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Abstract
Recent work has demonstrated that skilful hybrid statistical–dynamical fore-
casts of heavy rainfall events in Southeast Asia can be made by combining model
forecasts of the phases and amplitudes of Kelvin, Rossby, and westward-moving
Rossby gravity waves with climatological rainfall statistics conditioned on these
waves. This study explores the sensitivity of this hybrid forecast to its parame-
ter choices and compares its skill in forecasting extreme rainfall events in the
Philippines, Malaysia, Indonesia, and Vietnam to that of the Met Office Global
and Regional Ensemble Prediction System (MOGREPS). The hybrid forecast
is found to outperform both the global and convection-permitting ensemble
in some regions when forecasting the most extreme events; however, for less
extreme events, the ensemble is found more skilful. A weighted blend of the
MOGREPS forecasts and the hybrid forecast was found to have the highest
skill of all for almost all definitions of extreme event and in most regions. To
quantify the influence of errors in the predicted wave state on the skill of the
hybrid forecast, the skill of a hypothetical best-case forecast was also calculated
using reanalysis data to specify the wave amplitudes and phases. This best-case
forecast indicates that errors in the forecasts of all wave types reduce the skill
of hybrid forecast; however, the reduction in skill is largest for Kelvin waves.
The skill in convection-permitting models is greater than for global models in
the regions where Kelvin waves dominate, but the added value of limited-area
high-resolution forecasts is hampered by the poor representation of Kelvin
waves in the parent global model.
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convection-permitting models, ensemble forecasts, equatorial waves, high-impact weather,
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1 INTRODUCTION

Southeast Asia is a region of frequent heavy precipita-
tion events leading to devastating societal impacts through
flooding or landslides (Kirschbaum et al., 2015). There-
fore, it is crucial to better understand the occurrence
of heavy precipitation events and to what extent mod-
els are able to predict them, keeping in mind that there
are different ways to identify such events (e.g., Ferrett
et al., 2020, 2021; Schlueter et al., 2019). Some modes of
variability shown to be linked to heavy rainfall are the
Madden–Julian oscillation, Borneo vortices, cold surges,
and equatorial waves (Chang et al., 2005; Juneng et al.,
2007; Tangang et al., 2008; Xavier et al., 2014; van der
Linden et al., 2016; Ferrett et al., 2020). Because of the
range of temporal and spatial scales involved, forecast-
ing of rainfall in the Maritime Continent is a great chal-
lenge. However, large-scale systems, such as equatorial
waves, are expected to have longer range predictability
than individual convective weather systems and their asso-
ciated rainfall (e.g., Judt, 2020). For southeast Asia, Ferrett
et al. (2020) have established that there is a strong observed
statistical dependence of heavy precipitation on the ampli-
tude and phase of different equatorial wave modes, but this
connection is not limited to Southeast Asia (e.g., Schlueter
et al., 2019).

Equatorial waves can be identified in global fore-
cast data, and there is appreciable skill in the forecast
of wave amplitude and phase out to 4–5 days for Kelvin
waves and 6 days for the westward Rossby (R1, R2) and
westward-moving mixed Rossby gravity (WMRG) waves,
as shown for deterministic global Met Office forecasts
by Yang et al. (2021). For an observed strong connection
between a difficult-to-forecast quantity (precipitation,
sea breeze front, etc.) and an easier-to-predict large-scale
condition (such as equatorial waves in this case), a
statistical–dynamical model can be expected to produce
skilful forecasts (Cafaro et al., 2019; Ferrett et al., 2023;
Maier-Gerber et al., 2021). Such statistical approaches
can be used as a useful benchmark test for the numerical
weather prediction (NWP) models (Walz et al., 2021). To
exploit the skill in the Met Office forecasts of equatorial
wave activity, a prototype hybrid dynamical–statistical
forecast model for the probability of widespread heavy
precipitation, given only predicted wave information, has
been introduced by Ferrett et al. (2023). By using forecasts
of the waves, it might be expected to extend skill of prob-
abilistic forecasts of heavy rainfall (occurring anywhere
within subregions of countries) into the medium range.
Ferrett et al. (2023) were able to show that their hybrid
model did indeed lead to better predictions of heavy pre-
cipitation than raw precipitation forecasts from the Met
Office Global and Regional Ensemble Prediction System

(MOGREPS-G) ensemble did, at least for some tropical
regions and particular seasons.

As mentioned, global models have difficulties in
producing skilful precipitation forecasts within the
Tropics, suggesting the necessity of higher resolu-
tion convection-permitting (CP) models or statistical–
dynamical models to generate skill beyond the climatology
forecasts (Vogel et al., 2020). Although introducing a CP
model can lead to an increase in forecast skill compared
with global models that use parametrised convection
(Woodhams et al., 2018), more evaluation of such models
for a variety of regions within the Tropics seems neces-
sary to better understand their potential. The UK Met
Office have developed higher resolution limited-area CP
ensemble forecasts over 6 months (October 2018 to March
2019) in a number of regions of southeast Asia: Malaysia,
Indonesia, and the Philippines. The forecasts are available
at a range of resolutions and yield skill in precipitation
forecasts over those from NWP models with parametrised
convection. However, skill is strongly dependent on spa-
tial scale and also on local time of day. In general, CP
forecasts of precipitation over land during the day yield
skill in Malaysia, Indonesia, and the Phillipines (Ferrett
et al., 2021) on scales of 70 km or greater. Though it is
established that CP forecasts are an improvement over
global NWP forecasts with parametrised convection in
Malaysia and Indonesia, it is still not clear how the skill
of the CP ensemble depends on equatorial waves and how
the prediction of the probability of high-impact weather
(HIW) compares with the previously developed hybrid
forecasting method (Ferrett et al., 2023).

The aim of this article is to analyse the hybrid
wave-based model and investigate to what extent skill in
precipitation from ensemble forecasts can be explained
by the prediction of waves (using their average relation-
ships with precipitation) and where within southeast
Asia, and under which circumstances, high-resolution CP
ensembles have skill beyond the hybrid model. If there
is skill beyond the wave hybrid model, what atmospheric
features contribute to this skill? Although the use of a
wave-based statistical–dynamical hybrid model shows
promising results, forecast skill of equatorial waves is
still somewhat limited despite their large-scale features
(Bengtsson et al., 2019; Dias et al., 2018). For example,
Yang et al. (2021) and Ferrett et al. (2023) find that in global
Met Office NWP forecasts, westward-moving waves, R1
and WMRG, have good predictability up to 6 days, but
Kelvin waves tend to have predictability to around 4 days,
thus placing a limit on the effectiveness of the wave-based
hybrid model. Therefore, it is possible that NWP forecasts
may be preferred over the hybrid model in some instances.
Owing to the dynamical–statistical set-up of the hybrid
model, which makes use of the connection between HIW
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WOLF et al. 3

and equatorial wave modes, it can also be used to identify
NWP model deficiencies associated with the forecast of
large-scale dynamics and the subsequent consequences
for the use of a high-resolution nested regional model.
An important aspect of these comparisons is not only to
identify the better approach, but also the possibility to
improve impact forecasting by improving early warnings
about HIW (Merz et al., 2020).

The remainder of this article is organized as follows.
Section 2 presents the data and methods used to define
HIW events, the set-up of the hybrid statistical–dynamical
model, and a detailed description of the forecast metrics
to evaluate and compare all models. Section 3 covers in
detail the hybrid model, presenting its connection to HIW
for several regions, including its seasonal dependencies, as
well as the sensitivity to its most important parameters.
Section 4 then investigates the performance of all indi-
vidual models in predicting HIW, and how they compare
with each other. The key conclusions of this article are
summarized in Section 5.

2 DATA AND METHOD

2.1 Data

The skill of three different sets of precipitation forecasts
will be compared in this work: forecasts from the global
ensemble MOGREPS-G, forecasts from the CP version of
the MOGREPS ensemble to estimate the added value of
the increased resolution, and a hybrid statistical forecast
derived from MOGREPS-G forecasts of equatorial waves
(described in Section 2.2.2).

