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ABSTRACT: Skillful prediction of the Southern Hemisphere (SH) eddy-driven jet is crucial for representation of mid-to-
high-latitude SH climate variability. In the austral spring-to-summer months, the jet and the stratospheric polar vortex vari-
abilities are strongly coupled. Since the vortex is more predictable and influenced by long-lead drivers 1 month or more
ahead, the stratosphere is considered a promising pathway for improving forecasts in the region on subseasonal to seasonal
(S2S) time scales. However, a quantification of this predictability has been lacking, as most modeling studies address only
one of the several interacting drivers at a time, while statistical analyses quantify association but not skill. This methodolog-
ical gap is addressed through a knowledge-driven probabilistic causal network approach, quantified with seasonal ensemble
hindcast data. The approach enables to quantify the jet’s long-range predictability arising from known late-winter drivers,
namely, El Niño–Southern Oscillation (ENSO), Indian Ocean dipole (IOD), upward wave activity flux, and polar night jet
oscillation, mediated by the vortex variability in spring. Network-based predictions confirm the vortex as determinant for
skillful jet predictions, both for the jet’s poleward shift in late spring and its equatorward shift in early summer. ENSO,
IOD, late-winter wave activity flux, and polar night jet oscillation only provide moderate prediction skill to the vortex. This
points to early spring submonthly variability as important for determining the vortex state leading up to its breakdown, cre-
ating a predictability bottleneck for the jet. The method developed here offers a new avenue to quantify the predictability
provided by multiple, interacting drivers on S2S time scales.

SIGNIFICANCE STATEMENT: Predictions of the Southern Hemisphere midlatitude jet stream are crucial for skill-
ful forecasts of the austral mid-to-high latitudes. Several oceanic and atmospheric phenomena could, if better repre-
sented in models, improve spring-to-summer jet predictions on subseasonal to seasonal time scales. However, the
combined potential skill arising from the inclusion of such phenomena has not been quantified. This study does so by
using a probabilistic causal network model, representing the connections between those drivers and the jet with condi-
tional probabilities, trained on large sets of model data. The stratospheric polar vortex is confirmed as crucial predictor
of jet variability but is itself hard to predict a month in advance due to submonthly variability, creating a predictability
bottleneck for the jet.

KEYWORDS: Southern Hemisphere; Jets; Stratosphere–troposphere coupling; Bayesian methods; Seasonal forecasting;
Seasonal variability

1. Introduction

The midlatitude eddy-driven jet stream is a dominant fea-
ture of the Southern Hemisphere (SH) large-scale circulation.
Via its association with storm tracks and low pressure systems,
the jet influences surface climate in the mid- and high latitudes,
including over Australia, New Zealand, South America, and
Antarctica, even creating conditions for high-impact weather,

such as wildfires in Australia (Lim et al. 2019). Jet anomalies
strongly project onto the Southern Annular Mode, the domi-
nant mode of SH extratropical tropospheric circulation variabil-
ity at time scales longer than a couple of weeks (Thompson and
Wallace 2000).

From late winter through early summer, the SH jet is often
represented in terms of the zonally and height averaged wind,
here referred to as the eddy-driven jet (EDJ), due to its pres-
ence across all longitudes and its equivalent barotropic struc-
ture (Lorenz and Hartmann 2001; Byrne et al. 2017; Saggioro
and Shepherd 2019). The main feature of the EDJ dynamics
is a twice-yearly vacillation in latitude and strength with a
contraction and strengthening, and expansion and weakening
of eddy activity, called the semiannual oscillation (Bracegirdle
2011). Between September and January, this vacillation can
be described as two consecutive latitudinal migrations of the
EDJ around roughly 508S in opposite directions (Fig. 1a): first
poleward between September and October (EDJ-1; abbrevia-
tions introduced for the first time in italics are for variables
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that will be included in the subsequent causal network analy-
sis) and then equatorward between November and December
stretching into January (EDJ-2). Year-to-year differences in
timing and amplitude of EDJ-1 and EDJ-2 shifts range be-
tween 38 and 78 (Fig. 1b), with a significant impact on the sur-
face climate (Bracegirdle 2011; Byrne and Shepherd 2018)
because the EDJ position is associated with negative geopo-
tential height anomalies and cooler and wetter conditions,
as shown in Figs. S1 and S2 in the online supplemental
material.

a. Stratospheric and tropospheric long-lead drivers of
EDJ variability

This work is concerned with long-range predictability of the
EDJ, defined as 1 month or more into the future. The key
long-lead drivers of EDJ predictability, and their intermediate
mediating variables, are identified through a literature review.
Special attention is dedicated to the subseasonal to seasonal
(S2S) time scales, from 2 weeks to a season, which overlaps
with the long-range time scales.

Modeling studies have provided robust evidence for S2S
predictability of the extratropical SH troposphere during
spring and summer (Roff et al. 2011; Lim et al. 2013; Son et al.
2013; Seviour et al. 2014; Osman et al. 2015). Importantly, tro-
pospheric prediction skill comes in part from the stratosphere
(Seviour et al. 2014; Byrne and Shepherd 2018; Lim et al.
2018), a conclusion that is robust to sampling uncertainty
(Byrne et al. 2019). This is due to a strong coupling between
the stratospheric and EDJ variability around the timing of the
stratospheric polar vortex (SPV) breakdown (Kuroda and
Kodera 1998; Thompson et al. 2005; Byrne et al. 2017;
Domeisen et al. 2020b). More specifically, the magnitude of
the EDJ-1 shift in October is influenced by the strength of the
lower stratospheric SPV (SPV-low) in early spring, a result
obtained from both reanalysis (Bracegirdle 2011; Byrne 2017)
and models (Seviour et al. 2014). And the timing of the EDJ-2
shift strongly follows the timing of the vortex breakdown (VB)

(Black and McDaniel 2007; Bracegirdle 2011; Byrne et al.
2017; Ceppi and Shepherd 2019). Westerly phases of the
stratospheric quasi-biennial oscillation (QBO) are associated
with stronger SPV-low and later VB, and vice versa for east-
erly QBO phases (Baldwin and Dunkerton 1988; Anstey and
Shepherd 2014; Byrne and Shepherd 2018). The coupled
stratosphere–troposphere variability in springtime can be traced
back to the state of the vortex near the stratopause as early as
June (Lim et al. 2018), with a progression that resembles the
poleward and downward evolution of the polar night jet oscilla-
tion (PJO) (Kuroda and Kodera 2001; Kuroda 2002) (repre-
sented in two phases as PJO-1 and PJO-2 in the network),
which could provide predictability for SPV-low in spring (Byrne
et al. 2019). Stratospheric ozone concentrations also influence
vortex variability on S2S time scales (Hendon et al. 2020; Oh
et al. 2022). The development of the Antarctic ozone hole
during the last decades of the twentieth century resulted in a
strengthening of SPV-low and delayed VB by about 2 weeks
(Waugh et al. 1999; McLandress et al. 2010), with a resulting
downward effect on the jet (McLandress et al. 2011; Saggioro
and Shepherd 2019).

There are also tropospheric long-lead drivers influencing
EDJ variability, the dominant one being El Niño–Southern
Oscillation (ENSO). The ENSO fingerprint in summer is of
an approximately zonally symmetric tropospheric response,
characterized by a shift in latitude of the EDJ (e.g., Seager
et al. 2003; L’Heureux and Thompson 2006; Lim et al. 2013).
In early spring, the fingerprint of ENSO is more zonally
asymmetric, reflecting the modulation of the Pacific–South
American pattern (Kidson 1999; Mo and Paegle 2001; Vera
et al. 2004). The effect of ENSO on the EDJ is also due to strato-
spheric mechanisms, as El Niño events can force stronger upward
propagating planetary waves, which can advance the seasonal
disruption of the vortex with a lead time of about 1 month, af-
fecting in turn the EDJ (van Loon et al. 1982; Hardiman et al.
2011; Hu et al. 2014; Lim et al. 2018; Byrne et al. 2019; Stone et al.
2022). Studies suggest a stronger effect of central Pacific El Niño

FIG. 1. Climatology of (a) daily EDJ mean latitude and (b) daily interannual latitude standard deviation between
1 Aug and 1 Mar for the years 1981–2016, for ERA5 (red dashed line) and ECMWF System 4 hindcast initialized on
1 Aug (blue line for the mean and increasingly lighter blue bands for 25th–75th, 5th–95th, and 1st–99th percentile
uncertainty ranges, generated with 10 000 bootstrapped time series where an ensemble member has been randomly
selected from each year in the 36-yr period). Latitude is defined as the position of the maximum daily zonal-mean
zonal wind at 850 hPa, between 358 and 708S. Figure adapted from Byrne et al. (2019).
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events on the SH vortex compared to eastern Pacific events,
while a possibly differentiated effect of La Niña is less well un-
derstood (Domeisen et al. 2019, for a review). Upward wave ac-
tivity fluxes are generally represented via the zonal-mean eddy
heat flux (vT-flux), with conditions in August and September
capturing the precursor signal leading to vortex weakening (Lim
et al. 2018; Rao et al. 2020). The Indian Ocean dipole (IOD) can
also influence the vortex through generating Rossby wave trains
in the upper troposphere that propagate to the extratropical re-
gion (Rao et al. 2020; Huang et al. 2021; Jucker and Reichler
2023). The IOD can not only be internally produced by Indian
Ocean–atmosphere coupling (Saji et al. 1999; Yang et al. 2015)
but also externally forced by ENSO (Yu and Lau 2005), and
ENSO can also be forced by IOD (Luo et al. 2010; Annamalai
et al. 2005).

b. Causal network approach to quantify S2S
predictability

While several long-lead drivers of EDJ variability are
known, a quantification of their combined influence on its
long-range predictability has been lacking. Modeling studies
interrogate the effect of specific initializations or nudging
(e.g., Seviour et al. 2014; Rao et al. 2020, 2021), which allows
one to control for only one or a small number of variables,
but not to easily and efficiently quantify the interaction of
more causal elements at the same time. This can be problem-
atic as drivers may work in concert or in opposition to favor a
given EDJ state. On the other hand, statistical studies gener-
ally look at composites of long-lead drivers given EDJ states
to infer predictability (Lim et al. 2018; Byrne and Shepherd
2018; Lim et al. 2019), looking effectively at the conditional
probability P(driver|EDJ). While a signal can be detected in
this way, this does not guarantee strong predictability of the
EDJ state given those preconditions, that is, P(EDJ|driver)
could be small (or not very different from climatology), because
the two probabilities differ by a factor derived from Bayes’s
theorem: P(EDJ|driver) 5 [P(EDJ)/P(driver)]P(driver|EDJ).
Therefore, while the presence of composite patterns of drivers
given a target event can suggest a route for enhanced predict-
ability, only a (statistical) prediction can confirm and quantify
it. Based on this understanding, the aim of this work is to quan-
tify the potential long-range predictability of EDJ variability
via statistical modeling and attribute it to specific (combinations
of) recognized long-lead drivers identified above, namely, ENSO,
late-winter vT-flux, QBO, ozone, IOD, PJO-1, and PJO-2, medi-
ated by the evolution of stratospheric variability represented by
SPV-low and VB.

