, as an alternative to VaR, is the expectation of losses, conditional on their re-
alization lying below VaR. As for the estimation of these two measures, Engle and
Manganelli (2004) distinguish three main categories: nonparametric, parametric,
and semiparametric approaches. In a univariate framework, some of the models
for financial risk measures include GARCH family models (Bali and Theodossiou,
2007), score-driven models (Patton et al., 2019), and CAViaR-ES models (Taylor,
2019)1.

It is worth mentioning that the presence of change points in time series may
cause misleading statistical inference under the assumption of stationarity (Stock

and Watson, 1996; Clements and Hendry, 1996; Diebold and Inoue, 2001; Mikosch
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and Starica, 2004; Loschi et al., 2007). Related empirical evidence has been ex-
tensively documented, especially in stock returns (Péstor and Stambaugh, 2001),
volatility (Inclan and Tiao, 1994), correlation dynamics (Barassi et al., 2020), and
macroeconomic time series (Pesaran and Timmermann, 2007). There is a vast
literature of tests for change points in time series; some of these detect changes
in a historical dataset (Csorgé and Horvath, 1997; Aue et al., 2009), whereas
others monitor changes in a sequential manner (Berkes et al., 2004; Dette and
Gosmann, 2020; Horvéath et al., 2020a). Also, these tests can differ in terms of
their objective function given by, e.g., the likelihood for volatility models (Chen
and Hong, 2016) and copula models (Ye et al., 2012) or the loss function for
quantile regressions (Qu, 2008). We refer the readers to Aue and Horvath (2013)
for a detailed literature review.

In applications of risk management, the existence of change points can cause
estimation errors for VaR and ES, as argued in Hoga (2017) and Fan et al. (2018).
These papers use an innovative self-normalized estimator a la Zhang and Lavitas
(2018) to detect change points when the risk measures are estimated in a non-
parametric way. Specifically, Hoga (2017) investigates change points in the VaR
process, and Fan et al. (2018) consider changes in the ES process. Since regu-
latory capital requirements in Basel Committee on Banking Supervision (2019)
are linked to ES estimates, it would be prudent to detect change points in this
process. Also, if change points are detected in the ES series alone, then the ef-
fect of VaR on ES is ignored. Since ES is elicitable only jointly with VaR?, it is
meaningful to detect change points in the (VaR, ES) tuple.

To fill this gap, our study extends the current literature by proposing a test to
detect change points in the VaR and ES series simultaneously, which are estimated
by (semi)parametric models. We construct this test using the FZ loss functions
proposed by Fissler and Ziegel (2016). Since the FZ loss functions are minimized
for the true values of VaR and ES, changes in the parameter values of the model

cause breaks in the process of the VaR and ES estimates, which will result in
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breaks in the loss series. Our framework of detecting change points in the VaR
and ES series based on loss values is general and can accommodate for any type
of (semi)parametric estimation models.

Our first contribution is to propose a test to detect change points in both
VaR and ES risk measures simultaneously, based on the FZ loss functions. The
general framework is closely related to the likelihood ratio test to detect changes in
volatility, and the test for structural changes in quantile regressions proposed by
Qu (2008). Due to the dominance of the indicator term in the FZ loss functions,
the presence of extreme values (spikes), when returns exceed VaR, is one of the
main characteristics of the loss series. However, the commonly used CUSUM test
can be affected by the presence of outliers (Fearnhead and Rigaill, 2019). To
address this problem, we adopt a more suitable alternative, namely the Wilcoxon
test (Dehling et al., 2013b) to detect change points in the loss process.®> We call
this procedure the loss-based Wilcoxon test, and we shed light on its advantages
in detecting joint change points in time series of VaR and ES simultaneously.

Secondly, this chapter contributes to the current literature by deriving the
asymptotic behavior of our test statistic under weak dependence. Also, to im-
prove the finite sample performance of the proposed test, we adopt a stationary
bootstrap method based on Politis and Romano (1994), which follows the strand
of literature in the area (Huskovéd and Kirch, 2008; Quaedvlieg, 2021). Further-
more, we prove that the stationary bootstrap is valid for the loss-based Wilcoxon
test.

Thirdly, using Monte Carlo (MC) simulations, we show the advantages of
the loss-based Wilcoxon test in detecting change points in risk measures. These
advantages include good size control and higher power in finite samples compared
with the alternatives. Additionally, our study on risk measures of the S&P 500
index returns provides an empirical application to demonstrate the practical usage
of our proposed test. We present evidence that the loss-based Wilcoxon test can

detect change points that are consistent with well-known market events.
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The chapter is structured as follows: Section 3.2 briefly introduces the FZ
family of loss functions and the Wilcoxon test statistic, and presents some theo-
retical results related to the asymptotic distribution of this statistic under weak
dependence; Section 3.3 discusses the stationary bootstrap method and provides
the validity of bootstrapping; Section 3.4 shows the simulation results; Section
3.5 contains an empirical application based on the S&P 500 index; Section 3.6

concludes the chapter.

3.2 Test Statistic for Change Point Detection

3.2.1 Loss Functions

Let {r:}1, be a series of observed returns measured over an arbitrary frequency,
such as daily. (Semi)parametric models can be used to estimate the corresponding
conditional risk measures, VaR and ES, denoted by {v;(8)}, and {e;(0)}},, at
a specified significance level a, where @ denotes the unknown parameter vector
of the model. Fissler and Ziegel (2016) introduce the FZ family of loss functions

stated below, used to evaluate the (VaR, ES) tuple of risk measures:

52 (ry 00,60, 0;0) = (1{r, < v(0)} — @) (Gl(vt(e)) — G1(r) + évt(O)GQ(et(O)))

- Gale(®)) (211 = 0lO)}ri — (6) ) - Gl )

(3.2.1)
where G is weakly increasing, G5 is strictly increasing and strictly positive, and
G’y = G4 (for more details, see Patton et al., 2019).

For the specification function G; in (3.2.1), we use G1(z) = 0, which follows
the reasoning of Nolde and Ziegel (2017). We consider the second specification
function G, with different degrees of positive homogeneity* b = —1, b = 0, and
b = 0.5, which follow the choices of Dimitriadis and Bayer (2019), specified as:
Go(z) = =1, Go(z) = —log(—2), and Go(z) = —y/—2, respectively, where z
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must be negative. Positive homogeneity is a crucial property of loss functions,
which means that linear rescaling of the input variables does not alter the ranking
of the losses (Dimitriadis and Bayer, 2019). Nolde and Ziegel (2017) state the
importance of the choice of loss functions for M-estimations, and indicate that
positively homogeneous loss functions outperform others in terms of asymptotic
efficiency.

In our study, we use the three loss functions corresponding to the above spec-
ifications, detailed in Table 3.2.1, to compute the time series of loss values.

Table 3.2.1: Loss functions in the FZ family with different degrees of positive
homogeneity b

b FZ loss function

(F20(r v, e, 0; ) = _ael(e)l{r <v(@)}(v(0)—1)+ ’v(zg +log(—e(0)) — 1

1 e, 0:0) = g (G < v(0)}((8) —7) — (1(8) — €(8)) +

0.5 F2(rve,0;0) = —A— (21{r < v(0)}(v(8) —r) — (v(0) — e(0))) + /—e(0)

24/—e(0)

To provide some intuition, £4° can be reformulated as:

— e (0(8) =) + 29 +log(—e(8)) — 1, if r < v(6),

28+ log(—e(0)) — 1, if > v(6).

20 v e, 0;a) =

The probability of the first outcome is «, and the probability of the second one
is 1 — a. Thus, the distribution of the loss value can be generally considered as a
mixing distribution with mixing parameter .

To get a better understanding of the time series properties of the risk measures
and loss series, we test, using simulations based on a GARCH(1,1)-skewed ¢ data
generating process (DGP), for the presence of (1) autocorrelation, (2) conditional
heteroskedasticity, (3) unit root, and (4) outliers against the normal distribution

in these series.® The results show that the loss series possibly has weak autocor-
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relation, but we found no evidence of conditional heteroskedasticity. Also, in our
setup we found that the loss series is stationary. Furthermore, the VaR exceptions

cause spikes in the loss series, which lead to rejections of the normality test.

3.2.2 Risk Measure Estimation

In this section, we consider two types of estimation approaches for VaR and
ES: parametric estimation (Francq and Zakoian, 2015) and semiparametric esti-
mation (Patton et al., 2019). In the first case, parameters are estimated using
conditionally heteroskedastic models by maximizing a specific likelihood function.

Following Francq and Zakoian (2015), we have:

Assumption 3.2.1. (A) {r}}, is strictly stationary, and satisfies E[|r|°] < oo,
for some § > 4; {rt}i‘il is also an ergodic solution of the model r, = oy, oy =
o(ri_1,7i_2,...;0%), where oy is a volatility process, 0* € R? is a set of volatility
parameters belonging to a parameter space ©, and o : R® x © — (0,00);

(B) There exists a function H such that for any volatility parameters 0* € ©,

for any K >0, and any sequence {x,}M,

KO’(I’l,LEQ,...;H*) :U(l’l,l'g,...;g),

where @ = H(0*, K), which is the risk parameters; the model in (A) can be
reparameterized as ry = ojuy, of = o(ri_1,7_9,...;0);

(C) For any real sequence {x:}M,, the function o(xy,x,...;u) is continu-
ous. Almost surely, o;(u) € (w,00) for any w € © C R? and for some w > 0.
Additionally, 0,(0)/o(u) =1 a.s. iff 0 = u;

(D) E[g(u§, 0)] < E[g(uj, 1)], Yo > 0, o # 1, where § is a specific likelihood
function;

(E) There exist a random variable Cy measurable with respect to {ry}.<o and

a constant p € (0,1) such that supgsce |0:(0*) — 6:(0*)| < Cip*, where 5,(6*)
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denotes the dynamic of the volatility with arbitrary initial values {y }u<o-

Proposition 3.2.1. (Francq and Zakoian, 2015) Under Assumption 3.2.1, if the
O parameters in a GARCH parametric model are estimated via (Q)MLE, the
estimators converge to the true values of the parameters @ when M goes to infinity,

such that 0y L0 as M — 00,

On the other hand, in the semiparametric approach, parameters in a para-
metric structure are estimated by minimizing the FZ0 loss function. Patton et al.

(2019) prove the consistency of parameters based on the following assumptions:

Assumption 3.2.2. (A) The loss series {{:}M, obeys the uniform law of large
numbers;

(B) The process {ri}M, is strictly stationary and satisfies E[ry] = 0, E[|r|] <
00, for some § > 4; Conditional on all past information .%;_1, the distribution of
re is F'(-|.F_1) which belongs to a class of distribution functions on R with unique
a-quantiles;

(C) The vector of unknown parameters to be estimated is @ € © C RY, where
O is a compact subset of R? for d € N;

(D) For any t, both vi(u) and e;(uw) are F_i-measurable and a.s. continuous
m u;

(E) If P ((vi(u) = v(0)) N (e(u) = €,(0))) =1 Vt, then u = 6.

Proposition 3.2.2. (Patton et al., 2019) Under Assumption 3.2.2, if the O
parameters in a model are estimated by minimizing the FZ0 loss function, the
estimators converge to the true values of the parameters @ when M goes to infinity,

such that éM 200 as M — 0.

Propositions 3.2.1 and 3.2.2 indicate that Ut(éM) and et(éM) converge to the
true values of the risk measures (VaR and ES, respectively).® Thus, in the fol-
lowing sections, we assume that the parameters in a selected (semi)parametric

model are well estimated.
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3.2.3 Hypotheses and Test Statistic

The distribution of {r;}M, and the values of {v;(0)}M, and {e;(0)}, all depend
on the model parameter vector which can be time varying, hence it will be de-
noted by 6;. Thus, in this case, a procedure for detecting a change point can be
conducted by testing the null hypothesis: 8; = --- = 6,,, against the alternative
hypothesis that there is one unknown break point £*, that is: 8; = -+ = Oy« #
Op 1 = --- = 0. The true values of VaR and ES will lead to the minimal
loss values for the given returns. If there is a change point, the parameter values
estimated using the time period between 1 and £* will be different from the pa-
rameter values estimated from the whole sample, so the VaR and ES estimates
based on the parameters obtained from the whole sample will deviate from the
true values, leading to an increase in their loss values.

The setup above can be translated into a testing framework using the loss
series. Thus, we consider the framework with the loss values generated by a
stochastic process ¢; = u; + €, where { ut}i‘il is the unknown mean and the noise
{e:}M | has zero mean and finite variance. The null hypothesis of no change point

in the loss series can be written as:

Ho:pr=-- = pu,

versus the alternative hypothesis” of one change point in the loss series:

Hy:opno=-o = pige # pker = - = g, 1<K <M.

The CUSUM test is commonly used to detect change points of a process.
However, this test has the limitation that it can be disturbed by the presence of
outliers or extremely heavy-tailed noise (Fearnhead and Rigaill, 2019; Gersten-
berger, 2018). As shown in Section 3.2.1, spikes (against normality) commonly

exist in the loss series, due to the VaR exception, and thus making the CUSUM
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test less suitable to be applied directly on the “raw” loss series. As highlighted by
Gerstenberger (2018), the Wilcoxon test statistic is a rank-type statistic and has
the inherent advantage that it is not affected by spikes. Therefore, we employ the
Wilcoxon test to detect change points in the rank of the loss series. The general

form of the Wilcoxon test statistic is defined as:

1<k<M (322)

Wy = max |Wj |, where Wi p —ZRi__

ol
M=
o)

where R; = rank({;) = Z;‘il 1{¢; < ¢}, for i = 1,..., M. Inspired by Betken
(2016), our test statistic based on ranks is given below:

ZR——ZR

Wiy = max
1<k<M

= max
1<k<M

303 (1{eigej}—%) |

i=1 j=k+1
(3.2.3)

The location estimator of the Wilcoxon test l%W is defined as the value that

maximizes the loss-based Wilcoxon test statistic,

kew = ky (M) == min {k : |[Win| = W} (3.2.4)

3.2.4 Asymptotic Distribution of the Test Statistic

In this section, we investigate the asymptotic distribution of our proposed Wilcoxon-
type statistic in (3.2.3). This can be treated as a U-statistic (Csorgé and Horvéth,
1988; Dehling et al., 2017) with the kernel:

b (X,Y) = 1{X < Y} — % (3.2.5)

We can define the U-process as below:

Vi) =Y S bt ) =Y Z (1{@@@}-%), (3.2.6)

=1 j=|uM]|+1 =1 j=|uM]|+1
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where 0 < w < 1, and |-| denotes the integer part of a number. Thus the

Wilcoxon change point test statistic in (3.2.3) can be written as:
Wy = Jax, ’UM(UM (3.2.7)
The kernel hy (X, Y) is antisymmetric, so it satisfies:
hw(X,Y) = —hw (Y, X). (3.2.8)

In this case, E[hyw (£, £;)] = 0 and similarly to the symmetric case we let hy (X) =
E[hw (X, ¢;)]. Following Csorgé and Horvath (1988), it is reasonable to assume
that:

0 < E[hZ(0;,0;)] <oo and 0 < o3 = E[hZ,(4;)] < . (3.2.9)

To derive the asymptotic distribution of the process Uy (u), we consider the

following assumptions.

Assumption 3.2.3. (A) The loss series {{;}M, is strictly stationary and satisfies
E[|¢;]°] < oo, for some & > 0;

(B) For any integer 1 <t < M, the cumulative distribution function F of ¢,
15 continuous on the real line with a density f that is bounded;

(C) hw(€1,02) given in (3.2.5) is an antisymmetric kernel, such that for a
6>0, K>0:

//|hW(£1,£2)|2+5dF(El)dF(EQ) <K,

Vk € NO . /|hw(€1,€1+k)|2+6 dp(gl,gl_;,_k) S K;

(D) {re,v(8),e.(0)}1L, is strong mizing (a-mizing) with o (M) = O (M ~F=2/%)
or some zZ > 2; {li(ry,v:(0), e 2, 18 strong mizing with the coefficient
f l (7] 0))}M, h th 1

a*(M) =0 (M~*) forap> %.
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Assumption 3.2.3 (A) is a standard moment and stationarity condition for the
loss series. Assumption 3.2.3 (B) is the condition on the continuous and bounded
density of the loss series, which supports the proof of &2-Lipschitz-continuity for
the kernel. Assumption 3.2.3 (C) requires the moment bound for the given kernel
hw (€1, 02), which is consistent with Borovkova et al. (2001) and Dehling and
Wendler (2010). Patton et al. (2019) provide the same dependence condition as
Assumption 3.2.3 (D) for {r;, v:(0), e,(0)}}, to support the central limit theorem
for the loss series; if the first half of Assumption 3.2.3 (D) holds, the sequence
of loss Cy(r,v¢(0), e:(0)) is a-mixing with a decay rate at least as fast as that of
{r,v(8),e,(8)}, (Patton et al., 2019). Thus, it is reasonable to assume the
mixing condition for the loss series with the coefficient provided by Dehling and
Wendler (2010). In the following, we discuss the &-Lipschitz-continuity property
for the kernel hy (X,Y).

Definition 3.2.1. (Z-Lipschitz-continuity) Let { X, hen be a stationary process.

A kernel h is called &2-Lipschitz-continuous if there is a constant a > 0 with
Ef[A(X,Y) = h(X" V) {|X = X'| < e}] < ae,

for every e > 0, every pair X and Y with the common distribution Py, x,, for
m € N withm > 1 or Px, x Px, and X' and Y also with one of these common

distributions.

Proposition 3.2.3. If Assumption 3.2.3 (B) holds, then the antisymmetric kernel
h(X,Y) = 1{X <Y} — 3 for the test statistic is P -Lipschitz-continuous.

The proof of this proposition can be found in Appendix 3.A. We then provide

the asymptotic behavior of the Uy, (u) process.

Theorem 3.2.1. Under the null hypothesis, assume that (3.2.8), (3.2.9), and
Assumption 3.2.3 hold. Additionally, assume that:

i) under a parametric setting, Assumption 3.2.1 holds,
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or
i) under a semiparametric setting, Assumption 3.2.2 holds.
Then as M — oo, we have:

sup ! Unr (u) — ow B (u)| = op(1),

o<u<1 | M3/2

where By (u),0 < u <1 is a Brownian bridge, and

oty = Var (F(61)) +2)  Cov (F(t1), F(4;)) .
j=2

The proof of Theorem 3.2.1 is provided in Appendix 3.A. One way to imple-
ment such a test is by estimating the long-run variance and using the asymptotic
limit to obtain the p-values. However, as often found in the literature, the empiri-
cal size obtained when relying on the asymptotic limit in finite samples may differ
significantly from the prespecified significance level. Table 3.B.2 of Appendix 3.B
shows that the loss-based Wilcoxon test based on the asymptotic distribution
with two long-run variance estimators is generally oversized, especially for small
samples. As such, instead of estimating the long-run variance o, above, we are
going to use bootstrapping to obtain the p-values. The following section will

elaborate the bootstrapping algorithm.

3.3 Stationary Bootstrap for p-values

3.3.1 Bootstrap Method

It is well known that bootstrap techniques have been widely used to avoid the
finite sample size distortions (see Chen and Hong, 2016; Chen and Fang, 2019;
Barendse and Patton, 2021, for more examples). Thus, we propose to obtain

the p-values of the test statistic W), by using stationary bootstrapping in the
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following way. For a given return series {r;}M,, we calculate the test statistic
Wr using (3.2.7). Then, we adopt the stationary bootstrap method of Politis
and Romano (1994) to generate Np bootstrapped return series {r;}X, using
the expected block length b,,.° For each bootstrapped series, we estimate the
bootstrapped VaR and ES denoted by {v;(0%,)}M, and {e;(6%,)}M,, where 6%,
is the parameter vector estimated from the bootstrapped returns {r;}*,. Then
we compute the loss series denoted by {¢;}M,. Applying (3.2.6) and (3.2.7) for
each bootstrapped series j, we compute the bootstrapped U-process, U;}j ) and
the bootstrapped statistic W;\}(j ), Then, we define the set of the bootstrapped
statistics Wy, = {W;\}(l), .. .,W;\}(NB)}. After that, we calculate the frequency
that the statistic Wy, is below Wj}(j ), and this is the bootstrapped p-value. The

detailed procedure can be found in Algorithm 1.

Algorithm 1 Bootstrap procedure to obtain p-value, Bootstrap({r;}M,, Wy,
Ng)

Input: {r,}M,, Wy, Np

Output: p-value (p)

Initialization: j =0

repeat //Bootstrap j//
J=J+1
Generate the bootstrapped returns {r;}*, using the stationary bootstrap
Estimate the bootstrapped risk measure series {v} (0%,)}M, and {e} (6%,)}M,
Compute the bootstrapped loss series {£; },

Compute the bootstrapped statistic W;\}(j )

until j = Np;
Using {W;\}(l),. . 7I/V;\}(NB)} compute p = N%; Z;le 1{W]T/I(j) > Wt
return p.

3.3.2 Validity of the Bootstrap Method

To verify the validity of the bootstrap method, we obtain the asymptotic dis-
tribution of the bootstrapped statistic W}, which is computed based on (3.2.7)
using the bootstrapped data. Then we show that it asymptotically converges to
the limit distribution of the statistic W), under the null hypothesis. To conduct

the verification, we consider the following proposition, which is needed for the
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proof of our results.

Assumption 3.3.1. {r;}M, is generated by the stationary bootstrap with geo-

metric block lengths with success probability pyy = ¢M~™ and ¢,m € (0,1).

Proposition 3.3.1. (Politis and Romano, 1994) If Assumption 3.2.1 (A) or
Assumption 3.2.2 (B) holds, and additionally Assumption 3.3.1 holds, then the

pseudo time series {r;}M, is stationary.

This proposition implies that the stationary bootstrapping ensures the sta-
tionarity of the process. In this chapter, we resample the return series {r;}M,
instead of resampling the loss series {¢;}}, directly. The following theorem

states the asymptotic behavior of the statistics of the bootstrapped loss series.