The MOGREPS-G ensemble (Bowler et al., 2008) com-
prises 17 members (11 members before June 2017) that are
run with a grid spacing of 33 km with parametrised convec-
tion out to a lead time of 168 hr. These are routinely run as
part of the Met Office operational suite, and data are used
for the 2015 to 2019 period.

The high-resolution CP model is given by the limited
high-resolution area simulations of the Met Office Unified
Model 17 ensemble members, nested within the global
ensemble of MOGREPS-G with 2.2, 4.5, and 8.8 km grid
spacing with lead times out to 120 hr (60 hr for the 2.2 km
resolution). Our main focus will be the regions available
for the 2.2 km resolution areas (Mal-22, Phi-22, and Ind-22
in Figure 1), which are the regions for which all models are
available. The evaluation period of the CP model is October
2018 to March 2019. The global MOGREPS-G ensemble
will be evaluated for the same short 6-month period, but
also for the longer January 2015 to March 2019 period to
get results less affected by the noisy nature of HIW events.

F I G U R E 1 Boxed regions of interest. Main areas for
Malaysia, Indonesia, Philippines, and Vietnam are given by solid
lines. Subareas for the same countries are represented by dashed
lines, which in the text will be referred to as Vie-S, Vie-C, and Vie-N
for the southern, central, and northern parts of Vietnam, and
Sumatra, Borneo, Java and Sulawesi for the blue dashed boxes,
according to their large overlap with the main Indonesian islands.
[Colour figure can be viewed at wileyonlinelibrary.com]

All model forecasts are used to diagnose 24 hr accumulated
precipitation from 0000 UTC daily.

The statistical–dynamical model, introduced by Ferrett
et al. (2023), estimates the probability of HIW events based
on the forecasted wave state of the global MOGREPS-G
ensemble, calculated from the horizontal wind and geopo-
tential height at 850 hPa. Those fields are filtered in time
and space and spatially projected onto the theoretical
equatorial wave mode of Kelvin, Rossby (R1), and WMRG
waves. See Yang et al. (2021) for details about the cal-
culation of the wave state from real-time forecasts. The
statistical relationship between the equatorial wave state
and HIW events is derived from the 2000 to 2014 climatol-
ogy, for which the wave state is calculated from European
Centre for Medium-Range Weather Forecasts Reanalysis
v5 (ERA5) (Hersbach et al., 2020). The method to pro-
duce this climatological wave dataset is described in Yang
et al. (2003).

The precipitation observational dataset 2000 to 2019
is based on the Integrated Multi-satellite Retrievals for
Global Precipitation Measurement (IMERG) (Huffman
et al., 2015), which is not only used for the evalua-
tion period of the model forecasts, but also to train the
statistical–dynamical model. For a proper evaluation of the
statistical–dynamical model it is essential to separate the
full time range into a mutually exclusive training period
(2000–2014) and evaluation period (2015–2019).
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4 WOLF et al.

2.2 Method

2.2.1 Definition of HIW events

The focus of this work is forecasts of high-impact rain-
fall events. We use two different methods to convert
gridded rainfall data to a binary variable that defines
the occurrence/non-occurrence of a high-impact rainfall
event within a given region. Both methods are calcu-
lated using only grid points that lie over land. The first,
HIWav, is very simple: an HIW event is said to have
occurred if the area-averaged 24 hr rainfall accumulation
exceeds a chosen percentile of climatology. The second
method, HIWarea, is a two-step method: First, we define
a rainfall threshold value for a given region to be the
95th percentile of 24 hr accumulated rainfall at all land
points within the region pooled into a single dataset. An
HIW event is then said to have occurred in the region
if the area fraction of land points exceeding that rain-
fall threshold in a given 24 hr period exceeds a chosen
value. The value is chosen according to a specific per-
centile, defining how extreme the HIW should be. All
area thresholds for all percentiles and all regions for both
MOGREPS-G and the CP model are included in Sup-
porting Information Tables S1 and S2. The rationale for
using the second definition, HIWarea, is that impacts and
required mitigations are likely to be greater if a larger
area is affected. Using this simpler definition of an HIW
event can also be used as a check on the sensitivity of
the results on the specific definition of a high-impact
rainfall event.

To account for systematic biases in model forecast
rainfall, the percentile threshold value used in the HIW
definition is calculated from model data at each lead time
separately. This is done only for the percentile thresholds
of HIWav and the 95th grid-point-based percentile of the
HIWarea definition. The area threshold is not changed. As
the model forecasts are not available for the same full
climatology, the precipitation threshold derived from the
observed climatology for a specific percentile might not
be represented by the same percentile within the eval-
uation period. The bias correction of the model precip-
itation forecasts therefore needs an additional step. We
first identify the percentile of the precipitation within
the evaluation period that is closest to the climatological
precipitation threshold. This can differ from the origi-
nal percentile defining the HIW event, or for investigat-
ing very rare events even lead to the case that no HIW
event can be identified in the evaluation period. Then,
in a second step, this percentile of the evaluation period
is applied to the model forecast to define the associated
precipitation threshold for the given lead time in forecast
model data.

2.2.2 Statistical–dynamical hybrid model

The statistical–dynamical hybrid forecast model, intro-
duced by Ferrett et al. (2023) and in the following referred
to as “hybrid model”, makes use of the connection between
the probability of heavy precipitation in a defined region
conditional on the phase and amplitude of an equatorial
wave mode. Three types of equatorial waves are used to
construct the hybrid forecasts: the eastward-propagating
Kelvin wave, the R1 wave, and the WMRG wave. The hor-
izontal structures of these waves vary and can be seen
in Yang et al. (2021, fig. 1) or Ferrett et al. (2020, fig. 2).
Kelvin wave activity maxima are located on the Equator
and characterised by oscillations between zonal wind con-
vergence or divergence. R1 and WMRG waves propagate
westward and are anti-symmetric about the Equator in v
for R1 and divergence for WMRG. The R1 wave consists of
twin vortices straddling the Equator, and the WMRG wave
is dominated by rotational winds centred on the Equator.
The WMRG wave winds alternate between northerly and
southerly winds crossing the Equator with convergence/-
divergence in the Northern Hemisphere (NH) and oppos-
ing divergence/convergence in the Southern Hemisphere.
These structures can be identified (e.g., Yang et al., 2021)
from full horizontal wind fields and are used to construct
wave phases to use in the hybrid model, as described
later herein. For the Bayesian forecast methodology we are
following Cafaro et al. (2019).

As in Yang et al. (2021) and Ferrett et al. (2023), the
evolution of each equatorial wave type is described using
two parameters, 𝜆1 and 𝜆2, defined at a fixed longitude
and latitude and calculated from the relevant wave wind
fields. Therefore, these parameters relate to the local wave
structure (Table 1). These are chosen as they characterise
the propagation and amplification of the waves through
the defined region. The longitude varies depending on the
region, using the centre longitude of the specified region,
but the latitude is fixed based on the horizontal structure
of the wave. With a further normalisation by their tem-
poral standard deviations 𝜎1 and 𝜎2, we use those two

T A B L E 1 Variables 𝜆1 and 𝜆2 spanning the wave phase
space for the different wave types.