The statistical model of choice is a probabilistic causal
network, chosen as it removes potentially misleading causal
interpretation of correlational signals by design. A causal net-
work is a mathematical model that can be used to test and
quantify causal statements made about a system of variables
(Pearl 2009). In a causal network, the variables are mapped
onto nodes and the causal relationships between variables
onto directed links. As a result, each variable is causally influ-
enced directly by a (possibly empty) set of variables, called its
parents. Given the probabilistic nature of atmospheric systems

on S2S time scales, a probabilistic causal network (PCN) is
preferred to a deterministic one, because uncertainty is repre-
sented explicitly and quantified through conditional probabili-
ties. A probabilistic description also allows us to account for
not only very general and nonlinear connections between vari-
ables, such as nonlinear functional dependences of one vari-
able on another, but also state-dependent connections, where
the effect of one variable on another depends on the state of a
third variable. Indeed, to compute a PCN’s conditional proba-
bilities, it is not required to prescribe any functional dependen-
cies between the variables.

It is important to note that the PCN is not built as an opti-
mal predictive model, for example, by searching for the set of
drivers that maximize the prediction skill of the target EDJ.
Rather, the PCN is meant as a model to quantify the long-
range predictability of EDJ provided by well-known drivers
when considered in various combinations. Hence, this analysis
is explicitly motivated by, and built on, previous work.

The remainder of the paper is organized as follows. The
methods and data are introduced in sections 2 and 3. The
PCN is derived in section 4. Experiments using the PCN as a
statistical model for EDJ variability are performed to quantify
the potential predictability (and observed skill) of various combi-
nations of long-lead drivers in section 5. The effect of improved
EDJ predictions on surface climate is assessed in section 6. Discus-
sion and conclusions are presented in sections 7 and 8. Abbrevia-
tions and acronyms used in the text are reported in appendix A.

2. Methods

In a causal network, a causal link X " Y corresponds to X
and Y being conditionally dependent given all other parents
of Y. In other words, the dependence between X and Y is gen-
uine and not a spurious consequence of indirect connections.
A causal network needs to be acyclic, which means that start-
ing from any variable and following the direction of links, no
path can lead back to its starting variable. Feedbacks can be
incorporated by adding time lags between variables. Condi-
tional dependence and acyclicity allow for the joint probabil-
ity distribution P(X1, X2, … , XN) of the system of N variables
comprising the causal network to be factorized as the product
of N conditional probabilities P(Xi|PAi), where PAi are the
parents of variable Xi (the variables directly influencing Xi):

P(X1, X2,… , XN) 5 *
N

i51
P(Xi|PAi): (1)

If the network is sparse (that is, with only a few links compared
to all the possible ones), the number of values needed to quan-
tify all of the probabilities P(Xi|PAi) for i 5 1,… , N is much
smaller than the number of values needed for P(X1, X2,… ,
XN), resulting in a much faster computation of any derived mar-
ginal probability of interest (e.g., for probabilistic forecasts).

a. Building and quantifying a PCN

Several techniques exist to build a causal network (e.g.,
Marcot et al. 2006; Chen and Pollino 2012; Runge et al. 2019;
Young et al. 2020). Here, a hybrid knowledge- and data-driven
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approach is used. To start, a hypothetical PCN structure is
drawn by including all long-lead drivers of EDJ, the key medi-
ating variables, and all plausible links between them, selected
according to the literature reviewed in section 1. Any known
common driver of any pair of variables also needs to be added,
a requirement ensuring that conditional independence really re-
flects the absence of links in the network (causal sufficiency;
here none were needed). Links cannot point backward in time,
as in a causal network they need to be causal not just correla-
tional. When variables are contemporaneous on the considered
time scales, the direction is set by known physical processes.

To this hypothetical network, the PC-stable causal discovery
algorithm is applied (Colombo and Maathuis 2014), using the
Pearson chi-square independence test with significance level
a 5 0.05. The goal of the algorithm is to reveal the links such
that the joint probability of the system can be expressed as in
Eq. (1). To start, the unconditional independence of all pairs of
variables is tested and any link is removed if the corresponding
p value of the test is larger than a. Then, the remaining links
X" Y are assessed via conditional independence tests using as
conditions a selection of the parents of Y in an iterative fash-
ion. In the first iteration, each link is tested using each time as
condition one variable from its parents (until all parents are
tested), and at the end, the link is removed if any of these tests
have p . a. In the second iteration, the remaining links are re-
tested with now two conditions using the same procedure. The
algorithm continues with iterations using higher-dimensional
condition sets until no more conditions are left, and the latest
set of links retained constitutes the final network.

Given the final links, the conditional probabilities P(Xi|PAi)
of each variableXi given its parents are computed. Because here
the variables are discretized (see section 3), the probabilities are
discrete too and are called conditional probability tables (CPTs).
Assuming multinomial sampling, appropriate for large sample
sizes, the CPT entries are estimated as relative frequencies.

b. Predictions with a PCN

The PCN with its CPTs can be used to perform predictions,
which consist of calculating the probability distribution P(Xi|E)
of a target variableXi updated given information about some of
its drivers E (also referred to as evidence). This is computed by
marginalizing Eq. (1) over the unobserved covariates and using
the definition of conditional probability.

The probabilistic forecasts produced are assessed with two
measures of skill: the area under the receiver operating char-
acteristic curve (ROC AUC), which considers the trade-off
between true-positive rate and false-positive rate, and the
area under the precision–recall curve (PR AUC), which con-
siders the trade-off between true-positive rate and precision.
Considering ROC AUC and PR AUC together allows us to
give a more rounded assessment of the forecast than just using
one of them. A perfect forecast gives ROC AUC 5 PR
AUC 5 1, and a random forecast gives ROC AUC 5 0.5 and
PR AUC 5 b, the baseline fraction of positives in the
observed data. Hence, to compare skill across different categories
and variables, the percentage increase from the baseline is used:
PR AUC% 5 100 3 (PR AUC 2 b)/(1 2 b), where 100% is a

perfect forecast and 0% indicates no skill. Note that skill here is
used to quantify how well the PCN approximates the hindcast
(when all parents of a variable are used to predict that target vari-
able) and also what is the amount of information provided by
specific drivers (when a selection of drivers is used to predict a
target). Skill values are not computed with the aim of removing
all possible sources of bias in their estimate and thus are not in-
tended as an absolute measure of skill.

3. Data

The European Centre for Medium-Range Weather Forecasts
(ECMWF) 51-member ensemble hindcast is used to derive the
PCN, as it provides a sample size suitable for probabilistic quanti-
fication. Although the latest operational system is ECMWF’s fifth
generation seasonal forecast system (SEAS5), the earlier version
known as System 4 is chosen (Molteni et al. 2011) because it has a
more realistic SH circulation variability at polar latitudes, possi-
bly due to a better representation of SH stratospheric variabil-
ity (Shepherd et al. 2018). The hindcast is initialized on
1 August for each year between 1981 and 2016 (36 seasons)
and run for 7 months, of which the first six are analyzed here
(up to 31 January). ERA5 reanalysis is used as verification
data, which is independent of System 4 (Hersbach et al. 2020).

The basic data input for the network variables is the daily
mean zonal wind u, meridional wind y , air temperature T, and
sea surface temperature (SST). Stratospheric ozone is not in-
cluded because the expected vortex strengthening over the
late twentieth century is not found in System 4 (see Fig. S3 in
the supplemental material). This is likely due to its simplified
ozone chemistry, which does not allow for a realistic represen-
tation of the polar stratospheric cloud chemistry required to
produce an ozone hole, in addition to being initialized with an
ozone climatology (Monge-Sanz et al. 2022). For the analysis
of surface climate impacts, monthly means of geopotential
height at 500 hPa (Z500), 2-m temperature (2mT), and mean
total precipitation rate (MTPR) are used.

Unlike previous analyses of this hindcast for the SH (Byrne
et al. 2019; Osman et al. 2022), the 2002/03 season is retained
despite it including the only SH stratospheric sudden warming
(SSW) in the observational record. An analysis of the 50-hPa
608S zonal-mean zonal wind did not reveal an outlier behavior
of these ensemble members, in that there are several other
members in other years that show a rapid deceleration and
even breakdown around early spring (not shown). An SH vor-
tex breakdown that breaks (too) early is a feature docu-
mented in several S2S systems including ECMWF (Lawrence
et al. 2022).

Network variables

The definitions of the 10 indices associated with the net-
work variables are in Table 1. Note that EDJ-1 and EDJ-2
are defined at different vertical levels, in accordance with the
literature reviewed. Several works focusing on EDJ-2, and its
links with the VB, define it at 850 hPa (e.g., Byrne et al. 2019;
Ceppi and Shepherd 2019; Saggioro and Shepherd 2019). The
fewer studies for the connection of EDJ-1 with the vortex point at
a range of tropospheric vertical levels between 1000 and 500 hPa
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as relevant to capture this connection (Bracegirdle 2011; Seviour
et al. 2014; Byrne 2017). A comparison of the different EDJ-1 cat-
egories using the 850-hPa level was performed, resulting in minor
differences, a result largely expected given the approximately
equivalent barotropic structure of the EDJ.