Theorem 3.3.1. Under the null hypothesis, assume that Assumptions 3.2.3 and
3.3.1 hold. Additionally, assume that:

i) under a parametric setting, Assumption 3.2.1 holds,

or

i) under a semiparametric setting, Assumption 3.2.2 holds.

Let byt be the expected block length with by, — oo and also M /by — 0o as
M — oo. Then we have the following convergence result for the bootstrapped

process Uy, obtained with expected block length bep:

\Var(M=32U%,(u)) — Var(M 32Uy (w))| 2 0, (3.3.1)
sup |P*(M32U%, (u) < z) — P(M 32Uy (u) < 2)| 5 0, (3.3.2)

xz€R
where Var* and P* denote the variance and probability with respect to the prob-

ability measure induced by the stationary bootstrap.

The proof of this theorem can be found in Appendix 3.A.
Recall that W;\}(j ), 1 < j < Np, denotes the bootstrapped statistic calculated
similarly to Wy, defined in (3.2.7). Next, we show that the asymptotic distribution
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of the bootstrapped statistic W}, coincides with the asymptotic distribution of
Wy under the null hypothesis. The empirical distribution function of W;\}(j ) is

calculated as:

Qur g (w) = Ni S 1w <w}, weR (3.3.3)

Bagj<ng
Based on equations (3.2.7) and (3.3.3), as well as Theorems 3.2.1 and 3.3.1, we

obtain the following result:

Corollary 3.3.1. If the assumptions of Theorem 3.3.1 hold, then under Hy we

have:

sup |[P(Wy < w) — Quing, (w)] 250, where Ng — 00 and M — oo. (3.3.4)
weR

This corollary demonstrates that the proposed bootstrap methodology is ap-
propriate to be used to obtain the p-value of the loss-based Wilcoxon test statistic.
In the next section, we implement a simulation study to show that the bootstrap
methodology has the correct size under the null hypothesis and has high power

under the alternative hypothesis.

3.4 Simulation Analysis

3.4.1 Simulation Design

We perform a simulation study to investigate the size and power of the proposed
test in finite samples. Under the null hypothesis, the DGP of the return series is

a univariate GARCH process as given below:

re = oguy, U ~i..d. skewed t (v, \), ( )
3.4.1

02 = By + 10>, + Barty, t=1,.., M,
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where 7; is the simulated return process generated by the product of u;, which
follows the standardized skewed t distribution of Hansen (1994), with degree
of freedom (DoF) v and skewness A, and conditional volatility o, given by a
GARCH(1,1) specification. For the simulations, we choose the sample sizes of
M € {1000,3000} to study the finite sample properties and convergence of the
test. 10

Under the alternative hypothesis, the DGP of returns is the process r; = ou,

with:

02 = Bo+ Bio2 | + Bor? y,  wp ~iid. skewed t (v,\), ifl1<t<|aM]|,

02 = B+ Brot  + BirE,,  ug ~id.d. skewed t (v*,N\Y), if [7M] <t < M,
(3.4.2)

where one of the parameters changes its value after |7M | which is the location
of the change point in the process. In this chapter, we consider m € {0.5,0.75}.
This change in the return series will eventually cause a change point in the VaR
and ES as well, and our main purpose is to investigate the detection of change
points in the VaR and ES processes at o = 1%.%!

Regarding parameter values, we set (5o, 51, fa2, v, A) = (0.05,0.9,0.05,16.5, —0.5).
Under the null hypothesis, (55, 57, 55, v*, \*) = (Bo, b1, P2, v, A) in (3.4.2), mean-
ing no change points in the process. For the alternative hypothesis, we consider
six different scenarios of change points to evaluate the empirical power of the
proposed test. Each break consists of a change in the value of one parameter as

follows:

e HA': an increase of 0.04 in the volatility persistence parameter, i.e. 8; =

0.94;

e H{2%: a decrease of 0.04 in the volatility persistence parameter, i.e. 3; =

0.86;

e HB: an increase of 0.04 in the volatility reaction parameter, i.e. 35 = 0.09;
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e HPB% a decrease of 0.04 in the volatility reaction parameter, i.e. 35 = 0.01;
o HYL: a decrease of 13.5 in the DoF parameter, i.e. v* = 3;
e HE2: a decrease of 14 in the DoF parameter'?, i.e. v* = 2.5.

In addition to the above alternatives, we follow Andreou and Ghysels (2002)
to examine whether the presence of outliers affects our test results under the null
hypothesis. We conjecture that the existence of outliers should not lead to the
rejection of the test, i.e. an effective test would not mistakenly consider outliers

as change points:

o HP: (B, 51,85, v*,2*) = (Bo, B, B2, v, A), when 12 randomly selected re-

turns in the simulated process are multiplied by 5.

In the simulation, we consider the eight DGPs detailed above. For the es-
timation of VaR and ES, we use the following three (semi)parametric models:
GARCH(1,1)-skewed t (G-Skt), GARCH(1,1)-Gaussian (G-G) and GAS-Hybrid
(Hybrid).!® In terms of the loss function, we choose loss functions with three
different degrees of positive homogeneity: ¢£4°, ¢£21 and ¢¥%2, given in Table
3.2.1.

For each combination of (DGP, estimation model, loss function) we follow
Algorithm 2 to compute the rejection rates of the proposed test, as explained
in detail below. For each simulation ¢, we simulate return series of length M,
denoted by {r;}*,. We then estimate the VaR and ES series using the given
model, and we denote the estimated risk series as {v,(87)}, and {e,(6y) 1,
Following this, we calculate the loss series {f;}M, for the given loss function.
Then, based on (3.2.7) we compute the loss-based Wilcoxon statistic Wy for the
loss series. By calling the bootstrap procedure in Algorithm 1 with N = 1000,
we obtain the p-value of simulation i, denoted by p(7). If p(i) is below the test

significance level ¢, then the null hypothesis is rejected for simulation i.'* By
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repeating this simulation Ng = 1000 times, we obtain the rejection rate ( as the

frequency of p(i) being lower than ¢ in the total number of simulations.

Algorithm 2 Monte Carlo simulation procedure for Loss-based Wilcoxon test
Input: Ng, Ng, M, ¢

Output: rejection rate (¢)

Initialization: ¢ =0

repeat //Simulation i//

t=1+1

Simulate {r;}£, using the specified DGP with sample size M

Estimate the risk measure series {v;(6x7)}, and {e;(0x7)},

Calculate the loss values {£;}M,

Calculate:

DS (1{£m§€n}—;>.

m=1n=k+1

Wer = mkax

Obtain p-value by calling Algorithm 1: p(i) = Bootstrap({r;}}M,, W, Np).

until i = Ng;

Using the p-values: {p(1),...,p(Ns)} compute the rejection rate ¢ = Nis Zilisl {p(i) < ¢}
return (.

In terms of the simulation results, we expect that the empirical size converges
to q, the test significance level under the null hypothesis, as the number of obser-
vations increases. Under the alternative hypothesis, the expectation is that the
empirical power is high and converges to 1 with the sample size. When adding
outliers to the process without change points, the empirical rejection rate should
be close to ¢ if the change point test is not sensitive to outliers. Our setup allows
us to explore the sensitivity of the test to the choice of risk estimation model,

loss function, type and location of break and sample size.!®

3.4.2 Simulation Results

The simulation results commence with the evaluation of the proposed loss-based
Wilcoxon test in identifying change points in risk measures when the underlying
process is generated from the DGP in (3.4.1) and (3.4.2) with the parameter
values given in Section 3.4.1. Table 3.4.1 shows the size and power of the test

based on the bootstrapping procedure at 5% test significance level. The top panel
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of the table shows the empirical sizes under the null hypothesis. As expected, all
of the empirical sizes for the Wilcoxon test are close to the test significance level.
As the sample size increases, the empirical size gets closer to 5% in general.

For the alternative hypotheses, we consider the change points detailed in Sec-
tion 3.4.1. The results in Table 3.4.1 reveal that our test has a strong power in
detecting change points in the volatility parameters (H{*, H{* HP' HP?) and
reasonable power in detecting change points in the DoF (H', H?). The power
of the test improves when M increases from 1000 to 3000 for all DGPs and loss
functions. The table also shows that the power of the test is sensitive to the
location of change point. The rejection rate modestly falls when the location of
change point moves to |0.75M |. However, as the sample size increases, the test
can successfully detect the change point that occurs even at |0.75M |. Also, the
results show that our test is not sensitive to the presence of outliers (HJ).

In the following, we compare our proposed loss-based Wilcoxon test with five
alternative tests in terms of size and power, under the same simulation settings
and hypotheses as detailed before. For the first two alternative tests, we con-
sider (i) the self-normalized CUSUM (SN-CUSUM) test for VaR and (ii) the
SN-CUSUM for ES, which detect change points in the VaR and ES processes
individually. Following Shao and Zhang (2010), the two test statistics are defined

as:
) N N2
<M7 Sy () — 8 20 Ut(GM)>
Vi = sup T (3.4.3)
£ M [25;1 SE,t(L k) + Zi\ikﬂ Sg,t(k +1, M)]
_1l—k A k M PN 2
(M3 enOur) = f5 0 elBur))
Vi = sup : (3.4.4)

N|=

b M [Zf:1 Sf}t(l, k) + th\ilﬂ-l Sez,t(k? +1, M)]

where v,(037) and e;(6;) are VaR and ES, and S,:(j, k) = Y_0_(vi(Oar) — 0j),

Uik = 10T oty ve(Our), as well as Se.(j, k) = Y1 i(ei(Onr) — €n), € =

1
k—j+1

Zf: i e;(0,7). Table 3.4.2 presents the empirical size and power simulation
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Table 3.4.1: Empirical size and power of the loss-based Wilcoxon test for a
change point

m=0.5 m=0.75
M=1000 M=3000 M=1000 M=3000
G-Skt  G-G  Hybrid G-Skt  G-G  Hybrid G-Skt  G-G  Hybrid G-Skt  G-G  Hybrid
Hy: Univariate GARCH(1,1)-skewed ¢, with (5, 81, B2, v, A) = (0.05,0.9,0.05,16.5, —0.5)

(F200.045 0.044 0.030 0.047 0.063 0.039 0.045 0.044  0.030 0.047 0.063  0.039
(21 0.045 0.044  0.030 0.047 0.064 0.039 0.045 0.044  0.030 0.047 0.064 0.039
(FZ20.045 0.044  0.030 0.047 0.064 0.038 0.045 0.044  0.030 0.047 0.064 0.038

H{: An increase of 0.04 in the volatility persistence parameter, i.e. 3; = 0.94

(F20 0992 0.992 0.923 1.000 1.000  1.000 0.788 0.769  0.326 0.996 0.975 0.919
P21 0992 0992 0.923 1.000 1.000  1.000 0.788 0.770  0.326 0.996 0.975 0.918
F220.992  0.992  0.923 1.000 1.000  1.000 0.788 0.773  0.328 0.996 0.975 0.918

H{*: A decrease of 0.04 in the volatility persistence parameter, i.c. 8; = 0.86

(F20 0627 0.623 0.373 0.988 0.963 0.770 0.232  0.220 0.118 0.712  0.695 0.355
(FZ1 0627 0.623 0.373 0.988 0.963 0.770 0.232  0.220 0.117 0.712  0.695 0.354
220,627 0.623  0.373 0.988 0.963 0.770 0.232  0.221  0.117 0.712  0.695 0.355

HP: An increase of 0.04 in the volatility reaction parameter, i.e. 85 = 0.09

P20 0912 0911 0.715 1.000 1.000 0.985 0.608 0.605  0.225 0.939 0.898  0.747
210912 0911  0.715 1.000 1.000  0.985 0.608 0.604 0.225 0.939 0.898  0.747
F22 0912 0911  0.715 1.000 1.000 0.985 0.608 0.604  0.225 0.939 0.898 0.747

HP2: A decrease of 0.04 in the volatility reaction parameter, i.e. 85 = 0.01

(P20 0529 0.524  0.350 0.987 0.951 0.731 0.196 0.194 0.114 0.694 0.644 0.363
(FZL 0529 0.524  0.349 0.987 0.951 0.731 0.196 0.194 0.114 0.694 0.643 0.363
F22 0528 0.524  0.349 0.987 0.951 0.730 0.196 0.194 0.113 0.694 0.643 0.363

HE': A decrease of 13.5 in the DoF parameter, i.e. v* =3

(F20 0293 0.290 0.176 0.777 0.758  0.283 0.164 0.159  0.092 0.393 0.354 0.169
(P21 0293 0.290 0.176 0.777 0.758  0.281 0.165 0.159  0.093 0.393 0.354 0.169
(F22 0293 0.290 0.176 0.776  0.757  0.282 0.166  0.159  0.093 0.393 0.354  0.169

HE?: A decrease of 14 in the DoF parameter, i.e. v* = 2.5
(P20 0,636 0.627 0.358 0.996 0.988  0.449 0.330 0.326 0.164 0.593 0.552  0.389

(F2L 0636 0.627 0.357 0.996 0.987  0.448 0.331 0.324 0.165 0.593 0.552  0.389
F22 0636 0.627 0.358 0.996 0.987  0.448 0.331 0.324 0.164 0.593 0.552  0.389

HP: 12 randomly selected returns in the simulated process multiplied by 5

(P20 0.041 0.042 0.041 0.035 0.052 0.039 0.041 0.042 0.041 0.035 0.052  0.039
(FZL0.041 0.042 0.040 0.035 0.052 0.039 0.041 0.042  0.040 0.035 0.052  0.039
(F220.041 0.042 0.041 0.035 0.052 0.039 0.041 0.042 0.041 0.035 0.052  0.039

Note: Empirical size and power, for ¢ = 5%, of the loss-based Wilcoxon test under vari-
ous hypotheses via 1000 simulations, for three types of risk measures (GARCH(1,1)-skewed ¢,
GARCH(1,1)-Gaussian and GAS-Hybrid) and three FZ loss functions with different degrees of
positive homogeneity. We consider two sample sizes: 1000 and 3000, and different locations of
the change point at |7#M | with = = 0.5 and 0.75.
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results of the SN-CUSUM tests for VaR and ES. The sizes of the SN-CUSUM
tests are close to the test significance level, but their powers are generally less
than the power of our test for all loss functions considered.

One disadvantage of the standard CUSUM test is the low power in detecting
change points occurring in relatively early or late segments of the sample period.
As an alternative, Horvath et al. (2020b) propose a Rényi-type statistic for break
detection to mitigate this problem. However, when the change point happens
around the middle of the sample period, the detecting power of the Rényi-type
test is relatively low. The Rényi-type test works under the assumption that there
is no change point occurring within the two trimmed domains, at the beginning
and at the end of the sample defined by the trimming parameter ugy. Thus,
we consider the alternative test (iii) a Rényi-type test based on the rank of loss
values. Specifically, the test statistic is a Rényi-type formulation of the loss-based

Wilcoxon test statistic:

k M
1 1
Dy = -y R — R; 3.45
M LqungifcngE}\?_Lquj k Z M-k i:zk;rl ( )

i=1

with trimming parameter ug.°

In addition to these, we consider the following two recently developed tests:
(iv) the break point test for VaR of Hoga (2017), and (v) the break point test
for ES of Fan et al. (2018).!'" These two tests are based on the self-normalized
variance estimator of Shao and Zhang (2010).

Table 3.4.3 presents the simulations results for alternative tests (iii) to (v)
(in columns Rényi, Hoga, and FGP, respectively). The results highlight that
our test outperforms tests (iv) and (v) in all cases. We outperform the Rényi-
type test (#i7) when the change point occurs at [0.5M ], but when the change
point occurs at |0.75M |, test (iii) has better power properties than our test.
This meets our expectation that the Rényi-type test has high power in detecting

change points occurring relatively early or late in the sample, but has lower power
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Table 3.4.2: Empirical size and power of the SN-CUSUM test for a change

point
m=0.5 m=0.75
M=1000 M=3000 M=1000 M=3000

G-Skt  G-G  Hybrid G-Skt  G-G  Hybrid G-Skt  G-G  Hybrid G-Skt  G-G  Hybrid
Hy: Univariate GARCH(1,1)-skewed ¢, with (5o, 81, B2, v, A) = (0.05,0.9,0.05,16.5, —0.5)
VaR 0.034 0.034 0.037 0.066 0.066 0.044 0.034 0.034 0.037 0.066 0.066 0.044
ES 0.034 0.034 0.043 0.066 0.066 0.043 0.034 0.034 0.043 0.066 0.066 0.043
H{': An increase of 0.04 in the volatility persistence parameter, i.e. 8; = 0.94
VaR 0.629 0.629 0.548 0.772 0.772  0.765 0.724 0.724  0.595 0.924 0.924 0.884
ES 0.629 0.629 0.546 0.772 0.772  0.765 0.724 0.724  0.600 0.924 0.924 0.884
H{: A decrease of 0.04 in the volatility persistence parameter, i.c. 37 = 0.86
VaR 0.361 0.361 0.307 0.783 0.783  0.676 0.100 0.100 0.104 0.353 0.353 0.317
ES 0.361 0.361  0.305 0.783 0.783  0.675 0.100 0.100  0.100 0.353 0.353 0.313
HPE: An increase of 0.04 in the volatility reaction parameter, i.e. 85 = 0.09
VaR 0372 0.372 0.362 0.558 0.558  0.847 0.518 0.518 0.421 0.776  0.776  0.744
ES 0.372 0.372 0.361 0.558 0.558  0.847 0.518 0.518 0.421 0.776  0.776  0.743
HEP2: A decrease of 0.04 in the volatility reaction parameter, i.e. 85 = 0.01
VaR 0.295 0.295 0.303 0.769 0.769 0.683 0.091 0.091 0.092 0.338 0.338  0.296
ES 0.295 0.295 0.296 0.769 0.769  0.687 0.091 0.091 0.093 0.338 0.338 0.297
HE': A decrease of 13.5 in the DoF parameter, i.c. v* =3
VaR 0.161 0.161 0.208 0.268 0.268 0.225 0.076  0.076  0.155 0.171 0.171  0.226
ES 0.161 0.161 0.210 0.268 0.268 0.223 0.076  0.076  0.157 0.171 0.171 0.225
HE?: A decrease of 14 in the DoF parameter, i.e. v* = 2.5
VaR 0.392 0.392 0.352 0.606 0.606 0.322 0.180 0.180 0.225 0.337 0.340 0.303
ES 0.392 0.392 0.341 0.606 0.606 0.319 0.180 0.180 0.223 0.337 0.340 0.302
HP: 12 randomly selected returns in the simulated process multiplied by 5
VaR 0.033 0.033 0.047 0.046 0.046 0.048 0.033 0.033 0.047 0.046 0.046  0.048
ES 0.033 0.033  0.047 0.046 0.046 0.047 0.033 0.033 0.047 0.046 0.046 0.047

Note: Empirical size and power, for ¢ = 5%, of the SN-CUSUM test for VaR and ES, considered
individually, under various hypotheses via 1000 simulations, for three types of risk measures
(GARCH(1,1)-skewed ¢, GARCH(1,1)-Gaussian and GAS-Hybrid). We consider two sample
sizes: 1000 and 3000, and different locations of the change point at |[7M | with # = 0.5 and

0.75.
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in the middle. For our simulation setup, we find the Hoga and FGP tests to be
oversized under the null hypothesis and to have less power than the Rényi-type
loss-based Wilcoxon test.!®

To offer a visual demonstration, Figure 3.4.1 compares the loss-based Wilcoxon
test using the FZ0 loss function with tests (i) to (v), from the point of view of
size and power. The five alternatives are denoted by VaR, ES, Rényi-type, Hoga,
and FGP, respectively. For the loss-based Wilcoxon test and alternative tests
(1)-(zi7), the VaR and ES are obtained using the GARCH(1,1)-skewed ¢ model.
The tests are performed at 5% test significance level, and we assume that the
change point occurs at [0.5M | under the alternative hypotheses. Based on the
empirical sizes of the Hoga and FGP tests under Hy and HP, it can be concluded
that these tests are oversized for the DGP considered. The loss-based Wilcoxon
test has higher power than the alternatives for all scenarios of change points
corresponding to the different alternative hypotheses. The SN-CUSUM tests
work relatively well when volatility changes, but have lower power when the DoF
parameter decreases. Overall, our proposed test can identify change points in the
risk measures of time series with the correct size and stronger power than all five

alternatives considered.!?