Wave type 𝝀1 𝝀2

Kelvin up (0◦ N) dup∕dx (0◦ N)

WMRG −up (10◦ S) vp (0◦ N)

R1 −up (0◦ N) vp (8◦ N)

Note: WMRG, westward-moving mixed Rossby gravity; R1, mode 1
Rossby; up and vp are respectively the spatial projections of the zonal and
meridional winds onto the associated equatorial wave mode. x
corresponds to distance along the Equator.
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WOLF et al. 5

F I G U R E 2 Wave-phase diagram for mode 1 Rossby (R1) waves derived for the Philippines (region Phi-22) using European Centre for
Medium-Range Weather Forecasts Reanalysis v5 data for October–March (ONDJFM) within 2000 to 2015. Blue dots show the high-impact
weather (HIW) events. Colours in panel (a) represent the percentage of total HIW events; Equation (2). Colours in panel (b) show the HIW
conditional probability in each sector, normalised by the overall HIW probability; Equation (3). The associated values in panel (b) therefore
show how much more likely (values >1) or less likely (values <1) an HIW event occurs in a particular sector compared with the general,
wave-independent, HIW probability. [Colour figure can be viewed at wileyonlinelibrary.com]

normalised variables to span the local wave-phase diagram
(as shown in Figure 2). The current wave state at a given
time t for a specified geographical region Ω can then be
defined by

WΩ = WΩ(A, 𝛼, t), (1)

where A =
√
(𝜆1∕𝜎1)2 + (𝜆2∕𝜎2)2 is defined as the equato-

rial wave amplitude and 𝛼 is the wave phase angle in the
wave-phase diagram, defined as the anticlockwise angle
between the vector (𝜆1∕𝜎1, 𝜆2∕𝜎2) and (1, 0).

Then, the time-dependent wave state WΩ(A, 𝛼, t) is
linked with HIW events using an indicator variable:

𝜃Ω(t) =

{
1 HIW event occurs
0 no HIW event

,

where t represents the validation time andΩ is the evalua-
tion region. 𝜃Ω(t) therefore represents a time series of HIW
or no-HIW events for a specific region that can be associ-
ated with the time series of the wave state WΩ(A, 𝛼, t). With
the projection of the wave state and the HIW events of a
reference climatology into the wave phase space one can
eliminate the time dependence and HIW events can then
be associated with specific areas within the wave phase
space WΩ(A, 𝛼) (HIW events in the wave phase diagram of
Figure 2 shown by blue circles). In the following, we drop
the index Ω as all variables within an equation are repre-
sentations of the same regionΩ, keeping in mind that each
of the equations must be applied for each investigation
region individually.

The wave-phase diagrams of Figure 2 are based on R1
waves for the Philippines during the extended NH winter
season (October–March, ONDJFM). To link HIW events
with specific wave states, the wave phase space is split into
several sectors (delimited by black lines in Figure 2), each
sector separated by 45◦ (different to the original method
of Ferrett et al., 2023, where 90◦ sectors were used). The
sectors are labelled according to the angle of their cen-
tre from 0◦ to 315◦ in steps of 45◦. The sectors are further
split into three wave-amplitude ranges, between 0 and 1,
1 and 2, and above two standard deviations where higher
wave amplitudes occur further away from the centre of
the diagram. The location of the HIW events within the
wave-phase diagram are highlighted by the blue dots, each
dot representing one HIW event. From such a diagram
one can calculate the number of HIW events falling within
each sector or wave state (nHIW(W)) of the wave phase
space, normalised by the total count of HIW events, nHIW
(Figure 2a):

f (W |𝜃 = 1) = nHIW(W)
nHIW

. (2)

The difficulty of interpreting this distribution (Figure 2a)
results from the fact that higher amplitude waves (fur-
ther away from the centre of the diagram) occur less often
and therefore there are also fewer non-HIW events within
those high-amplitude sectors. Despite this, f does show
increased values within those high-amplitude sectors with
a substantial percentage of all HIW events.

Bayes’ rule can then be used to derive a formula for the
probability of HIW occurrence conditional on the specific
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6 WOLF et al.

wave state:

𝜋(𝜃 = 1|W) =
f (W |𝜃 = 1)𝜋(𝜃 = 1)

f (W |𝜃 = 1)𝜋(𝜃 = 1) + f (W |𝜃 = 0)𝜋(𝜃 = 0)
,

(3)
where 𝜋(𝜃 = 1) = P is the unconditioned probability of
HIW occurrence. The reason that Equation (3) differs from
the normalised count f is that it is necessary to account
properly for the count of non-events in each sector of the
wave phase space since these are not evenly distributed. In
particular, counts of HIW events (relative to non-events)
are much higher when wave amplitude is high than when
wave amplitude is low. If HIW events were to occur inde-
pendent of the wave state, one would expect that 𝜋(𝜃 =
1|W) ≈ 𝜋(𝜃 = 1). For example, if an HIW event is defined
by the top 5% of strongest precipitation events within the
region of investigation, this would simply mean P = 0.05.
However, Figure 2b shows that the probability of HIW
depends strongly on wave state.

Using the conditional probability of Equation (3) there-
fore allows the identification of specific sectors with high
frequencies of HIW; for example, sectors 180◦, 225◦, and
270◦, highlighted by the dark red colours (Figure 2b). HIW
in the Philippines can therefore frequently be associated
with high R1 wave amplitudes (A > 2) in the transition
phase into the strong cyclonic flow (from vp(8◦N) < 0
to up(0◦N) > 0). Ferrett et al. (2023) also found a strong
connection between HIW and high-amplitude R1 waves
within their Philippine regions. Periods with little or no
HIW (blue colours in Figure 3) occur within and slightly
after the main anticyclonic flow phase (from up(0◦N) < 0
to vp(8◦N) < 0) with a sharp transition to the wave states
associated with highly increased HIW probabilities.

To get a meaningful connection, the wave-phase dia-
gram should include long enough climatological data for
precipitation and the associated wave state. We used the
15-year period 2000–2014, with IMERG for precipitation
and ERA5 to derive the wave state. For the investigation
of a specific climatological season, the training data for
the hybrid model are limited to the same season. Instead
of using the model forecast of precipitation, the hybrid
model uses the model forecast wave amplitude and phase
combined with the climatological conditional probability
of HIW events. In the following we will analyse how this
hybrid model, applied to the MOGREPS-G ensemble, per-
forms in comparison with high-resolution CP ensemble
precipitation forecasts. The hybrid ensemble forecast esti-
mate for the probability of an HIW event, 𝜋ens (for nens
ensemble members) is defined as the ensemble mean of
the conditional probabilities estimated from the wave state
of each member:

𝜋ens(𝜃 = 1|W) = 1
nens

nens∑

i=1
𝜋(𝜃 = 1|Wi). (4)

We will use two evaluation periods, January 2015 to
March 2019 and October 2018 to March 2019, both with-
out overlap with the climatological training period. The
6-month period is used to evaluate the CP ensemble,
which is only available for this shorter time period. The
evaluation of the MOGREPS-G ensemble will be done for
both time periods, the shorter period for a direct com-
parison with the CP ensemble and the longer period to
check the robustness of the results and to analyse in more
detail the potential of the statistical–dynamical hybrid
model. When analysing the high-resolution CP model, the
HIW definition (as presented in Section 2.2.1) is based on
the high-resolution IMERG data, whereas for the global
model the HIW definition will be based on the interpo-
lation of the high-resolution IMERG data onto the lower
resolution grid of MOGREPS-G. This is so that the HIW
variable is calculated consistently in both forecasts so that
skill differences are attributable due to different forecasts
of the same predictand rather than differences in the
definition of the predictand.

2.3 Forecast metrics analysed to
evaluate HIW forecasts

2.3.1 Area under the receiver operating
characteristic curve diagnostic applied for HIW
events in the Philippines

The main forecast skill metric that we will use for assess-
ing the relative performance of the different forecasts is
the area under the receiver operating characteristic (ROC)
curve (AUC). This measure of skill is designed to test
whether there is a systematic relationship between varia-
tions in the forecast probability of an event and whether or
not that event occurs, even if the probabilities themselves
are not well calibrated. In the rest of the article this will
be distilled down to a set of summary figures. However,
to illustrate the detailed calculations used and to include
some discussion of properties of the forecast, such as reli-
ability, we first present a detailed example of forecasts for
the October–March 2015–2019 period in the Philippines
region, Phi-2.2 (Figure 1), with the hybrid model based on
Rossby R1 waves.

