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Cutting the Cake Into Crumbs:
Verifying Envy-Free Cake-Cutting Protocols

using Bounded Integer Arithmetic

Martin Mariusz Lester1[0000−0002−2323−1771]

University of Reading, Reading, United Kingdom m.lester@reading.ac.uk

Abstract. Fair division protocols specify how to split a continuous re-
source (conventionally represented by a cake) between multiple agents
with different preferences. Envy-free protocols ensure no agent prefers
any other agent’s allocation to his own. These protocols are complex
and manual proofs of their correctness may contain errors. Recently,
Bertram and others [5] developed the DSL Slice for describing these
protocols and showed how verification of envy-freeness can be reduced
to SMT instances in the theory of quantified non-linear real arithmetic.
This theory is decidable, but the decision procedure is slow, both in
theory and in practice.
We prove that, under reasonable assumptions about the primitive op-
erations used in the protocol, counterexamples to envy-freeness can al-
ways be found with bounded integer arithmetic. Building on this result,
we construct an embedded DSL for describing cake-cutting protocols in
declarative-style C. Using the bounded model-checker CBMC, we reduce
verifying envy-freeness of a protocol to checking unsatisfiability of pure
SAT instances. This leads to a substantial reduction in verification time
when the protocol is unfair.

Keywords: fair division · constraint programming · declarative C

1 Introduction

Alice and Bob wish to divide a cake fairly. Alice cuts the cake into two slices,
which she believes to be of equal size. Bob chooses the slice he believes to be
bigger. Alice takes the remaining slice. Neither Alice nor Bob envies the other.
This is true regardless of the actual relative sizes of the slices. Maybe the cake
is slightly taller at one end and Alice’s cut failed to take this into account, but
she did not realise. Or maybe the slices have equal weight, but one slice has a
strawberry on top and Bob really likes strawberries, so he chose that slice. In
any case, Alice believes that both slices are equal, so is happy with whichever
slice was left; Bob believes that he chose a slice better than or as good as Alice’s.

This story illustrates how competing agents may amicably agree to divide
a continuous resource. Problems of this kind are widely studied in economics.
We represent the resource as a cake, but it could equally be land, advertising
space or many other things. Similarly, the agents could (for example) be friends,
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#define SLICES 2

#define AGENTS 2

#include "crumbs.h"

int main() {

slice whole, left, right;

// Create the cake.

whole = cake();

// Agent 1 halves the cake.

halve(1, left, right, whole);

// Agent 2 picks the bigger slice.

if (smaller(2, left, right)) {

// Agent 2 picks the right slice.

alloc(1, left);

alloc(2, right);

}

else {

// Agent 2 picks the left slice.

alloc(1, right);

alloc(2, left);

}

// Check that the focused agent doesn't feel envious.

check();

}

Fig. 1. The well-known cut-and-choose protocol expressed in our cake-cutting protocol
DSL Crumbs, which is embedded in C. Envy-freeness is verified using the bounded
model-checker CBMC.

companies or governments. But in general, we refer to such protocols for resource
allocation, where the divisions are proposed and evaluated by the competing
agents, as cake-cutting protocols. A protocol is envy-free if, on termination, no
agent would prefer any other agent’s allocation.

The cut and choose protocol we described is alluded to in Genesis [10], the
first book of the Bible, but only works for two agents. Selfridge and Conway inde-
pendently developed a protocol for three agents in the 1960s [16]. In this protocol,
slices cut by one agent are further cut into smaller slices by another agent, with
each agent ultimately receiving multiple discontinuous slices. The question of
whether bounded protocols for larger numbers of agents existed remained unan-
swered for many years. It was resolved in 2016 by Aziz and Mackenzie [3,4], who
developed a protocol for any number of agents. The bound on the number of
queries (markings of the cake by an agent or evaluations of the value of a slice)
required by the protocol depends only on the number of agents, but is a tower
of exponentials.

