
Learning a strategy for preference
elicitation in conversational recommender
systems
Conference or Workshop Item

Accepted Version

Makarova, A., Shahzad, M. ORCID: https://orcid.org/0009-
0002-9394-343X, Hong, X. ORCID: https://orcid.org/0000-
0002-6832-2298 and Lester, M. ORCID: https://orcid.org/0000-
0002-2323-1771 (2024) Learning a strategy for preference
elicitation in conversational recommender systems. In:
International Joint Conference on Neural Networks (IJCNN),
30 Jun - 5 Jul 2024, Yokohama, Japan. doi:
https://doi.org/10.1109/ijcnn60899.2024.10650365 Available at
https://centaur.reading.ac.uk/116044/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1109/ijcnn60899.2024.10650365

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

http://www.reading.ac.uk/centaur

Learning a Strategy for Preference Elicitation in
Conversational Recommender Systems

Aleksandra Makarova, Muhammad Shahzad, Xia Hong, Martin Lester
Department of Computer Science

University of Reading, UK

Abstract—This paper delves into the information elicitation as-
pect of Conversational Recommender Systems (CRS), presenting
an innovative method of selecting chatbot questions that result in
the highest information gain when reconstructing the preference
profile of a user, which allows one to achieve high-quality recom-
mendations after a small number of conversational interactions.
The proposed system comprises a Recommendation Module and
a Preference Elicitation Module. The Recommendation Module
leverages a Long Short-Term Memory (LSTM) network with
an Attention mechanism and is optimised to reconstruct the
preference profiles of new users based on limited information
gathered through dialogue. The Preference Elicitation Module
is trained using a reinforcement learning technique known as
bot-play, where the Questioner Bot proactively prompts the
Answerer Bot to provide item and attribute ratings, leveraging
the reduction in the Recommendation model’s loss as a reward
signal. This enables the model to learn an optimal questioning
strategy, thereby maximising the accuracy of the representation
of the user profile and the relevance of recommendations. The
experimental results demonstrate the ability of the Recommen-
dation component to learn item-attribute mappings, enabling the
Questioner Bot to make accurate rating predictions with only
a limited number of answered questions. Moreover, the trained
Preference Elicitation policy model consistently outperforms the
baseline model across both synthetic and real-world datasets,
showcasing its ability to minimise the number of conversational
turns required to achieve accurate recommendations.

Index Terms—conversational recommender systems, neural
recommender systems, bot-play, information elicitation

I. INTRODUCTION

Recommender Systems (RS) help users to choose among
a large number of potential options by presenting a nar-
row selection of those most likely to be relevant. In recent
decades, globalisation has enabled retailers to offer a vast
range of products to their customers. An abundance of options,
particularly combined with high choice complexity (e.g. the
number of distinguishing attributes is large), may lead to
user frustration and poor sales [1]. Traditionally, this problem
has been mitigated by human advisors. However, the widely
recognised ‘death of the high street’ trend, in which traditional
shops close and consumers shop online, creates the need for
online recommendation systems that are commercially viable,
scalable and automated.

In the last two decades this need has been addressed by
traditional RS, a family of algorithms designed to personalise
user experience and increasingly adopted by e-commerce busi-
nesses [2, 3]. RS present users with the most relevant options
by leveraging the user profiles and representations they main-

tain. User representations refer to the way the system models
or understands individual users based on their preferences,
behaviors, and interactions with the system. These representa-
tions typically include information about a user’s past choices,
likes, dislikes, and any other relevant data that helps the system
make recommendations tailored to that specific user. User
representations are essentially profiles or models that capture
a user’s characteristics and preferences, allowing the RS to
offer personalised recommendations. However, traditional RS
cannot replicate the experience of talking to a human advisor,
as they lack interactivity, which leads to such problems as
cold start, where existing data is not sufficient to compute a
recommendation, and taste drift, where a user’s requirements
change over time, and recommendations computed based on
historical data become irrelevant.