Figure 3a shows the 3-day lead time forecast proba-
bility (restricted to the 2018–2019 season) of the occur-
rence HIWarea (95th percentile) from the MOGREPS-G
forecast (green dash-dotted line) and the hybrid forecast
(solid orange line). The area threshold of this HIWarea
definition is 29.4%, meaning that at least 29.4% of grid
points over land exceed the 24 hr accumulated precipita-
tion 95th percentile threshold of 34.4 mm. In the follow-
ing we will only refer to the percentiles of the HIWarea
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WOLF et al. 7

F I G U R E 3 Area under the receiver operating characteristic (ROC) curve (AUC) diagnostic for Phi-22 for the 5% strongest precipitation
events (HIWarea) in the October–March season for 2015–2019. (a) The limited time series from October 2018 to March 2019 of high-impact
weather (HIW) events (red dashed), average of Met Office Global and Regional Ensemble Prediction System (MOGREPS-G) ensemble
members predicting an HIW event (green line with dots, labelled “M-G”), rescaled hybrid model (based on Rossby R1 waves) applied to
MOGREPS-G ensemble (orange line with dots, labelled “Hybrid”), and the hybrid model based on reanalysis data (brown dotted line, labelled
“Hybrid-RA”). Available data are indicated by dots. The horizontal black dotted line represents an arbitrary choice for the ensemble forecast
to be interpreted as a deterministic forecast of an extreme event, for which the contingency table in the lower part of the panel is created. (b)
The associated ROC curve for the full four seasons, where the threshold to identify extreme events (as done by the horizontal black dotted
line in (a) with the associated contingency table) is varied between 0 and 1 (three filled circles show values for threshold of 0.5, also included
in (a), shown by horizontal black dotted line). (c) The AUCs for all lead times (panel (b) represented by the values for a 72 hr forecast). (d)
The average of panel (c) for all lead times with plus/minus one standard deviation as a measure of its variability. Colours are the same as for
(a) (green for M-G, orange for Hybrid, and brown for Hybrid-RA), with the additional purple-coloured line a linear combination of M-G (0.8
weighting) and the hybrid model (0.2 weighting). Black dotted line shows the diagonal within the ROC curve, representing the lower limit of a
useful model forecast performance, which corresponds to a value of 0.5 for the AUC. [Colour figure can be viewed at wileyonlinelibrary.com]

definition; the associated area percentages are included
in Supporting Information Table S2. Additionally to the
MOGREPS-G and hybrid forecasts, the binary outcome
variable (red dashed line) and the hypothetical best-case
hybrid forecast with wave state taken from reanalysis
(brown dotted line) are shown. For ease of viewing,
probabilities from the hybrid forecasts have been scaled by

the maximum value within the time-period such that in
the figure they vary between zero and one, however the
hybrid forecast probabilities do not exceed about 0.4 for
this October–March period in this or other regions.

The forecast probabilities are sharply peaked, meaning
that there are a small number of high-probability forecasts
with values that exceed considerably the typical range.
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8 WOLF et al.

This is most clearly seen for the MOGREPS-G forecasts,
where all but a few forecast probabilities are zero. For the
MOGREPS-G forecasts there are notable hits where very
high probability is forecasted and the event occurs, but also
notable misses where an HIW event is observed but a prob-
ability of zero is given by the ensemble (e.g., the events in
November and the first event in December). These misses
seem to be associated with timing errors, as the event is
forecasted to occur a day later than it occurs in the verifi-
cation data. Since they are based on climatological rainfall
statistics, the hybrid forecasts very rarely produce forecast
probabilities close to zero.

Values of the ensemble averages above a threshold
(the horizontal black dashed line in Figure 3a) could be
used to transform the probabilistic forecast into a deter-
ministic forecast for the occurrence of an HIW event. A
comparison of the predicted HIW events of the hybrid
model (HIW-hyb) or the MOGREPS-G direct precipita-
tion forecasts (HIW-ens) with the actual occurring HIW
events (HIW-obs), and similarly for the non-events (no
HIW-obs), could be used to create contingency tables, as
included in the lower part of Figure 3a. Such a table can
therefore be used to identify correct forecasts of events
occurring (HIW-obs and HIW-X with X either hyb or ens)
or not occurring (no HIW-obs and no HIW-X), as well as
false alarms (no HIW-obs and HIW-X) and missed events
(HIW-obs and no HIW-ens). However, interpreting those
tables would be difficult, as they would strongly depend on
the subjectively chosen threshold.

To get an objective measure of how well the models
predict an HIW event we produce so-called ROC curves.
To do so, we vary the applied HIW probability threshold in
0.01 increments between 0 and 1 and calculate the result-
ing hit and false alarm rates (Figure 3b). To help relate
the curves to Figure 3a, the filled circles show the hit and
false alarm rate relationship for a chosen threshold of 0.5
(horizontal black dashed line in Figure 3a). We then calcu-
late the AUC as an evaluation metric for the HIW forecast,
with better forecasts being represented by higher AUC
values. A perfect forecast would have AUC = 1; a useful
forecast must have AUC > 0.5, which one would get if the
associated ROC curve were to lie along the diagonal.

We repeat the calculation of the AUC for all lead times
of 1 to 5 days. A comparison between the hybrid and
the precipitation forecast model for the chosen example
reveals that the hybrid model performs better than the
precipitation forecast model for all available lead times
(Figure 3c). This means, based on this forecast metric
and the chosen region, using the MOGREPS-G wave
predictions for the hybrid model does lead to better
precipitation-based HIW forecasts than using the actual
precipitation forecasts of MOGREPS-G. To easily com-
pare different set-ups for the hybrid model, such as use

of different percentiles to define an HIW event, different
regions within southeast Asia, and so forth, we compress
the information further by averaging over all lead time val-
ues, resulting in one value for the model performance of a
region for all lead times, with the standard deviation of all
AUC values for the different lead times giving an uncer-
tainty range (Figure 3d). This diagnostic of the compressed
information for the 1 to 5 days lead time will be referred to
as the “AUC diagnostic”. Using this compressed informa-
tion also means that this study is not particularly focusing
on the tendency of the forecast performance with increas-
ing lead time, but rather on the general model skill within
this lead time range. This procedure will allow us to draw
conclusions about the general model performances and
possible model issues.

In general, one would expect the Hybrid-RA line to
show better performances than the Hybrid line, as it is
based on the actual reanalysis wave state and not the fore-
casted one. However, this is not necessarily the case, as
both models evaluate HIW events in a time range differ-
ent to the climatological training period; that is, there is
no guarantee that the distribution of the observed small
number of HIW events of the evaluation period within
the wave-phase diagram is identical to the distribution
obtained from the climatological training data (although
we expect them to be very close). Nevertheless, a compar-
ison of Hybrid and Hybrid-RA can still be used to identify
possible model deficiencies in forecasting the wave state.
The differences in the example (Figure 3d) are, however,
very small and within the error margin, meaning that one
would conclude that MOGREPS-G has no systematic dif-
ficulty in representing the R1 wave state correctly for the
Philippines.

In Figure 3b–d we showed an additional line (pur-
ple) apart from the hybrid model (orange and brown) and
the precipitation forecast model (green). This line, and
therefore the associated high model performance, can be
achieved if both models, the hybrid and MOGREPS-G,
are blended linearly with a weighting of 0.2 and 0.8.
This linear combination (blended forecast) is outperform-
ing both individual models. Simple testing indicates that
higher performances can be achieved by putting more
weight on the direct precipitation forecasts. A possible rea-
son for this might already be visible in the ROC curve
shown (Figure 3a,b), which indicates that, in general, the
model predicts several HIW events fairly well but com-
pletely misses several other HIW events. This behaviour
can be the result of an underdispersive ensemble. The
exact choice of the weighting does not seem to matter
too much, as long as more weighting is put on the direct
precipitation forecast. The blended forecast is used here
to emphasise the additional gained insight and improved
forecast that can be achieved by incorporating the hybrid
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WOLF et al. 9

F I G U R E 4 Forecast reliability for (a) Phi-22 and (b) Mal-22 with the hybrid model based on (a) R1 and (b) Kelvin waves. Forecasted
probabilities separated into five bins with bin edges given by values on the x-axis. The values shown represent the average of all lead times (1
to 5 days), with error bars representing the standard deviation of the averaged values. Coloured lines represent the same models as in
Figure 3. [Colour figure can be viewed at wileyonlinelibrary.com]

model. Therefore, no in-depth analysis was done to iden-
tify the best weighting split, as this would likely depend on
the specific ensemble forecast system being used and other
details of the data.