3.5 Empirical Application

In this section, we apply our proposed Wilcoxon change point test to S&P 500
index daily log returns. The index data is collected from Datastream and spans
the period from January 2, 1990 to December 31, 2019, in total 7559 observations.
We apply the proposed loss-based Wilcoxon test to detect change points in the
VaR and ES risk measures estimated by the GARCH(1,1)-skewed ¢ model. Based
on our simulations above that consider the Wilcoxon tests based on loss functions
with different degrees of positive homogeneity, it can be concluded that our test

is not sensitive to the choice of loss function. As such, in the empirical section
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Table 3.4.3: Empirical size and power of alternative tests for a change point

m=0.5 m=0.75
M=1000 M=3000 M=1000 M=3000

Rényi Hoga FGP Rényi Hoga FGP Rényi Hoga FGP Rényi Hoga FGP
Hy: Univariate GARCH(1,1)-skewed ¢, with (B, 81, B2, v, A) = (0.05,0.9,0.05, 16.5, —0.5)
0.045 0.148 0.104 0.044 0.107 0.105 0.045 0.148 0.104 0.044 0.107 0.105
H{"': An increase of 0.04 in the volatility persistence parameter, i.e. 3; = 0.94
0.966 0.602 0.596 1.000 0.736 0.749 0.967 0.758 0.728 1.000 0.934 0.924
H{*?: A decrease of 0.04 in the volatility persistence parameter, i.e. 5} = 0.86
0.396 0.318 0.291 0.854 0.507 0.465 0.391 0.18 0.137 0.934 0.208 0.162
HP: An increase of 0.04 in the volatility reaction parameter, i.e. 85 = 0.09
0.794 0.488 0.486 0.968 0.617 0.644 0.799 0.631 0.646 0.988 0.863 0.863
HP2% A decrease of 0.04 in the volatility reaction parameter, i.e. 85 = 0.01
0.338 0.344 0.290 0.851 0.559 0.529 0.337 0.164 0.134 0.914 0.213 0.172
HE: A decrease of 13.5 in the DoF parameter, i.e. v* =3
0.193 0.209 0.211 0.461 0.194 0.264 0.268 0.200 0.244 0.648 0.196 0.348
HE2: A decrease of 14 in the DoF parameter, i.e. v* = 2.5
0.445 0.263 0.210 0.833 0.210 0.220 0.576 0.196 0.243 0.907 0.173 0.279
HP: 12 randomly selected returns in the simulated process multiplied by 5
0.044 0.144 0.115 0.039 0.104 0.099 0.044 0.144 0.115 0.039 0.104 0.099

Note: Empirical size and power, for ¢ = 5%, of three alternative tests (iié), (iv) and (v) under
various hypotheses via 1000 simulations. We consider two sample sizes: 1000 and 3000, and
different locations of the change point at |7 M | with 7 = 0.5 and 0.75. For the Rényi-type test,
we choose the loss values computed by the FZ0 loss function with VaR and ES estimated by

the GARCH(1,1)-skewed ¢ model.
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Figure 3.4.1: Size and power of the loss-based Wilcoxon test and alternatives
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Note: Empirical size and power of the loss-based Wilcoxon test with five alternative tests (i)-
(v) under various hypotheses described in Section 3.4.1 at 5% test significance level when the
change point occurs at [0.5M |. For the Wilcoxon test and Rényi-type test, we use the FZ0
loss function to compute the loss values. For all tests except Hoga and FGP, VaR and ES are
estimated by the GARCH(1,1)-skewed ¢ model.

we only use the FZ0 loss function to compute loss values, following Dimitriadis
and Schnaitmann (2021).

In order to find change points in the risk measures, we first compute the
loss-based Wilcoxon test statistic Wj;. Then, we bootstrap the return process
1000 times via the stationary bootstrap method with the optimal block length
(Politis and White, 2004; Patton et al., 2009), obtain the empirical distribution
of the Wilcoxon statistic and get the 95% critical values. If the test statistic Wy,
is larger than the critical value, we reject the null hypothesis of no change. In
such cases, a change point is detected, and we follow the binary segmentation

method discussed by Inclan and Tiao (1994) and Ye et al. (2012) to find further

change points. Specifically, the data can be split into sub-periods according to
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the locations of the detected change points until no further change point can be
found. The detailed algorithm and procedure of detecting multiple change points
can be found in Figure 3.B.5 of Appendix 3.B.

Based on our test, the earliest change point we detect in the estimated risk
measures occurred in June 1992 (following the early 1990s recession in the United
States). The second change point occurred in December 1996 (the start of the
dot-com bubble). Then another change point is identified in June 2003 (after the
burst of the dot-com bubble), and the following change points are in July 2007
(the beginning of the subprime mortgage crisis), September 2008 (the bankruptcy
of Lehman Brothers), July 2009, and January 2012 (the start and end of the
European debt crisis). We also successfully detect change points associated with
the 2015-16 stock market selloff*® and the 2018 cryptocurrency crash?'. Figure
3.5.1 presents the returns as well as the risk estimates, highlighting the detected
change points. Additionally, we apply this test for other estimation approaches
(GAS-Hybrid and historical simulations) and compare the empirical results with
alternative tests applied for the same sample (more details can be found in Tables
3.B.6 and 3.B.7 of Appendix 3.B).

Table 3.5.1 reports the GARCH(1,1)-skewed ¢ parameter estimates and stan-
dard errors obtained by the QMLE method for each sub-period, the average VaR
and ES estimates, and the average loss values. Firstly, it can be seen that the
volatility parameters and the DoF estimates experience large changes across the
sub-periods, which leads to change points in the VaR and ES processes as well.
For instance, after the burst of the dot-com bubble, we can observe a decline in
the level of the volatility. Moreover, we can see a large reduction in the value
of the DoF parameter from 11.1 to 6.5 during the European debt crisis period.
Secondly, during a crisis or a crash period, VaR and ES are high in absolute
values, as can be seen in the 2007-2008 financial crisis and the European debt
crisis. The average loss values are also found to be generally higher during crisis

periods than during stable periods. Finally, when change points are taken into
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Figure 3.5.1: Daily S&P 500 index returns and risk estimates at 1% level
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Note: Daily S&P 500 index returns and 1% VaR and ES estimates obtained by the GARCH
skewed t model. The vertical dash lines are at the estimated change points.

consideration, the loss values are typically lower than the ones computed when
the change points are ignored (this can be seen comparing Loss and Loss_NC in
Table 3.5.1). According to our findings, it can be concluded that risk manage-
ment practitioners can improve on the risk estimates by first identifying change
points in the loss series of risk measures and then computing model parameter

values based on the identified change points.

3.6 Conclusions

We propose a new test, named the loss-based Wilcoxon test, to detect change
points in the series of VaR and ES risk measures considered jointly. Our test is
based on the Wilcoxon test (Dehling et al., 2013b) applied to the FZ loss functions
proposed by Fissler and Ziegel (2016). The framework of our test is general and
can accommodate for any type of (semi)parametric estimation methods for VaR

and ES. We perform extensive simulations based on various types of change point
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Table 3.5.1: Subsample estimation results

1990/01 - 1992/05 1992/05 - 1996/12 1996/12 - 2003/06 2003/06 - 2007/07 2007/07 - 2008,/09

Bo 0.031 (0.012) 0.013 (0.006) 0.084 (0.022) 0.021 (0.007) 0.153 (0.075)
B 0.924 (0.023) 0.925 (0.024) 0.862 (0.024) 0.924 (0.023) 0.881 (0.032)
By 0.037 (0.013) 0.039 (0.013) 0.092 (0.017) 0.031 (0.014) 0.032 (0.036)
v 7.343 (1.992) 5.567 (0.817) 9.943 (2.264) 11.137 (4.338) 14.078 (11.435)
A 0.001 (0.002) -0.008 (0.039) -0.042 (0.037) -0.076 (0.030) -0.081 (0.066)
VaR -2.237 -1.491 -3.270 -1.719 -3.424
ES -2.805 -1.952 -4.000 -2.097 -4.095
Loss 1.038 0.747 1.431 0.702 1.244
Loss NC 1.135 0.736 1.475 0.815 1.400

2008/09 - 2009/07 2009/07 - 2012/01 2012/01 - 2016/07 2016/07 - 2018/01 2018/01 - 2019/12

Bo 0.012 (0.154) 0.036 (0.013) 0.075 (0.016) 0.059 (0.052) 0.042 (0.012)
B 0.930 (0.072) 0.860 (0.024) 0.723 (0.041) 0.692 (0.276) 0.773 (0.038)
By 0.063 (0.059) 0.119 (0.028) 0.170 (0.034) 0.047 (0.089) 0.181 (0.042)
v 11.378 (9.630) 6.736 (1.683) 8.019 (1.819) 3.814 (0.684) 6.189 (1.830)
A -0.047 (0.067) -0.151 (0.042) -0.089 (0.035) 0.113 (0.059) -0.211 (0.062)
VaR -7.044 -3.223 2.074 -1.071 -2.532
ES 8517 -4.138 -2.601 -1.517 -3.299
Loss 1.973 1.270 0.916 0.748 1.181
Loss NC 2.109 1.362 1.011 0.827 1.435

Note: Estimated parameter values and standard errors for [y, (1, 51, v, and X\ in the
GARCH(1,1)-skewed t model: o7 = By + B107_1 + Bari_q,us ~ i.i.d. skewed t (v,\) for the
S&P 500 index in 10 sub-periods. We also report the average VaR and ES at 1% level and the
associated average loss values using the parameters estimated within the sub-periods (Loss) and
the average loss using parameters estimated over the whole sample period without consideration
of change points (Loss_NC).

scenarios, including different locations for the change points and different changes
in the volatility and DoF parameters. Our results show that the proposed test
has better size under the null hypothesis and higher power properties under the
considered alternative hypotheses, compared with five different alternative tests.
We present an application of the loss-based Wilcoxon test on the S&P 500 index

returns. The empirical results show that the test can detect the change points

associated with well-known financial events.



Appendices

3.A Proofs

Proof of Theorem 3.2.1
Proof. In general, the Hoeffding decomposition can be applied to a U-statistic
with a kernel h(z,y), so that we have:

h(z,y) = 0+ hi(x) + ha(y) + Gz, ),

where 6 = E[h(X,Y)], hy(z) = E[h(z,Y)=0], ha(y) = E[h(X,y)—6] and §(z,y) =
h(w,y) — ha(x) = ha(y) — 0.

We have the properties for these three terms:
E[hi1(X)] = E[he(X)] =0, (3.A.1)

and
Elj(z, )] = E[g(X, )] = 0. (3.A.2)
The proof of Theorem 3.2.1 is based on a lemma introduced below.

Lemma 3.A.1. (Dehling and Wendler (2010)) Let h be a &2-Lipschitz-continuous
kernel with 2 + § moments for some 6 > 0, {X; hen be a stationary strong miz-

ing process with E[|X1]*] < oo for some & > 0 and a*(M) = O(M~") with

76
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p > BOEBLSEL2 ypon for V() = m D i<icjenr 9(Xiy X;), we have

265
. 4
E [MVi(9)] < MM =12 > > BE(X, Xi)F(Xiy, Xi)]|
1<i1<ig<M 1<iz<ia <M
4 M
< W Z |]E[ (Xz17X ) (X137X )H :O(M—ﬁ)
91,12,13,i4=1
where 1 = min {pw+f5£+2 1, 1} > 0.

The proof of this lemma can be found in Dehling and Wendler (2010) as the
proof for Lemma 3.6.

Recall hyy (¢;, ¢;) is antisymmetric with 6 = 0. In order to prove the asymptotic
normality of this U-process, we use the Hoeffding decomposition for the kernel
hw (4i,€;):

hw (€3, €;) = ha(4;) + ho(€;) + G(4;, £5).

Thus, based on (3.2.6), we have the decomposed U-process:

[uM |
1 ~
7 U () Mm > Z 0) + ha(ly) + (63, £5))
=1 j=|uM]+1
~ 32 (M — [uM]) Z ha(4;) + [uM | Z ha(4;) + Z Z g, 05)
i=1 j=luM]+1 i=1 j=|uM|+1

By Lemma 3.A.1, we have that for a given u € [0, 1], the upper boundary of the

variance of M5/2 ZLUMJ Zj]\iLUMJ+1 CRE

1
e > Y B, )3, 6]

i1=1:[uM | i3=1:|uM |
to=|uM |+1:M ig=|uM |+1:M

1
1<i1<i2<M 1<izg<iga <M
1 M
<o D B )it )] = O,

11,12,13,14=1



3.A. Proofs 78

Hence, the variance of =7 ZL“M Zj\itu w419l £;) vanishes as M increases.

By (3.A.2) and (3.A.3), we have

[uM | M

Wsup Z Z g(;,¢;)] =0

<u<
0 111] [uM]+1

in probability.
Thus, by the Lemma of Slutsky, it is enough to show that the sum of the first

two terms

LuM J

M
M3/2 Z h (0 L]\Z?)/QJ Z ha(L

j=|uM |+1 0<u<1

converges in distribution to the limit process of Theorem 3.2.1. Because the kernel
hw (4;,¢;) is antisymmetric, we have that he(¢;) = —hy(¢;). Thus, we can rewrite

the representation as

[uM | M LuMJ M
M | M 1 M |
M3/2 O M3/2 v M1/2 — YEE —

To obtain the limit of the process, we state the theorem below, which is a
direct consequence of Theorem 4 in Borovkova et al. (2001) and Theorem 3.1 in

Davidson and De Jong (2000).

Theorem 3.A.1. Let {Y;}rez be a Ly near-epoch dependent (NED) with respect
to a strong mizing process. Also, suppose that E[Y;] = 0 and E[|Y;|**°] < co for

some 6 > 0. Then, as T — oo,

1 Sy
T~ Y;—>N<O,U2),

where o = Var(Yy) + 257, Cou(Yy,Yy).
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The proof of the theorem follows immediately from Borovkova et al. (2001)
and Davidson and De Jong (2000).
Applying Theorem 3.A.1 on the partial sum process, using similar arguments

as in Chapter 4 of Csorgé and Horvath (1997) and Donsker’s theorem, it can

be shown that 7 ZL“MJ hi(¢;) — E\%\% wal hi(¢;) converges to a limit process

{ow (W (u) — uW (1)) }o<u<1, where {W(u)}o<u<1 is a Wiener process, and
oty = Var(hi(61)) +2) " Cov(h(tr), ha((y)).
k=2

Additionally, we have that hy(xz) = 5 — F(z). Thus,

1

2

o = Var(F(6)) +QZCOU (1), F(l)).
k=2

By the Lemma of Slutsky, we obtain that as M — oo Up(u) converges

) M3/2
in distribution to {ow B(u)}o<u<1, where B(u) = W(u) — uW (1) is a Brownian

bridge and of, = Var(F((1)) + 23 1o, Cov(F({y), F(lk)). O
Proof of Proposition 3.2

Proof. The kernel hy (X,Y) is Z-Lipschitz-continuous, if there is a constant

a > 0, so that for all ¢ > 0 and every common distribution of X, X’ and Y,
E[lhw(X,Y) — hy (X, V)1 {|X — X'| <€}] < ae.
For random variables X, X’ and Y, we have:

E [l (X, Y) = by (X', V)[1{|X = X'| < &}
“E[L{X <V} - 1{X' <Y} 1{X - X| <.
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We have:
E[I{X <Y} -1{X'<YV}1{I X - X'|<e}] <P(—e< X - X' <)

Based on Assumption 3.2.3 (B) on the continuous distribution function, there

exists a constant @ = 2sup(f) that satisfies the following:

- 2€ = ae.

X'+e
P(X’—egXSX'qLe):F(X’+e)—F(X'—e):/ f(t)dt <

'—e

DN |

Thus, based on Definition 3.2.1, the antisymmetric kernel of the Wilcoxon test
statistic hy (X,Y) is &2-Lipschitz-continuous. O

Proof of Theorem 3.1

Proof. In order to obtain the asymptotic behavior of the bootstrapped U-process,

we use the Hoeffding decomposition for the bootstrapped kernel hy (¢, €5):

hw (€5, 43) = ha(€7) + ha(65) + g (€7, £5).

17 7] 177

Thus, we have the decomposed bootstrapped U-process:

1 [uM |

Ui () Mg/QZ Z (ha(6) + ha(65) + (63, )

=1 j=|uM |+1

1 [uM ] [uM ] M
= — (M — [uT]) Y ha(£7) + [uM] Z ha(C)+ ) Y gl e)
=1 j=|uM]|+1 =1 j=|uM|+1

(3.A.4)

In the following, we are going to use the result below:

Lemma 3.A.2. (Hwang and Shin (2015)) Let h be a P-Lipschitz-continuous
kernel with 2+ § moments for some 6 > 0 , {X*},en be a stationary bootstrapped

strong mizing process with E[|X;|%] < oo for some & > 0 and o*(M) = O(M~*)
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with p > BF2H5E2 ypon for Vi (§) =

2 e e
260 T 2<icj<um 9 X5):

E [MV(3)] = O(M™),
where n = min {pﬁ 1, 1} > 0.
The proof of this lemma can be found in Hwang and Shin (2015) as the proof
for Lemma 2.

As shown in Lemma 3.A.2; the variance of the last term in (3.A.4) vanishes

as M increases:
[uM |

Var® M3/2 Z Z g(e;, t;) L.

=1 j=|uM |+1

Thus, by Lemma of Slutsky and the property of kernel shown in (3.A.2), it is
enough to show that

[uM]

M —[uM] o, LuM] "
M3/2 Z ha(6) M3/2 Z ha(£5)
Jj=luM|+1 0<u<1
converges in distribution to the limit process of
LuMJ
| uM |
M3/2 Z ha( M3/2 Z ha(¢
j=|uM |+1 0<u<1

Because the kernel hy, (£}, £5) is antisymmetric, we have that hy(€) = —hy(£5).

10 7%j

Thus, we can rewrite the representation as:

M — [uM] o LuM] \ o [uM] \
M3/2 Z hn(6) M3/2 Z h(6) = M1/2 Z ha(6) 372 Zhl(ﬂi)'

=luM]+1 i=1

To obtain the limit of the process, we state the theorems of Calhoun (2018).
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Theorem 3.A.2. Let {Y;}rez be a Ly near-epoch dependent (NED) with respect
to a strong mizing process. Additionally, suppose that p,, — [, is uniformly

bounded, where pi,y = E[Y,] and fi, = n~' >0 | pnr. Then we have:

sup [P (va(Y;y — E*[Y;])) < 2) — P(V(Y, - E[Y,]) < 2)| 5 0,

z€R
o 1 n Vok 1 n
where Y, = o thl Yo, and Y; = Zt:l Y;t'

Theorem 3.A.3. Suppose that the conditions of Theorem 3.A.2 hold and let d

be any distance function that metricizes weak convergence. Then we have:
Pd(Z:,0W) > %) 5 0, (3.A.5)

for all positive §*, where Z*(u) = \/Lﬁ Zt@ld (Y, —E*[YY]), and oW denotes a

Brownian motion scaled by the positive constant o. If, in addition, sup,_; _, |Hnt—
fin] = o(n=Y2) and
[&*n)
n_l Z COU(Ynsa Ynt) — 0—25*
s,t=1
for all € € [0, 1], then
PHd(Zy, oW) > 6%) 5 0, (3.A.6)

for any positive 60*, where Z,,(u) = \/iﬁ Zthl” (Yo — in)-

If both (3.A.5) and (3.A.6) hold, then the distribution of bootstrapped values
Z% can be used to approximate the distribution of Z,, because they have the
same distribution asymptotically.

The assumptions listed in Theorem 1 of Calhoun (2018) are satisfied under
Assumptions 3.2.3 and 3.3.1 in our study. Applying Theorem 3.A.2 and Theorem
3.A.3 for hy(¢;), we have:



3.A. Proofs

83

S [uM]
P
su ha( — 0,
xég <M3/ Z:: ) <M3/2 Z ! - )
|[uM | |uM | ,
sup | P* hy(€7) — ha ( — 0,
meg M1/2 Z i M1/2 Z i

Thus, based on the Lemma of Slutsky, we have:

[uM | M
sup |P* | 77 2 Jlt) - >
|uM) N
- M1/2 Z LI M3/2 Zhl =0,

Thus, we obtain the convergence in probability in (3.3.2):

sup | P*(M %205, (u) < @) — P(M™*2Up(u) < z)| 2 0.

z€R
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3.B Tables and Figures

Table 3.B.1: Rejection rates of tests on the properties of simulated loss
series

Ljung-Box ARCH ADF Grubb’s

(F20 0.167 0.063 1.000  1.000
2 0.194 0.085 1.000  1.000
(F22 0.113 0.042 1.000  1.000

Note: We simulate returns using the DGP of GARCH(1,1)-skewed ¢ model (8 = 0.05, 51 = 0.9,
B2 = 0.05, v = 16.5, A = —0.5), then use the given model to estimate 1% VaR and ES, and
substitute into the FZ loss functions to calculate the loss series. We run the simulation 1000
times with sample size of 3000. We calculate the rejection frequency as the number of rejections
divided by the number of simulations. We show the rejection frequencies obtained from the
Ljung-Box test for autocorrelation, Engle’s ARCH test for conditional heteroskedasticity, the
Augmented Dickey-Fuller (ADF) test for unit root and Grubbs’s test for the existence of outliers
respectively, with 10 lags. All tests are performed at 5% test significance level.
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Figure 3.B.1: Autocorrelation function (ACF) plots for the risk measures
(VaR, ES), loss values, and the square of loss values
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Note: This figure displays the autocorrelation function of the risk measures, the loss series,
and the square of loss series under the null hypothesis. We simulate returns using the DGP
of GARCH(1,1)-skewed ¢t model (89 = 0.05, 81 = 0.9, B2 = 0.05, v = 16.5, A = —0.5), then
use the given model to estimate 1% VaR and ES, and substitute into the FZ loss functions to
calculate the loss series. We run the simulation 1000 times with sample size of 3000.
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Table 3.B.2: Empirical size for ¢ = 5% of the loss-based Wilcoxon test using
the asymptotic distribution with long-run variance estimators

M=1000 M=3000
G-Skt  G-G  Hybrid G-Skt  G-G Hybrid
Bartlett estimator with bandwidth by = |4(M/100)%/?|

P20 0.747  0.739  0.733 0.736  0.737 0.736
P21 0.747  0.740  0.733 0.736  0.737 0.736
522 0.747  0.739  0.733 0.736  0.737 0.736

Bartlett estimator with bandwidth bgr = 0.02M

(P20 0315 0.313  0.373 0.184 0.173 0.241
FZ21 0315 0.313  0.371 0.184 0.173 0.241
F22 0315 0.313  0.368 0.184 0.173 0.240

Bartlett estimator with bandwidth bgr = 0.05M

¢F200.107  0.112  0.126 0.079  0.080 0.106
FZL 0,107 0.112  0.124 0.079  0.080 0.106
722 0.107 0.112  0.123 0.079  0.080 0.105

DFSVW estimator with bandwidth bprsyw = |4(M/100)%? |

F20 0764 0.759  0.770 0.707 0.707 0.731
P21 0.764  0.759  0.768 0.707 0.707 0.731
F22 - 0.764  0.759  0.765 0.707 0.707 0.731

DFSVW estimator with bandwidth bppsyw = 0.02M

20 0.229  0.230  0.301 0.096 0.096 0.102
FZ1 0 0.229  0.230  0.300 0.096  0.096 0.102
772 0.229  0.230  0.301 0.096 0.096 0.102

DFSVW estimator with bandwidth bDFSVW = 0.0bM

720 0.075  0.075  0.102 0.039 0.039 0.049
£ 0.075  0.075  0.100 0.039 0.039 0.049
22 0.075 0.075  0.100 0.039 0.039 0.049