Intelligent conversational systems have high potential in
commercial settings. A combination of RS with intelligent
conversational algorithms has resulted in the emergence of
the Conversational Recommender Systems (CRS), a subset
of RS that are interactive. CRS build upon traditional of-
fline algorithms by introducing interactivity, which results
in a capability for active human-in-the-loop learning. CRS
allow users to communicate their preferences, then utilise
this information to update user representations in real time.
CRS can identify gaps in user representations and proactively
request information from users to compute more appropriate
recommendations. This closely mimics a conversation between
two humans, particularly where natural language is used as an
interface. This property makes CRS a perfect use case for
applying a range of reinforcement learning (RL) techniques
for a number of reasons.

Firstly, CRS involve continuous interaction with an external
environment (a user), which ensures that rewards can be easily
operationalised and fed back to the CRS algorithm in real
time. This frees reinforcement learning driven CRS from rigid
assumptions that characterise systems driven by handcrafted
rules [4] or trained using supervised learning only [5]. For
example, various collaborative filtering and predictive algo-
rithms assume that a certain dialogue flow is optimal for all
users, or that recommendations should mimic behaviour that
users exhibit naturally. Instead, the system behaviour can be
tailored to directly optimise performance metrics meaningful
in real world settings, such as dialogue success rate [6, 7],
including business performance indicators like conversion and
user satisfaction [4].

Secondly, reinforcement learning allows CRS to overcome
such critical problems as cold start or user taste drift [6]
by leveraging active exploration techniques, converging to an
optimal set of recommendations over the course of the conver-
sation with a user. For instance, when a user provides negative
feedback regarding an item or an attribute, the CRS can update
its rating of all related items and attributes, avoiding further
exploration of the same space [7]. Even in complete absence
of any a priori information, reinforcement learning systems
can efficiently elicit user preferences and produce relevant
recommendations in just a few conversational turns [8].

Thirdly, reinforcement learning techniques can be totally
data driven, which makes them easily transferable to new
application scenarios. In contrast, non-adaptive systems can
exhibit unreliable and wildly different performance on new
datasets [7].

Previous work. Lately, a novel RL approach for training
CRS, known as bot-play, has been gaining attention. In bot-
play both parties of the dialogue, Seeker and Recommender,
are models capable of improving over the course of cooper-
ative training [9, 10]. Bot-play is an RL protocol where two
(or more) models are trained concurrently, with outputs of one
model serving as inputs to the other model and vice versa.
In the case of CRS, bot-play is cooperative (in contrast to
adversarial learning), so the same reward is commonly shared
between the two models. There are several attempts to apply
bot-play to CRS domain described in the literature [9, 10].

Li et al. [10] introduces a model based on conversational cri-
tiquing approach, implemented using an interactive user inter-
face. The proposed model consists of three main components:
a recommender model for item ranking, a justification module
for predicting rationales (mined form user reviews) behind
recommendations, and an interactive critiquing function that
allows users to modify rationales and influence future rec-
ommendations. This enables users to refine their preferences,
creating a dynamic and adaptable recommendation system.
The model is trained through self-supervised bot-play, where
the authors employ a rule-based recommendation seeker and
a pre-trained expert model that includes recommendation and
justification modules. Expert and seeker models are allowed to
converse, with the goal of recommending the goal item, which
enables expert model fine-tuning.

Kang et al. [9] describes a natural language-based CRS pre-
trained on the GoRecDial dataset, which consists of dialogues
produced by a goal-driven game data collection protocol,
where Amazon Mechanical Turk workers earned points for
making appropriate movie recommendations. The algorithm
is trained to rank a set of five items rather than retrieve
a recommendation from a large set of options. The authors
recognise that this is a notable limitation of the algorithm,
as it does not scale and cannot be used in a real world
scenario. Additionally, the algorithm does not have a separate
recommender module, and learns target movies directly from
conversational data, which has a limited number of movie
mentions. In a real-world system, having a separate pre-trained
recommender component is highly beneficial (e.g., [5]).

