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ABSTRACT: Tropical cyclones (TCs) are important phenomena, and understanding their behavior requires being able
to detect their presence in simulations. Detection algorithms vary; here we compare a novel deep learning–based detection
algorithm (TCDetect) with a state-of-the-art tracking system (TRACK) and an observational dataset (IBTrACS) to pro-
vide context for potential use in climate simulations. Previous work has shown that TCDetect has good recall, particularly
for hurricane-strength events. The primary question addressed here is to what extent the structure of the systems plays a
part in detection. To compare with observations of TCs, it is necessary to apply detection techniques to reanalysis. For this
purpose, we use ERA-Interim, and a key part of the comparison is the recognition that ERA-Interim itself does not fully
reflect the observations. Despite that limitation, both TCDetect and TRACK applied to ERA-Interim mostly agree with
each other. Also, when considering only hurricane-strength TCs, TCDetect and TRACK correspond well to the TC obser-
vations from IBTrACS. Like TRACK, TCDetect has good recall for strong systems; however, it finds a significant number
of false positives associated with weaker TCs (i.e., events detected as having hurricane strength but are weaker in reality)
and extratropical storms. Because TCDetect was not trained to locate TCs, a post hoc method to perform comparisons was
used. Although this method was not always successful, some success in matching tracks and events in physical space was
also achieved. The analysis of matches suggested that the best results were found in the Northern Hemisphere and that in
most regions the detections followed the same patterns in time no matter which detection method was used.
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1. Introduction

Tropical cyclones (TCs) are extreme weather events that
can have a large effect on any environment. These can be and
are detected and tracked in satellite data, numerical weather
prediction (NWP) simulations, and longer simulations with
global circulation models (GCMs) via automatic means.

Previous studies (section 2) have shown that the perfor-
mance of various detection algorithms is comparable when
addressing strong TCs, that is, those that have obtained hurri-
cane status according to the Saffir–Simpson scale. Some show
that the detection algorithms did not perform well when used
on datasets other than that on which the algorithm was first
tuned.

Galea et al. (2023) introduced a deep learning technique,
TCDetect, for detecting the presence or absence of a hurricane-
strength TC in a field of simulation data. In this study, we
compare the performance of this model with a state-of-the-art
algorithm (which does not use machine learning) and an ob-
servational dataset. We begin with a description of previous
literature comparing various detection algorithms (section 2)
and then describe the data and detection algorithms used in
this study (section 3). The main body of the paper (section 4)
describes the results obtained when comparing TCDetect with

a version of a state-of-the-art non–machine learning algorithm
(TRACK; see below) applied to reanalysis data and when com-
paring TCDetect with reality as recorded by the International
Best Track Archive for Climate Stewardship (IBTrACS; Knapp
et al. 2010, 2018) archive. The final summary (section 5) pre-
sents our understanding of the limitations of the application of
TCDetect for detecting tropical cyclone features in simulation
data.

2. Previous studies

There is extensive previous literature comparing different
automatic TC detection algorithms; we here provide some
context for our work by highlighting some previous intercom-
parison between other techniques and some previous investi-
gations into how the type of input data used impacts results.

Horn et al. (2014) compare five different detection algo-
rithms. The first two were a modified version of the Common-
wealth Scientific and Industrial Research Organization (CSIRO)
tracking scheme (Horn et al. 2013) and the Zhao tracking scheme
(Zhao et al. 2009). The last methods were those developed by
the modeling groups whose data were involved, that is, the
groups from the Meteorological Research Institute (MRI),
the National Aeronautics and Space Administration (NASA)
Goddard Institute for Space Studies (GISS), and the Centro
Euro-Mediterraneo per i Cambiamenti Climatici-Istituto
Nazionale di Geofisica e Vulcanologia (CMCC-INGV). The
simulations examined used the CMCC-INGV ECHAM5model,
which has;90-km grid spacing at the equator (Roeckner et al.
2003); the NASA-GISS model, which has ;110-km grid spac-
ing at the equator (Schmidt et al. 2014); the National Centers
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for Environmental Prediction (NCEP) Global Forecast System
(GFS), which has ;110-km grid spacing at the equator (Saha
et al. 2014); and version 3.2 of the Meteorological Research
Institute Atmospheric General Circulation Model (MRI
AGCM3.2), which has ;60-km grid spacing at the equator
(Mizuta et al. 2012).

The authors showed that the method tuned to the under-
lying data achieved the best performance when comparing
hurricane-strength TC counts with observations and usually
outperformed the other methods applied to the same data,
without being tuned. They also show that detection methods
that were not optimized on the data being tested do not work
as well as if they had been optimized. Similarly, Onogi et al.
(2007) also found that a detection algorithm developed for
the Japanese Meteorological Agency (JMA) obtained 80% of
hurricane-strength TCs in their JRA-25 reanalysis but less
than 60% of hurricane-strength TCs in the ERA-40 reanalysis
(Uppala et al. 2005).

Given that the requirement for these automatic tracking al-
gorithms is to detect hurricane-strength TCs in a particular
set of data that corresponds to those that occurred in real life,
it is only natural that the threshold values are tuned to obtain
the same number of systems. This could lead to resolution-
dependent thresholds as in Walsh et al. (2007).