All the indices are transformed from continuous to discrete
to allow for the generation of probabilistic forecasts of above,
normal, or below climatological conditions (Table 1). For
each variable, categories are defined to best summarize the
ensemble spread. Thus, depending on the shape of its distri-
bution and the physical meaning of the specific variable’s
values, the categories may not comprise the same number of
data points. The categories are identified either based on
physically meaningful thresholds (e.g., 0 m s21 for QBO),
based on percentiles (e.g., 25th–75th percentiles for VB), or
using hierarchical clustering (for EDJ-1 and EDJ-2). Hierar-
chical clustering is a dendogram-based approach that divides
a set of time series into clusters of a similar shape. The cluster-
ing is performed with Euclidean distance metric and Ward’s
linkage criterion so that clusters have the minimum distance
between their elements and the maximum distance across
clusters (Ward 1963). The EDJ categories defined via hierar-
chical clustering retain all the information relating to the tim-
ing and magnitude of the shifts: EDJ-1 categories can be
summarized as an overall more poleward or equatorward po-
sition of the jet in October with respect to the climatological
time series, and EDJ-2 categories are either a more poleward

and delayed shift or a more equatorward and early shift be-
tween November and December (see Figs. S5b,c).

Mean bias correction is performed so that categorization
of variables in the hindcast is meaningful when compared
with ERA5. Mean biases in ENSO, EDJ-1, and EDJ-2 in
System 4 are already documented (Molteni et al. 2011;
Byrne et al. 2019), but bias correction is performed to all
variables for consistency. In practice, from each ensemble
member, the difference between the hindcast multiyear en-
semble mean and the ERA5 multiyear mean between 1981
and 2016 is subtracted.

The time series and distribution plots, including categoriza-
tion, of the 10 indices can be found in Figs. S5–S7 and the
EDJ bias correction in Fig. S4.

4. Probabilistic causal network of EDJ variability

In this section, the PCN derived from the hindcast data and
its CPTs are presented.

a. Links

The causal network structure resulting from the procedure
described in section 2a is shown in Fig. 2, where solid links are
the retained links and dashed are those removed by condi-
tional independence tests, based on the results reported in
appendix B (chi-square and p values).

TABLE 1. Network variables. Definitions column: Square brackets ([]) indicate the zonal mean and the prime symbol (′) indicates
anomalies with respect to the zonal mean. For EDJ-1 and EDJ-2, a running mean is used to extract the latitudinal shift signal from
the very noisy daily latitude index. Discretization column: In the SH, the vT-flux has a negative sign; therefore, lower percentiles
mean stronger wave activity. Percentiles are computed from the hindcast distribution. For EDJ-1 and EDJ-2, the percentages refer to
the proportion of ensemble members assigned to each cluster.

Name Definition (index; time span/average)
Discretization [No. of categories;

threshold(s); labels]

ENSO Monthly mean SST anomalies (wrt 1981–2016) area averaged over the
Niño-3.4 region (58N–58S, 1708–1208W); August–October mean

3; 60.48C; Niña/neutral/Niño

QBO Daily zonal-mean zonal wind [u] at 30 hPa at 08; August–October mean 2; 0 m s21; easterly/westerly
IOD Difference in monthly mean SST anomalies (wrt 1981–2016) between

the tropical western Indian Ocean (area averaged over 108N–108S,
508–708E) and the tropical southeastern Indian Ocean (area averaged
over 08–108S, 908–1108E); August–October mean

3; 60.48C; negative/neutral/positive

vT-flux Daily eddy heat flux [y ′T′] at 100 hPa averaged over 458–758S; August–
September mean

3; 30th–75th percentile; strong/neutral/
weak

PJO-1 Daily [u] at 10 hPa averaged over 308–458S; August mean 2; 60th percentile; weak/strong
PJO-2 Daily [u] at 30 hPa averaged over 508–608S; September mean 3; 35th–75th percentile; weak/neutral/

strong
SPV-low Daily [u] mass-weighted between 100 and 50 hPa averaged over 608–

708S; October mean
3; 25th–75th percentile; small/neutral/

large
VB Last date when the 5-day centered running mean of daily [u] at 50 hPa

and 608S falls below 15 m s21, in days after 1 Oct; note that
depending on the year VB spans October–January

3; 25th–75th percentile; early/middle/late

EDJ-1 Latitude of the maximum of daily [u] pressure-weighted between 1000
and 500 hPa, 10-day running mean; categories clusters built using the
time series between 1 Oct and 8 Nov

3; hierarchical clustering (32.5%, 52%,
15.5%); poleward/middle/equatorward

EDJ-2 Latitude of the maximum of daily [u] at 850 hPa, 10-day running mean;
categories clusters built using the time series between 1 Nov and
19 Jan

3; hierarchical clustering (26.5%, 51%,
22.5%); poleward/middle/equatorward
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The links removed are all the ones emanating from QBO,
PJO-2 " VB, ENSO " VB, ENSO " EDJ-1, ENSO "
EDJ-2 and all the ones emanating from IOD.

All links from QBO are removed at the unconditional test
stage, with all tests giving p values largely above the 0.05
threshold, except for the QBO " PJO-2 link which has a
small p 5 0.051 but still above the significance threshold. The
absence of the known QBO teleconnection with the extra-
tropical stratosphere in the network is likely due to modeling
deficiencies, as even high-top models with a well-resolved
stratosphere like System 4 tend to lose information about the
amplitude and even the sign of tropical winds within 10–50 days
and tend to model extratropical teleconnections rather weakly
(Butler et al. 2016; Garfinkel et al. 2018; Lawrence et al. 2022).
This is confirmed by an absence of the QBO fingerprint on ex-
tratropical zonal-mean zonal wind anomalies after September
(Fig. S8).

All but one of the links emanating from IOD are removed
at the unconditional test stage, and IOD " SPV-low is re-
moved when ENSO is used as the condition, showing that the
dependence between IOD and SPV-low is a result of their
common driver ENSO. While it has been shown that IOD can
influence the vortex and SSWs (Rao et al. 2020; Huang et al.
2021; Jucker and Reichler 2023), an independent contribution
from that of ENSO is not detectable in this analysis.

PJO-2 " VB is removed after SPV-low conditioning, and
ENSO " VB is removed after conditioning on both vT-flux
and SPV-low, showing the role of SPV-low and vT-flux as me-
diators for those pathways.

ENSO " EDJ-1 is removed after conditioning on SPV-low,
as is ENSO " EDJ-2 after accounting for the information
given by VB, with however a much smaller p 5 0.06 in the
latter case compared with p 5 0.44 in the former. This confirms

findings in Byrne et al. (2019) where no direct connections be-
tween ENSO and EDJ-2 were found after conditioning on VB,
also in an analysis of ECMWF System 4.

Note that the link ENSO " IOD is included in the initial
network, but not the link IOD " ENSO which, however
plausible according to the literature, would have created a
causal cycle. To test the effect of this choice on the network,
the detection algorithm was repeated including IOD" ENSO
(and excluding ENSO " IOD), which gave an identical net-
work to Fig. 2 except for the link between ENSO and IOD.
Given that the IOD is disconnected from the rest of the varia-
bles, the link between ENSO and IOD could be substituted
with one without orientation and none of our conclusions
would be affected.

Sensitivity analysis using a stricter significance level of 0.01
results in additionally removing the link ENSO " SPV-low,
which however does not change the conclusions drawn in the
following analysis. Sensitivity to the definition of ENSO is
tested using the central Pacific Niño-4 index, as it has been
found to better capture the SH stratospheric connections with
El Niño events than the east Pacific (Domeisen et al. 2019).
This results in identical links as when using the Niño-3.4 in-
dex, which straddles the east and central Pacific. Hence, the
ENSO index choice does not affect the analysis.

b. Conditional probability tables

Inspection of the CPTs in Fig. 3, expressed as a ratio with
their unconditional probability, quantifies the effect of com-
bined states of the parents on each variable, in terms of mak-
ing each state more or less likely than climatology. Increased
(decreased) probability compared to climatology corresponds
to values larger (smaller) than 1, further indicated with a blue
(red) color scale. SPV-low is shown in Fig. S9, as the large
number of entries due to three parents does not allow an intu-
itive visualization.

In general, the effect of one parent often strongly depends on
the state of the other parent(s) (specially for target variables
PJO-2, VB, and EDJ-2). A weak (strong) vT-flux is caused by a
strong (weak) PJO-1, with generally little effect of ENSO. The
combination of PJO-1 weak and El Niño is the one that increases
the probability of a strong vT-flux the most: a warmer tropical
Pacific SST increases the chances of a larger vT-flux, provided
the subtropical stratospheric winds are weak enough (Fig. 3a).
PJO-2 is very strongly influenced by combinations of PJO-1 and
vT-flux, and none of the parents looks dominant (Fig. 3b). VB is
strongly influenced by the strength of SPV-low, with small
(large) SPV-low leading to earlier (later) VB. Independently,
vT-flux acts on the vortex as well, with a strong vT-flux favoring
earlier VB (and vice versa), and suggests that vT-flux anomalies
may persist late in the season to affect VB (e.g., Hardiman et al.
2011; Hu et al. 2014; Lim et al. 2018); this is best seen when SPV-
low is neutral (Fig. 3c). EDJ-1 is more poleward when a large
lower stratospheric signal is seen in October (large SPV-low),
and vice versa (Bracegirdle 2011) (Fig. 3d). Finally, an early
(late) VB typically precedes an earlier (later) EDJ-2 equator-
ward shift in November and December (Black and McDaniel
2007; Byrne et al. 2017; Byrne and Shepherd 2018) (Fig. 3e). The

FIG. 2. The PCN variables and their connections, represented in
a schematic time–height plane. The dashed gray links are the ones
removed via the PC-stable algorithm, using a chi-squared test with
a 0.05 significance level. The black solid links are the ones retained
and together constitute the PCN structure used in the rest of the
analysis. Links are labeled with the value of their link strength
LS% defined in section 4c, and widths are proportional to it.
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state of EDJ-1 also influences EDJ-2, although much less than
VB does: EDJ-1 more equatorward (poleward) generally favors
an earlier (later) shift of the EDJ-2.