None of the above papers focus on the capability of CRS
to proactively glean preference information from users. In
contrast, beyond the domain of CRS, cooperative bot-play
has been applied by Das et al. [11] in order to optimise a
conversational agent specifically for information elicitation.
They proposed an algorithm which is trained on a natural
dataset that is centered around the task of accurately describing
an image to a ‘blind’ conversational agent and fine-tuned using
bot-play. The algorithm consists of QBot and ABot agents.
The ABot has access to the image, while the QBot does
not. The reward is given to both agents and is defined as a
function of accuracy of the internal representation of the image
generated by the QBot bot. This game setup incentivises QBot
to generate questions that are most efficient at reducing uncer-
tainty, and ABot to provide accurate answers to the questions.
We believe that any CRS should use its interactivity to elicit
information from users in a way that allows it to optimise
recommendations in a way that increases their relevance. The
aim of this paper is to devise an efficient strategy for extracting
valuable information from users within the vast and diverse
realm of potential item features. To achieve this, we propose a
novel CRS algorithm that harnesses its interactive capabilities
to optimise recommendation relevance, aiding users in making
good selections.

The key components of the proposed system are the Ques-
tioner bot (QBot), Answerer bot (ABot), recommendation net-
work, and policy network. QBot proactively elicits preference
information from ABot and updates its internal representation
of the ABot’s ratings. ABot retrieves the item and attribute
preferences from the user’s history in response to QBot’s
questions. The attention-based recommendation network pre-
dicts item ratings based on observed preferences, and the
policy network guides QBot’s behaviour. The collaborative
data matrix enriched with item attribute data is used to pre-
train the recommendation component, and the change in the
recommendation model loss in QBot’s internal representation
is used as a reward to train the policy model.

Contributions. First, a novel algorithm is proposed that
directly addresses the need to develop an efficient active
learning strategy for a conversational recommendation system,
a problem that does not pertain to classical, non-interactive
recommenders. This paper describes the first attempt to apply
bot-play as choice of a training approach in order to optimise
the quality of recommendations in CRS by effectively eliciting
user preference information during dialogue. Experimental
results that are based on both simplified synthetic and natural
datasets showcase the ability of the system to reduce the
number of conversational turns required to achieve accurate
recommendations compared to the baseline. The proposed ap-
proach can be applied on top of supervised pre-training of the
encoder-decoder model, which can result in a conversational
system that has high practical value in the real world.

Second, a novel recommendation component architecture
is proposed that represents a user through their preference
history, and so can fully support a cold start scenario at the
beginning of a dialogue with a new user. Furthermore, this

Fig. 1. Proposed bot-play driven Conversational Recommender System architecture. QBot elicits preference information from ABot by asking a question
about a movie or an attribute, inputs ABot’s answers into its recommender module and updates preference predictions. Change in quality of these predictions,
defined as recommender loss, is fed to QBot’s policy network as a reward, which allows it to learn the best questioning strategy.

algorithm has a useful property of showing a consistent and
steady output accuracy improvement as new item-rating inputs
are added to the model, which allows use of the model as the
source of reward in the bot-play scenario. Results show that the
recommendation component can successfully learn mappings
between items and attributes, which allows the CRS to make
accurate rating predictions based on a limited set of answered
questions.