Zarzycki and Ullrich (2017) conducted sensitivity analysis
on the thresholds used for one tracking algorithm, Tempest-
Extremes (Ullrich and Zarzycki 2017), applied to four differ-
ent reanalysis datasets. They found that the most sensitive
thresholds were those defining the TC vortex strength, two
examples of which are the depth of the minimum of sea level
pressure (MSLP) and the maximum sustained surface wind
speed. They reported a larger difference when comparing
storm count rather than integrated or weighted metrics such
as the number of days with a hurricane-strength TC present
or accumulated cyclone energy (ACE). Zhao et al. (2009)
also found that there is a large sensitivity to the choice made
for the threshold for minimum duration of a TC. Strachan
et al. (2013) also note that any wind speed threshold should
vary linearly with the resolution of the data used, and any de-
viations from this relationship are likely due to model biases
and errors.

It was also noted in previous literature that the intensity of
TCs, whether defined by MSLP or maximum sustained sur-
face wind speed, is underestimated in all of the reanalysis
datasets. Strachan et al. (2013) noted that resolution alone
does not explain this observation, due to feedback processes
present in the model. Schenkel and Hart (2012) also noted
that the choice of data assimilation method is important to get
realistic surface wind speeds. For this reason, the JRA-25 and
JRA-55 reanalyses are most realistic, likely due to a vortex re-
location step performed during their creation.

Despite all these considerations when it comes to the reso-
lution of different reanalyses, Strachan et al. (2013) show that
while those datasets with a resolution finer than 100 km are
capable of showing the correct interannual variability, even
datasets with a resolution of 20 km are not capable of produc-
ing the right intensities.

Hodges et al. (2017) investigated how TRACK performed
using six different reanalysis datasets. It was found to work
well (probability of detection: 97% in the Northern Hemi-
sphere; 92% in the Southern Hemisphere) at detecting TC
tracks across all basins, but it had a high false detection rate,
especially in the Southern Hemisphere, when considering
only TCs that fulfilled criteria that considered intensity and
presence of a warm core. Most of these false positives had
their genesis poleward of the latitude of 208S, leading to the
conclusion that these may have been hybrid TCs. An addi-
tional conclusion was that the observations may have missed
recording some storms, as there were around 20% more advi-
sories issued than storms present in the data. Hodges et al.
(2017) opined that such storms may have been omitted due to
the lack of human impact and/or accurate measurements.

Although this previous work shows that there are differ-
ences in the results of the multiple existing TC detection and
tracking algorithms, previous literature also agrees that there
is little disagreement in the detection and tracking of strong
TCs, that is, those that are at least of category 3 on the Saffir–
Simpson scale.

3. Data and methods

The goal of this paper is to understand the characteristics
and applicability of our deep learning cyclone detection
method, TCDetect, when applied to simulations of the real
world. Doing this requires going beyond the normal deep
learning metrics, as there are additional complications for
real-world applications, arising from the fact that both the ob-
servations (the ground truth) and the input simulation data
(to the deep learning) introduce detection biases.

In the real world, IBTrACS provides the best source of
ground truth. Initially developed by the National Oceanic and
Atmospheric Administration (NOAA), it combines all of the
best-track data for hurricane-strength TCs from all the official
Tropical Cyclone Warning Centers, the WMO Regional Spe-
cialized Meteorological Centers (RSMCs), and other sources.

Reanalysis data provide the best possible simulation data
by using synthesized observations of meteorological variables;
we choose to use the ERA-Interim product (Dee et al. 2011),
as the newer ERA5 dataset had not been published when this
work was started. ERA-Interim utilizes version CY31r2 of
the European Centre for Medium-Range Weather Forecasts
(ECMWF) numerical weather prediction system, the Inte-
grated Forecasting System (IFS), together with assimilation of
observations from 1979 through 2019.

Unfortunately for our purposes, reanalysis data are not
the same as the actual observations, and so, to try to under-
stand the influence of the difference between the observa-
tions (IBTrACS) and the input data (ERA-Interim), we use
another detection method}TRACK}as a gold standard
comparator. TRACK (Hodges 1994, 1995, 1999) is a state-of-
the-art automatic detection and tracking system for different
types of atmospheric disturbances with considerable use since
inception. We then use TCDetect and TRACK applied to re-
analysis data and compare them with each other and with the
IBTrACS dataset.
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ERA-Interim data are produced at a spatial resolution of
79 km at a temporal resolution of 6 h and has 60 vertical levels
up to 0.1 hPa. Of the many parameters produced, only the
MSLP, 10-m wind speed, and relative vorticity at 850, 700,
and 600 hPa are used in this study, and thus, are the input var-
iables used by both TRACK and TCDetect.

The comparison presented here is limited to the 25 months
from 1 August 2017 to the end of August 2019 because the
earlier data have been used in training the deep learning
algorithm.

a. IBTrACS

The IBTrACS dataset has information about reported
storms, such as the storm center in latitude and longitude,
maximum surface wind speed, minimum sea level pressure,
and category. It records tracks of hurricane-strength TCs. In
what follows, we consider a TC event to be a snapshot in time
of a particular TC recorded by IBTrACS.

While IBTrACS is the best available observational dataset,
the dataset is split into observations from seven global basins,
or regions. As a consequence, there is some inhomogeneity in
coverage and methodology as the different contributing cen-
ters have differing observing systems. Such observing systems
can be limited in time and space, leading to an incomplete re-
cord of their evolution (i.e., events not detected). Such omis-
sions are most likely if they had limited or no human impact,
or they were out of range of detection systems such as air-
borne missions. Also, different centers have different ap-
proaches to making their observations and reporting them.
An example of this is that the exact minimum surface pres-
sure is often not directly observed but interpolated from
nearby observations. Different centers have different methods
for making this calculation.

b. TRACK

While TRACK is well described in the literature [see
Hodges (1994), (1995), (1999) and references therein], some
facets of the way it works have an impact on the comparison
to come, so we provide a brief summary of some key aspects
of the technique.