2.3.2 Comparison of AUC diagnostic
with other evaluation metrics

Good model performance according to the AUC diagnostic
does not necessarily mean the model can be used as a good
HIW forecast. The AUC diagnostic allows us to identify if
there is a link between the model forecast of HIW events
and observed HIW events. The hybrid model in its unmod-
ified form cannot be expected to deliver reliable forecasts of
high probabilities, because the associated maximum HIW
probabilities are in general below 50% (as the highest per-
centage of HIW events within one sector of Figure 2).
The reliability diagrams of the Phi-22 and Mal-22 regions
(Figure 4) show this limitation of the hybrid model, which
only has forecast probabilities for the 0 to 0.2 and 0.2 to
0.4 probability bins. However, for those bins, the hybrid
model, based on the real wave state (brown dotted line), is
quite reliable, and it should also be noted that for higher
probabilities the MOGREPS-G forecast does strongly devi-
ate from the diagonal; so, although the MOGREPS-G is
able to produce higher forecast probabilities, those high
values seem to be associated with overforecasting the fre-
quency of the HIW events.

However, although reliability of the hybrid model is
quite good for the examples shown, the resolution is rather
poor, which will also affect the Brier skill score (BSS) nega-
tively. Going back to our example region of the Philippines

with the hybrid model based on R1, one can see that
MOGREPS-G does have a BSS of above 0.3 for the first
24 hr lead time but then drops to a low value (green
dash-dotted line in Figure 5). The hybrid model (orange
solid line) does not reach a similarly high BSS, but it out-
performs MOGREPS-G for all lead times exceeding 24 hr.
Comparing the hybrid model forecast with the hybrid
model based on reanalysis data we can see that one cannot
expect much larger BSS values with a BSS expectation of
about 0.1 if the model is able to predict the wave state cor-
rectly. If all lead time values are averaged, one can get to
the same compressed information as for the AUC diagnos-
tic (Figure 5b). As was the case for the AUC diagnostic, the
combined method of MOGREPS-G and the hybrid model
does lead to an improved BSS, highlighting again the addi-
tional benefit of the hybrid model. A notable feature of
this compressed data is the large standard deviation of
MOGREPS-G compared with the hybrid model, which is
of course a result of the strong decline of the forecast metric
with increasing lead time. This should be a general mes-
sage from this compressed information plot; a large error
range is expected to indicate a strong decrease of model
performance for increasing lead time.

In the following, we will mainly focus on the AUC diag-
nostic. Including the BSS and reliability metric here was
useful to highlight that the hybrid model does also give
useful performance in other metrics, but also to show the
limitations of the hybrid model, which can best be seen in
the reliability diagram. This limitation of producing only
relatively small probabilities for HIW event predictions
can be seen not only for the Philippines, but all regions (not
shown). This is, of course, what one should expect from a
simple climatological statistical relationship between HIW
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10 WOLF et al.

F I G U R E 5 Brier skill score
(BSS) for Phi-22 with hybrid model
based on the R1 wave. (a)
Lead-time-dependent BSS for Met
Office Global and Regional
Ensemble Prediction System
(green dash-dotted), hybrid model
(orange solid), the blended forecast
(purple dashed), and the hybrid
model based on reanalysis (brown
dotted). (b) The average values of
all those models with associated
standard deviation. [Colour figure
can be viewed at
wileyonlinelibrary.com]

and equatorial wave modes. It seems plausible that clever
weighting with increased probabilities for high values of
the hybrid model while damping the lower noisy signal
might lead to improved performances. However, the goal
of this study is to understand the dynamical importance of
the larger scale wave state in improving accuracy of fore-
casts of HIW, how forecast models compare in general with
a much simpler dynamical–statistical model, as well as
the question of whether higher resolution nested regional
models can be expected to lead to further improvements.
To that end, we will mainly focus on the AUC diagnostic.

3 STATISTICAL–DYNAMICAL
HYBRID FORECAST MODEL

In this section we will present the general link between
HIW events and the wave state for all wave types (Kelvin,
R1, and WMRG), all seasons and all regions (as given in
Figure 1). Those results can be used to identify regions
and seasons for which the statistical–dynamical hybrid
model is likely to produce skilful forecasts. However, from
a strong link between HIW events and the wave state one
cannot directly conclude the associated forecast perfor-
mance. The performance analysis is included in Section 4,
where all models (MOGREPS-G, CP, and hybrid) are com-
pared against each other, although only for the restricted
time period of October–March. The results of this section
are further used to identify for the various regions which
wave type does show the strongest connection with HIW
events and which is therefore being used for the hybrid
model in Section 4.

The hybrid model has, however, two further relevant
dependencies: the number of sectors within the wave
phase space and the length of the training period. The
analysis of these dependencies supports the choice of the

chosen eight wave phase-angle sectors and highlights the
importance to use longer training periods, with the full
15-year training period in general showing better results
than any of the individual 3-year subperiods (analysis in
Section A in Supporting Information Figures S1–S3).

3.1 General link between HIW events
and the wave state for all wave types,
seasons, and regions

A consistent feature of all wave-phase diagrams investi-
gated with an underlying connection between HIW and
equatorial waves is the strong anomalous values for the
high-amplitude sectors (outer sectors in Figure 2, in agree-
ment with the findings of Ferrett et al., 2023). Those
high-amplitude values can therefore be used to show the
seasonal variability of these connections. Using the Phi-22
region as an example, one can identify a strong connection
of HIW and the R1 high-amplitude (A > 2) 135◦ to 225◦
labelled sectors for nearly all seasons, clearest for NH sum-
mer and autumn (Figure 6a). The high-amplitude sectors
associated with the anticyclonic flow of the R1 wave (sec-
tors 045◦, 000 and 315◦) indicate an absence of HIW events,
represented by the strongly reduced values (blue colours).

The information is further condensed by averaging
all 3-month periods related to a season (e.g., May–July,
June–August, and July–September for NH summer) to
make a further comparison between regions or wave types
easier. The condensed information (Figure 6b) allows an
easy identification of the most relevant wave sectors; for
example, there is no HIW within Phi-22 for all seasons dur-
ing the later stage of the anticyclonic flow phase of the R1
wave (sectors 000◦ and 315◦). In contrast, the immediate
transition into the early stage of the cyclonic flow wave
phase (sectors 270◦ to 225◦) is associated, for all seasons,
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WOLF et al. 11

F I G U R E 6 Link of high-impact weather (HIW) with R1 wave amplitudes for the Phi-22 region. HIWarea defined by the 95th percentile.
(a) The seasonal variability of the connection between large-amplitude (A > 2) R1 waves and HIW. Values for wave-phase sector indicate the
anticlockwise angle within the wave-phase diagram as given in Figure 2. (b) Compressed information for seasonal averages; solid line for the
average of the Northern Hemisphere (NH) winter seasons (November–January [NDJ], December–February [DJF], January–March [JFM]),
dash-dotted for NH spring (February–April [FMA], March–May [MAM], April–June [AMJ]), dashed for NH summer (May–July [MJJ],
June–August [JJA], July–September [JAS]), and the dotted line for NH autumn (August–October [ASO], September–November [SON],
October–December [OND]). Green/white dashed line shows the result for the extended 6-month training season (October–March). The
horizontal dotted and solid line at a value of 1 and 2.5 separate the occurrence of HIW events into decreased (below 1), slightly to moderately
increased (between 1 and 2.5), and strongly increased HIW probabilites (above 2.5). [Colour figure can be viewed at wileyonlinelibrary.com]

with a strong increase of HIW probability by a factor of up
to above 8 relative to the climatological probability of HIW
events in this region.