But with protocols being so complex, how can we specify them unambigu-
ously and ensure they are correct? Recently, Bertram and others [5] addressed
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this problem through a Domain-Specific Language (DSL) called Slice for specify-
ing cake-cutting protocols. Furthermore, they showed how to verify envy-freeness
of a protocol using a translation from a Slice program into an SMT instance,
which can be solved using Z3 [15].

While this approach performs acceptably in verifying correctness of the pro-
tocols they examine, it fails to find counterexamples even on trivially unfair
protocols. The root cause seems to be that they encode axioms about proper-
ties of agents’ valuations. This in turn requires that they target the theory of
quantified real arithmetic, which is decidable, but has doubly exponential time
complexity, which often manifests in practice.

We propose an alternative approach in our DSL Crumbs in Section 3. We
observe that, if we restrict our DSL to higher-level primitives, such as dividing a
cake into equally sized pieces, or comparing two pieces to see which is bigger, we
need only rely on properties of valuations that follow from the standard axioms
of arithmetic. Furthermore, in Section 4.2, we show that to find counterexamples
to envy-freeness for a bounded number of slices, we need only consider valuations
consisting of bounded integers.

Our DSL is embedded in C; see Figure 1 for an example protocol. Following
the approach demonstrated by Manthey [14] and by Lester [12], we write declar-
ative C specifications for our cake-cutting operations in Section 4.3, then use
the bounded model-checker CBMC [8,11] to compile the program into a SAT
instance that encodes the constraint satisfaction problem of finding an envy-
inducing allocation; CBMC solves the SAT instance using a SAT solver (in our
experiments, we use Kissat [6]). If it is unsatisfiable, the protocol is envy-free.
If it is satisfiable, CBMC extracts an envy-inducing run of the protocol.

We evaluate Crumbs empirically and compare it with Slice in Section 5. We
find that it is comparable in speed on correct protocols and significantly faster
on incorrect protocols, where Slice does not terminate in a reasonable amount
of time.

Our contributions are:

– the design (Section 3) and implementation (Section 4.3) of the embedded
DSL Crumbs in declarative C;

– the novel reduction of verification of envy-freeness to bounded integer arith-
metic in Section 4.1 and Section 4.2;

– the experimental evaluation in Section 5, which shows that Crumbs is com-
petitive on correct protocols and faster on erroneous protocols.

The artifact supporting this paper [13] includes the implementation of Crumbs
and scripts necessary to reproduce our experiments.

2 Preliminaries

Let us first formalise what we mean by a cake-cutting protocol.
A whole cake is represented by the real interval [0, 1]. A cake-cutting protocol

is an algorithm that involves a fixed set of agents, A. Each agent a has a valuation
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function Va : P([0, 1])→ R, which specifies how much the agent desires different
allocations of cake. The input to the protocol is the set of agents’ valuation
functions and the output is an allocation of a portion of the cake to each agent,
P : A → P([0, 1]). A slice s ⊆ [0, 1] is a connected subinterval of the cake. We
require that allocations consist of a finite number of slices.

A feasible allocation is one where all P (a) are disjoint: ∀a1, a2.P (a1)∩P (a2) =
∅. A complete allocation is one where the whole cake is allocated:

⋃
P (A) = [0, 1].

An envy-free allocation is one where no agent would prefer any other agent’s
allocation: ∀a1, a2.Va1(P (a1)) ≥ Va1(P (a2)).

In practice, we need to introduce some restrictions on the permitted valu-
ation functions and allocations to develop interesting, realisable protocols. In
their DSL Slice, Bertram and others adopt a reasonable set of assumptions on
valuations, which we follow. Valuations must be normalised, non-negative, ad-
ditive and continuous. In effect, this means that each agent’s valuation func-
tion is fully described by a continuous, non-negative, everywhere-integrable den-
sity function va, such that Va([l, r]) =

∫ r

l
va(x) dx with Va([0, 1]) = 1 and

Va([l1, r1] ∪ [l2, r2]) = Va([l1, r1]) + Va([l2, r2]), assuming [l1, r1] and [l2, r2] are
disjoint.