Note that almost identical CPT values (difference below
5%) are found using the central Pacific Niño-4 index for
ENSO.

c. Link strength

Links in a causal network are often associated with a mea-
sure of strength, used to compare their relative importance.
For a PCN, measures of link strength are not straightforward
because no specific functional dependence is assumed (Barnes
et al. 2019; Harwood et al. 2021). An information-theoretic
metric called blind average link strength is used here, based
on the conditional mutual information between X and Y given
Z where the link considered is X " Y and Z are the parents
of Y other than X (Ebert-Uphoff 2007). Expressed as a per-
centage of conditional entropy, LS% is a measure of how
close the link is to deterministic and therefore how influential
the parent X alone is in determining the state of Y. The math-
ematical derivation is in appendix C.

The values LS% are used to label the links and scale their
width in Fig. 2. The highest LS% values are for PJO-1 "
PJO-2, vT-flux " PJO-2, SPV-low " EDJ-1, and VB "
EDJ-2 (all around 20%–30%). Because both parents of PJO-2
have high LS%, this suggests that PJO-2’s variability should
be skillfully predicted by its parents. The two links pointing at
vT-flux are among the weakest (,5%), and thus its predict-
ability is expected to be very small. Links pointing at SPV-low
and VB have medium strength (;5%–20%) with the ones
emanating from vT-flux the weakest. Note however that link-
specific metrics are built by marginalization of the effect of all
the other parents; therefore, they may mask the importance of
combined nonlinear interactions (see the higher predictability
of VT-flux strong compared to vT-flux weak in Fig. 4). Despite
this, the overall connection between LS% and predictability in
this system is confirmed by the analysis in section 5.

5. EDJ predictability

The PCN derived in section 4 is used to quantify the long-
range predictability of EDJ-1 and EDJ-2 shifts. After assess-
ing how much hindcast variability is reproduced by the PCN
parents (section 5a), the potential predictability of EDJ given
the long-lead drivers is quantified by comparing PCN predic-
tions of EDJ with its evolution in the hindcast (section 5b)
and its real-world predictability assessed against reanalysis as
compared with that of the hindcast (section 5c).

a. PCN parents’ ability to reproduce the hindcast
variability

First, we assess how much of each hindcast variable’s vari-
ability can be reproduced by its PCN parents, estimated via
cross-validated prediction skill. A good level of predictability
given the parents means the PCN captures the dominant
mechanisms of this system on the time scales simulated by the
PCN. As the prediction skill of PCN predictions using the pa-
rents as evidence is by design higher than the one obtainable
using the long-lead, indirect drivers as evidence, the skill val-
ues computed in this section provide an upper bound for the
long-lead predictions of section 5b.

The ROC AUC and PR AUC% for predictions of each
variable given its parents as evidence are quantified with a
stratified 30-fold cross validation. Cross validation provides

FIG. 3. CPT values for each variable, expressed as the ratio
with their unconditional probability P. Variables considered are
(a) vT-flux, (b) PJO-2, (c) VB, (d) EDJ-1, and (e) EDJ-2. The
color blue (red) indicates if the mean ratio is higher (lower) than 1,
and gray values are masked if between 0.9 and 1.1. Each category
of the variable is associated with one subtable, and each of the pos-
sible combinations of categories of its parents is associated with
one column of each subtable (or column and row, if the parents are
two). The values written on each table’s entry show the mean and
5th–95th percentile range of a 1000 sample bootstrap obtained by
resampling the ensemble members and years.
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an estimate of skill not inflated by overfitting, and stratifica-
tion accounts for unbalanced categorical data by selecting the
training and the test sets so that they have the same propor-
tion of the target variable’s categories (Fig. 4).

The following considerations apply to the extreme catego-
ries, but not to the central category which is discussed
separately. A very high cross-validation skill for PJO-2, VB,
EDJ-1, and EDJ-2 establishes that their PCN parents repre-
sent most of their variability (ROC AUC between 0.75 and
0.95 and PR AUC% between 50% and 75%). The SPV-low
can only be partially predicted by its parents, pointing already
at its limited long-range predictability given the variables
used here (ROC AUC between 0.65 and 0.75 and PR AUC%
between 25% and 45%; SPV-low large has the worst PR
AUC% of all variables and much worse than its weak state).
The overall least reproducible variable is vT-flux, which is
only weakly influenced by PJO-1 and ENSO, confirming the
indication provided by the link strengths. Despite different
degrees of skill, it is notable that the few mechanisms mod-
eled by the PCN still reproduce the hindcast variability signifi-
cantly better than a no-skill climatological forecast for all
variables, at least for the extreme categories (no skill means
ROC AUC5 0.5 and PR AUC%5 0).

The central category is generally less skillfully predicted
than the extreme ones. This is because the CPT values of the
central category tend to have some similarities with the CPT
values of one or the other extreme (low signal), making it
harder for the PCN to discriminate between the central

category and another. The CPT values for the extreme cate-
gories are instead very different from one another (high sig-
nal); hence, they allow for an easier discrimination and thus
better predictions. Given that the tails of the variables’ distri-
butions are usually the ones associated with stronger impacts,
it is encouraging to see that the performance for the extreme
categories is generally good.

b. Potential long-range EDJ predictability

After having found the upper bound for the predictability
of each variable using the PCN parents, the degree to which
this skill can be realized using indirect, long-lead drivers is
quantified. Each of the 51 ensemble members in each year is
used to provide evidence and verification data. Forecasts are
performed for different evidence sets consisting of variables
that can be jointly observed by the end of each month [ex-
cluding the ones that would be redundant given Eq. (1)].
They are ENSO and PJO-1 for August, ENSO, PJO-2, and
vT-flux for September, vT-flux and SPV-low for October strato-
sphere only, and vT-flux, SPV-low, and EDJ-1 for October. The
prediction given the parents is shown for comparison.

The results are shown in Fig. 5 for prediction of SPV-low
(Figs. 5a,e), VB (Figs. 5b,f), EDJ-1 (Figs. 5c,g), and EDJ-2
(Figs. 5d,h). Given August and September evidence, the ex-
treme categories are predicted with low skill but still better
than climatology (median values between 0.6 and 0.7 for
ROC and 20%–40% for PR). Recalling that VB and EDJ-2
are defined in the months of November and December, the

FIG. 4. Cross-validated (a) ROC AUC and (b) PR AUC% of the predictions of each variable
vT-flux, PJO-2, SPV-low, EDJ-1, VB, and EDJ-2 (from left to right) using the respective parents
as evidence. Thirty train–test sets of length 29/30 and 1/30 of all data points are considered, and a
stratification approach to the selection of train–test sets is applied. The distributions of the
30 predictions are shown as boxplots, which cover the 25th–75th percentiles (boxes) and the
5th–95th percentiles (whiskers). Different colors highlight the different categories of each target
variable.
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PCN can thus reproduce with some skill the variability of
these with a 2–3-month lead.

Importantly, both ROC and PR metrics show a marked
improvement when evidence is provided for months closer
to the target, especially for 0–1-month lead, reaching me-
dian values between 0.7 and 0.9 for ROC and 40%–60% for
PR. Thus, each intermediate linkage results in a loss of in-
formation, which builds up in time. EDJ-1 and EDJ-2 have
the largest increase in skill given precursors in the October
stratosphere, confirming the importance of the stratosphere
for a skillful tropospheric forecast. Interestingly, EDJ-2 can
be predicted knowing SPV-low (Oct-st.) almost as skillfully
as when knowing its parents (VB and EDJ-1); thus, its pre-
dictability can be high with 1-month lead. Among the four

target variables analyzed in the figure, SPV-low has the
lowest skill, which indicates a predictability bottleneck
in our network from September variables. Considering
vT-flux in September as a parent, rather than the August–
September mean, does not improve SPV-low skill (see
Fig. S10), further supporting this conclusion. To represent
SPV-low, elements not present in the network are clearly
needed. Given that, to our knowledge, all long-lead drivers
of SPV-low variability have been included, these missing el-
ements should be in midspring, developing on submonthly
time scales. An analysis including vT-flux in October as an
additional variable in the network improves SPV-low pre-
dictions (but not VB predictions), supporting this hypothe-
sis (see Fig. S11).

FIG. 5. (left) ROC AUC and (right) PR AUC (%) of (a),(e) SPV-low, (b),(f) VB, (c),(g) EDJ-1, and (d),(h) EDJ-2
predictions using as evidence variables observable in August (A), September (S), October-stratosphere (O-st.), October (O),
and parents (Par) (specific variables listed in text). The network is trained on all hindcast data and tested on each of
the 51 ensemble members separately (described in text). The boxplots represent the distributions of the 51 predic-
tions, with box edges (whiskers) covering the 25th–75th (5th–95th) percentiles, and outliers also indicated. Different
colors correspond to the three different categories of each target variable, also labeled at the top of each plot.
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c. Relevance of PCN variables for real-world predictions

Long-range predictability of EDJ-1 and EDJ-2, although
small, has been quantified and attributed to specific combinations
of network variables in section 5b. Yet the system assessed was
the hindcast ensemble, not the real world. To test if the variables
and links used in the PCN correspond to mechanisms useful to
predict the real world, a conditional hindcast (CH) is constructed
and its skill assessed against ERA5 reanalysis.

For each of the five month-specific evidence sets used in
the previous section, a CH is obtained as a subensemble
whose members have the evidence variables’ categories match-
ing the categories observed in ERA5. Therefore, the CH has

the “correct” categories of those evidence variables deemed rel-
evant for prediction of subsequent targets.

Further, a PCN prediction is also performed with corre-
sponding evidence sets initialized with ERA5 categories for
each year. This PCN prediction can be compared with the CH
meaningfully, thanks to the filtering on the evidence variables.
Note that while the network only uses the values for those ev-
idence set variables as input, the CH has access to all the in-
formation of all other parts of the atmosphere–ocean system
for the selected ensemble members.