The consecutive 3-month training seasons from Octo-
ber to March show a rather consistent signal (Figure 6a),
although the signal changes a bit towards the end of this
period. To reduce the variability of the results by increas-
ing the available number of HIW events we will use the
hybrid model trained for the October–March training sea-
son for comparing it with the CP ensemble forecasts in
the next section. We therefore also include this extended
6-month training season in Figure 6b by the green/white
dashed line. We use this extended 6-month season as it
represents the period for which the CP data are available.
For a better comparison with the results of the CP data, we
used the 6-month period also for the results shown using
MOGREPS-G.

The resulting connections for waves with HIW events
within all available regions (Figure 1) are presented in
Figure 7, which can be summarised as follows.

Peninsular Malaysia (Mal-22)

• Strong connection with convergent sector of Kelvin
waves (blue area in Figure 7a), and some additional
connection to WMRG waves within their transition
phase into a positive vorticity (blue area in Figure 7c).

Indonesia

• Connection mainly with Kelvin waves slightly before
the peak of the convergence sector (red area in
Figure 7a), but also some further signal with WMRG
waves within their transition phase into positive vortic-
ity (red area in Figure 7c).

• Individual Indonesian main islands (Sumatra, Java,
Borneo, and Sulawesi) all show strong connections with
Kelvin waves within or close to the peak of the con-
vergence sector, with Java showing the smallest signal
(Figure 7d).

• Connection with WMRG waves within their transition
phase into positive vorticity mainly linked to Java (green
area in Figure 7f). This can be expected because Java is
further from the Equator and therefore less influenced
by Kelvin wave winds and more by WMRG structures.

Philippines

• Very strong connection with R1 and WMRG waves in a
broad range of sectors in the transition sectors into and
out of peak positive vorticity (green area in Figure 7b,c).

• This signal linked with westward waves is dominated by
precipitation around tropical cyclones in summer and
autumn (dashed and dotted lines).
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12 WOLF et al.

F I G U R E 7 Link of HIWarea (95th percentile) with large-scale wave amplitudes for Malaysia, Indonesia, Philippines, and Vietnam.
Values for wave-phase sector indicate the anticlockwise angle within the wave-phase diagram as given in Figure 2. Different line styles
represent different seasons (solid: winter; dash-dotted: spring; dashed: summer; dotted: autumn). (a)–(c) The connection between
high-impact weather (HIW) and (a) Kelvin, (b) R1, and (c) westward-moving mixed Rossby gravity (WMRG) waves for Mal-22, Ind-22 and
Phi-22 regions. (d) Kelvin, (e) R1, and (f) WMRG waves for Sumatra, Java, Borneo, and Sulawesi. (g) All wave types for Vietnam; (h) R1 and
(i) WMRG waves for the Vietnamese subregions (Vie-S, Vie-C and Vie-N). [Colour figure can be viewed at wileyonlinelibrary.com]

• More than 60% of tropical cyclone genesis cases occur
within pre-existing westward equatorial waves (Feng
et al., 2023), although it is also the case that the strong
off-equatorial vorticity of the cyclone will project onto
R1, R2, and WMRG wave structures.

Vietnam

• Connection is to R1 and WMRG waves (Figure 7g).
• The wave connection is strongest for northern and

central Vietnam for R1 waves (red and green areas
in Figure 7h)—interestingly for northern Vietnam
temporally mainly after the main peak of positive

vorticity—and for southern and central Vietnam for
WMRG waves around the sector of peak positive vor-
ticity (blue and red area in Figure 7i), although this
connection with R1 and WMRG exists for all subregions
for at least one season.

Ferrett et al. (2023) show similar results for the hybrid
model with four sectors instead of eight sectors for the
regions and wave types that have a potential in predict-
ing HIW events, according to their results using BSS. They
also highlighted the strong connection of HIW events
and Kelvin waves for different parts of Indonesia for
June–August (Ferrett et al., 2023, fig. 5a–d; Figure 7d) and
a clear connection with R1 and WMRG waves for northern
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WOLF et al. 13

and southern Philippines in December–February (Ferrett
et al., 2023, fig. 5e–h; Figure 7b,c). This R1 connection
for the Philippines further shows why it might be a good
idea to use eight sectors instead of four sectors for the
hybrid model, as there is a very sharp transition between
the sector centred at 315◦ and 270◦ (Figure 2b), which
does lead to more average values when using only four 90◦
sectors centred at 0◦, 90◦, 180◦, and 270◦. However, their
further separation of the Philippines into the northern
and southern parts shows a slightly different appearance
within the wave-phase diagram, which might explain the
broader range of sectors with increased values for our
Phi-22 region, including both the northern and southern
Philippines.

4 FORECAST HIW EVENTS BY CP
ENSEMBLES COMPARED WITH THE
HYBRID METHOD

The general diagnostic used to evaluate the HIW forecasts
of a specific model was presented in Figure 3, resulting in
one value with uncertainty for a 1 to 5 day lead time ensem-
ble forecast for a specific region, and in terms of the hybrid
model associated with one specific wave type. In the fol-
lowing we will compare the performances of all models
(hybrid model, MOGREPS-G, and CP ensembles) for dif-
ferent regions, equatorial waves, extreme definitions, and
model resolutions. The hybrid model can be used to iden-
tify to what extent HIW forecast skill can be improved by
incorporating equatorial wave information. The compar-
ison between MOGREPS-G and CP can give additional
insight into the importance of higher resolution for HIW
forecasts. Further, owing to the short evaluation period
of the CP model (6 months), the results of MOGREPS-G
(applied to both the same short 6-month period and a
longer 4-year period) can be used to check the robustness
and generality of the CP results. Qualitative similar results
of MOGREPS-G for the 6-month and 4-year periods can
be used to justify the same general conclusions for the
CP ensembles, even if the analysis is done only for one
season. Because of this, in this section we will apply the
analysis for both time ranges step by step to all regions
(as defined in Figure 1). Using additionally a different
definition of HIW events will further help to better under-
stand where the strength of the different models are as well
as include further variability in the analysis to improve our
understanding about the extent of the robustness of the
results.

An important result for the hybrid model can be seen
if the area is modified from common “HIW” (70th per-
centile) to very rare HIW events (97th percentile). The
general feature of the hybrid model seems to be that it

performs better for more extreme events (orange lines in
Figure 8), indicating that rare HIW events are the events
that can be best associated with specific sectors in the
wave-phase diagram. For this figure we also included the
performance of the CP model, and therefore restricted all
models to the ONDJFM 2018–2019 period. The hybrid
model and the associated HIW definition in this figure
are now based on the high-resolution IMERG grid, same
for the CP model. The HIW definition for the evalua-
tion of the MOGREPS-G performance is still based on
the low-resolution MOGREPS-G grid, meaning that in
this case the IMERG precipitation is, as previously, inter-
polated onto the associated low-resolution MOGREPS-G
grid.

The comparison of MOGREPS-G and CP (4.5 km res-
olution) suggests an overall better performance of the
CP model (blue dashed and green dash-dotted line in
Figure 8). Whereas the CP model does a very good job in
predicting HIW events within Phi-22, both MOGREPS-G
and CP are performing very poorly for rare extreme events
within Mal-22 and Ind-22. However, the CP forecast is
much better than both global and hybrid model for Kelvin
waves over Indonesia up to the 90th percentile. One inter-
pretation is that explicitly represented deep convection is
much better for simulating convectively coupled Kelvin
waves. As previously highlighted, the blended forecast
(this time CP4.5 and hybrid model) does perform better
or at least as good as the better of both individual mod-
els for all HIW percentiles (purple dash-dotted lines in all
panels).