Returning to our initial example of Alice and Bob cutting a cake, these
restrictions allow Alice to express that the value of a slice is proportional to
its weight, and allow Bob to express that the value of a slice increases linearly
with the weight of strawberries in the slice. However, they do not allow Alice to
express that she is not very hungry and has no interest in having more than 1

3 of
the cake, or allow Bob to express that he would rather have a whole strawberry
than two half strawberries.

We also do not allow the algorithm within the protocol to access the valuation
functions directly. (They might in any case not be finitely representable.) Instead,
the protocol is restricted to making a finite number of queries of the agents.
Agents are assumed to respond truthfully and accurately at all times.

A common query model, adopted by Slice, is the Robertson-Webb model. In
this model, agents may be asked to evaluate or mark a slice:

evaluate Given [l, r], the agent returns the value of Va([l, r]).
mark Given l and v, the agent picks r such that Va([l, r]) = v.

Here we diverge from Slice, instead choosing the higher-level primitives split,
trim and compare:

split The agent splits a slice into a number of smaller slices that he believes
have equal value.

trim Given a reference slice and a bigger slice, the agent trims the bigger slice
down to the size of the reference slice.

compare The agent says which of two slices he prefers.

This selection allows us to express well-known protocols without resorting
to real arithmetic, which will be important for our approach to developing an
efficient verification procedure.
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3 The Crumbs DSL

We now give an overview of the Crumbs DSL, which is embedded in C. Figure 2
shows the first part of the Selfridge-Conway procedure, which illustrates most
of the language’s features.

Crumbs uses two datatypes to describe cake-cutting protocols: agents are
represented by integer IDs, starting from 1; slices are contiguous intervals of
cake.

Crumbs provides the following operations for cutting and allocating slices of
cake:

cake() Returns a single slice, consisting of a whole cake.
halve(a, l, r, w) Agent a splits the slice w into 2 equal slices, which are as-

signed to l and r.
third(a, l, m, r, w) Agent a splits the slice w into 3 equal slices, which are

assigned to l, m and r. (Variants for splits into equal numbers of smaller
pieces can be supported analogously.)

trim(a, l, r, w, s) Agent a trims the slice w into 2 slices, assigned to l and r,
such that he believes l is equal to slice s. (It is an error to trim w if a believes
it is smaller than s.)

alloc(a, s) Allocates slice s to agent a.
check() Checks that the allocation is envy-free.

Note that the operations that cut the cake require empty slice variables to be
passed in, which are used to store the resulting slices.

Slices can be compared with the following operations:

smaller(a, l, r) Returns true if agent a believes slice l is strictly smaller (lower
value) than slice r.

lteq(a, l, r) Returns true if agent a believes slice l is less than or equal to slice
r.

equal(a, l, r) Returns true if agent a believes slice l is less than or equal to
slice r.

remember(s) Returns a copy of s, which can be compared, but should not be
allocated.

same(s1, s2) Returns true if s1 and s2 are the same slices of cake. (That is,
they represent the same interval of the cake, not two distinct intervals with
the same perceived value.)

These operations are side-effect free functions.
For convenience, the following operations for sorting and swapping slices are

also defined:

sort2(a, s1, s2) Agent a rearranges slices s1 and s2, so that he believes they
are sorted in increasing order.

sort3(a, s1, s2, s3) Agent a rearranges slices s1, s2 and s3, so that he believes
they are sorted in increasing order. (Variants for sorting larger numbers of
slices can be supported analogously.)
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#define SLICES 4

#define AGENTS 3

#include "crumbs.h"

int main() {

slice whole, a, b, c;

whole = cake();

third(1, a, b, c, whole); // P1 divides cake into 3.

sort3(2, c, b, a); // P2 thinks largest piece is A.

if(equal(2, a, b)) {

sort3(3, c, b, a);

alloc(3, a); // If P2 thinks 2 biggest parts equal,

sort2(2, c, b); // P3, P2 and P1 choose a piece in order.

alloc(2, b);

alloc(1, c);

}

else {

slice a1, a2; // P2 trims A to match B.

trim(2, a1, a2, a, b); // Call trimmed piece A1.

slice trimmed = remember(a1); // Remember A1 for later.

sort3(3, c, b, a1); // P3 chooses a piece.

alloc(3, a1);

// P2 chooses a piece, then P1.