The ROC AUC and PR AUC% for PCN and CH against
ERA5 are shown in Fig. 6 (vertical bars), with the skill for the

FIG. 6. ROC AUC and PRAUC% of (a),(e) SPV-low, (b),(f) VB, (c),(g) EDJ-1, and (d),(h) EDJ-2 predictions us-
ing as evidence variables observable in August (A), September (S), October-stratosphere (O-st.), October (O), and
parents (Par) (as in Fig. 5). Three forecasts assessed against ERA5 are compared: the PCN forecast (PCN; rightmost
vertical bar), the conditional hindcast (CH described in text; leftmost vertical bar), and the full hindcast (H; horizontal
shaded bar). The height of the vertical CH and PCN bars (error bars) shows the mean value (25th–75th percentiles)
of a distribution obtained from a 1000 sample bootstrap procedure. The numbers on the CH bar are the average num-
ber of members selected each year for a category. The horizontal H skill shading spans the 25th–75th percentiles
across all years and members.
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full hindcast (H) also shown (horizonal shaded range). Note
that the (conditional) hindcast skill score may be an overesti-
mate of actual skill in a forecast setting due to the use of the
entire hindcast period for the bias correction (Risbey et al.
2021). However, this does not affect the conclusions based on
a relative comparison between the PCN, CH, and H skill.

The following comments apply to the extreme categories
and not the central category. First, when parents are selected,
the CH skill is generally better than that of the full hindcast.
This suggests that the mechanisms schematized here provide
meaningful rules to identify ensemble members that have a
higher likelihood of evolving in time toward the correct
ERA5 target category. For earlier conditions, however, the
improvement of the CH is lower and at times nonexistent,
showing that indirect variables in the network are not as effec-
tive as the parents in selecting more skillful members. Other
sources of variability evidently come into play, steering the
evolution of the system in other directions. Note also that the
August filters for CH result in a selection of 38 out of 51
members on average across the target categories, because the
ensemble spread is still small, and therefore a similar skill to
the full hindcast is expected.

Second, PCN skill is generally equal to or higher than that
of the CH. The PCN, with its simple representation of the
connections via CPTs, is therefore as good as the CH at pre-
dicting the observed probabilistic evolution of the ERA5 tar-
get variables. When PCN outperforms the CH, this can be an
indication that the background information used to quantify
the conditional probabilities reduces the noise that arises in fi-
nite ensembles.

Last, note that the EDJ-2 in the CH forecast shows a pecu-
liar feature. Its skill is high given August conditions, then
deteriorates given September to October conditions, and im-
proves drastically again given the parents. This suggests that
the ensemble members filtered based on the September
(ENSO, PJO-2, and vT-flux) and October conditions (vT-flux,
SPV-low, and EDJ-1) do not tend to evolve toward a consis-
tent and correct EDJ-2 anomaly, and therefore some of them
constitute bad deterministic filters. Namely, given that the
August conditions and parents are good, the bad filters are
vT-flux, PJO-2, and possibly also SPV-low. On the other
hand, members filtered based on the parents VB and EDJ-1
improve the skill.

6. Effect of improved EDJ prediction on surface climate

Finally, the effect of predicting skillful EDJ on SH surface
climate is inspected. Gridpoint anomaly correlation coeffi-
cients (AC) between the hindcast and ERA5 across the mod-
eled years are computed for Z500, 2mT, and MTPR fields
taken as November–December mean. Analysis for September–
October AC given EDJ-1 gives very similar results (see
Fig. S12).

The AC between the full hindcast ensemble mean and
ERA5 shows no or low skill in the mid-to-high latitudes (left-
most column in Fig. 7). However, a considerable AC improve-
ment is achieved with a correct representation of EDJ-2
variability (central column), computed using only the ensemble

members that, each year, predict the correct EDJ-2 category
(i.e., as in ERA5). The increase in AC is seen specifically over
much of Antarctica, southern South America, and the Southern
Ocean south of Australia, including in regions where the en-
semble mean had no skill at all. These regions are the ones just
north and south of the climatological position of the EDJ. Nota-
bly, a good part of this AC improvement can be achieved by us-
ing knowledge of the EDJ-2 parents only (rightmost column).
The ensemble members used for this latter AC computation
are selected with a statistical postprocessing, similar to recent
methods to select the most skillful members of S2S ensemble
forecasts (Dobrynin et al. 2018; Bouchet et al. 2019; Polkova
et al. 2021). To be specific, ensemble members are selected
each year based on the EDJ-2 category predicted by the PCN,
where the PCN uses the parents as evidence by setting them to
the ERA5 categories for that year. More details on the compu-
tation are given in the figure caption.

7. Discussion

The main goal of this analysis was to quantify the long-
range predictability, meaning one month or more in the fu-
ture, of the SH EDJ across the spring to summer transition
given the knowledge of long-lead drivers regarded as impor-
tant in the literature, namely, QBO, ENSO, IOD, vT-flux,
and PJO in August and September, and establishing the im-
portance of the mediating role of SPV-low and VB between
October and December.

Assuming the hindcast represents the true system, ENSO,
PJO, and vT-flux generally provide nonnegligible but low pre-
dictability to the state of EDJ-1 and EDJ-2, with the median
ROC AUC of 0.6–0.75 and PR AUC% of 10%–30%. This
shows that known correlations between a target and a driver
do not necessarily correspond to a strong added prediction
skill: either because other drivers can counteract that effect or
because while detectable the effect is itself not very strong.

SPV-low, a crucial mediator for the effect of long-lead driv-
ers on EDJ, cannot be skillfully predicted given preconditions
such as ENSO, vT-flux, or PJO, even when tested against
hindcast data on which the network was trained. This repre-
sents a long-range predictability bottleneck for the jet. The
limited predictability of SPV-low given its parents suggests
that important mechanisms that lead to the destabilization or
persistence of the springtime vortex come from additional
variables not represented in the PCN. Considering vT-flux in
October significantly improves SPV-low predictions (but not
VB predictions), suggesting the role of tropospheric forcing
on submonthly time scales in midspring. Weekly average vari-
ables between the end of September and early October may
be needed to improve the network representation of SPV-low
and thus also of VB. For example, Domeisen et al. (2020a)
found that while around 30% of ensemble members in S2S
forecasts predict the final warming date within 63 days for a
30–20-day lead time, the number increases to 75%–100% for
a 15–5-day lead time. Although the allowed error of 63 days
is a much higher accuracy than required by the PCN forecast
(where VB categories are about 20 days wide), this is still sig-
nificant in showing the importance of shorter time scales.
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However, introducing variables defined on shorter time aver-
ages would change the purpose of the network, which is of
quantifying the possibility of long-range EDJ predictability.

Note that the PCN long-range prediction of SPV-low and VB
against ERA5 could be further improved if the connections from
the QBO and from late-spring stratospheric ozone were included.

This has not been possible due to their insufficient representation
in System 4 (as in many other forecast systems) but could be
achieved with another dataset used as a basis for the PCN detec-
tion and quantification (Oh et al. 2022; Monge-Sanz et al. 2022).

A strong predictability of the poleward migration of the jet
(EDJ-1) is found to be associated with the strength of SPV-low,

FIG. 7. November–December mean (ND) (a) Z500, (b) MTPR, and (c) 2mT anomaly correla-
tion (AC) maps. AC between hindcast ensemble mean and ERA-5 is in the leftmost subpanels
(darker blue for higher AC). Changes in AC for a selection of members based on having EDJ-2
categories matching ERA5 are in the middle subpanels (purple and green colors for negative or
positive changes). Changes in AC for a selection of members based on having EDJ-2 categories
matching the predictions of the PCN given the parents set to ERA5 categories each year are in
the rightmost subpanels (colors as for the middle). The PCN probabilistic forecast is translated
into a single predicted category by selecting the one with the largest relative increase in probabil-
ity with respect to its climatological occurrence. Black dots show AC significantly different from
0 according to a one-sample two-sided t test at the 0.1 significance level. A stereographic projec-
tion is used, and latitudes between 208 and 908S are shown at intervals of 208.
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and the timing of VB is a strong predictor of the timing of
the jet’s subsequent equatorward migration (EDJ-2), which
agrees with what was initially proposed by Bracegirdle (2011).
The EDJ-1 and EDJ-2 PCN skill against the hindcast given
SPV-low has median ROC AUC of 0.8–0.9 and PR AUC% of
50%–60%.

Tested against ERA5, the PCN skill is found to be compa-
rable to that of a conditional hindcast filtered on parents used
for PCN predictions. This shows that the few linkages mod-
eled by the PCN are a good source of information that applies
to the real world too, although for some variables they pro-
vide more information than for others. The PCN is therefore
a useful tool to quantify predictability and to attribute it to
specific causal pathways.

Finally, an improved representation of EDJ location is
found to improve the anomaly correlation of the hindcast
with surface climate variables, Z500, 2mT, and MTPR. The
improvement is especially strong over Antarctica and over
the Southern Ocean, in regions just north and south of the cli-
matological EDJ location, and part of this improvement is at-
tributable to stratospheric information.

The PCN was built to assess the importance of well-known
long-lead drivers of EDJ, but if the purpose is that of maxi-
mizing prediction skill, then the selection of variables could
be optimized further (with care of avoiding overfitting, e.g.,
with cross validation), with the benefit that all the parts of the
network that remain unmodified do not need recalibrating.

The zonally asymmetric components of the EDJ have not
been addressed in this analysis; however, their analysis would
be important to connect the stratospheric variability with
more localized impacts (e.g., Osman et al. 2022). This would
require detailed regional analyses for different longitude sec-
tors and associated drivers and an inspection of the modula-
tion of the zonal-mean response in each sector. Such analysis
goes beyond the scope of the current study but would be an
interesting avenue to pursue.