A crucial difficulty of interpreting the model perfor-
mance of extreme events in this study is the limited time
range of 6 months for the CP model forecast set. This dif-
ficulty can already be seen by the noisy signal within the
Mal-22 and Ind-22 regions, with no identified very rare
HIW event (97th percentile) in Ind-22 for the investigation
period. One should also be aware that the Hybrid-RA anal-
ysis of such a short period might not be a good indicator of
the potential of the hybrid model, as the smaller number
of extreme events might not be well represented by the
climatological relationship. For example, the somewhat
surprising difference for Phi-22 in Figure 8a,b, with the
Hybrid-RA showing clearly lower values than the Hybrid
line, can be interpreted as the HIW events rather occur-
ring in the wave-phase diagram sectors next to the sectors
with the strongest climatological relationship. So it still
contains useful information about the HIW events within
a specific season; however, for the Hybrid-RA to be used
as an indicator of the potential of the hybrid model, longer
time periods should be used. Because of this, and to better
understand the robustness of the signal and the possible
conclusions that can be derived from this investigation,
we repeated the same calculation for the MOGREPS-G

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4627 by T
est, W

iley O
nline L

ibrary on [31/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 WOLF et al.

F I G U R E 8 Impact of percentiles used for HIWarea on area under the receiver operating characteristic curve (AUC) diagnostic. The
information about the underlying region (Phi-22, Mal-22, Ind-22) and hybrid-model-based wave state (Kelvin [Kelv], mode 1 Rossby [R1],
westward-moving mixed Rossby gravity [WMRG]) are included in the lower left part of each panel. Blue line shows the values for the
convection-permitting (CP) 4.5 km resolution model, dashed green line for Met Office Global and Regional Ensemble Prediction System, and
orange lines for different hybrid models. Solid and dash-dotted orange lines represent hybrid model based on forecasts (solid line) and
reanalysis data (dotted line), both using the high-resolution Integrated Multi-satellite Retrievals for Global Precipitation Measurement data.
Purple dotted line represents the combined method blending the forecasts from the CP4.5 and the hybrid model. Evaluation period for all
models is October–March 2018–2019. [Colour figure can be viewed at wileyonlinelibrary.com]

grid-based curves (M-G and Hybrid) for the previously
used 4-year period 2015–2019 (Figure 9). A comparison of
the lines between Figures 8 and 9 can give some insight
about the generality of the results. This additional analysis
can therefore be used to confirm the better hybrid model
performance for more extreme events. Although the qual-
itative behaviour of the hybrid model can be confirmed,
its good performance for Mal-22 for the rare HIW events
seems to be a special feature of this particular season (com-
pare high percentile values for Figures 8c and 9c). An addi-
tional important result is the general underperformance
of the hybrid model (compared with its values if based
on reanalysis values Hybrid-RA) for Mal-22 and Ind-22,

which suggests that the Kelvin wave state is not adequately
represented by the forecasts of MOGREPS-G (Figure 9c,d),
confirming the analysis in Ferrett et al. (2023).

The underperformance of the hybrid model compared
with its potential when based on the reanalysis wave
state can be seen even more clearly when calculated
for the Indonesian main islands separately (Figure 10).
This identifies a crucial problem of the hybrid model in
those regions but also highlights the general problem of
the MOGREPS-G model in predicting the Kelvin wave
state (Yang et al., 2021). Because of the model difficulty
to predict the Kelvin wave state correctly, the hybrid
model is performing below its potential that comes from
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WOLF et al. 15

F I G U R E 9 Same as Figure 8 but for the extended time range of October–March within 2015 to 2019 and without the
convection-permitting model. All hybrid model lines are based on the Integrated Multi-satellite Retrievals for Global Precipitation
Measurement data interpolated onto the M-G grid. [Colour figure can be viewed at wileyonlinelibrary.com]

the identified dynamical connection between HIW events
and the Kelvin wave state (as was indicated already in
Figure 7a,d). Nevertheless, the hybrid model is still outper-
forming MOGREPS-G for the very rare HIW events; and
as previously shown, the combined model (purple dashed
line) leads to the best results for nearly all HIW percent-
ages and all regions. The best performance of the hybrid
model for Indonesia can be identified for Sumatra and Bor-
neo (Figure 10a,c). The worst hybrid model performance
can be seen for Java (Figure 10b), which explains the
previous general statements about the bad hybrid model
performance for Indonesia, which was based on Ind-22,
the region with the largest overlap with Java (Figure 1).
This worst hybrid model performance for Java is probably
not that surprising, as this is the island further away from
the Equator and therefore less influenced by the Kelvin
wave mode.

For the Vietnamese regions, the direct precipitation
forecasts of MOGREPS-G are, in general, a lot better than

the hybrid. One of the best hybrid model performances for
Vietnam can be seen for Vie-C based on the R1 wave and
Vie-S based on the WMRG wave (Figure 11). In general,
the associated AUC values are quite low, except for cen-
tral Vietnam for the more rare HIW events (Figure 11a).
For southern Vietnam, the hybrid model would lead to
better performances if based on the reanalysis wave state,
indicating an underperformance of the hybrid model for
the WMRG-wave-based predictions, as was the case for
the Kelvin-wave-based prediction for all Indonesian sub-
regions.

We also calculated the CP model performance based
on the 8.8 km resolution for the restricted period of Octo-
ber 2018 to March 2019 for the Indonesian main islands,
as shown in Figure 10 and the Vietnamese regions as
shown in Figure 11. To be able to compare the results of
the CP8.8 ensemble, we repeated the calculation for the
MOGREPS-G ensemble for the same shorter 6-month time
range. The results for Vietnam (Supporting Information
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16 WOLF et al.

F I G U R E 10 Same as Figure 9, but for different Indonesian parts with (a) Sumatra, (b) Java, (c) Borneo, and (d) Sulawesi. Additional
results for the convection-permitting 8.8 km resolution simulations for the different Indonesian part are shown in Supporting Information
Figure S5. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 11 Same as Figure 10, but for two selected regions and wave states in Vietnam. (a) Results for Vie-C with hybrid model based
on the R1 wave state and (b) for Vie-S with hybrid model based on the westward-moving mixed Rossby gravity (WMRG) wave state.
Additional results for the convection-permitting 8.8 km resolution simulations for the different Indonesian part are shown in Supporting
Information Figure S5. [Colour figure can be viewed at wileyonlinelibrary.com]
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WOLF et al. 17

F I G U R E 12 Impact of convection-permitting (CP) model resolution on area under the receiver operating characteristic curve (AUC)
diagnostic for all 2.2 km model domains. High-impact weather (HIW) is defined by the (a) 90th and (b) 95th percentiles for HIWarea. For this
analysis, only lead times up to 3 days (instead of 5 days) are used for averaging, as this is the available limit for the 2.2 km resolution CP
ensemble. Different lines show the values for the different 22 regions, as given in the figure legends. M-G, Met Office Global and Regional
Ensemble Prediction System (MOGREPS-G). [Colour figure can be viewed at wileyonlinelibrary.com]

Figure S6) are in general similar to the extended time range
(Figure 11), but with a noisier hybrid model performance
and the CP8.8 ensemble showing slightly better perfor-
mance than MOGREPS-G. The results of the MOGREPS-G
ensemble for the shorter time range for Sumatra, Java, Bor-
neo, and Sulawesi however show some larger differences
compared to the extended time range (Supporting Infor-
mation Figure S5). In general CP8.8 and MOGREPS-G
show worse performances for rare HIW events, with the
CP8.8 ensemble performing worse than MOGREPS-G and
reaching AUC values of 0.5 for all regions for and above
the 95th percentile, indicating that no such event was fore-
cast. The hybrid model does show very good performances
for such rare events for Sumatra, Borneo (as was the case
for the extended time range), and Sulawesi, but unlike for
the extended time range the hybrid model performance
is very close to the reanalysis-based hybrid performance
(Hybrid-RA). As these results deviate from the results of
the extended time range, this seems to suggest that the
HIW events for these regions and this specific season
might be slightly unusual. Owing to the limited time range,
it is difficult to draw conclusions from this beyond the
ones already derived from Figure 10. However, the low
performance of the CP8.8 model for Indonesia is rather
surprising.