// If P3 didn't choose trimmed piece, P2 must.

if (same(trimmed, a1)) {

sort2(2, c, b);

alloc(2, b);

alloc(1, c);

}

else if (same(trimmed, b)) {

alloc(2, b);

alloc(1, c);

}

else { // Trimmed piece is c.

alloc(2, c);

alloc(1, b);

}

}

check();

}

Fig. 2. The first part of the Selfridge-Conway protocol in Crumbs. The allocation
generated is envy-free, but not complete.
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swap(s1, s2) Swaps slices s1 and s2.
rol(s1, s2, s3) Rotates the slices s1, s2, s3 left, so that s1 ← s2, s2 ← s3 and

s3← s1.
ror(s1, s2, s3) Rotates the slices s1, s2, s3 right; inverse of rol().

These operations move slice objects between variables. They are specified solely
in terms of the preceding slice manipulation and comparison operations.

As our higher-level primitives are all expressible in the Robertson-Webb
model, any Crumbs protocol will be expressible in Slice. Conversely, there may
be Slice protocols that, because of the arithmetic they perform on slice sizes and
valuations, are not expressible in Crumbs. However, we have not encountered
any reasonable protocols like this.

Crumbs is embedded in C, so the usual C control flow features, such as loops
and functions, are available. Here, Crumbs is more expressive than Slice from
the user’s perspective, as the latter does not support loops or recursive functions.
However, this does not really affect the range of protocols that can be expressed,
as the underlying verification procedure requires that control flow be bounded.
For example, loops must have a statically computable bound on the number of
iterations possible.

4 Verifying Protocols in Crumbs

4.1 Practical Verification of Envy-Freeness

A path of execution through a cake-cutting protocol consists of a sequence of
operations: agents can cut slices of cake; agents can compare slices of cake; and
slices of cake can be allocated to agents.

When execution terminates, the cake has been cut into a number of slices.
Each slice has a size and, for each agent, a perceived value; these must all be
non-negative. Operations on the path induce further constraints on the sizes
and values of the slices. When an agent cuts a slice into two smaller slices, this
induces a constraint that the sizes and values of the resulting slices are non-
negative and sum to the size and values of the parent slice. Furthermore, if the
agent cuts a slice into child sizes that he believes to be of equal value, this induces
the constraint that the agent’s values of the child slices are equal. If an agent
compares two slices and declares that one is smaller than another, this induces
the constraint that the agent’s value of one slice is smaller than the other.

A protocol is envy-free if all paths that terminate have the property that,
for all agents, the sum of an agent’s perceived total value of allocated slices is
not less than the agent’s perceived total value of any other agent’s allocated
slices. That is, a protocol is not envy-free only if there is a path where an agent
perceives his sum of slices to be smaller than another agent’s. We can verify that
a protocol is envy-free by verifying that no such path exists.

To get to a practical verification procedure from here, we need two further
observations. Firstly, we can verify envy-freeness for each agent separately, fo-
cusing on one agent at a time. When we focus on one agent, it is sound to ignore
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the actual sizes of any slices and the valuations of other agents. We may lose
completeness if there is an envy-inducing but infeasible path, whose infeasibility
depends on these ignored details, for example, if a non-focused agent compares
the same pair of slices twice. However, such situations are unlikely to occur in
practice, other than as a result of an implementation error. This observation
means that we can safely model a slice as a pair of numbers representing an
interval over the focused agent’s value, rather than a pair for each agent, plus a
pair to represent the actual size.

Secondly, if agents are restricted to cutting and comparing slices, but cannot
declare their perceived value numerically, all constraints on a path are equalities
or inequalities of sums of the focused agent’s value for a subset of slices; there
are no constants, other than 0 and 1 (which represent the left and right ends of
the whole cake). This observation will ultimately allow us to model slice values
using bounded integers, rather than as real or rational numbers.