8. Conclusions

A probabilistic causal network (PCN) has been used to
quantify the long-range predictability of the spring-to-summer
variability of the SH eddy-driven jet (EDJ) migrations given
known long-lead predictors, and their intermediate, mediating
pathways via the stratospheric polar vortex. The ECMWF
System 4 seasonal forecast system was used as dataset to build
and quantify the PCN. Despite its simplicity, this network can
reproduce a significant part of the variability of the system.
Network-based predictions confirm the stratospheric polar
vortex as determinant for skillful jet predictions, for both its
poleward shift in late spring and its equatorward shift in early
summer. The long-lead drivers ENSO, IOD, late-winter wave
activity flux, and PJO are found to only provide moderate
prediction skill to the vortex and hence to the jet. It is argued
that the reason is the role of the submonthly variability in
early spring, not represented in the network, creating a bottle-
neck for the long-range predictability of the jet.

The analysis has also shown that using simple statistical
forecast models, like a PCN, offers a still largely unexplored

approach to study the predictability provided by multiple, in-
teracting drivers on S2S time scales. The evolution of the sys-
tems relevant at these time scales lends itself to be described
statistically with multiple variables interacting in probabilistic
terms. The present work demonstrates the following practical
benefits of a PCN approach:

• Causal network theory provides a rigorous set of rules
that allow us to distinguish direct from indirect effects,
which can reveal the most effective pathways of enhanced
predictability.

• The probabilistic framework represents uncertainty as well
as nonlinearities in a manageable form, especially if varia-
bles are discretized.

• The added predictive power of various combinations of re-
mote drivers can be quantified by means of fast PCN fore-
casts that make use only of the desired inputs.

These networks can also identify “trigger points” for pre-
diction of particular outcomes, i.e., what set of prior events
one needs to observe to be confident (at some given level) of
an outcome. Moreover, the visual graphical representation of
the model enhances transparency and could help communi-
cate sources of predictability to nonspecialist audiences.

Although beyond the scope of this work, it is worth noting
that probabilistic causal networks could be used as simple
and quick-to-run models for probabilistic S2S predictions of
specific target variables. The statistical model used here
could be potentially enhanced using machine learning tech-
niques, such as for detection of additional (and possibly un-
known) sources of predictability from a large number of
spatiotemporal fields. A PCN can be easily extended to in-
clude more drivers (e.g., climate change by adding forcing
variables) and can be coupled with other models (e.g., im-
pact models). They could be the basis for “intermediate
technologies,” i.e., simple but not elementary statistical
models, which can bring together physical and statistical un-
derstanding in a way that can create intelligibility and also
democratize the production of climate information (Rodrigues
and Shepherd 2022).
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APPENDIX A

Abbreviations and Acronyms

2mT Two-meter temperature
CH Conditional hindcast
CPT Conditional probability table
EDJ Zonal-mean eddy-driven jet
H Hindcast
LS Link strength
MTPR Mean total precipitation rate
PCN Probabilistic causal network
PJO Polar night jet oscillation
PR AUC Area under the precision–recall curve

ROC AUC Area under the receiver operating characteris-
tic curve

SPV Stratospheric polar vortex
VB Vortex breakdown
vT-flux Eddy heat flux

APPENDIX B

Conditional Independence Tests

Table B1 shows the results of each iteration of the PC-
stable conditional independence tests carried out to reveal
the final probabilistic causal network.

TABLE B1. Results of each iteration step of the PC-stable conditional independence tests on the link X " Y via chi-square
(X, Y|Z) at significance level a 5 0.05; Z is a subset of the parents of the target variable (other than X), which is of increasing size at
each iteration of PC-stable. Bold entries highlight the links removed via the PC-stable procedure.

X Y Z (iteration) Chi-square p value Remove link

QBO PJO-1 None (0) 1.6 0.20 Yes
QBO vT None (0) 3.6 0.16 Yes
QBO PJO-2 None (0) 5.9 0.051 Yes
QBO SPV-low None (0) 1.7 0.42 Yes
QBO VB None (0) 1.1 0.59 Yes
IOD vT None (0) 7.1 0.13 Yes
IOD VB None (0) 7.7 0.10 Yes
IOD EDJ-1 None (0) 6.4 0.17 Yes
IOD EDJ-2 VB (1) 19.7 0.07 Yes
IOD SPV-low ENSO (1) 13.6 0.32 Yes
ENSO IOD None (0) 358.7 1029 No
ENSO SPV-low vT, PJO-2 (2) 55 0.02 No
ENSO vT PJO-1 (1) 34 1025 No
ENSO EDJ-1 SPV-low (1) 11 0.44 Yes
ENSO EDJ-2 VB (1) 20.2 0.06 Yes
ENSO VB vT, SPV-low (2) 47.7 0.09 Yes
vT PJO-2 PJO-1 (1) 851 1029 No
vT SPV-low PJO-2, ENSO (2) 105 1029 No
vT VB SPV-low (1) 74 1029 No
PJO-1 vT ENSO (1) 160 1029 No
PJO-1 PJO-2 vT (1) 529 1029 No
PJO-2 SPV-low vT, ENSO (2) 131 1029 No
PJO-2 VB vT, SPV-low (2) 26 0.88 Yes
SPV-low VB vT (1) 426 1029 No
SPV-low EDJ-1 None (0) 847 1029 No
VB EDJ-2 EDJ-1 (1) 655 1029 No
EDJ-1 EDJ-2 VB (1) 65 1025 No
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APPENDIX C

Link Strength Formula

In section 4c, Ebert-Uphoff (2007) defines blind average
link strength of link X " Y as the conditional mutual infor-
mation of the pair (X, Y) conditioned on Z, where Z is de-
fined as the set of all parents of Y other than X, and under
the “blind” assumption that that X and Z are independent
and uniformly distributed P(x, z) 5 P(x)P(z), P(x) 5 1/NX,
and P(z) 5 1/NZ:

LS(X " Y) 5 1
NXNZ

∑
x,y,z

P(y|x, z)log2
P(y|x, z)

1/NX∑
x
P(y|x, z)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(C1)

where P(y|x, z) is the CPT of Y. The blind average link
strength is then expressed as percentage of uncertainty re-
duction, following the formula:

LS%(X " Y) 5 LS(X " Y)
Û(Y|Z) 3 100, (C2)

where the conditional entropy computed also under the blind as-
sumption is Û(Y|Z)5 [1/(NXNZ)]∑x,y,zP(y|x, z)log2[NX /∑xP(y|x, z)].
LS% is the value used for the link strengths of section 4c.

REFERENCES

Annamalai, H., S. P. Xie, J. P. McCreary, and R. Murtugudde,
2005: Impact of Indian Ocean sea surface temperature on de-
veloping El Niño. J. Climate, 18, 302–319, https://doi.org/10.
1175/JCLI-3268.1.

Anstey, J. A., and T. G. Shepherd, 2014: High-latitude influence
of the quasi-biennial oscillation. Quart. J. Roy. Meteor. Soc.,
140, 1–21, https://doi.org/10.1002/qj.2132.

Baldwin, M. P., and T. J. Dunkerton, 1988: Quasi-biennial modu-
lation of the Southern Hemisphere stratospheric polar vortex.
Geophys. Res. Lett., 25, 3343–3346, https://doi.org/10.1029/
98GL02445.

Barnes, E. A., S. M. Samarasinghe, I. Ebert-Uphoff, and J. C.
Furtado, 2019: Tropospheric and stratospheric causal path-
ways between the MJO and NAO. J. Geophys. Res. Atmos.,
124, 9356–9371, https://doi.org/10.1029/2019JD031024.

Black, R. X., and B. A. McDaniel, 2007: Interannual variability in
the Southern Hemisphere circulation organized by strato-
spheric final warming events. J. Atmos. Sci., 64, 2968–2974,
https://doi.org/10.1175/JAS3979.1.

Bouchet, F., J. Rolland, and J. Wouters, 2019: Rare event
sampling methods. Chaos, 29, 080402, https://doi.org/10.
1063/1.5120509.

Bracegirdle, T. J., 2011: The seasonal cycle of stratosphere-
troposphere coupling at southern high latitudes associated
with the semi-annual oscillation in sea-level pressure. Cli-
mate Dyn., 37, 2323–2333, https://doi.org/10.1007/s00382-011-
1014-4.

Butler, A. H., and Coauthors, 2016: The climate-system historical
forecast project: Do stratosphere-resolving models make better
seasonal climate predictions in boreal winter? Quart. J. Roy.
Meteor. Soc., 142, 1413–1427, https://doi.org/10.1002/qj.2743.

Byrne, N. J., 2017: Deterministic models of Southern Hemisphere
circulation variability. Ph.D. thesis, University of Reading,
105 pp.

}}, and T. G. Shepherd, 2018: Seasonal persistence of circula-
tion anomalies in the Southern Hemisphere stratosphere and
its implications for the troposphere. J. Climate, 31, 3467–
3483, https://doi.org/10.1175/JCLI-D-17-0557.1.

}}, }}, T. Woollings, and R. A. Plumb, 2017: Nonstationarity
in Southern Hemisphere climate variability associated with
the seasonal breakdown of the stratospheric polar vortex.
J. Climate, 30, 7125–7139, https://doi.org/10.1175/JCLI-D-17-
0097.1.

}}, }}, and I. Polichtchouk, 2019: Subseasonal-to-seasonal
predictability of the Southern Hemisphere eddy-driven jet
during austral spring and early summer. J. Geophys. Res. At-
mos., 124, 6841–6855, https://doi.org/10.1029/2018JD030173.

Ceppi, P., and T. G. Shepherd, 2019: The role of the stratospheric
polar vortex for the austral jet response to greenhouse gas
forcing. Geophys. Res. Lett., 46, 6972–6979, https://doi.org/10.
1029/2019GL082883.

Chen, S. H., and C. A. Pollino, 2012: Good practice in Bayesian
network modelling. Environ. Modell. Software, 37, 134–145,
https://doi.org/10.1016/j.envsoft.2012.03.012.

Colombo, D., and M. H. Maathuis, 2014: Order-independent
constraint-based causal structure learning. J. Mach. Learn.
Res., 15, 3921–3962.