Note: We simulate returns using the DGP of GARCH(1,1)-skewed ¢ model (8 = 0.05, 51 = 0.9,
B2 = 0.05, v = 16.5, A\ = —0.5). Empirical size for ¢ = 5% of the loss-based Wilcoxon test
under the null hypothesis is generated via 1000 simulations, for three types of risk measures
(GARCH(1,1)-skewed t, GARCH(1,1)-Gaussian and GAS-Hybrid) and three FZ loss functions
with different degrees of positive homogeneity. We consider two sample sizes: 1000 and 3000,
and VaR and ES are computed at o = 1% level. In this test, we implement the loss-based
Wilcoxon test for a change point by using the asymptotic distribution with two long-run variance
estimators: the Bartlett estimator and the DFSVW estimator of Dehling et al. (2013a). The
bandwidth bgr = [4(M/100)?/?| for the Bartlett estimator according to Newey and West
(1994); and the bandwidths 0.027" and 0.057 for the DFSVW estimator are recommended by
Dehling et al. (2013a).
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Table 3.B.3: Empirical size and power of the loss-based Wilcoxon test for a
change point by bootstrapping loss series directly

=05 m=0.75
M=1000 M=3000 M=1000 M=3000
G-Skt  G-G Hybrid G-Skt  G-G  Hybrid G-Skt  G-G  Hybrid G-Skt  G-G  Hybrid
Hy: Univariate GARCH(1,1)-skewed ¢, with (5o, 81, B2, v, A) = (0.05,0.9,0.05,16.5, —0.5)

(200165 0.170  0.176 0.095 0.091  0.096 0.165 0.170  0.176 0.095 0.091  0.096
P2 0173 0175 0.177 0.093 0.095 0.097 0.173  0.175  0.177 0.093 0.095 0.097
F22 0177 0171 0.181 0.107 0.091  0.091 0.177 0.171  0.181 0.107 0.091  0.091

H{': An increase of 0.04 in the volatility persistence parameter, i.e. 3; = 0.94

(FZ0 0,998 0.999  0.979 1.000 1.000  1.000 0.914 0.920 0.780 0.998 0.999 0.973
FZ10.997  0.999  0.978 1.000 1.000 1.000 0.919 0920 0.785 0.999 0.999 0.977
P22 0.997  0.999  0.980 1.000 1.000 1.000 0.922 0922 0.774 0.999 0.999 0.978

H{: A decrease of 0.04 in the volatility persistence parameter, i.c. 8 = 0.86

(F20 0799  0.796  0.672 0.996 0.995 0.961 0.423 0.434 0.364 0.791  0.793  0.669
(P2 0,798  0.803  0.674 0.994 0.994 0.960 0.422 0429 0.373 0.792  0.793  0.659
220,793 0.801  0.670 0.995 0.994 0.958 0.426 0.422 0.374 0.793 0.782  0.672

HPE: An increase of 0.04 in the volatility reaction parameter, i.e. 85 = 0.09

(F20 0940 0.942 0.886 0.999 0.999  0.989 0.740 0.748  0.592 0.952  0.962  0.889
(FZ 0945 0.944  0.885 0.999 0.999  0.993 0.741 0.749  0.593 0.959 0.960 0.878
220,939 0945 0.888 0.999 0.999  0.990 0.744 0.753  0.589 0.953 0.961 0.883

HE2: A decrease of 0.04 in the volatility reaction parameter, i.e. 85 = 0.01

(F20 0819 0.831 0.688 0.998 0.996 0.944 0.434 0.429 0.363 0.820 0.816  0.688
(FZ10.826  0.831  0.691 0.997 0.997 0.947 0.437 0.429 0.367 0.812 0.811 0.691
(F220.824 0.831 0.691 0.996 0.997 0.948 0.427 0434 0.372 0.808 0.817  0.689

HE': A decrease of 13.5 in the DoF parameter, i.c. v* =3

(P20 0614 0.622 0.512 0.851 0.854 0.465 0.358 0.359  0.365 0.515 0.515  0.389
(FZ21 0617 0.625 0.517 0.853 0.853  0.462 0.358 0.363  0.360 0.520 0.511  0.384
(220,620 0.631  0.508 0.854 0.854 0.463 0.359  0.359  0.365 0.509 0.514  0.393

HE?: A decrease of 14 in the DoF parameter, i.e. v* = 2.5

(F20 0897 0.897 0.648 0.987 0.988 0.623 0.598 0.588  0.541 0.866 0.866  0.587
(P21 0.899 0.900 0.649 0.986 0.988 0.622 0.595 0.599  0.537 0.863 0.877 0.593
F22 0899 0.901 0.645 0.988 0.989 0.622 0.604 0.592  0.545 0.870 0.864 0.592

HP: 12 randomly selected returns in the simulated process multiplied by 5

(F20 0182 0.183 0.173 0.112 0.112  0.116 0.182 0.183 0.173 0.112  0.112  0.116
(FZL 0175 0.183  0.185 0.116 0.113  0.122 0.175 0.183  0.185 0.116 0.113  0.122
(F22 0183 0.183 0.179 0.114 0.117 0.119 0.183 0.183 0.179 0.114 0.117 0.119

Note: Empirical size and power, for ¢ = 5%, of the loss-based Wilcoxon test under various
hypotheses via 1000 simulations, for three types of 1% risk measures (GARCH(1,1)-skewed ¢,
GARCH(1,1)-Gaussian and GAS-Hybrid) and three FZ loss functions with different degrees of
positive homogeneity. We consider two sample sizes: 1000 and 3000, and different locations
of the change point: |0.5M ] and [0.75M . In this test, we bootstrap the loss series directly,
instead of resampling returns.
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Table 3.B.5: Empirical size and power of the loss-based Wilcoxon test for a
change point in risk measures estimated by historical simulations

0.5M 0.75M
M=1000 M=3000  M=1000 M=3000
Hy: (Bo, B1, Bo, v, \) = (0.05,0.9,0.05, 16.5, —0.5)

(F20 0.064 0.042 0.064 0.042
P20 0.092 0.075 0.092 0.075
F22 - 0.076 0.065 0.076 0.065
H{: Br =0.94

¢F70  0.878 0.999 0.418 0.800
FZ10.862 0.999 0.375 0.805
(F22 0.875 0.999 0.455 0.804
H{2: B =0.86

020 0.479 0.914 0.270 0.429
F21 0415 0.913 0.213 0.417
(22 0.424 0.917 0.255 0.431
HPY: B3 =0.09

(F20 0.715 0.987 0.365 0.728
P2 0.652 0.985 0.318 0.731
(F%2  0.680 0.988 0.263 0.721
HP2: g3 =0.01

(20 0.490 0.951 0.252 0.439
(FZL0.479 0.945 0.253 0.434
(F72 0521 0.952 0.252 0.448
HEY: v =3

20 0.191 0.419 0.180 0.337
(FZ10.165 0.448 0.157 0.341
(F22 - 0.138 0.400 0.131 0.328
HE?: v* =25

(P20 0.229 0.336 0.173 0.312
P21 0.233 0.339 0.177 0.310
722 0.228 0.337 0.178 0.313
HP: 12 randomly selected returns multiplied by 5
¢F20 0.073 0.050 0.073 0.050
FZL 0 0.090 0.075 0.090 0.075
722 0.071 0.069 0.071 0.069

Note: Empirical size and power, for ¢ = 5%, of the loss-based Wilcoxon test under various
hypotheses via 1000 simulations, for the 1% risk measures estimated by historical simulations
and three FZ loss functions with different degrees of positive homogeneity. We consider two
sample sizes: 1000 and 3000, and different locations of the change point: [0.5M | and |0.75M |.
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Figure 3.B.2: Power curves of the loss-based Wilcoxon test and alternative
tests
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Note: Power curves (empirical size and power) of the loss-based Wilcoxon test for three (semi-
)parametric estimation methods with alternative tests under various hypothesis at 5% test
significance level in the given GARCH(1,1)-skewed ¢ process via 1000 simulations. For the
loss-based Wilcoxon test, we choose the loss values computed by the FZ0 loss function with
1% VaR and ES estimated by the GARCH(1,1)-skewed ¢, GARCH(1,1)-Gaussian, and GAS-
Hybrid model (denoted by GARCH-Skt, GARCH-G and Hybrid in legend). Regarding the
self-normalized CUSUM test for 1% VaR and ES, we use the 1% VaR and ES estimated by
GARCH(1,1)-skewed ¢ (denoted by VaR/ES in legend). Because the estimation results for VaR
and ES are the same with each other, we select one of them. Panel (a) and (b) consider the
change in parameter 5 from 0.90 to 0.86 (and 0.94) when the change point occurs at |0.5M |
and |0.75M |, respectively; Panel (c¢) and (d) consider the change in parameter Sz from 0.05 to
0.01 (and 0.09) when the change point occurs at [0.5M | and [0.75M |, respectively.
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Figure 3.B.3: Change point tests for AR(1) process and ARCH(1) process
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Note: Left: Change point tests for AR(1) process. Relationship between empirical detection
probability and degrees of freedom v of t-distributed innovations after the change point. Before
the change point, v = 16.5. Right: Change point tests for ARCH(1) process. Relationship
between empirical detection probability and ARCH(1) parameter 5 after the change point.
Before the change point, 2 = 0.2. In both cases, change point testing is conducted with 5%
test significance level using risk measures at the 1% level. For both the AR(1) and ARCH(1)
processes, the abrupt change occurs at |0.5M |. Each plotted point is an average over 1000
replications, and the sample size is 3000. We simulate AR(1) process: r; = 0.5r;—1 + t(v) and

ARCH(1) process: ry = /1 + Bar?_jus_1, where u;_; follows the Gaussian distribution. Under

the null hypothesis, we set v = 16.5 and 87 = 0.2. Under the alternative hypothesis, we adjust
the parameter values v and [ in the two processes from 16.5 to 2.5 and 0.2 to 0.9, respectively.
For the loss-based Wilcoxon test, we choose the loss values computed by the FZ0 loss function
with VaR and ES estimated by the GARCH(1,1)-skewed ¢ model.
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Figure 3.B.4: Size and power of the loss-based Wilcoxon test and alterna-
tives with the change point at [0.750/ |

1.00 1.001.00 giae

0.94
9m.9 %02 nz
0.91 sl
0.90
080,86
0.80 0.780.78 0.7
07
0.70
0.66
0.65
.420.42
0.39
0.39.35
0.32.34 0=
0.30 0.28
0.21 0.21
0.20 b
! . 017 .10.17 0.17
011011 0.1%.10
0.10
0.060.06,
0.00.04 0.0.0P0DI5
o IR ml

No break B1
® Wilcoxon H Renyi-type VaR ES Hoga FGP

o
o
=)

Rejection rate
g

o
Y
=)

Note: Empirical size and power of the loss-based Wilcoxon test with five alternative tests under
various hypotheses at 5% test significance level when the change point occurs at [0.75M | via
1000 simulations. For the Wilcoxon test and Rényi-type test, we use the FZ0 loss function to
compute the loss values. For all tests except Hoga and FGP, 1% VaR and ES are estimated by
the GARCH(1,1)-skewed ¢ model.
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Figure 3.B.5: Sequence of the loss-based Wilcoxon algorithm based on the
GARCH(1,1)-skewed ¢t model, applied to the S&P 500 index

o x10° k=614,..,1759

1759 «10°
5 210

5 x10

1s s P L-
J is
A /”\/ 3
__/\ i

5
35 210

B "
4 s V
2
4
3
4 E
25 r 2
0 1000 2000 3000 4000 5000 6000 70 1000 2000 3000 4000 5000 6000  70C 0 1000 2000 3000 4000 5000 6000 70C 0 1000 200 3000 4000 5000 6000 7000
2 K'=613 K'=353 K'=1508
5 10° K = 1760,....7559 5 210° k = 1760,...5554 4 210 k = 1760,...,3385 5 2108 Kk =3386,..5554
=)
E}
-4
\v/
- 5
1000 2000 3000 4000 5000 6000  70C 1000 2000 3000 4000 5000 6000  70C 0 1000 2000 3000 4000 5000 6000 70C 0 1000 2000 3000 4000 5000 6000 7000
K'=5554 K'=3385 K'=2170 K'=4427
15 x10% k =3386.....4427 10 x10* k=4428,...,5554 2 x10* k=4428,...4934 15 x10* k=4428,...4712
1 1k
05 % 05
" I
o \r 5 EalY ‘w
o W “
05 05
15
! )
4 Y- o
25
15 E 15
0 1000 2000 3000 4000 5000 6000 70 1000 2000 3000 4000 5000 6000  70C 0 1000 2000 3000 4000 5000 000 70C 0 1000 2000 3000 4000 5000 6000 7000
(=3760 K'=4934 K'=4712 K
k=4713,....4934 P x10* k =4935,....5554 “ x10* k =5555,..., 7559 o x10% k = 5555,...,6689

-
o |
3 0 S0 | >
- ; |
;
- . d ;

-8000 4 v 2
0 1000 2000 3000 4000 5000 6000  70C 0 1000 2000 0 1000 2000 3000 4000 5000 6000  70¢ 0 1000 2000 3000 4000 5000 6000 7000
K'=4798 K'=6680 2
5 x10° k=6690...,7559 o 210" k =6690,...7074
2 15

0 1000 2000

1000 2000 3000 4000 5000 6000  700¢
‘<7074

(17)




3.B. Tables and Figures

94

Figure 3.B.6: Daily returns and 1% (VaR, ES) estimated by the GAS-

Hybrid
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Note: The vertical dash lines are the detected change points by using the binary segmentation

method.

Table 3.B.6: Subsample estimation results of GAS-Hybrid model

1990/01-1992/01  1992/01-1997/02

1997/02-2003/08 2003/08-2007/02 2007/02-2012/08

2012/08-2019/12

B 0.820(0.097) 0.976(0.007) 0.912(0.083) 0.835(0.382) 0.942(0.068) 0.798(0.039)

B 0.012(0.005) 0.000(0.001) 0.005(0.004) 0.001(0.001) 0.006(0.004) 0.008(0.001)

B3 1.09E-08(1.66E-08) 0.017(0.001) 0.006(0.006) 0.006(0.005) 0.028(0.049) 0.027(0.008)

a -2.017(5.905) -3.883(13.324)  -3.236(14. 339) -1.584(9.208)  -4.164(30.9862)  -2.493(0.624)

b -2.825(8.271) -4.919(16.960)  -4.314(19.165)  -1.785(10.441)  -4.843(37.204)  -3.074(0.879)
VaR -2.465 -1.815 -3.216 -1.928 -3.312 -2.162

ES -3.136 -2.309 -4.091 -2.452 -4.214 -2.751

Loss 1.036 0.684 1.411 0.515 1.299 0.973

Loss NC 1.149 0.716 1.493 0.688 1.394 1.031

Note: Estimated parameter values for 1, B2, and (3 in the GAS-Hybrid model: x; = By +

Brki—1 + Ba(—

€t—1

(1 {r: <wv}rioy —er—1)) + Bslog|ri—i|, ve = a - exp{kt}, er = b - exp{r:}

for the S&P 500 index in 6 sub-periods. We also report the average VaR and ES at 1% level
and the associated average loss values using the parameters estimated within the sub-periods
(Loss) and the average loss using parameters estimated over the whole sample period without

consideration of change points (Loss_NC).
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Figure 3.B.7: Daily returns and 1% (VaR, ES) estimated by historical sim-
ulations
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Note: The vertical dash lines are the estimated change points by the loss-based Wilcoxon test
based on historical simulations with a rolling window of size 125.
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Notes

IThis class of semiparametric models has been extended to incorporate the intraday or high-
frequency information (Meng and Taylor, 2020; Lazar and Xue, 2020; Gerlach and Wang, 2020)
and combine with networks (Bonaccolto et al., 2022).

2There is no (strictly) consistent loss function for ES that does not also contain VaR (Fissler
and Ziegel, 2016).

3In order to construct the Wilcoxon test statistic, we initially obtain the ranks of loss values
and then feed the ranks into the CUSUM procedure. More details can be found in Section 2.2.

4 A loss function / is called positive homogeneous of degree bif for all 7, v and e, L(ér,év, ce) =
& L(r,v,e), for all & > 0.

5The simulation setup and results are reported in Table 3.B.1 of Appendix 3.B. We use the
Ljung-Box test, Engle’s ARCH test, the Augmented Dickey-Fuller (ADF) test and Grubb’s test.

SBoucher et al. (2014) and Lazar and Zhang (2019) discuss that the model risk of risk
measures can be decomposed into estimation bias and model misspecification. When using the
true model (the one used to generate the data process) with the true parameters to estimate
risk measures, model risk is not present.

"For simplicity, in this chapter we consider the alternative hypothesis that there exists only
one change point k* occurring in the series.

8In this chapter, we follow Hoga (2017) to set the expected block length as 0.087', which can
consistently produce satisfactory results in various settings. It is possible to select the optimal
block length for stationary bootstrapping, please see Politis and White (2004) and Patton et al.
(2009) for more details.

9We found that resampling the loss series {£;(r})}; directly would lead to a higher empirical
size, especially for small sample sizes (the related simulation results can be found in Table 3.B.3
of Appendix 3.B).

0T hese sample sizes are in line with the sample sizes used in the literature on risk measure-
ment (see Patton et al., 2019).

HResults for « = 5% are consistent with the results reported here, and are available upon
request.

12\We are aware that these values of v* mean that the fourth moment of the simulated returns

does not exist. Nevertheless, these values of v* are useful for illustrative purposes. The literature
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considers DGPs with less than four finite moments, such as in Berkes et al. (2003).

BMore details about the models can be found in Table 3.B.4 of Appendix 3.B.

4Here, we only consider the case of ¢ = 5%; the results for other values of ¢ are available on
request.

15Tf model misspecification risk is present, then the ordering of models is affected by the choice
of loss function (Patton, 2020); in this case, the size and power properties of our proposed test
might be affected by the choice of loss function.

16We use the FZO0 loss function to compute the loss values for GARCH(1,1)-skewed ¢ risk
estimates. We implement the stationary bootstrapping based MC simulation for the Rényi-
type loss-based Wilcoxon test, instead of applying the asymptotic distribution that assumes
normally distributed loss values.

1"We choose the historical quantile to estimate VaR and ES, in line with Fan et al. (2018),
instead of applying the Weissman estimator for VaR used by Hoga (2017). Based on our
simulations, the critical value at 5% test significance level is 80.21 for ug = 0.2, which is very
close to the one given by Hoga (2017).

18Tn Table 3.B.5 of Appendix 3.B, we show that the loss-based Wilcoxon test has strong power
in detecting the change point in the series of VaR and ES estimated by historical simulations.
In Figure 3.B.2 we present the power curves of this test for three (semi)parametric models with
alternative tests to show the detection power in terms of the marginal change in parameters.
Figure 3.B.3 compares our test with alternative tests in terms of size and power for AR(1) and
ARCH(1) processes, which are the DGPs used by Fan et al. (2018). Our results are consistent
with the results in Table 3.4.1 and 3.4.3.

9Tn Figure 3.B.4 of Appendix 3.B we present the results when the break occurs at [0.75M |.

20Between August 2015 and early 2016, the S&P 500 and DJIA dropped more than 10%
twice.

21The S&P 500 index dropped almost 20% between September and December 2018.



Chapter 4

Sequential Monitoring for
Changes in M-estimators of Risk
Models

4.1 Introduction

In the ongoing recession following the COVID-19 pandemic and past financial
crises, there is an increasing demand for more effective risk measures. Risk mea-
sures have become essential in supporting asset management decisions for banks
and other financial institutions, especially under market turmoil. Value-at-Risk
(VaR) and Expected Shortfall (ES) are two prevailing measures of financial risk
that dominate current financial regulation. VaR measures how much a certain
portfolio can lose at a given significance level within a given period. As a supple-
mentary measure to VaR, ES captures the expected value of exceedances beyond
the quantile. In the current literature, the estimation and forecasting approaches
for joint VaR and ES can be classified into three main categories: nonparametric,
semiparametric and parametric. Regarding the (semi)parametric models, the es-
timation method is based on the theory for M-estimators (see White (1996) and
Newey and McFadden (1994) for example).

99
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Ignoring change points in model parameters will likely lead to biased statisti-
cal inference and inaccurate forecasts. This situation has often been encountered
in time series analysis. A strand of literature considers tests for parameter sta-
bility in a wide class of both linear and nonlinear parametric models (Andrews,
1993; Stock and Watson, 1996; Bai and Perron, 1998). Empirically, the mis-
leading results caused by change points in time series has been documented in
stock returns (Smith and Timmermann, 2021), conditional and unconditional
variance (Andreou and Ghysels, 2002; Inclan and Tiao, 1994), correlation dy-
namics (Barassi et al., 2020), quantile regression (Qu, 2008), VaR (Hoga, 2017)
and (semi)parametric models for risk measures (Lazar et al., 2021). We refer the
readers to Hansen (2001) and Aue and Horvath (2013) for a detailed literature
review of the change point detection methods for historical observations.

However, most literature mentioned above is designed to detect change points
within a given historical dataset. In addition to this paradigm of historical de-
tection of change points, another practical research question is whether newly
arriving data is consistent with a well-trained relationship between series based
on historical data because change points in the model can trigger such inconsis-
tencies. As a milestone in the literature of real-time detection, Chu et al. (1996)
propose an innovative test for changes in a time series based on a sequential de-
tector and a boundary function. This monitoring scheme detects a change point
when the proposed detector exceeds the boundary curve. Following this seminal
work, several studies document the use of sequential monitoring in other models,
e.g., the GARCH (p,q) models (Berkes et al., 2004), the functional linear mod-
els with dependent errors (Aue et al., 2014) and the dynamic linear models for
real estate prices (Horvéath et al., 2021b). Additionally, Horvath et al. (2020a)
develop sequential monitoring procedures for changes from stationarity to mild
non-stationarity of a time series. Horvéath et al. (2021a) propose a sequentially
monitoring scheme for a change point in a sequence of distributions. Regarding

sequential monitoring for changes in the tail behaviour of time series, Hoga and
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Wied (2017) propose a real-time detection procedure for changes in the nonpara-
metric tail index of weakly dependent random variables.