TRACK has four different stages: data preparation, seg-
mentation, feature point detection, and tracking.

In the first step, TRACK treats relative vorticity data so
that features of interest are easier to detect. This is done with
the help of spectral filtering to keep only spatial scales related
to the features of interest. With regard to tropical cyclones, these
are wavenumbers 5–63, corresponding to spatial extents of
around 1300 and 100 km, respectively. This filtering is applied
to the vertical average of vorticity between the heights of
850 and 600 hPa.

During the segmentation stage, each point is classified as a
background or an object point, depending on whether the
value for the vertical average of vorticity is above or below
the threshold of 5 3 1026 s21. The object points are then col-
lected into objects. Feature point detection then allocates a
feature point to each object, representing its center. This fea-
ture point is selected as the local extremum in the vertically

averaged vorticity field. Last, the tracking stage uses the fea-
ture points generated to minimize a constrained cost function
to get the smoothest possible tracks.

The complete TRACK algorithm finds a range of TCs, only
some of which may be of hurricane strength. The tracks pro-
duced can be processed to identify those particular tracks.
The original tracks produced by TRACK are then processed
to remove any non-hurricane-strength TC cases from only the
start of each track. This is done by using criteria similar to
those given by Bengtsson et al. (2007):

• The lifetime must be at least 2 days.
• The initial point in the track must be in between latitudes
308S and 308N.

• The maximum in T63 spectrally filtered data (to keep fea-
tures greater than 180 km) of vertically averaged relative
vorticity intensity at 850 hPa must be over 5 3 1026 s21.

• A warm-core check must be passed: there must be a T63
vorticity maximum at each atmosphere level at 850, 600,
500, 400, 300, and 250 hPa and within 58 (geodesic) of
the maximum at the lower level. Also, the difference
between the maxima at 850 and 250 hPa must be greater
than 5 3 1026 s21.

• The previous two conditions must hold for the last n time
steps, where n is a user-defined value.

The tracks are then reformatted so that they only last from
the first point that satisfies these criteria to the last point
of the original track. We refer to the resulting set of tracks
as truncated-TRACK (T-TRACK) dataset.

c. TCDetect deep learning model

The TCDetect deep learning scheme was introduced and
described in Galea et al. (2023), where full details of the
scheme, including structure and training, can be found. Here
we only summarize the inputs, outputs, and results. It is trained
on ERA-Interim data, utilizing MSLP, 10-m wind speed, and
vorticity at 850, 700, and 600 hPa; all coarsened to an input res-
olution of approximately 320 km. This data-coarsening step
was arrived to as a result of hyperparameter tuning and helped
to filter out small-scale noise. Each time step of ERA-Interim
data was then split into eight equally sized regions (Fig. 1),
which are loosely based on those used in the IBTrACS dataset.
While IBTrACS has seven regions, we choose to split the
southern Pacific into two regions to maintain equality in region
size.

These inputs were then used to infer a classifier value (effec-
tively a probability) ranging between 0 and 1; a hurricane-strength
TC is inferred to be present if the value is greater than 0.5, and
absent if less than or equal to 0.5.

In testing, the TCDetect algorithm obtained a recall rate,
or a probability of detection, of 92% with a precision rate, or
a success ratio, of 36%. In practice, this means that while
most of the actual hurricane-strength TCs were detected,
many of the cases identified were technically false negatives
(i.e., non-hurricane-strength TCs). However, as discussed in
Galea et al. (2023) and further discussed below, most of these
were actually meteorologically significant.
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The recall rate and precision were calculated in terms of
the application of the technique to ERA-Interim data, but the
labels came from IBTrACS. It is reasonable then to ask, “to
what extent does the ability of ERA-Interim to reproduce the
original storm strength and timing impact these results?” We
address this question by applying both T-TRACK and TCDe-
tect to ERA-Interim, and comparing the results with the IB-
TrACS, which is considered as the ground truth.

The TC center is not given by TCDetect, so a way to extract
it was needed. For this, the gradient-weighted class activation
map technique (Grad-CAM; Selvaraju et al. 2017) was used.
This works by passing the output of the deep learning model
back through the model; then, via gradient maximization, a
heat map of the areas in the original input used in a selected
layer en route to the output is produced. We selected the first
convolutional layer to obtain a heat map and assumed that
the TC central position in latitude and longitude is collocated
with the maximum activation. This layer was chosen to obtain
the heat map with the finest possible resolution so as to get
the most precise location of the TC.

Because the heatmaps used for Grad-CAM were generated
from the coarsened (320-km resolution) data, the resulting
TC centers were coarsely quantized and only poor-quality
comparisons were possible. To mitigate this effect, the Grad-
CAM centers (“preliminary centers”) were then passed
through an additional refinement step to generate more accu-
rate locations. A box with sides of 108 in latitude and longi-
tude was centered on the preliminary centers, and the original
full resolution ERA-Interim vorticity values at 850, 700, and
600 hPa were obtained and vertically averaged. These three
heights in the atmosphere were selected such that the process
mirrored that of T-TRACK as closely as possible. The TC
center was assumed to be located at the position of the maxi-
mum in the absolute value of the averaged vorticity.