In terms of resolution for the CP model, higher resolu-
tion seems to lead to a further improvement (Figure 12) for
the Phi-22 and Mal-22 regions. For Ind-22 this dependence
is less clear with the 4.5 km resolution showing the best
performance, but overall low values and huge uncertain-
ties compared with the other regions. The improvement
for Mal-22 is clearest with an increase in AUC of the order

of 0.1. These results suggest an improvement of the HIW
forecast by increasing the model resolution; however, the
time period and areas investigated are very limited (due to
the expense of running CP ensemble forecast trials) and
therefore conclusions about rare HIW events should be
viewed with caution.

The applied HIWarea definition is a bit more sophis-
ticated than a more commonly used simple precipitation
threshold, as it does include a precipitation threshold
at each grid point and an additional variable area cri-
terion for the region. To understand the impact of this
definition we also apply the alternative HIW definition
HIWav introduced in Section 2.2.1 that is based on aver-
age 24 hr accumulated precipitation over land without any
further area criteria. The conclusion is very similar to
the ones derived from varying HIWarea. The hybrid model
is in general performing better for more extreme events,
and the blended forecast of hybrid and MOGREPS-G is in
general better than the better of both individual models
(Supporting Information Figure S4). One can also iden-
tify again a stronger performance of the hybrid model if
based on Kelvin waves for the reanalysis data for Mal-22
and Ind-22 (Supporting Information Figure S4c,d) and also
for Phi-22, if based on WMRG waves (Supporting Informa-
tion Figure S4b). An important difference, however, is that
now MOGREPS-G is outperforming, or at least very sim-
ilar to, the hybrid model for all HIW percentages and all
regions. This means that there seems to be a relevant differ-
ence between localized HIW events and HIW events that
occur over a larger area, with the hybrid model perform-
ing better than MOGREPS-G if the additional area criteria
(HIWarea compared with HIWav) is used. This difference
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18 WOLF et al.

seems plausible, as the accompanying wave signal also
occurs over a larger area.

5 SUMMARY AND DISCUSSION

This work investigated the skill of probabilistic forecasts of
high-impact rainfall events from the MOGREPS-G global
ensemble, a CP limited-area version of the MOGREPS
ensemble, and a hybrid statistical–dynamical forecast
based on climatological rainfall conditioned on global
ensemble forecasts of the phase and amplitude of tropical
waves. The main findings are as follows,

The statistical–dynamical hybrid forecast model intro-
duced is able to predict HIW events, characterised by
widespread heavy precipitation linked with the passage of
equatorial waves. Applied to the different regions within
southeast Asia, this model illustrates the connections
between relevant wave types and HIW. For Malaysia the
main connection is with Kelvin waves, for the Philippines
and Vietnam it is R1 and WMRG waves, and for Indonesia
(Sumatra, Java, Borneo, and Sulawesi) it is Kelvin waves,
with Java also showing a connection with WMRG waves.
Applying the hybrid model to the different seasons further
shows when those connections are strongest.

Owing to the strong connection between HIW and
equatorial waves, the hybrid model can be used to gener-
ate dynamically conditioned probabilistic HIW forecasts,
based on the global model prediction of the large-scale
horizontal wind and geopotential height fields. Ferrett
et al. (2023) have shown that their hybrid model, based
on four angle sectors within the wave-phase diagram,
does have higher skill for some regions within southeast
Asia (mainly Kelvin waves in June–August for Indone-
sia, R1 and WMRG waves in December–February for the
Philippines, Vietnam, and Thailand) compared with the
direct simulation of precipitation in MOGREPS-G fore-
casts. In this study we investigated in detail the sensitivity
of the hybrid model to specific parameter set-ups (train-
ing period, number of sectors in the wave-phase diagram)
and introduced a reference hybrid model that is based on
reanalysis wave data instead of forecasts. The introduction
of this reanalysis-based hybrid model allows the identifi-
cation of the extent to which the hybrid model reaches its
expected theoretical potential or, if there is a problem in
the global model, to correctly predict the underlying wave
state. For the Philippines, the hybrid model based on the
R1 wave state reaches its potential with very good perfor-
mances. However, the reanalysis-based approach suggests
a higher potential predictability for Malaysia and Indone-
sia that is not realised because the skill in forecasting
Kelvin waves falls rapidly in global model forecasts (Yang
et al., 2021). This result suggests that including a nested

high-resolution CP ensemble run for the Mal-22 or Ind-22
region will have a somewhat limited HIW forecast bene-
fit as long as the large-scale conditions, which have been
shown to be connected to HIW events, are not accurately
represented.

We have now also investigated how the hybrid model
(applied to MOGREPS-G equatorial wave data) performs
in comparison with the higher resolution CP ensemble
forecasts of the Met Office’s Met-UM model. In general,
the CP ensembles perform better than MOGREPS-G but
still worse than the hybrid model, at least for predicting
the rare HIW events. This means that a relevant part of
the HIW events is controlled by the large-scale equato-
rial waves, explaining why such a simple statistical model
is able to produce such good HIW forecasts. As a conse-
quence, this means that a high-resolution nested CP model
will not be able to predict those HIW events correctly as
long as the global model does not represent the large-scale
wave state correctly—for example, see the case study of
Senior et al. (2023). Details about the evaluation of the
CP ensemble forecasts and the aspects where they per-
form well relative to the global ensemble are presented in
Ferrett et al. (2021). However, this does not explain why
the hybrid model is in some instances able to outperform
the CP model. A possible explanation might be that the
sector approach of the hybrid model does allow for some
temporal mismatch in the forecast of the wave state and
the occurrence of the HIW event. The CP model shows
systematic improvement in HIW forecasts as the resolu-
tion increases for the Philippines and Malaysia, but no
clear tendency can be seen for Indonesia, with the best
performance found for the 4.5 km model (Figure 12). Sig-
nificantly, this model is much more skilful than the global
or hybrid models over Indonesia (Figure 8d). This indi-
cates that the convective coupling with Kelvin waves is
much better represented in this CP model (but not as good
in the 2.2 km model).

However, the limited investigation period and the rare
occurrence of HIW events somewhat limit the possible
conclusions. This is a general issue with the analysis
presented, as the investigation of HIW events within a
6-month period will always be associated with large uncer-
tainties and conclusions must be interpreted carefully.
However, to further support our conclusions, we compared
the results of the hybrid model and MOGREPS-G between
the short 6-month period and an extended 4-year period.
This comparison allows a better understanding of which
identified model behaviour is robust or maybe rather a spe-
cific feature of the short investigation period. We further
applied several sensitivity tests and different hybrid model
set-ups or HIW definitions to allow the identification of
the most robust results, which are all highlighted in this
conclusion.
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We are confident in the conclusion that the hybrid
model is, in general, very capable of capturing HIW events,
and for some regions within southeast Asia it will out-
perform (or at least lead to similar performances to) the
MOGREPS-G and even the CP model. The hybrid model
could therefore be used as a real benchmark test for
any higher resolution precipitation forecasts in predict-
ing HIW events. As the hybrid model forecasts are based
on the larger scale horizontal flow, there seems to be the
potential for the hybrid model to extend the lead time of
HIW risk forecasts in situations where the global model
is able to capture the large-scale dynamics of the most
predictable components.

Interestingly, combining the probability forecasts of
the hybrid model with MOGREPS-G or the CP model into
one blended forecast actually led to an improved fore-
cast (compared with both individual models) for nearly
every region. This might be interpreted as evidence that
the ensemble model forecasts are underdispersive, able
to capture several HIW events but missing several other
instances where the large-scale conditions suggest an
increased climatologically based risk for an HIW event.
In other words, the CP ensemble forecasts of HIW prob-
ability are sharper, but the hybrid forecasts have higher
reliability: the blended forecast achieves an improved com-
promise between sharpness and reliability. This is in agree-
ment with the investigated weighting for hybrid model and
MOGREPS-G or CP model for the blended forecast, with
the observed improvement resulting from small weighting
for the hybrid model. In addition, the hybrid model gives
useful insight into the role of equatorial waves in the occur-
rences of HIW events. The link between the risk of HIW
and the large-scale precursor waves could be useful in the
communication of forecast risk with stakeholders, mak-
ing connections with past high-impact events (with similar
large-scale conditions) and taking appropriate action to
reduce impacts.
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