Dobrynin, M., and Coauthors, 2018: Improved teleconnection-
based dynamical seasonal predictions of boreal winter.
Geophys. Res. Lett., 45, 3605–3614, https://doi.org/10.1002/
2018GL077209.

Domeisen, D. I. V., C. I. Garfinkel, and A. H. Butler, 2019: The
teleconnection of El Niño Southern Oscillation to the
stratosphere. Rev. Geophys., 57, 5–47, https://doi.org/10.
1029/2018RG000596.

}}, and Coauthors, 2020a: The role of the stratosphere in sub-
seasonal to seasonal prediction: 1. Predictability of the strato-
sphere. J. Geophys. Res. Atmos., 125, e2019JD030920, https://
doi.org/10.1029/2019JD030920.

}}, and Coauthors, 2020b: The role of the stratosphere in sub-
seasonal to seasonal prediction: 2. Predictability arising from
stratosphere-troposphere coupling. J. Geophys. Res. Atmos.,
125, e2019JD030923, https://doi.org/10.1029/2019JD030923.

Ebert-Uphoff, I., 2007: Measuring connection strengths and link
strengths in discrete Bayesian networks. Georgia Tech. Re-
search Rep. GT-IIC-07-01, 10 pp.

Garfinkel, C. I., C. Schwartz, D. I. V. Domeisen, S.-W. Son, A. H.
Butler, and I. P. White, 2018: Extratropical atmospheric pre-
dictability from the quasi-biennial oscillation in subseasonal
forecast models. J. Geophys. Res. Atmos., 123, 7855–7866,
https://doi.org/10.1029/2018JD028724.

Hardiman, S. C., and Coauthors, 2011: Improved predictability of
the troposphere using stratospheric final warmings. J. Geophys.
Res., 116, D18113, https://doi.org/10.1029/2011JD015914.

Harwood, N., R. Hall, G. Di Capua, A. Russell, and A. Tucker,
2021: Using Bayesian networks to investigate the influence of
subseasonal Arctic variability on midlatitude North Atlantic
circulation. J. Climate, 34, 2319–2335, https://doi.org/10.1175/
JCLI-D-20-0369.1.

Hendon, H. H., E.-P. Lim, and S. Abhik, 2020: Impact of interannual
ozone variations on the downward coupling of the 2002 South-
ern Hemisphere stratospheric warming. J. Geophys. Res. At-
mos., 125, e2020JD032952, https://doi.org/10.1029/2020JD032952.

S AGG I ORO E T A L . 306915 MAY 2024

Unauthenticated | Downloaded 05/20/24 08:34 AM UTC

https://doi.org/10.1175/JCLI-3268.1
https://doi.org/10.1175/JCLI-3268.1
https://doi.org/10.1002/qj.2132
https://doi.org/10.1029/98GL02445
https://doi.org/10.1029/98GL02445
https://doi.org/10.1029/2019JD031024
https://doi.org/10.1175/JAS3979.1
https://doi.org/10.1063/1.5120509
https://doi.org/10.1063/1.5120509
https://doi.org/10.1007/s00382-011-1014-4
https://doi.org/10.1007/s00382-011-1014-4
https://doi.org/10.1002/qj.2743
https://doi.org/10.1175/JCLI-D-17-0557.1
https://doi.org/10.1175/JCLI-D-17-0097.1
https://doi.org/10.1175/JCLI-D-17-0097.1
https://doi.org/10.1029/2018JD030173
https://doi.org/10.1029/2019GL082883
https://doi.org/10.1029/2019GL082883
https://doi.org/10.1016/j.envsoft.2012.03.012
https://doi.org/10.1002/2018GL077209
https://doi.org/10.1002/2018GL077209
https://doi.org/10.1029/2018RG000596
https://doi.org/10.1029/2018RG000596
https://doi.org/10.1029/2019JD030920
https://doi.org/10.1029/2019JD030920
https://doi.org/10.1029/2019JD030923
https://doi.org/10.1029/2018JD028724
https://doi.org/10.1029/2011JD015914
https://doi.org/10.1175/JCLI-D-20-0369.1
https://doi.org/10.1175/JCLI-D-20-0369.1
https://doi.org/10.1029/2020JD032952


Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis.
Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.
1002/qj.3803.

Hu, J., R. Ren, and H. Xu, 2014: Occurrence of winter strato-
spheric sudden warming events and the seasonal timing of
spring stratospheric final warming. J. Atmos. Sci., 71, 2319–
2334, https://doi.org/10.1175/JAS-D-13-0349.1.

Huang, R., W. Tian, K. Qie, F. Xie, S. Zhang, H. Tian, and
J. Luo, 2021: Contrasting effects of Indian Ocean basin and
dipole modes on the stratosphere. J. Geophys. Res. Atmos.,
126, e2021JD035156, https://doi.org/10.1029/2021JD035156.

Jucker, M., and T. Reichler, 2023: Life cycle of major sudden
stratospheric warmings in the Southern Hemisphere from a
multimillennial GCM simulation. J. Climate, 36, 643–661,
https://doi.org/10.1175/JCLI-D-22-0425.1.

Kidson, J. W., 1999: Principal modes of Southern Hemisphere
low-frequency variability obtained from NCEP–NCAR rean-
alyses. J. Climate, 12, 2808–2830, https://doi.org/10.1175/1520-
0442(1999)012,2808:PMOSHL.2.0.CO;2.

Kuroda, Y., 2002: Relationship between the polar-night jet oscilla-
tion and the annular mode. Geophys. Res. Lett., 29, 1240,
https://doi.org/10.1029/2001GL013933.

}}, and K. Kodera, 1998: Interannual variability in the tropo-
sphere and stratosphere of the Southern Hemisphere winter.
J. Geophys. Res., 103, 13 787–13 799, https://doi.org/10.1029/
98JD01042.

}}, and }}, 2001: Variability of the polar night jet in the
Northern and Southern Hemispheres. J. Geophys. Res., 106,
20703–20 713, https://doi.org/10.1029/2001JD900226.

Lawrence, Z. D., and Coauthors, 2022: Quantifying stratospheric
biases and identifying their potential sources in subseasonal
forecast systems. Wea. Climate Dyn., 3, 977–1001, https://doi.
org/10.5194/wcd-3-977-2022.

L’Heureux, M. L., and D. W. J. Thompson, 2006: Observed rela-
tionships between the El Niño–Southern Oscillation and the
extratropical zonal-mean circulation. J. Climate, 19, 276–287,
https://doi.org/10.1175/JCLI3617.1.

Lim, E.-P., H. H. Hendon, and H. Rashid, 2013: Seasonal predict-
ability of the Southern Annular Mode due to its association
with ENSO. J. Climate, 26, 8037–8054, https://doi.org/10.1175/
JCLI-D-13-00006.1.

}}, }}, and D. W. J. Thompson, 2018: Seasonal evolution of
stratosphere-troposphere coupling in the Southern Hemi-
sphere and implications for the predictability of surface cli-
mate. J. Geophys. Res. Atmos., 123, 12002–12 016, https://doi.
org/10.1029/2018JD029321.

}}, }}, G. Boschat, D. Hudson, D. W. J. Thompson, A. J.
Dowdy, and J. M. Arblaster, 2019: Australian hot and dry ex-
tremes induced by weakenings of the stratospheric polar vor-
tex. Nat. Geosci., 12, 896–901, https://doi.org/10.1038/s41561-
019-0456-x.

Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback
in the Southern Hemisphere. J. Atmos. Sci., 58, 3312–3327,
https://doi.org/10.1175/1520-0469(2001)058,3312:EZFFIT.
2.0.CO;2.

Luo, J.-J., R. Zhang, S. K. Behera, Y. Masumoto, F.-F. Jin,
R. Lukas, and T. Yamagata, 2010: Interaction between El Niño
and extreme Indian Ocean dipole. J. Climate, 23, 726–742,
https://doi.org/10.1175/2009JCLI3104.1.

Marcot, B. G., J. D. Steventon, G. D. Sutherland, and R. K.
McCann, 2006: Guidelines for developing and updating
Bayesian belief networks applied to ecological modeling and

conservation. Can. J. For. Res., 36, 3063–3074, https://doi.org/
10.1139/x06-135.

McLandress, C., A. I. Jonsson, D. A. Plummer, M. C. Reader,
J. F. Scinocca, and T. G. Shepherd, 2010: Separating the dy-
namical effects of climate change and ozone depletion. Part I:
Southern Hemisphere stratosphere. J. Climate, 23, 5002–5020,
https://doi.org/10.1175/2010JCLI3586.1.

}}, T. G. Shepherd, J. F. Scinocca, D. A. Plummer, M.
Sigmond, A. I. Jonsson, and M. C. Reader, 2011: Separating
the dynamical effects of climate change and ozone depletion.
Part II: Southern Hemisphere troposphere. J. Climate, 24,
1850–1868, https://doi.org/10.1175/2010JCLI3958.1.

Mo, K. C., and J. N. Paegle, 2001: The Pacific–South American
modes and their downstream effects. Int. J. Climatol., 21,
1211–1229, https://doi.org/10.1002/joc.685.

Molteni, F., and Coauthors, 2011: The new ECMWF seasonal
forecast system (System 4). ECMWF Tech. Rep. 656, 51 pp.

Monge-Sanz, B. M., and Coauthors, 2022: A stratospheric prog-
nostic ozone for seamless Earth system models: Performance,
impacts and future. Atmos. Chem. Phys., 22, 4277–4302,
https://doi.org/10.5194/acp-22-4277-2022.

Oh, J., S.-W. Son, J. Choi, E.-P. Lim, C. Garfinkel, H. Hendon,
Y. Kim, and H.-S. Kang, 2022: Impact of stratospheric ozone
on the subseasonal prediction in the Southern Hemisphere
spring. Prog. Earth Planet. Sci., 9, 25, https://doi.org/10.1186/
s40645-022-00485-4.

Osman, M., C. S. Vera, and F. J. Doblas-Reyes, 2015: Predictabil-
ity of the tropospheric circulation in the Southern Hemi-
sphere from CHFP models. Climate Dyn., 46, 2423–2434,
https://doi.org/10.1007/s00382-015-2710-2.