These TC centers were then used to make up TC tracks.
Given that the TCDetect methodology simply records the
presence or absence of a hurricane-strength TC in each of the
eight regions defined in Fig. 1, a track was first defined as hav-
ing TC centers that were present in consecutive time steps in

the same region. However, this produced many short (,2 days)
tracks. To attempt to fix this, these short tracks are stitched
together to make longer tracks. For a single region, if one track
ended at most 2 days (eight time steps) before the next track
started and the last TC center of the first track was at most 208
(geodesic) away from the initial TC center of the second track,
the two tracks were joined to make up one track. This process
was carried out until no more tracks could be joined. The
separation distance criterion might intuitively seem to be
too wide, but as will be shown below, TCDetect has trouble
with locating TC centers, so some buffer was built into this
criterion.

4. Results

The first question to consider is “To what extent do the
two detection algorithms recover the hurricane-strength TC
events, where events are snapshots in time of the system being
considered, seen in the observations?” We can then ask,
“How well do the two algorithms (combined with ERA-
Interim data) position the TCs in space?” Last, we ask, “To
what extent does the detection success depend on the TC
structure and strength?”

a. Detection

Figure 2 shows the relationship between detection and ob-
servations for all the events during the period of interest. For
these purposes, for each region, an event was counted when
at least one hurricane-strength TC was observed and/or de-
tected in any time step, and the event counts from each region
are summed into the global and hemispheric counts as appro-
priate. While we acknowledge that having the matching crite-
rion set as two tracks matching at just one point could be
viewed as too lenient, this was done to reduce the chances of
an incorrect nonmatch due to TCDetect missing an event in
the track. More stringent matching is performed later in the
section.

It is also important to note that for IBTrACS and T-TRACK,
this relationship between detection and observations is an un-
derestimate of the total number of events, because only one

FIG. 1. The eight regions used by TCDetect, which are loosely based on those used in the IBTrACS dataset.
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event was counted even if multiple hurricane-strength TCs
were present in the region. This undercounting was used for
consistency with TCDetect, which can only report the pres-
ence or absence of at least one hurricane-strength TC.

In total there were 1342 such events in the IBTrACS data,
and 4741 and 3397 detected by T-TRACK and TCDetect, re-
spectively (Fig. 2a). The majority of the observed events were

found by both detection algorithms, with TCDetect finding
slightly more than T-TRACK. Relatively few (50) IBTrACS
events were not found by either detection method, consistent
with the expected high recall rates. However, more events
were detected by one or both of T-TRACK and TCDetect
than were present in the observations, which suggests many
meteorological events were being incorrectly classified as
TCs. This finding is discussed further below.

With an a priori expectation that IBTrACS may be under-
sampling hurricane-strength TC events in the Southern Hemi-
sphere, the data were also split into hemispheres to investigate
Figs. 2b and 2c. In terms of recall}that is, the ability for
IBTrACS TCs to be detected in ERA-Interim, it can be seen
(Table 1) that TCDetect is doing slightly better than T-TRACK
in both hemispheres, and slightly more so in the north.

Note that the criteria used to supposedly screen TRACK to
identify hurricane-strength TCs are responsible for some of
the “missing” detections. If TRACK alone is used, then the
recall rate is much higher, reaching 96% globally, with 97%
and 92% in the Northern and Southern Hemispheres, respec-
tively, albeit with many more false positives.

Of the 3397 cases in which TCDetect detects a hurricane-
strength TC, 681 cases, or around 20%, are not observed or
detected by T-TRACK; similarly, of the 4741 cases in which
T-TRACK detected the presence of a hurricane-strength TC,
2082 cases, or around 44%, are not observed or detected by
TCDetect. These “extra” events found by the detection algo-
rithms require more investigation. Formally, they represent
poor precision in the detection (a high proportion of false pos-
itives), but the significant overlap using two different techni-
ques is interesting, and suggests the techniques are identifying
things that are nearly hurricane-strength TCs}nearly because
they are just outside the tropics, or nearly TC-like in structure
and strength, consistent with the results reported previously.
It could also be that the underlying ERA-Interim data has de-
ficiencies in its representation of these systems, which is caus-
ing the methods to produce false positives.

Thus far the analysis has considered time step “events”
since the algorithms (TRACK and TCDetect) are applied to
one time step after another}but, in reality, these steps form
part of the life cycle of a meteorological phenomenon, and
it is that thinking that informs the criteria that distinguish
T-TRACK from TRACK. These phenomena move along
tracks, and so we can consider track detection independently
of event detection.

In terms of tracks, Fig. 3a shows how many hurricane-
strength TC tracks match, whereby two tracks are matched
across datasets if they share one or more detection events in

FIG. 2. Events reported by observations (IBTrACS), events de-
tected by T-TRACK, and events detected by TCDetect applied to
ERA-Interim data for (a) the whole globe, (b) the Northern Hemi-
sphere, and (c) the Southern Hemisphere.

TABLE 1. Percentage of IBTrACS TC events detected (recall)
by T-TRACK and deep learning in ERA-Interim data for all
regions (global), the Northern Hemisphere (NH), and the Southern
Hemisphere (SH).

Global NH SH

T-TRACK 87% 90% 80%
TCDetect 92% 95% 82%
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the same region at the same time step. (Note that this means
that a single track from one dataset can be matched to multi-
ple tracks from another dataset if multiple TCs are detected
in the second dataset.) Similarly, Fig. 3b shows matching tracks
where non-hurricane-strength events were also considered.