II. LEARNING PREFERENCE ELICITATION THROUGH
BOT-PLAY

A. System Overview

We now present our novel self-supervised bot-play approach
to CRS. This approach allows us to directly optimise QBot
agent behaviour for eliciting valuable information efficiently
and providing relevant recommendations. Two bots, QBot and
ABot, converse with each other about ABot’s preferences with
the goal of generating accurate recommendations as early
as possible in the conversation. The key components of the
system include (see Figure 1):

1) QBot, whose goal is to proactively elicit preference in-
formation from ABot by asking about item and attribute
preferences in order to maximise recommendation qual-
ity;

2) ABot, which acts deterministically by retrieving the
item and attribute preferences from the user’s history
in response to QBot’s question;

3) Recommendation network φ, which predicts item ratings
based on the observed preferences of ABot; and

4) Policy network π, which guides the behaviour of QBot
and is optimised stochastically using the ε-greedy RE-
INFORCE algorithm in the process of bot-play and is
rewarded for providing good quality recommendations,

defined as decrease in loss of the recommendation
network φ.

A collaborative data matrix filled with ratings is made
available to the QBot in order to pre-train the Recommendation
component. A vector of ratings for an additional user (not
included in the matrix) is visible only to the ABot.

ABot’s action set is comprised of possible questions, in-
cluding item titles and attribute names. A recent study of
natural human conversations about item preferences revealed
that besides sharing a couple of examples of items that they
liked or disliked, humans rely heavily on generalisations and
descriptions of item attributes [12]. Furthermore, eliciting
information about individual item titles can be extremely
inefficient, considering that most users may not interact with
the majority of items. For instance, the MovieLens dataset [13]
includes 9066 distinct movies, while a median user in that
dataset has only rated for 71 movies, which constitutes a mere
0.8%. Therefore, it is crucial to extend the framework in order
to introduce item attributes alongside the item IDs into all
of the individual system components to enable QBot to elicit
preference information efficiently.

During the dialogue, QBot requests information about spe-
cific item titles and attributes from the ABot’s ‘history’ (vector
of item ratings), and ABot responds with a rating. Following
that, QBot updates its internal representation of the ABot’s
ratings for all movies based on the conversation history and
collaborative data matrix. The change in the recommendation
model loss in QBot’s internal representation is used as a
reward to train the QBot’s Policy model.

This approach is inspired by the bot-play training protocol
developed by Das et al. [11] for an image guessing game.
To allow us to apply this approach to the recommendation
scenario, we have replaced: (1) the image — with a represen-
tation of user-item ratings; (2) the regression network — with a

recommendation module; and (3) reward — with a metric that
reflects the improvement in usefulness of the recommendation.

B. Recommendation Module
We propose a novel architecture for a recommender module

that utilizes an item-to-item approach in order to predict item
ratings. This approach enables the module to make predictions
for new users whose user ID was not previously observed
and included in the model training data. A Long Short-Term
Memory (LSTM) network with an attention mechanism is used
to predict, for a user u, the full vector of user’s ratings vu, for
k movies from a shuffled partially observed history of ratings
su. The attention mechanism allows the network to learn the
relationships between inputs and outputs directly based on
embedded indexes of items and independently of the order
of inputs (which can be arbitrary).

The recommendation network φ is parameterised by Θrec .
At each timestep t, it receives an item index at ∈ A, where A
is the set of item titles, and a rating va. The rating va is one-
hot encoded and can belong to one of the three categories that
capture a combination of implicit and explicit ratings: (a) liked,
(b) disliked, (c) not rated. It embeds the index (embeddings
are learned in the process of optimisation), concatenates the
embedding with the rating and passes the resulting vector to
an LSTM unit, which learns an encoded representation of a
user’s history. At each timestep, this representation is decoded
by passing the LSTM hidden state through two dense hidden
layers. The encoded state is connected to decoder outputs
with the attention mechanism. Outputs of the decoder and the
attention layer are concatenated and passed through the final
dense layer with a sigmoid nonlinearity function.