In academia and the financial industry, (semi)parametric models are widely
applied to forecast VaR and ES jointly instead of nonparametric methods. Un-
like parametric models, which require a conditional distribution of returns for
estimation and prediction, the construction of semiparametric models eliminate
the need to specify and estimate a conditional density but rely on minimizing a
specified loss function (Engle and Manganelli, 2004; Patton et al., 2019). The
timing of parameter adjustments for risk models has become an essential part of
risk management. However, sequentially detecting change points in risk models
for VaR and ES has remained unexplored in the current literature.

To fill this gap, our contribution is that we propose a sequential monitoring
scheme to detect changes in the parameter values of (semi)parametric models.
This procedure is based on evaluating the gradients of the FZ loss function (Fissler
and Ziegel, 2016) with respect to (w.r.t.) the model parameters, instead of relying
solely on the time series of risk measures. Our detection procedure mainly follows
Chu et al. (1996) where a change is detected when a proposed detector exceeds a
defined boundary function. In our case, the detector is based on the cumulative
sum process of gradients of the FZ loss function. The boundary curve is chosen
such that the probability of a false detection under the null hypothesis of stable
parameters is fixed. Our proposed detector is similar to two tests for change
points proposed by Qu (2008) and Berkes et al. (2004). A unifying view of the
fluctuation-type statistic based on the gradient estimated from historical samples
is presented in Qu (2008). However, this test is proposed for detecting change
points ez-post instead of real-time detection. This gradient-based test for quantile
regression can be extended to sequential monitoring for change points in nonlinear
risk models for VaR and ES. This chapter is also relevant to Berkes et al. (2004),
who derive a sequential test for the changes in the parameters of a GARCH

sequence. However, we propose an extension of their test by considering risk
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models for VaR and ES jointly.

Additionally, using Monte Carlo (MC) simulations, we show the advantages
of the proposed sequential monitoring test in identifying change points in risk
models. Under the null hypothesis, our test is shown to have suitable size control
in finite samples. Regarding the alternative hypotheses, we consider changes in
VaR and ES caused by the varying second to fourth moments (variance, skew-
ness and kurtosis) individually, and our test has high power under those various
scenarios.

Lastly, we empirically demonstrate the practical usage of our proposed test
on risk measures of the S&P 500 index returns and the GBP/EUR exchange
rate returns. We present evidence that the test can detect change points in risk
models earlier than the financial crisis when we apply the test to the S&P 500
index returns. Also, the change points detected by the test are consistent with
well-known market events, such as the Black Monday in the US stock market
caused by the COVID-19 pandemic and the sterling depreciation after the Brexit
referendum.

The chapter is structured as follows: Section 4.2 formulates the detection prob-
lem in the framework of sequential change point hypothesis testing and presents
some theoretical results related to the asymptotic distribution of the proposed test
statistic; Section 4.3 discusses the MC simulation setup under various scenarios,
and presents the simulation results; Section 4.4 contains the empirical applica-
tions based on the S&P 500 index and the GBP/EUR exchange rate return; and

Section 4.5 concludes the chapter.
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4.2 Sequential Monitoring for Changes in Semi-

parametric Risk Models

4.2.1 Semiparametric Models Formulation

We start by briefly reviewing the general risk model for VaR and ES estimation
and forecasting. Suppose that we observe a series of asset returns in a training
(historical) sample {r;}2,. Let v and e® denote the VaR and ES at a specified
significance level a. Then for a € (0,1), the conditional VaR and ES of y are
given by

vP=F"Ya|F 1) = inf{r; € R|F(r|F_1) > a}, (4.2.1)

and

e =E[rir: < v, Fq], (4.2.2)

respectively, where F'(-|.%;_1) is the cumulative distribution function of observa-
tions r; over a horizon given the information set .%;_ ;.

Let a; be a (K x 1) vector of time ¢ exogenous variables given the information
set F;, and let 8 be a (d x 1) vector of unknown parameters. Then, we let
v (0%) = v(0% ;1) and € (0*) = e(0%, x;_1) denote the estimated VaR and ES
at the significance level a at time ¢, given past information up to time ¢ — 1. In
the following, we suppress the superscript a from 6%, v* and ef for notational
convenience.

Patton et al. (2019) define a generic dynamic semiparametric model for con-

ditional VaR and ES at significance level « in the following framework:

v(9) v(ri1, h*(xy_1),...,7m1, " (21); 0)
e (0) e(ri—1, h* (1), ...,m1,h"(x1); 0)

Il
~

I
\.P—‘
—~
=
Do
w
~—

where h*(-) is a function that links the quantiles v,(0) and e;(0) to exogenous

variables that belong to the information set.
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Unlike using (Quasi-) maximum likelihood estimation ((Q)MLE) to estimate
the parameters of a parametric model, the estimation of the unknown parameters
0 for a semiparametric risk model is based on the FZ0 loss function introduced

by Fissler and Ziegel (2016):

l, (w) = _aétl(u) 1{r: <o (u)} (0(uw) — 1) + ZZEZ; +log (—éi(u)) — 1, (4.2.4)

where u is a possible set of parameter values in the generic parameter space ©,
u € © C R% We also have that & € ©. For a given set u of parameter values,
U¢(w) and é;(u) are the estimated VaR and ES at time ¢.

The estimator for the unknown parameter 6 is obtained by

0, = argmin{Ly, (u) : u € O}, (4.2.5)
where
A 1 ~
L (w) = - > b(u). (4.2.6)
1<t<M

When we construct our detector function based on the estimated parameters,
we are exposed to parameter estimation uncertainty. This uncertainty could cause
misleading detection results, for example, spurious break detection or biased de-
tected locations. Thus, in this chapter, we would like to note that neglecting pa-
rameter estimation uncertainty in the calculation of the detector in finite samples
means that we are effectively assuming that we have the true value. Patton et al.
(2019) show that the M-estimation of these parameters via FZ loss minimization
leads to a consistent and asymptotically normal estimator. The conditions for

the proof are provided in the following section.
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4.2.2 Sequential Monitoring for Change Points

Consider a financial return time series from which we have observed a “stable”
historical sample of length M, ry, ..., 5, which is referred to the training sample.
Based on this training sample, we can estimate a semiparametric model for (VaR,
ES). As additional observations of the series, ry 1,712, ... are revealed in an
online manner, we are interested in detecting whether the parameters of the
semiparametric model for (VaR, ES) have changes in the incoming observations.

To sequentially monitor for changes in the parameters of a risk model, the

procedure has the null hypothesis that:

H0:0M+k:0; 1<k < o0,

against the alternative hypothesis that a change in the parameters occurred at

k* and the parameters after k* are 6*:

0, 1<k<Fk"
0, K +1<k< 0.

HAZHI{?*ENIHM_;,_k:

To test the hypotheses, we sequentially evaluate the change in the mean of
gradient of the FZ loss function w.r.t. parameters 8. We construct a test based
on the intuition that a parameter change must have occurred if the gradient of
the loss function persistently deviate from zero. If such a change occurs in the
monitoring horizon, then the parameter estimates based on the training sample
cannot characterize the incoming observations, leading to a non-zero expectation
of gradient. Consequently, it is no longer valid to use the parameters estimated
based on the training sample to make risk forecasts after the change.

Here, we define £} (u) as the vector of the first-order derivatives of the FZ0



4.2. Sequential Monitoring 106

loss function w.r.t. the parameters of the model at ¢:

(4.2.7)

where 7)(u) and é)(u) denote the first-order derivative of v;(u) and é,(u) w.r.t.
the set of parameters u, respectively.

To derive the asymptotic results for this test, we consider the following as-

sumption for the time series of the gradient.

Assumption 4.2.1. {£,(u)} is a stationary ergodic martingale difference se-

quence.

A key observation is that under the null hypothesis of no structural change,
in the sequence {£€,(u)}, 1{r; < 0;(u)} is a pivotal statistic, i.e., a sequence of
independent binary random variables with mean « and variance a(1 — «).

Then, we consider the covariance matrix estimator:

Dy = % | SZZSM@ (éM)Té; (6u). (4.2.8)

where T denotes the transpose of a vector.
The monitoring scheme follows from the nonnegative definite property of the
matrix Dy, given in (4.2.8). In the following, we show that Dy is nonsingular
with probability tending to one as M — oco. Hence ﬁ;/ll/ ? exists with probability

tending to one as M — oc.

We also define:

and

D = D(#). (4.2.9)
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To derive the main theoretical results, we consider the assumptions below.

Assumption 4.2.2. (A) The loss sequence {£€, (u)} obeys the uniform law of
large numbers;

(B) © is a compact subset of R? for d < oo,

(C) {r:}2, is a strictly stationary process. Conditional on all the past in-
formation %1, the distribution of ry is F(-|%_1) which, for all t, belongs to
a class of distribution functions on R with finite first moments and the unique
a-quantiles.

(D) For any t, both vy(u) and e;(w) are F_1-measurable and a.s. continuous
m u;

(E) If P ((vi(u) = v(0)) N (ex(u) = e4(0))) = 1 Vi, then uw = 6.
Assumption 4.2.3. (A) For all t, we have (i) vi(u) and e;(u) are a.s. twice
continuously differentiable in w, (i) e;(0) < v,(0) < 0;

(B) For all t, we have (i) conditional on all the past information Fy_y, 1
has a continuous density fi(-|-F—1) that satisfies fi(y|Fi—1) < K < oo and
L1 Fen) — LT < Kl — o), (i) E[[nf*] < K < oo, for some
0<d<1;

(C) There exists a neighborhood of 6@, A (0), such that for all t we have (i)
I1/e(u)] < K < oo, Yu € A(0), (ii) there exist some (possibly stochastic)

1), VilFi1), Hi(Fi-1), Va(Fio1), Ho(Fi1)
that satisfy w € A(0) : |v(w)| < V(Fia),[lvi(w)l] < Vi(Fia), [lel(u)]] <
Hy(Fa), [0 ()| < Va(Fir), and |l ()] < Ho(Fir);

(D) For 0 < 6 <1 and for all t we have (i) E [V(F,_1)**], E [Hi(F-1)*"],
E [VQM 1)3?] E [Hﬂ%,gﬂ <t, (ii) E [V(Fio1) Vi (Fpoy) Hy (Fir) 2]
<t, (iii) E [Hi(Fo1) PO Ho(Fer)|re| 0] VB [Hi(Fmr )30 re| 0] < 8;

(E)

Fi_1-measurable functions V (F

(F
(e

GZE[ﬁ “i(jigﬁ*”v;(em(e>+ Lel(0)7/(6)

is a (strictly) positive definite, nonsingular matriz;
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(F) {r,v,(0),e.(0),v,(0),¢e,(0)} is a-mizing with > oo_ a(m)4=2 < oo for
some q > 2;

(G) sup, M 1{r, = v(u)} <t a.s.

Assumption 4.2.4. (A) The deterministic positive sequence cp satisfies cp =
o(1) and c;t = o(TY?).

(B) (i) &N £,(0)7€,(8) — D % 0, where D is defined in (4.2.9).

(i1) 3 S, aei(0)¢4(8) — B | gmei(9)Tei(6)] B 0.

(iii} ﬁ i\il mi(;e—%{ﬂvé(e)Tvé(g) —_E [ft(v_t(aee)l(g;sfl)Ué(e)Tvé(e)} 5o.

Patton et al. (2019) derive the asymptotic normality of v M (éM — 0), if
Assumptions 4.2.4 - 4.2.3 hold. Also, based on Theorem 3 in Patton et al. (2019),

we have the following proposition:

Proposition 4.2.1. If Assumptions 4.2.2 - 4.2.4 hold, then
Dy-D5o

To simplify the monitoring scheme, we define a detector:

r <M,k;éM> - > ¢ (éM) D (4.2.10)
M<t<M+k 0o
and a boundary function:
g(M, k) = cM'? 1+£ b (2 (4.2.11)
’ M M)’ o
where ||-||, denotes the maximum norm of a vector, i.e., for a generic vector
2= (21,...,24), ||2|l = max{|z],...,|z|}, where d measures the size of vector,

¢ is the critical value and b(-) is a selected function, defined as:

b(ﬁ) - (Mlik)
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where 0 < v < $ (as in Chu et al., 1996; Horvéth et al., 2020a, 2021a).

Here, we define the stopping time k* as:

k* = min {k; T (M, k;éM> > M2 <1 + %) b (%) } , (4.2.12)

If k* < oo, we say that a change occurs, so that under the null hypothesis,

) r <M, k: éM>
]\}i—r>nooPH0 (k*<oo):J\/1[1£>nooPH0 W>1f0rsemek21 =q,
(4.2.13)
where 0 < ¢ < 1 is a prescribed significance level, and under the alternative
hypothesis,
) r <M, k: éM)
J\/IIEHOOPHA (]ﬂ*<OO>ZA/l[1_I)DOOPHA W>1f0rsomek21 = 1.
(4.2.14)
We impose the following conditions on the function b(t):
Assumption 4.2.5.
b(t) is continuous on (0,00), (4.2.15)
and
0<1%1<foo b(t) > 0. (4.2.16)
Theorem 4.2.1. If Assumptions 4.2.1 - 4.2.5 hold, then
: (W (w)] )d
lim Py {k*<oo}=1—P| sup ——————<¢c¢] , 4.2.17
it Pk < o0} (o2, s ey < 21

where {W(u),0 < u < 1} denotes a Wiener process.

An outline of the proof of this theorem is given in Appendix 4.B.
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4.2.3 Critical Values

In this section, we will demonstrate how to obtain the critical value ¢ in (4.2.17)
and how to tune the detector and boundary to improve the false positive rate in
finite samples.

Based on Theorem 4.2.1, the values of ¢(v, q) are defined below:

| _p ( sup V]

o<u<1i UY

<)) =4 (12.15)

which depends on the selection of boundary functions with parameter ~, the
prescribed significance level ¢ and the dimension of the parameter vector d.

Table 4.2.1 provides the critical values ¢(7,q) defined in (4.2.18) based on
1,000,000 replications of supyc,<; |[W(u)|/u”. The Wiener process is approxi-
mated on a grid of 10,000 equally spaced points in [0, 1].}

However, it is not realistic to monitor the change in an infinite horizon. In
practice, the monitoring is done for 1 < k < T. Thus, we consider the close-end
procedure in which the length of the training sample M and the termination time

T are asymptotically proportional.

Assumption 4.2.6. The time to termination of the sequential procedure T =

T(M), and:
I T
im =
M—oo T+ M

Remark 4.2.1. Given Assumption 4.2.6, for 0 <~y < 1/2, the scale transforma-

tion of the Wiener process gives:

w W (u*6 *
R (TR 1) PRV (400}
o<u<g UY o<ur<1  (u*0)7 o<ui<i UV

We provide the distribution of §%/27|W (u*)|/u* for v = 0,.15,.25, .35, .45
and 49, d = 4 and T = M, with 7 € {0.2,0.4,0.6,0.8,1} in Table 4.C.1 of
Appendix 4.C.
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Table 4.2.1: Critical values ¢(v, ¢) obtained via 1,000,000 simulations

q 0.10 0.05 0.01 0.10 0.05 0.01
d=3 2378 2.630 3.142 2444 2.691 3.198
d=4 2.480 2.725 3.226 2.544 2.785 3.283
d=5 2.558 2.796 3.289 2.622 2.857 3.341
v =0.25 v =0.35
q 0.10 0.05 0.01 0.10 0.05 0.01
d=3 2.513 2.755 3.254 2.633 2.866 3.349
d=4 2613 2.850 3.337 2.728 2.960 3.433
d=5 2688 2.919 3.400 2.801 3.028 3.497
v =0.45 v =0.49
q 0.10 0.05 0.01 0.10 0.05 0.01
d=3 2.925 3.143 3.594 3.280 3.491 3.928
d=4 3.013 3.226 3.672 3.365  3.572 4.001
d=5 3.081 3.288 3.730 3.430 3.633 4.055

Our preliminary results show that the monitoring scheme with the decision
functions defined in (4.2.10) and (4.2.11) over rejects when Hy holds. The over-
sized rejection rates are presented in the left panel of Table 4.3.2. To improve the
false positive rates, we follow Horvéth et al. (2006) to modify the detector func-
tion by normalizing the gradient by a sequentially updated covariance estimator
D Mk, and we use this instead of the covariance estimator obtained based on the
fixed initial M observations Dj;. The sequentially updated covariance estimator

is defined as:

f)M,k:Mi Y é;(éM)Té; (0u). (4.2.19)

1<t<M+k
Our modified detector function is:

P(Mkbu) = || X & (6u) Dy

M<t<M+k

(4.2.20)

o



4.2. Sequential Monitoring 112

Then, the corresponding version of the stopping time k** can be defined as:

k k
1/2 - -
sar (1457 )0 (1)

E* =min< k:

> &(6w) Dy’

M<t<M+k
(4.2.21)
Remark 4.2.2. If Assumptions 4.2.1 - 4.2.5 hold, then:
. W (w)] ’
| Py, (K™ < =1-P — < 4.2.22
Y o ) (0221 b(u/(1—u)) — ‘) ( )

where {W(u),0 < u < 1} denotes a Wiener process.

Additionally, we follow Horvéth et al. (2020a) and Horvath et al. (2021b) to

tune the boundary function from (4.2.11) to:

GM, k) = (1 + M%) M2 (1 + %) (ka)w. (4.2.23)

Since the tuning term in (4.2.23) converges to 1:

f)/
<1 n —M1/2> 2o,

under the null hypothesis with the conditions of Theorem 4.2.1, we also have that:

lm Pa f(M,k;éM>

— > = 2.
m GO0 F) > 1 for some k > 1 q, (4.2.24)

and under the alternative hypothesis, we obtained that:

f (M,k; éM)
lim PHA

—_— > =1. 2.
m GO0 F) > 1 for some k£ > 1 1 (4.2.25)
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4.2.4 Long-run Covariance Estimators

It is also possible to improve the finite sample performance by considering the

weak dependence in {£,(u)}*, and using a long-run covariance given by:

D= io 6;,  0; =K (u) £, (w). (4.2.26)

j=—o00

The long-run covariance can be estimated by:

. Mo = i\ -
D, = El == |d0,(M 4.2.27
j=—M+1
and by the matrix below:
) M4k ME! AW
D =— k< )0;(M+k k > 4.2.2
e T ()dar+n, k20 2z

where k(-) is a real-valued kernel function, W is the bandwidth parameter, and
0;(M) is the sample autocovariance of {£,(u)}},. These estimators are extensions
of (4.2.8) and (4.2.19).

In this chapter, we consider the following three kernel functions for the long-
run covariance estimation:

(1) Bartlett (abbreviated by “BT”):

L ) 1=z, forz] <1,
pr(z) = (4.2.29)

0, otherwise,

(2) Truncated (abbreviated by “TR”):

L 1, for |z| <1,
rr(2) = (4.2.30)

0, otherwise,
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(3) Quadratic spectral (abbreviated by “QS”):

ks (2) = 127222

25 (sin(67rz/5)

ey COS(67TZ/5)) : (4.2.31)

We follow Newey and West (1994) to select the optimal bandwidth W for

these kernels, shown as:

War = |4(M/100)*°],  Wrpg = [4(M/100)°],  Was = [4(M/100)%?].

4.3 Monte Carlo Simulations

In this section, we investigate the finite sample performance of the proposed mon-
itoring test in well-defined simulation setups, by illustrating how critical values
are obtained, designing simulations and presenting the results on empirical size

and power.

4.3.1 Simulation Design

Under the null hypothesis, we consider the following data generating process

(DGP):

Ty = OtUy, Ug ~ 'le N(O, 1), (4 3 1)

Ufzﬁo+ﬁ10—?,1+ﬁ2ytz,1, tzl,...,M,M—l—l,...,T,

where 7; is the simulated return process generated as the product of innovation
uy, which follows the Gaussian distribution, and conditional volatility o, given by
a GARCH(1,1) specification.

In our simulations, we use the boundary function §(M, k) given in (4.2.23) with
v =40,0.15,0.25,0.35,0.45,0.49}, and the training sample sizes of M = 1000 cor-

responding to 4 years of daily returns. The large sample size enables us to consider
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risk model estimations for quantiles as low as 1%, which are often used in risk
management (Patton et al., 2019). In simulations, we consider the testing sample
sizes of T' = 7M, with 7 € {0.2,0.4,0.6,0.8,1}. The parameter values are set
as (Bo, 51, B2) = (0.05,0.90,0.05). Regarding the long-run covariance estimation,
we consider the estimators with the following kernels: Bartlett, Truncated, and
Quadratic Spectral, which are abbreviated as “BT”, “TR” and “QS” in Table
4.3.2. The results are based on 5000 repetitions.

Under the alternative hypothesis, we consider the following DGP before the
break [1, M + k*):

Tt = Oy, U ~ i.1.d. N(O, ].),
(4.3.2)
ol =B+ prot + Bayt, 1<t < M+kF

Regarding the post-break DGP, we consider the following setups:

® Hay:re =0y, uw ~N(0,1), of=p+8fci + by, M+k*<
t<M+T,

o Hyuo:ry=opuy, w~t(v), of=p0+ o+ beyi, M+k<t<
M+ T,

o Hysg:r = oy, Up~ SN(X), 01;2 = Bo + 5103_1 + 52.%,2_1a M+ E* <
t< M+T.

Under the hypothesis H 4 5, t(v*) denotes the Student’s ¢ distribution with the
degree of freedom (DoF) parameter v*. Under the hypothesis H4 3, SN(\*) de-
notes the skewed Normal distribution with the skewness parameter \*. Regarding
the location of change point in the monitoring horizon, we consider £* = 1 and
0.5T. The former choice indicates that the change happens at the beginning of
the monitoring horizon, and the latter one means that the change occurs in the

middle of the monitoring horizon.
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We first elaborate on the behavior of the monitoring scheme under the various
alternative scenarios described above. Under the alternative hypothesis H 4 1, the
persistence parameter changes from f; = 0.90 in the GARCH(1,1) model to
BT = 0.94 after the training sample in increments of size 0.01, meaning that the
unconditional variance level gradually increases from 1 to 5.