The majority (96%) of IBTrACS tracks, whether depres-
sions or full hurricane-strength TCs, are matched by at least
one of the two detection algorithms. Similar to the events,
TCDetect matched to more IBTrACS tracks than T-TRACK,
but a majority of the hurricane-strength tracks in IBTrACS
were matched with both detection algorithms. Also, there
were many tracks that matched between T-TRACK and
TCDetect but not with IBTrACS. These could be evidence of
TC-like structures being picked up by the detection algo-
rithms that either had not strengthened to hurricane strength
or were nontropical systems, an argument supported by the
increased number of three-way matches seen when including
all non-hurricane-strength tracks (Fig. 3b) and our earlier
analysis for TCDetect and IBTrACS alone. The most un-
matched tracks come from TCDetect and were due to many
nonmeteorological false positives, that is, regions where no
tropical system of any kind was defined by IBTrACS but
TCDetect erroneously classified the region as having a TC
present. However, it is encouraging that most of the tracks ei-
ther produced by TRACK or found in IBTrACS are being
matched by tracks produced by TCDetect.

Thus far, we have been considering track matches that oc-
curred with very loose criteria. We now make some addi-
tional track-matching constraints to further understand the
differences between the two methods and the observations.
The new criteria are very similar to those used by Hodges
et al. (2017):

• the mean separation distance between all matching TC
centers (i.e., those present in the same time step) between
tracks is less than 58 (geodesic),

• the tracks need to overlap for at least 10% of the base
track’s lifetime (the base track originates from T-TRACK
if present; otherwise, it is taken to be from IBTrACS), and

• the track with the least mean separation distance is chosen
if multiple matching tracks exist.

These constraints remove any of the unmatched TC tracks. It
should also be noted that some events can still be detected by
only one method if the tracks considered are not of the same
length and/or have a different starting time step.

After these criteria were applied, the events from the re-
maining tracks were again split by method. The matches be-
tween detection and observations now includes fewer events
(cf. Figs. 4 and 2a). The number of cases with the presence of
a hurricane-strength TC found in IBTrACS decreases from
1342 to 1327. The same occurs for T-TRACK (from 4741 to
3357) and TCDetect (from 3397 to 1067).

The small change in total events for IBTrACS is expected,
given the vast majority of observed tracks are detected by one
or other method at some point during their evolution. The
biggest change is seen in the TCDetect results, where many
events are rejected, either because they did not lie on a track,
or because the tracks were incorrectly positioned and lay out-
side the 58 (geodesic) criterion.

We now turn our attention to when events occur. The events
from Fig. 2 are recast as events seen per month and shown in
Fig. 5. While T-TRACK and TCDetect detect more hurricane-
strength TC tracks, they share the same intra-annual variability
seen in the IBTrACS observations. Regions in the Northern

FIG. 3. Tracks reported by observations (IBTrACS), tracks detected by T-TRACK, and tracks detected by TCDetect
applied to ERA-Interim data. Overlaps occur when they share a detection event at some point along the track in the
same region at the same time step. Tracks are matched for (a) only hurricane-strength TCs and (b) all depressions
[i.e., a superset of (a)].
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Hemisphere show an uptick in the number of such events in the
months between July and October, with a similar increase in
the months between December and June for regions in the
Southern Hemisphere.

Table 2 shows the Pearson correlations between the time
series given by IBTrACS and T-TRACK and IBTrACS and
TCDetect. Confidence intervals for these correlations were
also calculated using Fisher’s transform. When considering all
regions, there is a correlation of 0.69 between IBTrACS and
T-TRACK, showing that these two time series have a reason-
ably strong correlation. When examining this correlation by
region, correlations higher than 0.7 are obtained in four re-
gions, while another two have correlations between 0.5 and
0.7. The north Indian Ocean has a correlation less than 0.5,
whereas no value is obtained for the South Atlantic Ocean
because there were no TCs recorded in IBTrACS.

The correlations are not as good when considering IBTrACS
and TCDetect. A correlation of20.08 is obtained when consider-
ing TCs over the whole globe. Six regions have a weak correla-
tion, with values between 0.4 and 0.55, while the north Indian
Ocean has a correlation of 0.27.

These results show that the time series of IBTrACS is bet-
ter correlated to that of T-TRACK than TCDetect, both
when considering the whole globe and on the level of an indi-
vidual region. The problems in the Indian Ocean and the
South Atlantic are further discussed below.

b. Location

Using the constrained matched track data, we now address
in more detail the question as to how well TCDetect locates
hurricane-strength TC centers. Figure 6 shows the location of
the events in these data.

The IBTrACS dataset is again considered to be the ground
truth. It shows that most TCs are found in a few well-defined
regions:

• close to the eastern shores of the North American conti-
nent and farther out to the middle of the Atlantic Ocean,

• to the west of the North American continent and in the
middle of the Pacific Ocean,

• to the east of Asia, over the western Pacific Ocean, and
• over the middle of the Indian Ocean and to the north of
Australia.

By comparison, T-TRACK shows a larger number of events
and longer tracks, some extending well into the subtropics.
There are also more TC centers present in the Southern
Hemisphere than IBTrACS, especially the central southern
Pacific Ocean. As Hodges et al. (2017) discuss, weak TCs in
the Southern Hemisphere are often not reported to the best-
track database, because of uncertainties associated with the lack
of direct observations in this region. Hence, the use of an objec-
tive method to obtain the locations off the eastern coast of the
South American continent, which are nonexistent in IBTrACS,
could point to the use of reanalysis data and tracking algorithms
providing better ground truth in observation-poor regions of the
globe and/or certain operational procedures that mean that the
center responsible excludes these storms from their reports.