The network is trained through backpropagation using the
Adam optimisation algorithm to minimise cross-entropy (CE)
loss minL(Θrec) for each timestep t:

L(Θrec)t = −E[vu⊗log(φ(su,t))−(1−vu)⊗log(1−φ(su,t)],
(1)

where φ(su,t) is the output of the recommendation neural
network for a given user’s state su,t, which in turn is defined
as the history of ratings of a user u at timestep t and consists
of concatenated item indexes and ratings st = (at, va). log
denotes vectorized logarithm. The full set of item ratings vu,
drawn from all users’ histories, serves as ground truth for the
model. Items that do not have a rating in a data set for a given
user are masked during the calculation of CE loss.

The recommendation network is trained separately on the
full user history. Its hidden layers serve as a bottleneck that
forces the network to learn to predict ratings of unobserved
items based on correlated observed items. Therefore, a new
observation of an item-rating pair reduces the loss most when
it is uncorrelated with previous observations and information
gain is maximised.

During dialogue, at each dialogue timestep t, predictions
of the pre-trained recommendation network are calculated
based on the inputs collected through dialogue. The between-
timestep difference in loss of the recommendation network

∆L serves as a reward observed by the policy network π, as
a decrease in recommendation loss L indicates improvement
in quality of predictions.

rt = ∆L = Lt−1 − Lt (2)

C. Information Elicitation Module

We extend the approach of the VisDial framework intro-
duced by [11] to conversational recommenders by training the
policy network through goal-driven self-supervised bot-play.
First, a recommendation module is trained, which serves the
same purpose as a feature regression network in VisDial. The
between-timestep difference in loss of the recommendation
network is viewed as a proxy for information gain and is
ultimately used to calculate the reward observed by the policy
network π.

Next, the policy network π parameterised by Θpolicy is
optimised stochastically using the REINFORCE algorithm
during bot-play. The policy network guides the behaviour of
QBot, while ABot acts deterministically. The policy network is
a feedforward neural net, which receives the following inputs:

1) item ratings known before the current timestep, which
represent the state st−1;

2) index of the item that the QBot asked about at.
The model is optimised using the observed reward rt, op-

erationalised as the reduction of the recommendation network
loss ∆L compared with the previous conversational turn (see
Equation 3). The policy network learns to predict distribution
over items that QBot asks about (QBot’s action space A, which
can also be seen as its vocabulary) through maximising the
REINFORCE value function: max J(Θpolicy), where

J(Θpolicy) = E[log π(at|st−1)rt] (3)

The REINFORCE algorithm maximises the product of the
log-likelihood of the selected action at and the reward rt,
thus pushing up the probabilities of the actions associated with
the highest expected rewards. Therefore, the policy network
π(at, rt, st−1) learns to assign higher probabilities to those
item indexes whose ratings, if obtained, will be associated
with higher information gain.

The optimisation is done stochastically through bot-play
using an ε-greedy algorithm [14]. The bot-play itself is im-
plemented using the ParlAI framework for training dialogue
models [15]. Firstly, the vector of the user’s item ratings vu is
transformed in accordance with the agent’s vocabulary. ABot’s
vocabulary consists of three phrases (‘liked’, ‘disliked’ and
‘haven’t seen’), while QBot’s vocabulary consists of the list
of available item titles A. At the initialisation of the dialogue,
ABot observes a rating history of a random user vu (drawn
from the dataset). QBot is blinded to this information. At
each conversational turn, QBot utters an item title aut, drawn
from the set of item titles according to the policy network
π(at|st−1). The ABot observes the question and utters the
rating of the item vut deterministically, based on the user’s
history vu. The QBot observes its own utterance, as well

as the response of the ABot, and appends the information
to its internal representation of ABot’s rating history st−1.
Following that, the recommendation network φ is used to
compute the loss L(st), given the observed history of ratings.
The pseudocode is provided in Algorithm 1.