In the following setups, we consider changes in the conditional distribution
of the returns. The alternative hypothesis H 45 considers a change in the heavy-
tailedess of the underlying distribution of the DGP from the Gaussian distri-
bution N(0,1) to the Student’s ¢ distribution ¢(v*) with the DoF parameters
v* ={9.5,...,4.5}. This means that the process becomes more heavy-tailed after
the break. Additionally, under the alternative hypothesis H 4 3, we use the skewed
Normal distribution with varying skewness parameters A\* = {—0.1,...,—0.5} af-
ter the break to replace the original Gaussian distribution. In this scenario, the
process becomes more negatively skewed after the training sample.

In the simulations, we employ the GARCH-FZ model proposed by Patton
et al. (2019)? to forecast VaR and ES jointly at 5% significance level®:

Ve = a'O't,
e =b-o, b<a<0, (4.3.3)

2 2 2
o; = Po+ Bro;_y + Bori_y,

where 8 = (31, 2, a, b) is the parameter vector of this model.*

4.3.2 Simulation Results

This section presents the empirical size and power of the proposed sequential
monitoring test under the null hypothesis and alternative hypotheses illustrated
in Section 4.3.1.

Table 4.3.2 shows the empirical sizes of the proposed test for the DGP dis-

cussed above at test significance levels of 10%, 5% and 1% with a range of values
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Table 4.3.2: Empirical size of T (M,k;éM> for the GARCH-FZ model with

oa=5%
Dy, Dy,

Kernel ¢ ~\T 02M 04M 0.6M 0.8M M 0.2M 04M 0.6M 0.8M M
Cov 10% 0 0.186 0.153 0.163 0.173 0.186 0.104 0.107 0.108 0.115 0.104
0.15 0.155 0.144 0.135 0.148 0.155 0.098 0.104 0.098 0.097 0.098
0.25 0.203 0.179 0.186 0.192 0.203 0.092 0.104 0.094 0.100 0.092
0.35 0.202 0.181 0.191 0.197 0.202 0.160 0.164 0.158 0.156 0.160
0.45 0.267 0.247 0.252 0.259 0.267 0.166 0.164 0.168 0.168 0.166
0.49 0.251 0.225 0.236 0.243 0.251 0.152 0.150 0.151 0.152 0.152
5% 0 0.132 0.109 0.124 0.132 0.132 0.062 0.072 0.075 0.062 0.062
0.15 0.111 0.100 0.102 0.105 0.111 0.054 0.075 0.065 0.056 0.054
0.25 0.166 0.138 0.140 0.158 0.166 0.054 0.065 0.063 0.061 0.054
0.35 0.160 0.145 0.156 0.157 0.160 0.108 0.120 0.117 0.112 0.108
0.45 0.215 0.201 0.208 0.209 0.215 0.127 0.128 0.127 0.130 0.127
0.49 0.223 0.204 0.214 0.216 0.223 0.131 0.133 0.133 0.132 0.131
1% 0 0.069 0.066 0.062 0.072 0.069 0.023 0.034 0.025 0.024 0.023
0.15 0.066 0.059 0.059 0.062 0.066 0.018 0.026 0.026 0.023 0.018
0.25 0.096 0.084 0.093 0.093 0.096 0.021 0.030 0.027 0.020 0.021
0.35 0.105 0.095 0.093 0.100 0.105 0.049 0.066 0.059 0.051 0.049
0.45 0.146 0.142 0.142 0.142 0.146 0.084 0.088 0.086 0.084 0.084
0.49 0.178 0.163 0.173 0.176 0.178 0.089 0.091 0.091 0.091 0.089
BT 10% 0 0.152 0.153 0.173 0.183 0.188 0.092 0.090 0.083 0.085 0.085
0.15 0.141 0.144 0.141 0.156 0.160 0.089 0.084 0.076 0.073 0.072
0.25 0.167 0.192 0.193 0.204 0.214 0.105 0.083 0.081 0.074 0.071
0.35 0.193 0.203 0.207 0.206 0.215 0.151 0.146 0.143 0.142 0.141
0.45 0.245 0.252 0.260 0.266 0.270 0.158 0.152 0.152 0.154 0.156
0.49 0.220 0.242 0.255 0.266 0.270 0.143 0.152 0.149 0.148 0.148
5% 0 0.116 0.120 0.127 0.139 0.146 0.061 0.056 0.048 0.044 0.047
0.15 0.103 0.111 0.112 0.120 0.127 0.058 0.048 0.049 0.040 0.040
0.25 0.124 0.152 0.156 0.164 0.168 0.069 0.046 0.046 0.040 0.036
0.35 0.159 0.153 0.162 0.168 0.172 0.115 0.101 0.101 0.098 0.093
0.45 0.201 0.210 0.218 0.222 0.228 0.130 0.128 0.122 0.116 0.116
0.49 0.192 0.215 0.228 0.236 0.242 0.112 0.111 0.111 0.110 0.110
1% 0 0.066 0.067 0.075 0.083 0.076 0.029 0.022 0.015 0.016 0.016
0.15 0.063 0.066 0.066 0.070 0.074 0.016 0.020 0.016 0.010 0.010
0.25 0.074 0.087 0.101 0.102 0.104 0.029 0.020 0.016 0.015 0.014
0.35 0.108 0.099 0.102 0.104 0.106 0.067 0.050 0.043 0.039 0.038
0.45 0.130 0.148 0.150 0.151 0.154 0.092 0.084 0.081 0.081 0.080
0.49 0.152 0.172 0.180 0.183 0.188 0.083 0.083 0.083 0.081 0.081

(Continued on the next page)
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(Continued) Empirical size of T’ (M, k; éM) for the GARCH-FZ model with

a=5%

Dy, DM,k
Kernel ¢ ’V\T 02M 04M 0.6M 0.8M M 0.2M 04M 0.6M 0.8M M
TR 10% 0 0.188 0.156 0.177 0.185 0.188 0.090 0.097 0.087 0.091 0.090

0.15 0.159 0.147 0.141 0.159 0.159 0.077 0.091 0.078 0.082 0.077
0.25 0.215 0.190 0.195 0.211 0.215 0.076 0.084 0.082 0.079 0.076
0.35 0.212 0.204 0.210 0.212 0.212 0.145 0.152 0.151 0.148 0.145
045 0.278 0.258 0.265 0.272 0.278 0.156 0.154 0.156 0.155 0.156
049 0274 0.247 0.259 0.269 0.274 0.149 0.150 0.150 0.149 0.149

5% 0 0.146 0.121 0.133 0.143 0.146 0.050 0.057 0.055 0.050 0.050
0.15 0.124 0.109 0.113 0.119 0.124 0.046 0.049 0.052 0.043 0.046
0.25 0.170 0.154 0.156 0.165 0.170 0.039 0.052 0.049 0.046 0.039
0.35 0.176 0.155 0.161 0.166 0.176 0.097 0.107 0.106 0.100 0.097
0.45 0.230 0.212 0.222 0.228 0.230 0.123 0.129 0.126 0.124 0.123
049 0.241 0.217 0.227 0.236 0.241 0.114 0.114 0.115 0.114 0.114

1% 0 0.076 0.070 0.077 0.086 0.076 0.016 0.022 0.015 0.016 0.016
0.15  0.073 0.066 0.069 0.071 0.073 0.012 0.022 0.021 0.013 0.012
0.25 0.102 0.090 0.100 0.102 0.102 0.014 0.020 0.019 0.017 0.014
0.35 0.106 0.099 0.101 0.103 0.106 0.040 0.051 0.047 0.042 0.040
0.45 0.156 0.149 0.149 0.151 0.156 0.081 0.086 0.082 0.081 0.081
049  0.190 0.173 0.182 0.184 0.190 0.083 0.084 0.083 0.083 0.083

QS 10% 0 0.192 0.154 0.176 0.182 0.192 0.093 0.099 0.090 0.101 0.093
0.15 0.158 0.156 0.146 0.154 0.158 0.091 0.099 0.085 0.090 0.091
0.25 0.217 0.190 0.198 0.212 0.217 0.081 0.092 0.084 0.089 0.081
0.35 0.221 0.209 0.213 0.216 0.221 0.148 0.163 0.163 0.156 0.148
0.45 0.290 0.278 0.282 0.283 0.290 0.155 0.156 0.163 0.157 0.155
049 0273 0.244 0.258 0.265 0.273 0.149 0.151 0.150 0.149 0.149

5% 0 0.146 0.120 0.127 0.142 0.146 0.053 0.055 0.059 0.054 0.053
0.15 0.125 0.115 0.111 0.117 0.125 0.050 0.057 0.055 0.045 0.050
0.25 0.169 0.150 0.158 0.163 0.169 0.043 0.056 0.053 0.049 0.043
035 0.174 0.161 0.168 0.169 0.174 0.098 0.111 0.109 0.104 0.098
045 0.249 0.230 0.239 0.242 0.249 0.123 0.129 0.123 0.123 0.123
0.49  0.247 0.218 0.232 0.240 0.247 0.124 0.126 0.124 0.124 0.124

1% 0 0.077 0.069 0.075 0.082 0.077 0.018 0.025 0.018 0.019 0.018
0.15 0.074 0.061 0.070 0.072 0.074 0.017 0.024 0.024 0.016 0.017
0.25  0.103 0.090 0.099 0.103 0.103 0.016 0.022 0.020 0.019 0.016
0.35 0.105 0.103 0.103 0.104 0.105 0.042 0.055 0.050 0.044 0.042
0.45  0.178 0.165 0.171 0.174 0.178 0.087 0.095 0.089 0.088 0.087
049  0.196 0.178 0.187 0.190 0.196 0.087 0.087 0.087 0.087 0.087

Note: Empirical size of the sequential monitoring scheme for the change points in the GARCH-
FZ model via 5000 simulations generated by the GARCH(1,1)-Gaussian model. VaR and ES
are jointly estimated at 5% level. We consider that M = 1000 and monitoring sample sizes
of {0.2M,...,M}. Regarding the long-run covariance estimator, we consider the following
estimator kernels: Bartlett (BT), Truncated (TR) and Quadratic Spectral (QS).
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of v and monitoring horizon sizes. Overall, there are four major findings. First,
the monitoring manner with the fixed covariance estimator D, is oversized com-
pared with the prescribed significance levels: 10%, 5% and 1%. However, when
we replace the fixed estimator with the sequentially updated covariance estimator
1~)M7k, we can see an improvement in the empirical size. Second, the selection of
the boundary parameter matters for the empirical size results. We obtain an im-
proved empirical size control when select lower values of the boundary parameter,
e.g., v =0, 0.15 or 0.25. It is interesting to observe a discontinuity between the
empirical size with v = 0.25 and 0.35. This finding may be associated with model
misspecification. In this case, using the GARCH-FZ model for empirical applica-
tions requires v = 0, 0.15 or 0.25 to avoid false positives. The selection of v based
on other semiparametric risk models requires further investigations. Third, the
results are consistent across different monitoring horizons. Thus, the proposed
monitoring scheme can be applied to different monitoring horizons. Fourth, the
choice of long-run covariance estimator for this test has noticeable impact on the
empirical size. In particular, when the Bartlett kernel is used to construct the
covariance estimator, the empirical sizes are reasonable, especially at 1% signifi-
cance level. The empirical size results shown in the table are visualized in Figures
4.3.1 and 4.3.2.

Figure 4.3.3 shows the convergence of sample sizes of the detection method
with the sequentially updated covariance estimator ﬁMk for 5% (VaR, ES) to
justify Theorem 4.2.1 and Remark 4.2.2. In this case, we consider that the training
sample size M varies from 1000 to 5000, and the monitoring horizon has the same
sample size of the training sample ("= M). In general, it is noticeable that the
empirical sizes are more likely to approach the prescribed significance levels ¢
when M goes larger. Additionally, the results are consistent across different
selections for the long-run covariance estimation kernel function and the boundary
parameter. In particular, the convergence of the empirical size is more obvious

when we select boundary parameter v = 0.35. Whilst the rates of false detections
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are generally oversized when we choose v = 0.45 and 0.49, we still can notice
decreasing trends of the empirical sizes when M — oo.

Figures 4.3.4 and 4.3.5 present the power curve for the sequential monitoring
scheme for change points in the GARCH-FZ model for 5% (VaR, ES) under the
alternative Hy; for k* = 1 and 0.57 at the test significance level 5%. In this
case, we consider the training sample size of M = 1000 and the same size for the
monitoring horizon. The empirical probability of stopping under the alternative
is high in all cases of 7 we considered. It is clear that the empirical power is
approaching 1 as 7 goes to 0.94, i.e., the unconditional variance increases to 5,
which is consistent with our expectations.

Next, we evaluate the empirical distribution of the stopping time k* estimated
by the proposed sequential monitoring scheme. The empirical density functions
of k* for a change point in the GARCH-FZ for 5% (VaR, ES) with ¢ = 5% with
M =T = 1000 and 37 = 0.94 are exhibited in Figures 4.3.6 and 4.3.7.° In Fig-
ure 4.3.6, we observe that in the case of a change occurring immediately in the
monitoring horizon, the higher value of ~, the faster the detection of the change
point. However, the detection scheme with a higher v is not recommended in
empirical applications, due to possible spurious detections before the theoretical
change point in the scenario of k* = 0.57.% This false positive problem is vi-
sualized as the “humps” at the start of the monitoring sample in Figure 4.3.7.
Overall, for k* = 0.57, the monitoring scheme with v = 0.15 provides the shortest
delay in detection. Thus, in general, v = 0.15 (displayed as the solid red line) is
recommended because it gives a good balance between the length of delay and
the proportion of false early detections.

In this chapter, we also propose a novel way to identify the dominant source

of the change point by linking it to the parameter that has the largest absolute



4.3. Monte Carlo Simulations 124

value in the vector below:

ERACHEE
M<t<M-+k*

after the stopping time k* is first detected.” Figure 4.3.8 and 4.3.9 show the
dominant source of the change point in the GARCH-FZ model for 5% (VaR, ES)
at 5% test significance level with M = T = 1000 and &* = 1. In this setting,
we consider gradual increases in the value of g from 0.90 to 0.94 and keep the
other parameter values unchanged. Also, we assume that the multipliers for VaR
and ES stay constant. The simulation results displayed in Figure 4.3.8 indicate
that the structural break is mainly caused by a change in [} instead of the other
parameters. Figure 4.3.9 shows that the dominant source is correctly identified
as [37 for various locations of the change point. Overall, the results are consistent
for different values of ~.

We next consider changes in the underlying distribution in the DGP, from the
Gaussian distribution to the Student’s ¢ distribution with the DoF parameters
v* = {9.5,...,4.5}, meaning that the process becomes more heavy-tailed after
the break. In this scenario, the change of tailedness is not likely to be reflected in
the monitoring sample immediately after the break. To improve the simulation
results, we use larger sample sizes for the historical sample and testing sample in
this setting, i.e., M =T = 2000. Figure 4.3.10 shows the empirical power of the
test with the change occurring at k* = 1 in the GARCH-FZ model for 5% VaR
and ES with different boundary curves. It is obvious from this figure that the
sequential monitoring scheme with a lower value of v generates a higher power
than the scheme with v =0.45 or 0.49.

It is worthwhile to highlight the dominant source of the change point when the
underlying distribution of the process switches from the Gaussian to the Student’s

t with v* = 4.5. Based on the setup under the alternative hypothesis H,4 1, we
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Figure 4.3.4: Empirical power of the monitoring scheme for a change point
in the GARCH-FZ with £* =1 under Hj4
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Note: This figure presents the empirical power of the sequential monitoring scheme for a change
point in the GARCH-FZ for 5% (VaR, ES) at 5% test significance level with M = T = 1000
and k* =1 under Hy4
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Figure 4.3.5: Empirical power of the monitoring scheme for a change point
in the GARCH-FZ with £* = 0.57 under H4
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Note: This figure presents the empirical power of the sequential monitoring scheme for a change

point in the GARCH-FZ for 5% (VaR, ES) at 5% test significance level with M = T = 1000
and k* = 0.57 under H4 ;

Figure 4.3.6: Empirical density functions of the stopping time k* for a change
point in the GARCH-FZ with £* =1 and 3] =0.94
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Note: This figure presents the empirical density functions of the stopping time k* estimated by
the sequential monitoring scheme for a change point in the GARCH-FZ for 5% (VaR, ES) at
5% test significance level with M =T = 1000, k* =1 and 87 = 0.94
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Figure 4.3.7: Empirical density functions of the stopping time k* for a change
point in the GARCH-FZ with £* = 0.57 and ] = 0.94
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Note: This figure presents the empirical density functions of the stopping time k* estimated by
the sequential monitoring scheme for a change point in the GARCH-FZ for 5% (VaR, ES) at
5% test significance level with M =T = 1000, k* = 0.57 and 57 = 0.94

Figure 4.3.8: The dominant source of the change in the GARCH-FZ for
5% (VaR, ES) at 5% test significance level with M =T = 1000, £* = 1 and
B; =0.94
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Figure 4.3.9: The dominant source of the change in the GARCH-FZ for 5%
(VaR, ES) at 5% test significance level with M = T = 1000, k* = 0.57 and
BT =0.94
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expect that the change point only causes a change in the multipliers for VaR and
ES in the GARCH-FZ model, instead of the parameters in the GARCH process.
Figure 4.3.11 reveals that the dominant source for the change point under the
hypothesis H 4 2 is mainly the parameters a and b, which are the multipliers for
VaR and ES in the model. Meanwhile, the identified dominant source of structural
break is rarely 81 or f5. Additional figures illustrating the empirical power curve,
the estimated densities of the stopping time and the identified dominant source
of change points for another location of the change point, i.e., k* = 0.57, are
provided in Appendix 4.D.

Under the alternative hypothesis H, 3, we investigate the performance of the
proposed test to identify changes in the skewness of the residuals. Figure 4.3.12
shows the empirical power curve for the alternative H, 3 for K* =1 at 5% test
significance level with the sample sizes M = T = 2000. It is clear that the

empirical power of our test increases as the skewness gets more negative. In
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general, the choice of v has a minor effect on the empirical power, but when
v =0, 0.15 or 0.25, the test seems to have a higher power. This finding also
motivates us to select v with a lower value in practical applications. Regarding
the dominant source of the change point, Figure 4.3.13 illustrates that the change
point is mainly caused by a change in the multiplier b for ES in the GARCH-FZ
model, and this finding is more salient with v =0.45 or 0.49. While the test can
identify the change of the other parameters, e.g., S5 with a good success rate, in
the simulations with a low value of v, the multiplier b for ES is still identified
most often as the dominant source of the change point. The simulation results

with k* = 0.5T are reported in Appendix 4.D.

Figure 4.3.10: Empirical power of the monitoring scheme for a change point
in the GARCH-FZ with k* =1 under Hj >

=0 =0.15 =0.25
1 7 1 i 1 7
0.8 0.8 0.8
5 06 506 506
= = =
o [e] (o]
o 0.4 o 04 o 04
0.2 0.2 0.2
0 0 0
9 8 7 6 5 9 8 7 6 5 9 8 7 6 5
14 v v
7=0.35 +v=0.45 7=0.49
1 1 1
0.8 0.8 0.8
© 0.6 © 0.6 506
H E E
o [=] [=]
o 04 o 04 o 04 r—//.//
0.2 02 0.24
0 0 0
6 6 9 8 7 6 5
v 174 v

Note: This figure presents the empirical power of the sequential monitoring scheme for a change
point in the GARCH-FZ for 5% (VaR, ES) at 5% test significance level with M = T = 2000
and k* =1 under H4
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Figure 4.3.11: The dominant source of the change in the GARCH-FZ for
5% (VaR, ES) at 5% test significance level with M = T = 2000, k* = 1 and
v*=4.5
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Figure 4.3.12: Empirical power of the monitoring scheme for a change point
in the GARCH-FZ with £* =1 under Hy3
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Note: This figure presents the empirical power of the sequential monitoring scheme for a change
point in the GARCH-FZ for 5% (VaR, ES) at 5% test significance level with M = T = 2000
and £* =1 under H4 3
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Figure 4.3.13: The dominant source of the change in the GARCH-FZ for
5% (VaR, ES) at 5% test significance level with M = T = 2000, k* = 1 and
A= -0.5
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4.4 Empirical Applications

In this section, we apply the proposed monitoring scheme to identify change
points in risk models applied for financial returns. Our main aim is to investigate
whether this test is able to detect in real time well-known events that are known
to have caused shocks in financial markets. Here, we consider the daily log returns
of: the S&P 500 index and the GBP/EUR exchange rate, which are collected from
Datastream and Bloomberg, respectively. The risk model for (VaR, ES) used in
our empirical applications is the GARCH-FZ model proposed by Patton et al.
(2019), which is the same as the one used in the simulation study. We consider
the semiparametrically estimated (VaR, ES) at 5% test significance level.®

To verify the condition that there is no break in the selected training samples,
we firstly apply the two-sample Kolmogorov-Smirnov (KS) test to check whether
the first and second half of the training sample are identically distributed. Addi-
tionally, we test that there is no break in the time series of (VaR, ES) in training

samples by employing the loss-based Wilcoxon test (Lazar et al., 2021). Table
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4.4.1 displays the results for the selected periods, specifically the KS test statis-
tics, loss-based Wilcoxon test statistics and the average values of 5% VaR and
ES. These results suggest that there is no break in the series of training samples.

In the subsections below, we apply our proposed test for change point detection.