The locations reported by TCDetect are positioned mostly
in the right regions, but some centers are located well inland or
well into the subtropics, where TCs are not expected. Also, the
centers over the Indian Ocean are more spread out than those
found in IBTrACS or T-TRACK. It is clear that the geoloca-
tion part of the algorithm is not working as well as the detection
algorithm}consistent with the way the deep learning model
was developed (it was trained for detection, not location).

Location accuracy can also be seen in the spatial correlation
of all the TC events that have centers within 108 (Fig. 7). The
data for both two-way and three-way matches show a tight
grouping and a good correlation, but more scatter is seen in
the two-way matches involving TCDetect. Analysis of the
temporal matches where the centers were farther than 108
apart suggest that in addition to the TCDetect location issues,
further complications could arise from the way tracks for
TCDetect were created, where some tracks from two separate
events were erroneously joined together.

Figure 8 shows the distribution of all hurricane-strength TC
cases by latitude. While the peak of the distributions for both
detection algorithms in both hemispheres is biased equatorward
(with respect to IBTrACS observations), the two detection al-
gorithms broadly agree in the Northern Hemisphere. However,
the distribution for the deep learning–based algorithm shows
two peaks in the Southern Hemisphere: one at around 108S and
a peak at around 408S. The first peak matches up well with that
from T-TRACK. The second is consistent with the southern
bias in positions seen in the Indian Ocean and the excess of de-
tections in and around the Tasman Sea.

c. Structure

It is feasible that the physical structure of cyclones in terms of
their representation in ERA-Interim might affect the results pre-
sented here. To investigate this, we created composites of the
events, presented in Fig. 9 for Northern Hemisphere TCs and
Fig. 10 for Southern Hemisphere TCs, using the ERA-Interim

FIG. 4. Events detected by TRACK, events detected by TCDe-
tect, and/or events reported by IBTrACS that fall on matching
tracks, defined by applying constraints similar to those of Hodges
et al. (2017).
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data. For each method, the composites were created by averag-
ing boxes with sides 308, centered on the reported TC center.
For cases in which the TC was detected by T-TRACK, the TC
center used was that as given by T-TRACK. Of the remaining
cases, if the TC was present in IBTrACS, the center used was
that as given by IBTrACS, and for those TCs that were only

detected by the deep learning model, the TC center used was
that as derived from the deep learning model, with the help of
the Grad-CAM technique.

The data fields examined were those used as input to the
deep learning algorithm: MSLP, 10-m wind speed, and the
magnitude of vorticity at 850, 700, and 650 hPa.

FIG. 5. Hurricane-strength TC frequency: the number of hurricane-strength TC tracks present in a month, as reported
by IBTrACS, T-TRACK, and TCDetect, stratified by the regions used by TCDetect.

TABLE 2. Frequency correlations between IBTrACS and T-TRACK and between IBTrACS and TCDetect. The large correlation
intervals (calculated using Fisher’s z transform) are indicative of the small sample size and the noisy data. See the main text for
an explanation of the South Atlantic (non)result.

IBTrACS–T-TRACK IBTrACS–TCDetect

Correlation 95% Confidence interval Correlation 95% Confidence interval

South Indian Ocean 0.53 0.17–0.77 0.54 0.18–0.77
SW Pacific Ocean 0.73 0.47–0.87 0.47 0.10–0.73
SE Pacific Ocean 0.66 0.36–0.84 0.49 0.12–0.74
South Atlantic Ocean } } } }

North Indian Ocean 0.25 20.16–0.59 0.27 20.14–0.60
NW Pacific Ocean 0.79 0.45–0.87 0.45 0.06–0.71
NE Pacific Ocean 0.72 0.45–0.87 0.42 0.03–0.70
North Atlantic Ocean 0.86 0.71–0.94 0.46 0.07–0.72
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The composite case for TCs detected by all three methods
shows a fairly symmetric low pressure area with a minimum of
around 998 hPa. It also shows a wind field with a maximum wind
speed of around 13.5 m s21 in the top-right quadrant of the TC

and a clear eye. Vorticity is very concentric with very little noise
with highs of 0.00024, 0.00021, and 0.000175 s21 at the 850, 700,
and 600 hPa levels, respectively. All of the features and magni-
tudes are similar for composites in both hemispheres.

FIG. 6. Position of each hurricane-strength TC event center in the constrained matched tracks for (top left) IBTrACS;
(top right) T-TRACK; and (bottom) TCDetect.

FIG. 7. Spatial correlation of the overlapping regions shown in Fig. 4, i.e., for matches with constraints applied: (top) two-way matches
showing pairwise correlation, and (bottom) pairwise comparisons for three-way matches. Differences are calculated using the TC centers
obtained from the first method mentioned in the title of each plot minus TC centers obtained from the second-mentioned method.
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The picture is similar, but with some subtle differences, for
the composite cases of TCs detected by two of the three de-
tection methods. MSLP fields for these cases have wider low
pressure centers, and all have a weaker low, with a central
pressure no lower than 1000 hPa. The wind speed field is simi-
lar. All cases show more noise in the composite, especially in
the composite case derived from TCs detected by T-TRACK
and IBTrACS but not TCDetect, but this is somewhat ex-
pected, as relatively few TCs are present only in IBTrACS
when compared with the other composites. Also, maximum
wind speeds are weaker and do not exceed 10.4 m s21. The
vorticity fields show a similar situation, where all vorticity cen-
ters are wider and have their maximum magnitude between a
third and a half that of the composite case of TCs detected by
all detection methods.