Algorithm 1 Bot-Play Training Procedure
Require: user u, items A, ratings vu, number of conversa-

tional rounds T , exploration probability ε, recommenda-
tion function φ

Ensure: policy network π parameters Θpolicy are optimised

1: Randomly initialise policy network π parameters Θpolicy

2: for t = 1, 2, . . . , T do
3: generate probability distribution over actions
p(A|st−1) = π(st−1)

4: if ε > uniformRandom(0,1) then
5: question at = randomChoice(A)
6: else
7: question at = randomChoice(A, p(A|st−1))
8: end if
9: QBot utters at

10: ABot observes at
11: ABot utters rating va
12: QBot observes (at, va) and updates state st = st−1 ∪

(at, va)
13: compute predicted ratings v̂t = φ(st)
14: compute CE loss

Lt = −
∑k

j=1[vj log(v̂tj)− (1−vj) log(1− v̂tj)]
15: compute reward rt = Lt−1 − Lt

16: compute REINFORCE value functions Jt =
E[log π(at|st−1)rt]

17: update Θpolicy t = Θpolicy t−1 −∇ log π(at|st−1)rt
18: end for
19: return Θpolicy

III. EXPERIMENTS

A. Datasets

The first dataset is generated artificially with the goal of
making the development, debugging and evaluation of the
algorithm as transparent as possible. The dataset consists of
Boolean values that represent item ratings assigned by n users
to k movies. The matrix is complete, meaning that all users
have ratings for all items. Perfect collinearity is introduced in
this dataset in order to evaluate the ability of the algorithm
to select items that maximise information gain. Specifically,
the item set consists of k/2 independent clusters, containing
two perfectly correlated items each. Thus, if the conversational
agent observes the rating of one of the items in a cluster, asking
about the second item would not allow it to further improve
the accuracy of its internal representation of the user’s tastes.

The second dataset follows a similar format, however, it
is generated based on real user ratings. In order to emulate
a realistic and human-like information exchange between the

ABot and the QBot, it has been enriched with item attributes.
Firstly, the MovieLens dataset [13] was used as a source of
collaborative data. The number of distinct movies was limited
to the 100 most frequently rated titles, and the number of users
was limited to those who had at least a quarter of ratings
available (37,139 users in total). Secondly, the dataset was
enriched with several movie attribute categories: genre, cast
& crew and plot keywords. The movie metadata was obtained
from Kaggle.com and is based on the TMDB and GroupLens
datasets.

The cast & crew feature space was constrained to contain
only the most well-known actors (top 50) and movie directors
(top 50) in order to reduce the dimensionality of the input
feature matrix. Cast & crew popularity pi was not directly
available in the dataset and was approximated, for each movie
that the cast member appeared in j = 1, 2, . . . , k, by dividing
movie vote count cj (as a proxy for movie popularity) by the
cast member’s order of appearance in the credits oji (as a
proxy for their importance to the success of the movie j) and
summing over the movies M .

pi =

k∑
j=1

cj
(oji + 1)

(4)

It has been shown that in natural unscripted human con-
versations, users do not just rely on easily available movie
metadata (e.g., year, genre); rather, they often use less well
defined properties such as story, plot, characters, acting and
attributes like violence [12]. To address this gap, a set of
common keywords mined from movie plots has been added
to the dataset.

B. Recommender Component Performance

1) Recommender Component Evaluation: Good perfor-
mance of the recommendation network is a prerequisite of
successful training of QBot’s policy network. The recommen-
dation network is trained to predict the full set of ratings
based on the partial set. Therefore, at the last timestep of
the recurrent network, it is expected to have approximately
zero cross-entropy recommendation network loss ∆L, which
would confirm that the network has learned to correctly map
inputs to outputs based on movie indexes and that intermediate
bottleneck layers do not result in information loss. Indeed, the
model trained on MovieLens dataset achieves loss of 0.07, as
can be seen in Figure 2.