4.2 Bounded Integer Arithmetic

So that we can avoid having to invoke an SMT solver for real arithmetic, we
would like to encode our constraint problem for finding envious runs using
bounded integer arithmetic. Then it can be translated into a pure SAT instance,
which may be faster to solve.

For a fixed number of slices n, even with real values, there are only finitely
many different possible conjunctions of inequalities between sums of values of
subsets of slices. Furthermore, we can clearly model all such relationships using
integers, as we can approximate reals to arbitrary precision with rationals and, as
we consider only sums with a bounded number of terms, we will not encounter
any behaviour that is specific to irrational numbers, such as convergence of
infinite sums. Multiplying by the denominator(s) of the rational numbers will
then give integers. So a bound on the size of integers we need to consider to
model the same relationships as with reals clearly exists, but in order to use
this fact to construct a SAT instance for verification, we need to compute it
explicitly. The following theorem gives an explicit bound.

Theorem 1. Consider a finite set X ⊆ R of n non-negative real numbers. There
is mapping f : X → N of elements of X to non-negative integers that, ex-
tended point-wise to sets, preserves the sign (positive, negative or zero) of lin-
ear combinations of elements of X with coefficients -1, 0 or 1. Furthermore,∑

f(X) ≤ 1
6 (4n + 2).

Proof. We begin by proving the existence of f , leaving the bound on
∑

f(X) un-
til later. Sort the elements of X in non-decreasing order, so that X = {x1, . . . , xn}
with x1 ≤ . . . ≤ xn. Argue by induction over n.

Base case: n = 0, so X = ∅ with f being the empty mapping and
∑

f(X) =
0.

Inductive step: Suppose we have built a suitable mapping fk for Xk =
{x1, . . . , xk }. We aim to build a mapping fk+1 for Xk+1 = {x1, . . . , xk, xk+1}.
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We need an fk+1 that preserves sign of linear combinations of interest. We
attempt to construct fk+1 by extending fk. This will preserve the sign of any
linear combination over Xk.

For the new linear combinations over Xk+1, we need to choose a value
for fk+1(xk+1) somewhere between fk(xk) (in the case that xk = xk+1) and∑

f(Xk) + 1 (in the case that
∑

Xk − f(xk+1) is positive) that gives them the
correct sign. If there is such an integer value available, we pick it and we are
done. If not, the value we would like to assign lies between two integers, say i and
i + 1. In this case, we pick fk+1(xk+1) = i + 1

2 , then double all values assigned
by fk+1 to restore integrality.

We now turn our attention to the bound
∑

f(X) ≤ 1
6 (4n + 2). The con-

struction above gives the recurrence relation
∑

f(X0) = 0 and
∑

f(Xk+1) ≤
max (

∑
f(Xk) + 1, 4

∑
f(Xk)− 1), which solves to the required bound.

Note that, for any Y, Z ⊆ X, if
∑

Y ≤
∑

Z, the theorem gives us
∑

f(Y ) ≤∑
f(Z). Thus, as a corollary, if there is an envious run of a protocol that creates

at most n slices with real values, then there is an envious run with n slices with
non-negative integer values with total sum at most 1

6 (4n + 2). Conversely, if
there is an envious run with integer values, it is trivially an envious run with
real values; if we wish, we can divide by the sum of all slices to normalise the
values to the range [0, 1].

When we use integers to measure the value of a slice, according to a focused
agent, we call them focused agent crumbs or simply crumbs.

4.3 Embedding Crumbs in Declarative C

Crumbs is implemented as a C header file, to be included at the top of a C
program that describes a cake-cutting protocol using the supplied datatypes
and operations. Although protocols in Crumbs are written in an imperative
style as C programs, they are not intended to be compiled and executed. Rather,
through the use of verifier-level nondeterminism, assumptions and assertions, the
program specifies a constraint satisfaction problem, which can be solved using
the program model-checker CBMC. We refer to this style of C program, which
repurposes C as a constraint programming language, as declarative C.