When examining these composites when split up by hemi-
sphere (Figs. 9 and 10), one thing of note emerges. It is seen
that both MSLP and wind speed fields have a tighter center of
circulation for the composite case coming from cases from
the Northern Hemisphere than from those originating in the
Southern Hemisphere.

Last, the composites for TCs detected by only one of the
detection methods show some differences from the composite
for the TCs detected by all three methods.

As a general note, it is noticeable that wind speed values in
the Northern Hemisphere in cases detected by only one of
the two methods, or present only in the observational data,
are weaker than those in the Southern Hemisphere.

The composite for TCs present only in IBTrACS shows a
low pressure with a considerably higher minimum pressure of
1008 hPa. The maximum wind speed is also down to 8.4 m s21

and does not show a clear eye at the center of the composite.
The vorticity fields show wider but much shallower centers,
with the maximum vorticity much lower than that of the com-
posite for TCs detected by all three methods. This weaker
structure could be due to TC positions given by IBTrACS not
lining up well with the position of the TC in ERA-Interim.
Considerable noise is also present outside the vorticity

centers, but this is somewhat expected, as relatively few TCs
are detected by IBTrACS only when compared with the other
composites.

When split up by hemisphere, the composite for cases de-
tected only by IBTrACS shows some differences. First, the
MSLP field in the composite for the Northern Hemisphere
(Fig. 9) cases shows a wave structure rather than a well-defined
low. The wind speed field also shows a lack of a center. The
vorticity fields do show clear centers but have considerable noise
present.

The composite for cases detected only by IBTrACS origi-
nating in the Southern Hemisphere (Fig. 10) shows a much
more organized situation. A clear but wide low pressure cen-
ter is noted, as well as a center in the wind speed field. The
vorticity fields also have well-defined but not concentric cen-
ters, but there is also a considerable amount of noise present
on the outskirts of the centers.

When examining the composite case for TCs detected by
the deep learning model only, an MSLP low area is observed
with a minimum of around 1009 hPa. A clear center is also
seen in the wind speed and vorticity fields. The maximum
wind speed is around 7.2 m s21 and the magnitude of the vor-
ticity fields is around half that of the composite case for TCs
detected by all three methods.

The same patterns can be observed when the composite of
cases detected only by TCDetect is split by hemisphere. How-
ever, one thing to note is that the composite for the Southern
Hemisphere shows a relatively shallow area of low pressure in
the MSLP field when compared with the composite for TCs
detected by all three methods.

Last, the composite for TCs detected only by T-TRACK is
very similar to that of TCs detected by all three detection
methods. The only differences are that the magnitudes for
vorticity in the former are about one-half that of the latter.
This does not change when the TCs are split by hemisphere.

From the above analysis, it could be concluded that the
TCs detected by all three detection methods are the strongest
and most well-defined in the data. Hodges et al. (2017) also
show this when comparing non-ML TC-tracking algorithms.
Furthermore, those detected by two of the methods are
weaker, usually with a lack of a clear area of maximum wind
speed and somewhat less organized. Those TCs detected by
only one detection method are even weaker, with the most
noticeable decrease in strength in the vorticity fields. There is
also the possibility of wrongly identified TCs, that is, systems
that are not a TC, being included in this category.

d. Strength

With the results from the analysis of life cycles and compo-
sites in mind, the obvious question that arises is how good a
job is TCDetect doing at finding hurricane-strength tropical
cyclone events as opposed to all tropical cyclone events?

The match between any class of depression is shown in
Fig. 11, which extends Fig. 2a by allowing matches between
any class of depression. After doing so, it can be seen that
only 17 hurricane-strength events were left unmatched. Also,
80 of the events that were detected by TCDetect and present

FIG. 8. Density plots of TC center latitude as given by IBTrACS
(blue), T-TRACK (black), and the deep learning–based algorithm
(red).
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FIG. 9. Composite view of Northern Hemisphere events by detection algorithm or observations that pick up
the TC. The total number of cases used to produce each composite can be obtained from Fig. 2 for the variables
(left) MSLP, (left center) 10-m wind speed, (center) vorticity at 850 hPa, (right center) vorticity at 700 hPa, and
(right) vorticity at 600 hPa.
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FIG. 10. As in Fig. 9, but for the Southern Hemisphere. Note that the sign of the vorticity has been reversed for ease
of comparison.
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in IBTrACS are now detected by TRACK as well. Similarly,
many fewer events are now seen by both TRACK and TCDetect,
but not reported in IBTrACS (330 vs 1485 in Fig. 2a). The ad-
ditional 1494 events found in observations and by both detec-
tion methods are showing that TCDetect is doing a good job
of finding a range of depressions and storms; although the
recall is not as high as for all storms as it is for hurricane-
strength TCs (cf. Tables 1 and 3), the precision with respect to
recovering storms is good (Table 3).