Furthermore, loss ∆L would be expected to decrease as
a function of the number of inputs, as more and more of a
user’s history is revealed through conversation. Looking at the
curves shown in Figure 2, it can be seen that at each timestep
entropy is reduced. However, information gain gradually slows
down as a function of number of timesteps, which suggests
that the model can successfully learn to extrapolate from the
incomplete available data. This observation is confirmed by
the fact that the model can successfully predict ratings of
movies that have not been passed as model inputs. Figure 2(b)
shows that prediction accuracy consistently improves with the

Fig. 2. Recommendation network evaluation. Plot shows recommendation network loss ∆L and predicted rating accuracy by number of movie-rating
inputs given to the model. These metrics consistently improve with every input, whether some of the output items have been passed to the model as inputs
or not.

increase in the number of inputs where sets of input and output
movies do not overlap, improving average prediction accuracy
from the baseline 0.6 to 0.8.

Fig. 3. Recommendation network loss ∆L as a function of entropy in input
data. Plot shows recommendation model achieves lowest loss when inputs are
representative of all preference clusters.

2) Relationships between Item Correlations and Recom-
mender Loss.: To sense check the model, it can be observed
how the recommendation model behaves in the scenario when
some movies are perfectly correlated. Perfect collinearity has
been introduced in the synthetic dataset. The dataset contains
five clusters, each consisting of two perfectly correlated rating
vectors. Figure 3 compares loss ∆L in three scenarios: (1)
when the full user’s history is observed, (2) when half of the
movies are observed, each drawn from a separate cluster, and
(3) when half of the movies are observed, but the movies
are drawn at random. It can be seen that the second scenario
results in near perfect loss (0.02), which is similar to the
first scenario, which suggests that the model has successfully
learned to recreate the full information from a partially ob-
served history. In contrast to that, the third scenario, where
information is incomplete, results in high loss, as expected.

The natural dataset drawn from MovieLens does not have
perfectly correlated movies, however, it does have a distinct
rating cluster formed by different episodes of “Star Wars” (see
Figure 4). Figure 5 shows that the loss is considerably lower
when predicting the rating given to “Episode IV” if either
“Episode V” or “Episode VI” are observed, compared to loss
of the rating prediction based on other movies in the dataset.

3) Evaluation of Attribute Enriched Recommendations.:
Previous research has shown that movie attributes play a

Fig. 4. Pairwise Pearson’s correlation coefficients between pairs of rating
vectors corresponding to movies drawn from the MovieLens dataset. Plot
shows that distinct preference clusters occur in natural datasets.

Fig. 5. Pairwise Pearson’s correlation coefficients between pairs of rating
vectors corresponding to movies drawn from the MovieLens dataset. The plot
shows that inputs that are highly correlated with outputs lead to accurate rating
predictions.

significant role in natural conversations surrounding films. To

enable QBot and ABot to use this in their interactions, the
dataset has been enriched with attribute ratings, including
actor, director and genre, which were derived from movie
ratings. The graph in Figure 6 illustrates the model’s perfor-
mance in predicting movie ratings solely based on attribute
ratings. As demonstrated, the model has effectively learned
the relationships between attributes and items, and leverages
this information to make predictions, albeit with slightly lower
accuracy than item-to-item predictions.

Fig. 6. Attribute enriched recommendation. Plot shows recommendation
network loss ∆L and predicted rating accuracy by number of attribute-rating
inputs given to the model. The model improves item rating predictions with
each attribute input.

In order to verify the meaningfulness of model mappings be-
tween attributes and individual movies, the ratings of attributes
have been manipulated and resulting changes in predictions
have been measured, which allows identification of the most
affected items. Observe that, where the only known attribute
of a movie is that it features the actor Russel Crowe, positive
ratings of the actor improve predicted ratings for other movies
in which he stars, such as “A Beautiful Mind,” “Gladiator,” and
“L.A. Confidential,” which aligns with the expected outcomes
(see Table I).