Figure 3 shows the definition of some of the primitive operations and datatypes
used in Crumbs. Internally, the slice datatype is a C struct storing two points
l and r, representing the left-hand and right-hand ends of a slice of cake, as
distances from the left-hand end of the cake, measured in focused agent crumbs.
The datatype P is an unsigned integer used to represent a distance, weight or
value in crumbs.

The constant MAX RIGHT is the bound on the number of crumbs needed for
sound verification. The function cake() creates a new slice representing the
whole cake. As the value of the right end of the slice is uninitialised, CBMC will
treat it as a nondeterministic integer that can take any value within the range
of its datatype. The assumption (introduced by CPROVER assume) tells CBMC
that it need only consider values up to the bound.



10 M. M. Lester

// Maximum crumbs needed for this number of slices.

#define MAX_RIGHT (((1 << ((SLICES) * 2)) + 2) / 6)

// Type of a slice of cake.

struct slice {

P l; // Left end of slice.

P r; // Right end of slice.

};

typedef struct slice slice;

// Create a whole cake.

inline slice cake() {

slice s;

s.l = 0;

__CPROVER_assume(s.r <= MAX_RIGHT);

return s;

}

// In: left/right are new slice objects; whole is a slice

// Out: left and right are a division of whole

#define cut(left, right, whole)

// Pick a mid-point between the ends of the slice.

P mid;

__CPROVER_assume(whole.l <= mid && mid <= whole.r);

left.l = whole.l;

left.r = mid;

right.l = mid;

right.r = whole.r;

// Return value of a slice according to the focused agent.

P inline value(slice s) {

return s.r - s.l;

}

// Totals for each focused agent.

P totals[AGENTS] = {0};

// Return the total of agent X (lvalue).

#define total(X) totals[(X)-1]

Fig. 3. Definitions of low-level primitives in Crumbs. Some details have been elided for
readability.
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// According to agent a, is slice l smaller than r?

#define smaller(a, l, r) \

((a) == AGENT ? value(l) < value(r) : nondet_char())

// Cut a slice of cake in half.

// w is whole slice; l and r are new slice objects; a is agent cutting.

// Afterwards, l and r are slices.

#define halve(a, l, r, w) \

cut(l, r, w);

// If focused agent is cutting, he must think slices are same size.

__CPROVER_assume(((a) != AGENT) || (value(l) == value(r)));

// Trim slice s1 so it is same size as slice s2, according to agent a.

// Slice s1a is the same size as s2; s1b is the trimmings.

// Requires that agent a believes s1 is at least as big as s2.

#define trim(a, s1a, s1b, s1, s2)

assert(((a) != AGENT) || (value(s1) >= value(s2)));

cut(s1a, s1b, s1);

__CPROVER_assume(((a) != AGENT) || (value(s1a) == value(s2)));

// Allocate slice s to agent a.

#define alloc(a, s)

totals[a-1] += value(s);

// Check that the focused agent doesn't feel envious of anyone else.

void inline check() {

for (int n = 1; n <= AGENTS; n++) {

assert(total(n) <= total(AGENT));

}

}

Fig. 4. Definitions of higher-level operations in Crumbs. Some details have been elided
for readability.
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The operations described in the Section 3 are implemented using the following
lower-level operations:

cut(l, r, w) Cuts the slice w into 2 slices, which are assigned to l and r.
value(s) Returns the value of slice s for the currently focused agent.
total(a) The total value of all slices allocated to agent a, according to the

currently focused agent.

cut() merits some further explanation. Here we use verifier nondeterminism to
allow a slice to be cut anywhere. The assumption ensures that the cut must be
between the left and right ends of the slice.

Figure 4 shows the implementation of a representative sample of higher-level
operations. As explained earlier, we need only consider the valuation of a single
agent at any particular time. We call this agent the focused agent, represented
by the constant AGENT. A common pattern is that we implement operations
performed by other agents using nondeterminism. We can see this most simply
in smaller(): the focused agent does not know or care whether other agents
consider one slice to be smaller than another; his envy or lack thereof depends
only on his own valuations.