The details of the matches between TCDetect and IBTrACS
are shown in Table 4. The overall precision results from the fact
that only 506 out of 3397 TCDetect detections were cases that
had no meteorological system present and the vast majority of
cases with no TCs are being classified as such, that is, true nega-
tives. Some cases with hurricane-strength TCs present are being
misclassified (false negatives), with a greater portion of lower-
category hurricane-strength TCs being misclassified than higher-
category TCs, consistent with the results in Galea et al. (2023).
Also, around two-thirds of non-hurricane-strength TCs are be-
ing classified as hurricane-strength TCs (false positives). This is
all consistent with the deep learning model recognizing the pat-
tern but struggling to distinguish between strong (deep) and
weak (shallow) systems.

5. Summary

We have investigated the influence of the structure and lo-
cation of the underlying events on the detection of hurricane-
strength tropical cyclones in eight planetary regions, loosely
based on the regions used in the IBTrACS database.

While our primary aim has been to investigate the perfor-
mance of our new deep learning–based algorithm (TCDetect),
of necessity we have had to use an additional technique
(T-TRACK) to put our results in context, both in terms of the
state of the art, and in terms of the impact of the input (ERA-
Interim) not being a perfect copy of the real world that
yielded the IBTrACS observations.

T-TRACK is designed to find and track cyclones and storms,
and while TCDetect was not trained to find locations and tracks,
it is possible to estimate the position of the systems it detects, so
the comparison extends not only to counting detections but also
to the location and structure of the detected events.

A priori, we might have expected that the events recorded
by IBTrACS would be stronger in the observations than in
the reanalysis (Strachan et al. 2013; Hodges et al. 2017), and
that some events in the Southern Hemisphere would be
omitted by the observations (Hodges et al. 2017). These ex-
pectations were confirmed in this analysis, but there are
also interesting differences in the characteristics of what
was detected and where.

Both T-TRACK and TCDetect found more events than ap-
peared in the IBTrACS observations, with both finding more
events in the Indian Ocean and TCDetect more over land.
The latitudinal distribution of where the events were found
differs as well: both T-TRACK and TCDetect find distribu-
tions skewed to higher latitudes than those seen in observa-
tions, albeit with the peak in numbers at a lower latitude, with
the bias to high latitudes more pronounced in the TCDetect
data. TCDetect also detected more TCs over the Indian
Ocean, giving an extra peak at about 408S.

FIG. 11. Events detected by TRACK, events detected by
TCDetect, and events reported by IBTrACS. All meteorological
systems are included from IBTrACS and TRACK, not just
category-1-and-higher systems. Events present in IBTrACS
(blue area) were split into TCs of hurricane status (numbers
not in parentheses, defined as true positives for TCDetect)
and other depressions (values in parentheses, defined as false
positives for TCDetect and T-TRACK).

TABLE 3. Recall and precision of meteorological disturbances
seen in ERA-Interim and labeled by IBTrACS, as recorded
by T-TRACK and TCDetect (cf. with Fig. 11, which shows
TCDetect recall for TCs).

Recall Precision

T-TRACK 85% 50%
TCDetect 63% 85%

TABLE 4. Inferences generated by TCDetect, split by storm
type reported by IBTrACS. Positive inferences are where TCDetect
detected the presence of a TC; negative inferences are where
TCDetect detected no TC. For example, of the 19759 cases that
had no meteorological system, TCDetect classified 506 as having
a TC present (i.e., false positives). Similarly, of the 484 cases in
which a category-1 TC was the strongest system present, 426 were
classified as having a TC (i.e., true positives).

Storm type Positive inference Negative inference

No meteorological system 506 19 253
Unknown 2 30
Post-tropical systems 18 47
Disturbances 165 337
Subtropical systems 32 51
Tropical depressions 348 625
Tropical storms 1095 501
Category-1 TCs 426 58
Category-2 TCs 281 26
Category-3 TCs 243 15
Category-4 TCs 212 12
Category-5 TCs 69 0
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Although both TCDetect and T-TRACK found more cyclones
in the Southern Hemisphere, for TCDetect the matching of de-
tected and observed cyclones was not as good as for T-TRACK.
As already noted, a good number of the extra Southern Hemi-
sphere TCs were found in the Indian Ocean by both techniques
although poorly positioned by TCDetect. T-TRACK additionally
found many TCs in the South Pacific and east of South America,
which might have been omitted in IBTrACS because of a paucity
of observing systems in those sectors}but they were not found
by TCDetect. The relatively poor geolocation of the TCDetect
storms is not unexpected, given that TCDetect was not trained to
locate storms, and the method used to find their positions is very
post hoc. A future extension to this work could look at training
for both detection and location.

Those TCs found by both detection methods and observed
in IBTrACS were the strongest and most well defined. Those
detected by any two of T-TRACK, IBTrACS, and TCDetect
were weaker and had more disorganized fields, and those de-
tected by only one of the methods were the weakest storms
present and had considerable noise in their fields.

It was found that most of the false positives (hurricane-
strength TC reported but not present in IBTrACS) generated by
TCDetect were associated with some sort of TC, albeit without
hurricane status. In fact, the overall precision of TCDetect in
terms of recovering singular events, that is, TC snapshots, re-
corded by IBTrACS was higher than T-TRACK}an unexpected
result. However, T-TRACK has superior recall (it detects a
higher percentage of such storms). This is consistent with the re-
sults shown in Galea et al. (2023), who showed that recall in
TCDetect is related to storm strength; however, both techniques
have similar results in terms of recall of hurricane-strength TCs.

In a companion paper in preparation, TCDetect is used in a
GCM, and results are compared at a range of resolutions, for
current and future climate. Future work could also look at the
sensitivity of TCDetect with different reanalysis data, and, as
already noted, the technique could be redeveloped to improve
the locations obtained.
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