Table 4.4.1: Description of the selected time series of training and testing
samples

Time span KS Stat Wilcoxon Stat 5% VaR 5% ES
Sample A: S&P 500 Index

) . ) Training 23/May /2003-20/Dec/2005 0.058 0.782 -1.229 -1.498
Pre financial crisis period Testing 21/Dec/2005-23/Feb,/2007 0.101 1.790 21037 -1.407
. . . Training 23 /May/2003-20/Dec/2005 0.073 1.524 -1.121 -1.414
Event I: Financial crisis Testing  21/Dec/2005-16/July/2010  0.146" 2,043 -2.909 -4.476
) Training 06/Feb/2018-01/0ct/2019 0.067 0.688 -1.877 -2.566
Event Il COVID pandemic  pegting 02/0ct/2019-31/Dec/2020  0.137" 1.327+ -2.954 -5.092

Sample B: GBP/EUR exchange rate
. Training  18/Aug/2010-12/Feb/2014 0.084 2.490 -0.795 -1.004
Event III: Brexit Testing 13/Feb/2014-09/Apr/2018  0.097"* 2.398* -0.939 -1.357

Note: This table includes the time span, the Kolmogorov-Smirnov test statistics, the loss-based
Wilcoxon test statistics and the 5% VaR and ES estimated by historical simulations. The two-
sample Kolmogorov-Smirnov test is conducted for the first and second half of each training and
testing samples. The loss-based Wilcoxon test is conducted for the training and testing samples
based on Lazar et al. (2021), and the critical values can be found in Table 4.C.2 of Appendix
4.C. *** and ** indicate values significant at 1% and 5% significance level. All samples are daily
log returns.

4.4.1 Application 1: the S&P 500 Index

In this application, we consider monitoring for change points in the GARCH-FZ
model applied on the daily log returns of the S&P 500 index during three selected
periods: (1) 23 May 2003 to 23 February 2007, (2) 23 May 2003 to 16 July 2010,
and (3) 6 February 2018 to 31 December 2020. The testing samples of these
selected periods cover the pre-financial crisis period, the great financial crisis and

the COVID pandemic, respectively.”
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Pre-financial Crisis Period

The training sample spans from 23 May 2003 to 20 December 2005, containing
observations after the burst of the dot-com bubble. Then we monitor the detector
from 21 December 2005 to 23 February 2007, which is before the financial crisis.
The KS statistic indicates that the log returns in the training sample generally
follow the same distribution. Also, there is no significant change in the time series
of (VaR, ES) in both samples based on the loss-based Wilcoxon test statistics.
The daily log returns of the S&P 500 index are displayed in the upper panel
of Figure 4.4.1, where the observations with the white background are in the
training sample used for parameter estimation, and the observations with the
gray background are in the testing sample used to monitor for change points.
We present the trajectory of the detector and the boundary in the lower panel of
Figure 4.4.1. The detector never crosses the boundary curve during the testing
period, indicating that no changes in the risk model parameters can be detected
during the monitoring horizon. The result can be interpreted to mean that the
parameters in the GARCH-FZ model estimated from the training sample are still
valid in the testing sample. For practitioners, it is not necessary to adjust the

risk model parameters in this case.

Financial Crisis

Next, we extend the testing sample to include the Great Recession from the end
of 2007 to 2009. In this application, the training sample spans from 23 May 2003
to 20 December 2005, which is the same as the one for the pre-financial crisis
period. Here we consider the testing sample from the end of the training sample
until 16 July 2010. We are interested in checking whether this monitoring scheme
is able to detect the start of the financial crisis in December 2007. In Figure
4.4.2, the detector I' (M, k; éM> exceeds the selected boundary curve g(M, k) on

8 March 2007, which is earlier than the beginning of the financial crisis. This



4.4. Empirical Applications 134

Figure 4.4.1: Real-time detection for the S&P 500 index within the pre-
financial crisis period
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Note: Upper panel: The log return of the S&P 500 during 15/0ct/2003 to 23/Feb/2007; lower

panel: Real-time detector based on the GARCH-FZ model versus the boundary function with
~v = 0.15 in the testing period (gray shaded area).

finding indicates that the sequential monitoring scheme enables us to identify
change points even before the actual crisis unfolds. This early detection provides
practitioners with a timing to adjust the parameter values of their risk models
in order to measure the risk more effectively during the financial crisis. Next, we
estimate the parameters of the GARCH-FZ model and we calculate the average
values of the time series of VaR, ES and loss values for both pre-break and post-
break samples. Also, for the sample following the break detection, we compute
the average loss for the (VaR, ES) estimated by the model with parameter values
based on the pre-break sample, which is denoted by Loss_NC in the table. This is
followed by their identification of the dominant source of the change points. All
statistics and results discussed above are displayed in Table 4.4.2.

The left panel of Table 4.4.2 shows the parameter estimates. After the detected
change point, we can observe an increase in the value of 55 from 0.015 to 0.088,

which leads to a higher level of volatility. This observation is consistent with the
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identified dominant source of the change point, i.e., #5 dominates the others in
the parameters vector at the detected change point. There is no big difference
in the multipliers a and b for VaR and ES before and after the identified change
point, but still the higher volatility level post-break will result in a lower level
of VaR and ES consequently. The average FZ loss value for (VaR, ES) based
on the parameters estimated in the post-break sample is 1.261, which is almost
half of the average loss value calculated by using the parameters based on the
pre-break sample (2.481). The large difference in the average loss values indicates
the importance of accurate change point detection.

Additionally, we provide the detection results based on the GARCH-Gaussian
model for VaR and ES in Appendix 4.F. Figure 4.F.1 shows that the detected
change point is 13 November 2007. The test based on the GARCH-Gaussian
model can detect the change point later than the one based on the GARCH-FZ
model, due to likely model misspecification issues.

Figure 4.4.2: Real-time detection for the S&P 500 index within the financial
crisis period
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Note: Upper panel: The log return of the S&P 500 during 12/Jan/2004 to 09/Dec/2009; lower
panel: Real-time detector based on the GARCH-FZ model versus the boundary function with
~ = 0.15 in the testing period (gray shaded area). The vertical dash line denotes the estimated
change point for 5% VaR and ES.
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COVID Pandemic

In this section, we investigate the effect of the COVID pandemic on the US
stock market by detecting change points in risk models. Regarding the training
sample, we select a relatively more stable period before the pandemic from 6
February 2018 to 1 October 2019 to ensure that there is no structural break in
the sample.!® Then we consider the testing sample following the training sample
up to 31 December 2020. Figure 4.4.3 shows that the detector I' <M, k; éM> for
1% VaR and ES is above the boundary curve after 9 March 2020, when the US
stock market declined the most in a week since the financial crisis of 2007-2008.
If risk managers adjusted their reserves against risk, they could have avoided the
large losses that occurred on Black Thursday (12 March 2020) and Black Monday
IT (16 March 2020).

The middle panel of Table 4.4.2 indicates that after the detected change point,
the multipliers for VaR and ES in this model experience an increase. Even though
the unconditional volatility decreases after the detection, the change in the pa-
rameter values of a and b dominates and leads to a decline in the level of risk
measures. [t is worthwhile to mention that if we keep using the parameters es-
timated in the training sample, the average loss would be 1.892, which is much
higher than the average loss computed taking the change point into consideration,
1.332.

Figure 4.F.2 shows that the detected change point based on the GARCH-
Gaussian model is 16 March 2020, when the third trading curb occurred. The
detected date is somewhat compared with the one based on the GARCH-FZ
model. This finding indicates that the GARCH-FZ model is more efficient than
the GARCH-Gaussian model in this case because it is able to detect change points

much earlier.
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Figure 4.4.3: Real-time detection for the S&P 500 index within the COVID-
19 pandemic period
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Note: Upper panel: The log return of the S&P 500 during 06/Feb/2018 to 31/Dec/2020; lower
panel: Real-time detector based on the GARCH-FZ model versus the boundary function with
~v = 0.15 in the testing period (gray shaded area). The vertical dash line denotes the estimated
change point for 5% VaR and ES.

4.4.2 Application 2: the GBP/EUR Exchange Rate

At last, we focus on the impact of Brexit on the fluctuations of the GBP/EUR
exchange rates. In this case, we select the training sample as spanning from 18
August 2010 to 12 February 2014 to ensure no change points in this period. Next,
we apply the proposed monitoring test for the testing sample from 13 February
2014 to 9 April 2018. Figure 4.4.4 shows that the detectors I' (M, k; éM> for
1%, 2.5% and 5% risk measures cross the boundary curve on 24 August 2015, 24
February 2016 and 24 June 2016, respectively.

When we consider o = 5%, we can identify the change point located on the
day after the Brexit referendum, when the sterling was at a 31-year low, having
fallen 11% in two trading days, and the FTSE 100 index had surrendered 85 bil-
lion pounds. However, if we consider risk estimates at lower significance levels,

i.e., 1% and 2.5% risk measures, we can detect change points in the GARCH-FZ
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model even earlier than the Brexit referendum. Also, the lower the significance
level we consider, the earlier the change point can be detected. This observa-
tion implies that the GBP/EUR exchange rates already contained information
about the uncertainty associated with the likely vote outcome before the Brexit
referendum.

Figure 4.4.4: Real-time detection for the GBP/EUR exchange rate
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Note: Upper panel: The log return of the GBP/EUR exchange rate during 18/Aug/2010 to
09/Apr/2018; lower panel: Real-time detector based on the GARCH-FZ model versus the
boundary function with v = 0.15 in the testing period (gray shaded area). The vertical solid
line denotes the estimated change point for the 1% risk measures; the vertical dash-dot line
denotes the estimated change point for the 2.5% risk measures; the vertical dash line denotes
the estimated change point for the 1% risk measures.

4.5 Conclusions

In this chapter, we propose a new test to sequentially monitor change points in
the M-estimators of semiparametric risk models for VaR and ES risk measures
jointly by evaluating the change in the gradient of the FZ loss function introduced
by Fissler and Ziegel (2016). When the gradient-based detector exceeds a selected

boundary function, a change point is detected. We perform MC simulations for
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Table 4.4.2: Estimated coefficients of the GARCH-FZ model in both train-
ing and monitoring samples

Financial crisis

COVID Pandemic

Brexit (o = 5%)

] Before After Before After Before After
Variables detection detection detection detection detection detection
51 0.926 0.914 0.707 0.494 0.974 0.707

(0.120) (0.050) (0.203) (0.207) (0.024) (0.192)
Ba 0.015 0.088 0.210 0.053 0.015 0.013
(0.021) (0.050) (0.138) (0.030) (0.011) (0.031)
a -2.108 -1.771 -1.957 -4.204 -2.628 -4.117
(2.092) (0.295) (0.976) (1.017) (1.604) (0.309)
b -2.650 -2.177 -2.948 -5.888 -3.087 -4.905
(2.609) (0.218) (1.255) (1.384) (1.861) (0.530)
VaR -1.100 -3.204 -1.641 -3.061 -1.174 -1.466
ES -1.382 -3.938 -2.473 -4.287 -1.379 -1.817
Loss 0.322 1.261 0.820 1.332 0.308 0.595
Loss_ NC - 2.481 - 1.408 - 0.628
Dominant Source B2 B a

Table 4.4.3: Estimated coefficients of the GARCH-FZ model in both train-
ing and monitoring samples of Case IV (COVID Pandemic) for risk measures

with different «

a=1% a=25% a=5%

. Training Before After Training Before After Training Before After
Variables sample detection detection sample detection detection sample detection detection
IR 0.930 0.963 0.753 0.930 0.969 0.776 0.930 0.974 0.707

(0.162) (0.036) (0.049) (0.162) (0.011) (0.048) (0.162) (0.024) (0.192)
B 0.021 0.014 0.129 0.021 0.032 0.364 0.021 0.015 0.013

(0.034) (0.011) (0.249) (0.034) (0.011) (0.361) (0.034) (0.011) (0.031)
a -2.992 -2.995 -2.948 -2.992 -2.215 -1.986 -2.992 -2.628 -4.117

(4.501) (1.979) (1.444) (4.501) (0.161) (0.541) (4.501) (1.604) (0.309)
b -3.334 -3.324 -4.964 -3.334 -2.506 -3.191 -3.334 -3.087 -4.905

(5.009) (2.244) (2.240) (5.009) (0.234) (0.457) (5.009) (1.861) (0.530)
VaR -1.156 -1.149 -1.426 -1.156 -1.215 -1.458 -1.156 -1.174 -1.466
ES -1.288 -1.275 -2.402 -1.288 -1.375 -2.342 -1.288 -1.379 -1.817
Loss 0.237 0.235 0.835 0.237 0.301 0.785 0.237 0.308 0.595
Dominant Source a B a
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various scenarios with finite sample sizes. The monitoring scheme exhibits a
reasonable size control under the null hypothesis and high empirical power in all
cases across different selections of boundary curves. We recommend a boundary
function by comparing the empirical size, power, and stopping time distribution.

In an empirical study, we apply the monitoring scheme for the S&P 500 index
and the GBP/EUR exchange rate to sequentially monitor the possible change
points in the selected samples. For each case, we consider the VaR and ES
estimated by a selected semiparametric model at 1%, 2.5% and 5% significance
levels, respectively. The main finding indicates that the lower the significance
level, the earlier the detected change point. In most cases, our test can identify
structural changes even before a market crash occurs. Most detected change
points can be associated with well-known financial or economic events, such as
the day after the Brexit referendum and the Black Thursday in the COVID-19
recession period. According to our findings, we can conclude that practitioners
can improve their risk management strategies by monitoring for change points in
their risk models and then adjusting the parameters of the models based on the
identified change points.

Our proposed sequential monitoring test for change points in the M-estimators
of semiparametric risk models for VaR and ES contribute to the ongoing debate
on the structural breaks in risk measures and the tail index. However, this chapter
only considers models for VaR and ES jointly. It would be of interest to extend
this test to models of other measures of uncertainty: volatility, individual VaR and
expectile. It might also be interesting to formulate tests to sequentially monitor

change points in the tail dependence, modelled by copula functions.



Appendices

4.A First-order Derivatives of the FZ0 Loss Func-
tion

The FZO0 loss function is:
l(y,v,e;a) = —él{y <uv}v—y)+ Z + log(—e) — 1. (4.A.1)

First, we take the first-order derivatives of this loss function w.r.t. risk mea-

sures v and e, respectively. These are:

Bl 1 1 1
/ = —-—— = — < _ = - < - . .
V=g = Hysup4 o= ——({y <v}-a) (4.A.2)
ov 1 v 1
/: _—=— < - - T4 - . .
=5 = SUHysvhvo—y) -5+ (4.A.3)

In the simulation study and empirical work, we select the GARCH-FZ model

to forecast VaR and ES. The model can be expressed as:

Uy = a- 0y,
e =b-o, b<a<D0, (4.A.4)

2 2 2
o; = Po+ Bro;_y + Bari_y,

where o7 is the conditional variance and is assumed to follow a GARCH(1,1)

141
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process. The parameters of this model are estimated by minimizing the loss
function FZ0, instead of using (Q)MLE.

In the second step, we take the first derivatives of the risk measures v; and e;
w.r.t. each parameter in the GARCH-FZ model. Thus, we have the first-order

derivatives of v;:

| 2 2 \—1/2 2 doi_,
e a 2(50 + Bro;_y + Bary_y) o1+ b B}
1 Jo?_
Lot (03_1 N 51#) (4.A.5)
_lofs ;i 0oty
T 202\ T s )
dvy 1 2 2 \—-1/2 doi_, 2
05, =a 2(50 + Broy_q + Bary_q) b 95, + i
1 do?
Ly dop_y |
2 t2 (ﬁl 662 + t—1 ’
ov 1 _ do?
a—; = O0¢ +a- §(ﬁ0 + 510'15271 + 527}2,1) 1/2 : ﬁla—tall (4A7)
= 0y;
ov 1 _ Dol
a_bt =a- 5(F+ Bro7 4+ Barp )2 61# (4.A.8)
and the first-order derivatives of ¢;:
Ode 1 _ do?
8_51 =b- 5(50 + 510752—1 + 527}2—1) ez (‘7752—1 + 51#)
1. Jo?_
Ly, (03_1 N Blﬁll) (4.A.9)
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Oe Ooi_
85; =b- —(ﬁo + Bro7y + Bari )T (51 0221 +rf_1)
1. do?
_ ibo-t 1 (51 3&21 4 Tt21) (4.A.10)
le do} 4 2
202 (51 02 T )
Get 1/2 80}2_1
B (Bo + Proiy + Bariy) 55 (4.A.11)
De, ) Do}
p. L /2 . t—1
5 = ot (5o+510t Lt Bari) T By (4.A.12)
= O¢.

Finally, by using the Chain Rule for the derivations, we have the first-order
derivatives of the FZ0 loss function w.r.t. each parameter in the GARCH-FZ

model as follows:
ol B ol Ov, ol Oe;

(olH) B vy O * dey 031
% _ %% Lo ol Oey

0B O0v, 02 dey 852

6€ a0 Ao, N %% (4.A.13)
da c%t da ' Oe; da

ol ol Ovy ol Oey

b~ 90, 0b | de, B
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4.B Outline of Proof of Theorem 4.2.1

The proof of Theorem 4.2.1 is based on the lemmas stated below.

Lemma 4.B.1. If Assumptions 4.2.2 - }.2.4 hold, then:

DA R DR A()

M<t<M+k M<t<M+k
1Zhne M2 (14 E)o (F)

as M — oco.

Proof. By the proof of Patton et al. (2019), we have:

=o(1),

S (46 -€0)

M<t<M+k

implying Lemma 4.B.1.

Let

and

A(u) = E[£5(w)].
Lemma 4.B.2. If Assumptions 4.2.2 - 4.2.4 hold, then:

% > £/(6)—A6)] — 0 as.

1<t<M

a.s. 10 (Mfl/Q) 7

(4.B.1)

(4.B.2)
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Proof. Suppose that Assumptions 4.2.4 (B) (ii) and (iii) hold, we have:

—ae(0)
CGIEEN TU,(H)] ‘ 7

L ( ! e;<e>Te;<e>+ft<”t“’>'%%;(ewe))

—aet(ﬂ) Ut<0) t

The proof follows Theorem 3 of Patton et al. (2019). O

Lemma 4.B.3. If the assumptions of Theorem 4.2.1 are satisfied, then:

> exém—( > e;<e>+(éM—e)kA<e>>|

M<t<M+k M<t<M+k (1>
su = op(1),
ke M (U )b (5) !
as M — oo.
Proof. First we show that:
>, 4/(0) —kA(0)
M<t<M-+k
sup =op(1), (4.B.3)

k<o M (L4 57) b (57)

as M — oco. Since £/(0) is a stationary sequence, by Assumption 4.2.5, (4.B.3)
implies that:

PR ACHERINC)
sup o= — op(1) (4.B.4)
1<k M+ k P -

as M — oo. According to Lemma 4.B.2, we can derive (4.B.4).

Then Theorem 2 of Patton et al. (2019) implies that:
‘éM - 9‘ — Op(M12), (4.B.5)

Using the mean value theorem for 3~ £,(6,,) and (4.B.3) and (4.B.5) for 3 £/(8,),

we have Lemma 4.B.3. O
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Lemma 4.B.4. If Assumptions 4.2.2 - 4.2.4 hold, then:

VM6 —0) = —A7Y( \/_Zﬁ ) +op(1).

Proof. Lemma 4.B.4 follows from Lemma 1 of Patton et al. (2019).

Lemma 4.B.5. If the assumptions of Theorem 4.2.1 hold, then:

2. EQ(G’M)—< IOERACES 2D £2(9)>|

M<t<M+k M<t<M+k 1<t<M (1)
su =o0 ,
1<k M2 (14 5)0 (5) "
as M — oo.

Proof. The Lemma 7 of Patton et al. (2019) states the asymptotic normality of
M=Y237 0 £4(6). If Assumption 4.2.5 holds, we have:

s ‘M D 1<iem E’(0)|
1<ksM MV2 (14 £) b (L)
sup i sup ! M2
1<k<oo 1 + £ 17 1<j<oo b (%

= op(1).

2. 4o

1<t<M

Hence combining Lemmas 4.B.3 and 4.B.4, we have the results in Lemma 4.B.5.
O

Lemma 4.B.6. If the assumptions of Theorem 4.2.1 hold, then:

> 40) -5 X £(0)
M<t<M+k 1<t<M D (Wp(1+u) — (1 +u)Wp(1)]
sup - - = sup :
1<k<oo M1/2 (1 —|— M) b M) 0<u<oco (1 + U)b(U)

as M — oo, where Wp(s) is a Gaussian process with the mean E[Wp(s)] = 0
and E[Wp(s)"Wp(s')] = min(s, s')D.