To have an agent halve() a slice, we cut it nondeterministically, then, if the
agent doing the cutting is focused, use an assumption to restrict the verifier to
considering only paths of execution in which the agent believes the two slices
are equal. The implementation of trim() is similar, but also uses an assert()

to check that the agent does believe that the slice to be trimmed is bigger than
the reference slice.

When slices are allocated to an agent, alloc() adds their value to a running
total. At the end of a protocol, check() asserts that the focused agent does not
believe any other agent has a bigger portion. If there is a path of execution that
violates this assertion, CBMC will flag it as a verification failure.

4.4 Verifying Other Safety Properties

There are some other safety properties that our implementation does not verify.
We do not verify whether all slices are allocated, or whether all slices are allocated
at most once. (The former intentionally does not hold in some protocols.) Nor
do we verify that the number of slices generated is at most SLICES. However,
these properties can also be verified relatively cheaply using CBMC, at least at
the level of accuracy comparable to a standard static analysis, by adjusting the
header file to provide different definitions of the cake-cutting operations, which
ignore the size of slices and instead track the number of slices.

Firstly, we need to check that slices cannot be copied, other than using
remember(). We can do this by turning slice into a C++ object with private
copy constructor and copy assignment operator, then type-checking the protocol
as a C++ program.

Next, to check that SLICES is big enough, we need to add a global variable
to track the number of slices created, which we increment on calls to cut() and
compare with SLICES in check().
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To check that no slice is allocated twice, we can augment slice() with a
flag indicating that a slice is “live”, set on creation by cake(), preserved on
child slices and cleared on parent slices slices by cut(), and cleared by calls to
alloc() and remember(). Then we can add an assertion to forbid alloc() on
a slice without the flag.

Finally, to check that all slices are allocated (if this is intended by the proto-
col), we can add a global variable to track the number of slices allocated, which
we increment on calls to alloc(), then modify check() to compare this with
the number actually created.

We do not explicitly verify that protocols necessarily terminate, and our
definition of envy-freeness permits non-terminating protocols. However, CBMC’s
translation to SAT will not terminate if it cannot statically bound the number
of iterations of a loop or the depth of recursive function calls, so implicitly it
does verify that protocols terminate.

5 Evaluation

We evaluated our implementation of Crumbs experimentally by benchmarking
verification of envy-freeness for the same protocols used by Bertram and others
in their presentation of Slice. As Crumbs does not support some of the low-level
primitives used in Slice, the Crumbs programs are necessarily different from
their Slice counterparts, but the high-level structure and sequence of operations
is similar.

All benchmarks were run on a machine running Debian GNU/Linux 12 with
an Intel i5-7500 CPU at 3.40 GHz and 64 GB RAM. As our backend verifier for
Crumbs, we used CBMC 5.83.0 with external SAT solver Kissat sc2022-bulky.
Code and scripts to reproduce our results are in the artifact [13] accompanying
this paper.

The results of our benchmarks are shown in Table 1. For most of the pro-
tocols, verification takes around a second for both Crumbs and Slice. The full
Selfridge-Conway protocol is somewhat more complicated than the others, and
here we see a meaningful difference. Crumbs is slower than Slice, but still roughly
comparable.

Table 1. Time taken to verify envy-freeness for cake-cutting protocols for 2–3 agents,
in both Crumbs and Slice. Crumbs verification times combine CBMC compilation and
Kissat solving; CBMC time was negligible.

Crumbs verification time (s) Slice verification time (s)

Protocol Agent 1 Agent 2 Agent 3 Total Compile Z3 Total
Cut-Choose 0.02 0.02 - 0.04 0.11 0.04 0.15
Surplus 0.03 0.06 - 0.09 1.14 0.04 1.18
Selfridge-Conway-Surplus 0.34 1.52 1.74 3.60 1.22 0.93 2.15
Selfridge-Conway-Full 9.84 20.38 22.83 53.05 1.20 21.71 22.91
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To demonstrate our claim that our approach is good for finding counterex-
amples to incorrect protocols, we deliberately introduced errors to each protocol.
Table 2 shows the time taken to find counterexamples to envy-freeness for the
dissatisfied agent with Crumbs. With Slice, Z3 did not terminate in less than
30 minutes on any of the examples we tried. Thus it is clear that our approach
performs better for disproving envy-freeness.