}}, T. G. Shepherd, and C. S. Vera, 2022: The combined influ-
ence of the stratospheric polar vortex and ENSO on zonal
asymmetries in the Southern Hemisphere upper tropospheric
circulation during austral spring and summer. Climate Dyn.,
59, 2949–2964, https://doi.org/10.1007/s00382-022-06225-0.

Pearl, J., 2009: Causality: Models, Reasoning, and Inference. 2nd
ed. Cambridge University Press, 464 pp.

Polkova, I., and Coauthors, 2021: Predictors and prediction skill
for marine cold-air outbreaks over the Barents Sea. Quart. J.
Roy. Meteor. Soc., 147, 2638–2656, https://doi.org/10.1002/qj.
4038.

Rao, J., C. I. Garfinkel, I. P. White, and C. Schwartz, 2020: The
Southern Hemisphere minor sudden stratospheric warming
in September 2019 and its predictions in S2S models. J. Geo-
phys. Res. Atmos., 125, e2020JD032723, https://doi.org/10.
1029/2020JD032723.

}}, }}, and }}, 2021: Development of the extratropical re-
sponse to the stratospheric quasi-biennial oscillation. J. Cli-
mate, 34, 7239–7255, https://doi.org/10.1175/JCLI-D-20-0960.1.

Risbey, J. S., and Coauthors, 2021: Standard assessments of cli-
mate forecast skill can be misleading. Nat. Commun., 12,
4346, https://doi.org/10.1038/s41467-021-23771-z.

Rodrigues, R. R., and T. G. Shepherd, 2022: Small is beautiful:
Climate-change science as if people mattered. PNAS Nexus,
1, pgac009, https://doi.org/10.1093/pnasnexus/pgac009.

Roff, G., D. W. J. Thompson, and H. Hendon, 2011: Does in-
creasing model stratospheric resolution improve extended-
range forecast skill? Geophys. Res. Lett., 38, L05809, https://
doi.org/10.1029/2010GL046515.

Runge, J., P. Nowack, M. Kretschmer, S. Flaxman, and D. Sejdinovic,
2019: Detecting and quantifying causal associations in large non-
linear time series datasets. Sci. Adv., 5, eaau4996, https://doi.org/
10.1126/sciadv.aau4996.

J OURNAL OF CL IMATE VOLUME 373070

Unauthenticated | Downloaded 05/20/24 08:34 AM UTC

https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.1175/JAS-D-13-0349.1
https://doi.org/10.1029/2021JD035156
https://doi.org/10.1175/JCLI-D-22-0425.1
https://doi.org/10.1175/1520-0442(1999)012<2808:PMOSHL>2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012<2808:PMOSHL>2.0.CO;2
https://doi.org/10.1029/2001GL013933
https://doi.org/10.1029/98JD01042
https://doi.org/10.1029/98JD01042
https://doi.org/10.1029/2001JD900226
https://doi.org/10.5194/wcd-3-977-2022
https://doi.org/10.5194/wcd-3-977-2022
https://doi.org/10.1175/JCLI3617.1
https://doi.org/10.1175/JCLI-D-13-00006.1
https://doi.org/10.1175/JCLI-D-13-00006.1
https://doi.org/10.1029/2018JD029321
https://doi.org/10.1029/2018JD029321
https://doi.org/10.1038/s41561-019-0456-x
https://doi.org/10.1038/s41561-019-0456-x
https://doi.org/10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2
https://doi.org/10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2
https://doi.org/10.1175/2009JCLI3104.1
https://doi.org/10.1139/x06-135
https://doi.org/10.1139/x06-135
https://doi.org/10.1175/2010JCLI3586.1
https://doi.org/10.1175/2010JCLI3958.1
https://doi.org/10.1002/joc.685
https://doi.org/10.5194/acp-22-4277-2022
https://doi.org/10.1186/s40645-022-00485-4
https://doi.org/10.1186/s40645-022-00485-4
https://doi.org/10.1007/s00382-015-2710-2
https://doi.org/10.1007/s00382-022-06225-0
https://doi.org/10.1002/qj.4038
https://doi.org/10.1002/qj.4038
https://doi.org/10.1029/2020JD032723
https://doi.org/10.1029/2020JD032723
https://doi.org/10.1175/JCLI-D-20-0960.1
https://doi.org/10.1038/s41467-021-23771-z
https://doi.org/10.1093/pnasnexus/pgac009
https://doi.org/10.1029/2010GL046515
https://doi.org/10.1029/2010GL046515
https://doi.org/10.1126/sciadv.aau4996
https://doi.org/10.1126/sciadv.aau4996


Saggioro, E., 2023: Causal network approaches for the study of
sub-seasonal to seasonal variability and predictability. Ph.D.
thesis, University of Reading, 250 pp.

}}, and T. G. Shepherd, 2019: Quantifying the timescale and
strength of Southern Hemisphere intraseasonal stratosphere-
troposphere coupling. Geophys. Res. Lett., 46, 13479–13 487,
https://doi.org/10.1029/2019GL084763.

Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata,
1999: A dipole mode in the tropical Indian Ocean. Nature, 401,
360–363, https://doi.org/10.1038/43854.

Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller,
2003: Mechanisms of hemispherically symmetric climate vari-
ability. J. Climate, 16, 2960–2978, https://doi.org/10.1175/1520-
0442(2003)016,2960:MOHSCV.2.0.CO;2.

Seviour, W. J. M., S. C. Hardiman, L. J. Gray, N. Butchart,
C. MacLachlan, and A. A. Scaife, 2014: Skillful seasonal pre-
diction of the Southern Annular Mode and Antarctic ozone.
J. Climate, 27, 7462–7474, https://doi.org/10.1175/JCLI-D-14-
00264.1.

Shepherd, T. G., I. Polichtchouk, R. Hogan, and A. J. Simmons,
2018: Report on stratosphere task force. ECMWF Tech. Rep.
824, 34 pp.

Son, S.-W., A. Purich, H. H. Hendon, B.-M. Kim, and L. M.
Polvani, 2013: Improved seasonal forecast using ozone hole
variability? Geophys. Res. Lett., 40, 6231–6235, https://doi.org/
10.1002/2013GL057731.

Stone, K. A., S. Solomon, D. W. J. Thompson, D. E. Kinnison,
and J. C. Fyfe, 2022: On the Southern Hemisphere strato-
spheric response to ENSO and its impacts on tropospheric
circulation. J. Climate, 35, 1963–1981, https://doi.org/10.1175/
JCLI-D-21-0250.1.

Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the
extratropical circulation. Part I: Month-to-month variability. J.

Climate, 13, 1000–1016, https://doi.org/10.1175/1520-0442(2000)
013,1000:AMITEC.2.0.CO;2.

}}, M. P. Baldwin, and S. Solomon, 2005: Stratosphere–troposphere
coupling in the Southern Hemisphere. J. Atmos. Sci., 62,
708–715, https://doi.org/10.1175/JAS-3321.1.

van Loon, H., C. S. Zerefos, and C. C. Repapis, 1982: The South-
ern Oscillation in the stratosphere. Mon. Wea. Rev., 110,
225–229, https://doi.org/10.1175/1520-0493(1982)110,0225:
TSOITS.2.0.CO;2.

Vera, C., G. Silvestri, V. Barros, and A. Carril, 2004: Differences
in El Niño response over the Southern Hemisphere. J. Cli-
mate, 17, 1741–1753, https://doi.org/10.1175/1520-0442(2004)
017,1741:DIENRO.2.0.CO;2.

Ward, J. H., Jr., 1963: Hierarchical grouping to optimize an objec-
tive function. J. Amer. Stat. Assoc., 58, 236–244, https://doi.
org/10.1080/01621459.1963.10500845.

Waugh, D. W., W. J. Randel, S. Pawson, P. A. Newman, and
E. R. Nash, 1999: Persistence of the lower stratospheric polar
vortices. J. Geophys. Res., 104, 27 191–27201, https://doi.org/
10.1029/1999JD900795.

Yang, Y., S.-P. Xie, L. Wu, Y. Kosaka, N.-C. Lau, and G. Vecchi,
2015: Seasonality and predictability of the Indian Ocean di-
pole mode: ENSO forcing and internal variability. J. Climate,
28, 8021–8036, https://doi.org/10.1175/JCLI-D-15-0078.1.

Young, H., T. G. Shepherd, J. Acidri, R. Cornforth, C. Petty,
J. Seaman, and L. Todman, 2020: Storylines for decision-
making: Climate and food security in Namibia. Climate Dev.,
13, 515–528, https://doi.org/10.1080/17565529.2020.1808438.

Yu, J.-Y., and K. M. Lau, 2005: Contrasting Indian Ocean SST
variability with and without ENSO influence: A coupled
atmosphere-ocean GCM study. Meteor. Atmos. Phys., 90,
179–191, https://doi.org/10.1007/s00703-004-0094-7.

S AGG I ORO E T A L . 307115 MAY 2024

Unauthenticated | Downloaded 05/20/24 08:34 AM UTC

https://doi.org/10.1029/2019GL084763
https://doi.org/10.1038/43854
https://doi.org/10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2
https://doi.org/10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2
https://doi.org/10.1175/JCLI-D-14-00264.1
https://doi.org/10.1175/JCLI-D-14-00264.1
https://doi.org/10.1002/2013GL057731
https://doi.org/10.1002/2013GL057731
https://doi.org/10.1175/JCLI-D-21-0250.1
https://doi.org/10.1175/JCLI-D-21-0250.1
https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2
https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2
https://doi.org/10.1175/JAS-3321.1
https://doi.org/10.1175/1520-0493(1982)110<0225:TSOITS>2.0.CO;2
https://doi.org/10.1175/1520-0493(1982)110<0225:TSOITS>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<1741:DIENRO>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<1741:DIENRO>2.0.CO;2
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1029/1999JD900795
https://doi.org/10.1029/1999JD900795
https://doi.org/10.1175/JCLI-D-15-0078.1
https://doi.org/10.1080/17565529.2020.1808438
https://doi.org/10.1007/s00703-004-0094-7