Proof. As is shown in Assumption 4.2.1, £,(0) is a stationary ergodic martingale
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difference sequence. We also have Cov(€,(0)) = D. Thus, based on the Cramér-

Wold device, we have that, for any 7 > 0,

M2 Z £,(0) PO, Wp(u) as M — oc. (4.B.6)

1<t<uM
Hence,
MRS o) —u Y 40) | 2 Wh(1+u) — (1+ w)Wn(1),

M<t<(1+u)M 1<t<M

(4.B.7)
for any 7 > 0 as M — oo. By the H4jek-Rényi-Chow inequality, we have:

oo () =) -

(4.B.8)

€,(0)

T—00 M-s00 FM<k<oo || o/ Zhrin

lim limsup P ( sup

for any > 0. The coordinates of Wp(u) are Brownian motions, so by the law

of the itegrated logarithm, we have:

WD<1 + U) ~
———— — 0 as. . 4.B.9
%gsblfoo (14 u)b(u) Tras T Iree ( )

By using (4.B.7) and (4.B.9), we can prove the Lemma 4.B.6 O

Proof. Proof of Theorem 4.2.1. Putting together Lemmas, we have:

ACIHI NG
“ M<§M+k t(620) Doy L. |(Wp(1+u) — (14 u)Wp(1)) D7/
1o M2 (1+ 5)b(5)  0cuem (1+ w)b(u) |

Elementary arguments show that:

E [((Wp(l +u) — (1 +u)Wp(1)) D—1/2)T (Wo(l+u) — (1 +0)Wp(1)) D_1/2)]

=u(l+s)l;, u<s,
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where I, is the identity matrix in R?. Computing the covariances one can verify

that:
(Wp(1+u) — (1+u)Wp(1)) D72
D U u
=<(1 (1 >
{avom (() om0 uzo
where Wy, Wy, ..., Wy are independent Wiener processes. Hence,
|((Wp(1+u) — (1+u)Wp(1)) D" p [Wi(s)|
sup = max sup s
0<u<oo (14 u)b(u) 1i<d g<s<1 b (72)

completing the proof of Theorem 4.2.1. O
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4.C Tables

Table 4.C.1: Critical values for '/2=7|W (u*)|/u*Y for v = 0,.15,.25,.35,.45 and
49, with the parameter vector dimension of d = 4

q\T 02M 04M 0.6M 08M M

0 10%  1.013 1.326 1.519 1.654 1.754
5% 1.113 1.457 1.669 1.817 1.927
1% 1.317 1.725 1.976 2.151 2.281

0.15 10% 1.359 1.641 1.805 1.916 1.996
5% 1.487 1.796 1.975 2.097 2.185
1% 1.753 2.117 2.329 2471 2.575

0.25 10% 1.670 1.910 2.045 2.134 2.197
5% 1.821 2.083 2.230 2.327 2.396
1% 2.132 2440 2.612 2.725 2.806

0.35 10%  2.085 2.261 2.355 2.416 2.459
5% 2.262 2453 2.555 2.621 2.668
1% 2.624 2845 2.963 3.040 3.094

0.45 10%  2.755 2.830 2.869 2.894 2.911
5% 2950 3.030 3.072 3.098 3.116
1% 3.357 3.449 3.496 3.526 3.547

0.49 10%  3.305 3.323 3.332 3.338 3.342
5% 3.508 3.527 3.537 3.543 3.547
1% 3.930 3.951 3.962 3.968 3.973

Note: The critical values c(v, q) are based on 1,000,000 replications of supg<,,«<q [W (u*)|/u™.
The Wiener process is approximated on a grid of 10,000 equally spaced points in [0, 1].
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Table 4.C.2: Critical values of the loss-based Wilcoxon test for each selected
training and testing samples

Time span 10% 5% 1%
Sample A: S&P 500 Index

Training  23/May/2003-20/Dec/2005 2442 2469  2.525
Case I: no break Testing 21/Dec/2005-23/Feb/2007 2231 2269  2.325
i ) o Training 23 /May/2003-20/Dec/2005 3.104 3.142 3.197
Case II: financial crisis Testing  21/Dec/2005-16/July/2010  1.246  1.478  1.768
, Training  06/Feb/2018-01/Oct/2019  2.193 2253  2.341
Case III: COVID Pandemic  egting 02/0ct/2019-31/Dec/2020 0991  1.125  1.649

Sample B: GBP/USD exchange rate
Case IV: Brexi Training 18/Aug/2010-12/Feb/2014 3.329 3.364 3.434
ase IV Brexit Testing 13/Feb/2014-09/Apr/2018 1451  1.675  3.597

Note: The critical values of the loss-based Wilcoxon test for each sample are computed via 1000
times stationary bootstrapping with the optimal block length proposed by Patton et al. (2009).

Table 4.C.3: Estimated coefficients of the GARCH-Gaussian model in both

training and monitoring samples

Financial crisis COVID Pandemic Brexit
o Training Before After Training Before After Training Before After
Variables sample detection detection sample detection detection sample detection detection
Bo 0.019 0.014 0.030 0.047 0.042 0.068 0.006 0.001 0.022
(0.013) (0.009) (0.015) (0.012) (0.042) (0.038) (0.003) (0.001) (0.012)
B 0.913 0.923 0.885 0.771 0.720 0.777 0.932 0.961 0.893
(0.044) (0.034) (0.022) (0.046) (0.039) (0.058) (0.022) (0.007) (0.052)
Ba 0.043 0.044 0.107 0.186 0.280 0.204 0.043 0.034 0.024
(0.018) (0.016) (0.021) (0.045) (0.046) (0.074) (0.013) (0.006) (0.015)
VaR -1.043 -1.027 -2.812 -1.472 -1.583 -2.437 -0.771 -0.816 -0.929
ES -1.316 -1.296 -3.521 -1.854 -1.988 -3.101 -0.966 -1.024 -1.148
Loss 0.311 0.303 1.297 0.802 0.833 1.289 0.004 0.060 0.228
Dominant Source Bo B2 By
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4.D Figures for Simulations Results Based on

the GARCH-FZ Model

Figure 4.D.1: Empirical power of the monitoring scheme for a change point
in the GARCH-FZ with £* = 0.57 under H 4>
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Note: This figure presents the empirical power of the sequential monitoring scheme for a change
point in the GARCH-FZ for 5% (VaR, ES) at 5% test significance level with M = T = 2000
and k* = 0.57 under Hy .
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Figure 4.D.2: Empirical density functions of the stopping time k* for a
change point in the GARCH-FZ with £* =1 and v* = 4.5
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Note: This figure presents the empirical density functions of the stopping time k* estimated
by the sequential monitoring scheme for a change point in the GARCH-FZ for 5% (VaR, ES)
at 5% test significance level with M = T = 2000, k* = 1 and v* = 4.5.

Figure 4.D.3: Empirical density functions of the stopping time k* for a
change point in the GARCH-FZ with £* = 0.57 and v* = 4.5
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Note: This figure presents the empirical density functions of the stopping time k* estimated
by the sequential monitoring scheme for a change point in the GARCH-FZ for 5% (VaR, ES)
at 5% test significance level with M = T = 2000, k* = 0.5T7 and v* = 4.5.
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Figure 4.D.4: The dominant source of the change in the GARCH-FZ for
5% (VaR, ES) at 5% test significance level with M =T = 2000, k* = 0.57 and

v¥=4.5
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Figure 4.D.5: Empirical power of the monitoring scheme for a change point
in the GARCH-FZ with £* = 0.57 under H43
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Note: This figure presents the empirical power of the sequential monitoring scheme for a change
point in the GARCH-FZ for 5% (VaR, ES) at 5% test significance level with M = T = 2000
and k* = 0.57 under Hy4 3.
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Figure 4.D.6: Empirical density functions of the stopping time k* for a
change point in the GARCH-FZ with £* =1 and \* = —0.5

%107 Density estimates of the detection time when k'=0, M=T=2000, \=-0.5
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Note: This figure presents the empirical density functions of the stopping time k* estimated
by the sequential monitoring scheme for a change point in the GARCH-FZ for 5% (VaR, ES)
at 5% test significance level with M = T = 2000, k* = 1 and \* = —0.5.

Figure 4.D.7: Empirical density functions of the stopping time k* for a
change point in the GARCH-FZ with £* = 0.57 and \* = —0.5
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Note: This figure presents the empirical density functions of the stopping time k* estimated
by the sequential monitoring scheme for a change point in the GARCH-FZ for 5% (VaR, ES)
at 5% test significance level with M = T = 2000, k* = 0.57 and \* = —0.5.
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Figure 4.D.8: The dominant source of the change in the GARCH-FZ for
5% (VaR, ES) at 5% test significance level with M =T = 2000, k* = 0.57 and
AF=—-0.5
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4.E Figures for Simulations Results Based on

the GARCH-skewed t Model

Figure 4.E.1: The dominant source of change point when [; increases to
0.94
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Note: We use the GARCH(1,1)-skewed t: 1, = oyug,up ~ i.i.d. skewed t (v,\),02 = By +
Bro2_1 + Bay?_, where (8o, B1, B2, v, A) = (0.05,0.9,0.05,20.5,0) to simulate 3000 times for the
training sample. After the change point £* = 1, we increase the value of 5; to 0.94. Here, the
monitoring sample size T is equal to the training sample size M, which is 1000.
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Figure 4.E.2: The dominant source of change point when (> increases to
0.09
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Note: We use the GARCH(1,1)-skewed t: 7, = oyug,uy ~ i.i.d. skewed t (v,)\),0? = By +
Bro2_1 + Bay?_;, where (8o, B1, B2, v, A) = (0.05,0.9,0.05,20.5,0) to simulate 3000 times for the
training sample. After the change point k* = 1, we increase the value of 85 to 0.09. Here, the
monitoring sample size T is equal to the training sample size M, which is 1000.

Figure 4.E.3: The dominant source of change point when v decreases to 4.5

4=0 7=0.15

P By By v A P By Py v A
Note: We use the GARCH(1,1)-skewed t: 1, = oyug,up ~ i.i.d. skewed t (v,\),0? = By +
Bro2_1 + Bay?_, where (8o, 81, B2, v, A) = (0.05,0.9,0.05,20.5,0) to simulate 3000 times for the
training sample. After the change point £* = 1, we decrease the value of v to 4.5. Here, the
monitoring sample size T is equal to the training sample size M, which is 1000.
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Figure 4.E.4: The dominant source of change point when )\ decreases to -0.5
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Note: We use the GARCH(1,1)-skewed t: r; = oyug,up ~ i.i.d. skewed t (v,\),02 = By +
Bro2_1 + Bay?_, where (8o, 81, B2, v, A) = (0.05,0.9,0.05,20.5,0) to simulate 3000 times for the
training sample. After the change point k* = 1, we decrease the value of A to -0.5. Here, the
monitoring sample size T is equal to the training sample size M, which is 1000.
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4.F Empirical Results Based on the GARCH-

Gaussian Model

Figure 4.F.1: Real-time detection based on the GARCH-Gaussian model
for the S&P 500 index within the financial crisis period
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Note: Upper panel: The log return of the S&P 500 during 23 May 2003 to 16 July 2010; lower
panel: Real-time detector based on the GARCH-Gaussian model versus the boundary function
with v = 0.15 in the testing period (gray shaded area). The vertical dash line denotes the
estimated volatility change point.
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Figure 4.F.2: Real-time detection based on the GARCH-Gaussian model
for the S&P 500 index within the COVID-19 pandemic period

15
10

Daily Log Return of S&P500
T

-15
06/Feb/2018

100

80

60

40

01/0Oct/2019

Real-time Detector

16/Mar/2020

31/Dec/2020

——

e

———
p———
—

20 H—--
06/Fab/2018 01/0ct/2019 16/Mar/2020 31/Dec/2020
Note: Upper panel: The log return of the S&P 500 during 6 February 2018 to 31 December
2020; lower panel: Real-time detector based on the GARCH-Gaussian model versus the
boundary function with v = 0.15 in the testing period (gray shaded area). The vertical dash
line denotes the estimated volatility change point.
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Figure 4.F.3: Real-time detection based on the GARCH-Gaussian model
for the GBP/EUR exchange rate
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Note: Upper panel: The log return of the GBP/EUR exchange rate during 18 August 2010 to
9 April 2018; lower panel: Real-time detector based on the GARCH-Gaussian model versus
the boundary function with v = 0.15 in the testing period (gray shaded area). The vertical
dash line denotes the estimated volatility change point.
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Notes

In the table, we only consider risk models with 3 to 5 parameters. More selected critical
values are available upon request.

2The GARCH-FZ model is one of the semiparametric models for VaR and ES, which has a
similar framework with the standard GARCH(1,1) model, but has an extension for VaR and
ES modelling. Rather than estimating the parameters of this model using (Q)MLE, parameter
estimates are obtained via FZ loss minimization.

3Results for other significance levels are available on request.

4Tn this model, we have By = 1 — 81 — P2, so the parameter vector to be estimated is
0 = (b1, B2,a,b).

5The empirical densities of the stopping time are displayed by using kernel smoothing func-
tion estimates with a select bandwidth.

6The sequential monitoring scheme with a high value of 7 is not applicable for the GARCH-
FZ model to estimate 5% VaR and ES. The choice of the boundary parameter v depends on
model selection as well as the significance levels for VaR and ES.

"We also perform the identification of the dominant source of the change in the GARCH-
skewed Normal model for 5% VaR and ES. More details can be found in Appendix 4.E.

8In the case of the effect of Brexit on the GBP/EUR exchange rate market, we compare
change point detection in (VaR, ES) at 1%, 5% and 10% separately.

9According to the National Bureau of Economic Research (NBER), the Great Recession
and the COVID-19 recession are during the period from December 2007 to June 2009, and the
period from February 2020 to April 2020, respectively.

10The KS test statistic in Table 4.4.1 shows that the log returns in the training sample are
probably from the same distribution. The loss-based Wilcoxon test indicates no change points

detected in the time series of VaR and ES for the training sample.



Chapter 5

Conclusions and Further

Research

5.1 Summary of the Findings

This thesis contributes to risk measurement and management by proposing im-
proved estimation and forecasting methods for two widely used risk measures,
VaR and ES. It also provides valuable suggestions regarding model construction
and the timing of parameter adjustments for risk managers, regulators and other
practitioners.

Chapter 2 introduces a set of risk models, which are extended from the dy-
namic semiparametric models proposed by Patton et al. (2019) to forecast the
tuple (VaR, ES) jointly. These models incorporate the intraday and overnight in-
formation into the semiparametric GAS framework. We use the realized volatility
at 5-min and 10-min frequencies and combine them with the overnight returns,
respectively, to proxy the market fluctuation during the trading time as well as
overnight. We observe an improvement in the estimation and forecasting per-
formance of risk measures over both in-sample and out-of-sample horizons. In
estimating the in-sample parameters, we show that, in general, the (VaR, ES)

forecasts produced by the extended semiparametric models can generate rela-
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tively low in-sample losses compared with the forecasts of the original models.
Additionally, the coefficients of intraday and overnight variables in each com-
prehensive framework are statistically significant at 1% significance levels. This
finding indicates that the in-sample estimation can benefit from adding intraday
and overnight information into semiparametric risk models. We employ prevail-
ing backtests in the current literature for the forecasts generated by our proposed
models and benchmarks regarding the out-of-sample results. The out-of-sample
results provide substantial evidence of the outperformance of our extended models
for each backtest. Especially the semiparametric GAS two-factor model combined
with the realized volatility at 10-min frequency and the overnight return can pro-
vide more accurate risk forecasts across different assets and probability levels.
This chapter contributes to the literature on forecasting risk measures and the
use of intraday information by providing solid empirical evidence.

Chapter 3 proposes an in-sample detection method for the change points in
(semi)parametric models used for risk measure estimations. This method is based
on the Wilcoxon test applied to the FZ loss functions for joint (VaR, ES), so we
call it the loss-based Wilcoxon test. The general framework of the proposed test
can accommodate any (semi)parametric models for VaR and ES if the consistency
of the estimated parameters can hold. We derive the asymptotic behaviour of the
proposed test statistic with specified conditions as the sample size converges to
infinity. However, using the asymptotic limit to obtain p-values for a test statistic
has been often criticized due to the oversized empirical results for small finite
samples. To address the finite sample size distortions, we use the stationary
bootstrap method to obtain the p-values. We also verify the validity of using
stationary bootstrap for this test. The MC simulations are performed based
on various setups: no change point in a stationary GARCH process, changes
in the volatility and heavy-tailedness of the returns with different locations of
change points. The simulation results reveal that the loss-based Wilcoxon test has

better size control under the null hypothesis and higher power under alternative
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hypotheses compared with alternative tests. Using the log returns of the S&P 500
index for the empirical application, we show the advantages of the proposed test
with real data. Our test can identify the change points within the in-sample data,
and each identified change point can be associated with a well-known market
event. We contribute to the current literature on change point detection by
proposing a method to identify changes in (semi)parametric (VaR, ES) jointly.
Chapter 4 investigates the sequential monitoring scheme for changes in M-
estimators of semiparametric risk models for (VaR, ES). The proposed test is
based on evaluating the change in the normalized gradient of the FZ loss func-
tion. This monitoring scheme detects a change point when the gradient-based
detector crosses a selected boundary curve. In our simulations, we design a set
of scenarios to evaluate the performance of our proposed test for finite sample
sizes. The simulation results exhibit that this test has a reasonable size control
under the null hypothesis and high empirical test power under various alternative
hypotheses. In addition to examining the empirical size and power, we study
the empirical density of the stopping time estimated by the proposed sequential
monitoring scheme. The results point out that there is not much delay for the
detected change point when we compare it with the location of the actual change
point. Moreover, we explore the dominant source of the change point among the
parameters of a semiparametric risk model in an innovative way. The dominant
source of the change points can be identified when we modify the volatility, skew-
ness or kurtosis of the simulated process. In the empirical analysis, we apply
the proposed monitoring scheme for log returns of the S&P 500 index and the
GBP/EUR exchange rate. Overall, the detected change point based on our pro-
posed scheme can be associated with financial or economic events, and in some
cases, the detection precedes the actual market crash, for example, the Black
Thursday in the Covid-19 recession period. Our proposed sequential monitor-
ing test can contribute to the ongoing debate on the structural breaks in risk

measures and the tail index.
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The main findings shown in this thesis can provide several practical sugges-
tions for practitioners in financial markets. First, risk managers can incorporate
the realized measures and overnight returns into the semiparametric observation-
driven models to yield more robust VaR and ES forecasts. Also, banks and other
financial institutions can adjust their minimum capital requirements according to
the predicted 1% VaR and 2.5% ES. Based on the forecasts, asset managers can
construct optimal portfolios by solving the mean-VaR or mean-ES optimization
problem to achieve a reasonable trade-off between profit and risk. Furthermore,
we conclude that risk management practitioners can improve the in-sample risk
estimates by first identifying change points in the loss series for (VaR, ES) risk
measures and then computing model parameter values based on the identified
change points. Considering change points improves the plain (semi)parametric
risk models in terms of risk measure estimation and forecasting. Finally, risk
managers can benefit from using the sequential monitoring scheme to detect real-
time change points in a risk model. By adjusting the parameter values of their
risk models based on the timing identified by the monitoring scheme, practition-
ers can be aware of significant losses in their portfolios during market crashes and

make corresponding preparations.

5.2 Suggestions for Future Research

While this thesis contributes to the ongoing debate on market risk measurement
and the topics of risk estimation and forecasting from several perspectives, we
still leave research gaps to be filled. We now discuss potential topics for further

studies based on the main findings of this thesis.

Risk Forecasting Chapter 2 indicates that incorporating intraday and overnight
information into a semiparametric risk model for joint (VaR, ES) can improve the

forecasting accuracy of the risk models. However, our study only considers the
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realized measures and overnight returns as explanatory variables. Along this line
of research, one could rely on other intraday proxies, such as the realized volatility
at other frequencies, realized bipower variation estimates (Barndorff-Nielsen and
Shephard, 2004), good/bad realized volatility (Patton and Sheppard, 2015), or
intraday ranges (Meng and Taylor, 2020). Additionally, one could use other
exogenous information in the semiparametric risk model, e.g., the information
from options markets (implied volatility or variance risk premium), the market
sentiment extracted from news or firms announcements based on textual analysis,
or low-frequency macroeconomic variables (one could solve the mixed frequency
issue by employing the MIDAS framework by Engle et al. (2013)).

Another exciting research question is to develop the dynamic relationship be-
tween VaR and ES in a semiparametric model. One could follow the work of
Taylor (2019) which models an AR relationship between VaR and ES and the
study of Taylor (2022) which proposes a dynamic Omega ratio to describe the
gap between VaR and ES. It would be helpful to construct new dynamics to model
the ratio of VaR over ES.

Change Point Detection for Other Risk Measures Chapters 3 and 4 pro-
pose in-sample and real-time change points detection methods in risk measures.
However, we only consider models for VaR and ES jointly in this thesis. Thus,
it would be natural to propose change points detection methods for other mar-
ket risk measures (volatility, expectile, and VaR individually) in both in-sample
and real-time schemes. As discussed in the Introduction, elicitable risk measures
have loss (scoring) functions. The forecasts of volatility are often backtested in
a Q-LIKE framework that is based on the Gaussian or Student’s ¢ likelihood
function. The generalized piecewise linear loss function introduced by Koenker
and Bassett (1978) is the loss function to be used for VaR measures taken in
isolation. Regarding the expectile, the asymmetric least squares loss function,

proposed by Newey and Powell (1987), can be used. From a theoretical point of
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view, the loss-based Wilcoxon test and the sequential monitoring test introduced
in Chapters 3 and 4 can be extended to other risk measures based on the specified

loss functions discussed above.

Change Point Detection for Tail Dependence In Chapters 3 and 4, we only
consider the change points detection within a univariate process but ignore the
dependence between the tails of bivariate processes. Ye et al. (2012) use an in-
novative change point testing method for structural changes in the dependence
between time series of two equity index returns within an in-sample period. How-
ever, the sequential monitoring for real-time changes in tail dependence remains
unexplored. To fill this gap, one may construct a novel method to identify the
changes occurring in the tail dependence during the out-of-sample period, with

the dependence modelled using copula functions.

Change Point Detection Method with Forward-looking Information To
enhance the change point detection methods proposed in Chapters 3 and 4, it
would be worthwhile to propose monitoring schemes that rely on forward-looking
information (e.g., VIX and risk-neutral moments). In the existing literature,
a strand of studies confirm the improvement of forecasting by using forward-
looking information extracted from options markets (see Huggenberger et al.,
2018; Molino and Sala, 2021, for example). Bauer and Huggenberger (2021) doc-
ument that the risk estimates that incorporate information from options markets
can quickly react to changing market conditions. The inclusion of forward-looking
information is likely to improve the detection of change points, especially in fast

moving markets.

Empirical Applications for Other Assets This thesis only considers stock in-
dices and foreign exchange rates in the empirical studies. The in-depth theoretical

results presented in each chapter could be applied to other types of assets, e.g.,
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corporate bonds, options, commodities, commodity futures, and cryptocurrencies.
As documented in several other studies (see Lazar and Zhang, 2019; Christoffersen
et al., 2019; Liu et al., 2022, for more details), the log returns of commodities,
commodity futures and cryptocurrencies are fat-tailed and negatively skewed. As
such, it is worthwhile to apply the semiparametric models proposed in Chapter
2 for other asset classes. Also, another promising direction for further studies
could be applying the change point detection methods in Chapters 3 and 4 to the

market risk measures of the asset classes mentioned above.
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