Verifying envy-freeness corresponds to showing that a SAT instance is un-
satisfiable, which is a co-NP problem. Conversely, finding a counterexample cor-
responds to showing that it is satisfiable, which is an NP problem. SAT solvers
are typically faster on satisfiable instances than on unsatisfiable instances of
comparable problems, which explains why our approach is fast for disproving
envy-freeness.

6 Related Work

The literature on fair division is broad. We surveyed some of the main results
in cake cutting in Section 1. For an overview, see Procaccia’s article [16]. For
a sample of the breadth of the field, see the two Dagstuhl seminars on the
topic [7,2].

Slice [5] verifies envy-freeness using an encoding in quantified non-linear real
arithmetic, which it solves using the SMT solver Z3 [15]. Decidability of this
theory was proved by Tarski using quantifier elimination. Most modern imple-
mentations use a variant of the algorithm Cylindrical Algebraic Decomposition
(CAD), but its time complexity is doubly exponential. The SMT solver SMT-
RAT [9] is specialised for solving problems involving real arithmetic and manages
to avoid the worst-case time complexity in many cases.

Although we reduced verification of envy-freeness to integer arithmetic, the
model of cake-cutting we adopted would also permit a reduction to Mixed Integer
Linear Programming (MILP), which may be faster in practice. Linear inequalities
over the reals can be solved using Fourier-Motzkin elimination. Although we
derived our bound on the size of integers required directly, it may also be possible
to find a bound through an analysis of Fourier-Motzkin elimination.

CBMC [8,11] is a bounded model-checker for C programs. It uses a variety of
program transformations, such as loop unrolling and function inlining, to bound

Table 2. Time taken to find counterexamples to envy-freeness for erroneous cake-
cutting protocols for 2–3 agents in Crumbs.

Protocol Agent Time (s) Description of error introduced

Cut-Allocate 2 0.02 Agent 1 cuts and chooses.
Cut-Choose 2 0.02 Slices allocated wrong way round in one branch.
Surplus 2 0.05 Unsafe trim of slice smaller than reference.
S-C-S (1) 2 0.13 Allocates trimmings of slice instead of trimmed slice.
S-C-S (2) 1 0.05 Agent 2 not forced to take trimmed slice if available.
S-C-F 1 0.07 Trimmings cut by agent who took trimmed slice.
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behaviour in programs and reduce program verification to SAT. Manthey [14]
illustrated how to use declarative C and CBMC to generate SAT instances cor-
responding to a puzzle game for the SAT Competition. Meanwhile, Lester used
this approach to build the constraint programming system CoPTIC [12] and
the XCSP3 constraint solver Exchequer [1]. Kissat is a leading SAT solver [6];
variants of Kissat dominated the SAT Competition 2022.

7 Conclusion

We have developed and presented the embedded DSL Crumbs for describing
cake-cutting protocols and verifying envy-freeness. Our verification procedure
uses a novel encoding of envy-freeness as a constraint satisfaction problem in
declarative C that requires only integer arithmetic. This enables us to imple-
ment it efficiently using the bounded model-checker for C programs CBMC,
which in turn translates the verification problem into a pure SAT instance. We
have evaluated Crumbs experimentally on a number of well-known protocols and
some erroneous versions of those protocols. Verification of correct protocols was
comparable in speed to the existing cake-cutting DSL Slice. For erroneous pro-
tocols, the verification procedure employed in Slice was too slow to be practical,
whereas our approach was very fast.

There are further safety properties that we could verify by extending our
implementation, but we leave that for future work. By combining our encoding
with ideas from syntax-guided synthesis, it would be possible to encode the prob-
lem of constructing an envy-free cake-cutting protocol with a bounded number
of slices as a QBF instance, although we do not expect this approach to be fast
enough to be practical. It may also be worthwhile to attempt an encoding of
envy-freeness as a MILP instance; we suspect this may be faster than both the
integer arithmetic used in Crumbs and the quantified real arithmetic used in
Slice.
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