TABLE I
TOP 10 IMPROVED MOVIE RATINGS WHEN ATTRIBUTE ”RUSSELL CROWE”

WAS MANIPULATED

Title Rating Difference

“The Silence of the Lambs” +1.00
“Apollo 13” +0.94
“The Princess Bride” +0.94
“The Godfather” +0.92
“The Mask” +0.92
“A Beautiful Mind” +0.91
“Gladiator” +0.89
“Jurassic Park” +0.88
“Clear and Present Danger” +0.83
“L.A. Confidential” +0.82

C. Policy Network Performance

We constructed QBot to learn an effective questioning
strategy that would allow it to uncover as much information
as possible about the user in the smallest possible number
of conversational turns. Therefore, it is expected that the
policy network will learn which questions would be the most
impactful given the current state (already observed history), so

as to minimise the loss of the recommendation network ∆L
at each conversational turn.

As seen in Figure 7(a), on a synthetic dataset, on average,
the policy network has learned to recreate the full vector of
user’s rating in five conversation turns, which corresponds
to five uncorrelated movie clusters. In contrast, a random
policy does not consistently achieve zero loss even in 10
conversational turns.

On the MovieLens-based dataset (Figure 7(b)), the policy
network has learned to significantly reduce loss in the initial
conversational turns by asking questions that are most predic-
tive of the full rating vector. However, in contrast with the
synthetic dataset, this effect diminishes over conversational
turns, which is likely related to the fact that correlations
between individual items in the MovieLens based dataset are
much weaker than in the synthetic dataset (see Figure 5) and
it is not possible to accurately recreate the full set of user’s
ratings from a small subset of ratings.

IV. CONCLUSIONS

To summarise, a novel CRS system design has been
introduced based on a goal-driven self-supervised bot-play
approach. A neural recommender module architecture has
been proposed that is optimised for cold-start dialogue and
for training a policy-based Information Elicitation module to
select questions that result in lower recommendation loss.
Item attributes are introduced into all of the individual system
components alongside item IDs.

The recommendation component learns mappings between
items and attributes, which allows the QBot to make accurate
rating predictions from a limited set of answered questions.
On both synthetic and real world datasets, the trained policy
model is more efficient at recreating user preferences than the
random baseline. On the synthetic dataset, the learned policy
minimised the recommendation model’s error in the smallest
theoretically possible number of conversational turns. On the
MovieLens-based dataset, the policy network learned to reduce
loss significantly compared to the baseline, although the effect
is less pronounced due to weaker item intercorrelations.

The most significant contribution of our work is the pro-
posed algorithm that directly addresses the need to develop an
efficient active learning strategy for a conversational recom-
mendation system, a problem that does not pertain to classical
non-interactive recommenders.

The described architecture can be extended to encompass
multimodal information obtained from users in natural lan-
guage by connecting it to a Large Language Model (LLM)
based interface. This would enable development of a highly
flexible system that would be able to ‘understand’ and elicit
a wide spectrum of information from users. It is important to
note that the current approach focuses on the accuracy of the
representation of user’s tastes. In future work, it is important
to consider the novelty aspect of the recommendation — in a
real world scenario it is important to train the agent to discover
items that the user has not consumed before.

Fig. 7. Information Elicitation module evaluation. Plot shows recommendation network loss ∆L by number of conversational turns for random policy and
policy trained through bot-play. Policy network has successfully learned which preference questions lead to improvement in prediction accuracy earlier in a
dialogue.

REFERENCES

[1] R. Greifeneder, B. Scheibehenne, and N. Kleber, “Less
may be more when choosing is difficult: Choice com-
plexity and too much choice,” Acta psychologica, vol.
133, no. 1, pp. 45–50, 2010.

[2] A. A. Chandrashekara, R. K. M. Talluri, S. S. Sivarathri,
R. Mitra, P. Calyam, K. Kee, and S. Nair, “Fuzzy-based
conversational recommender for data-intensive science
gateway applications,” in 2018 IEEE International Con-
ference on Big Data (Big Data). IEEE, 2018, pp. 4870–
4875.

[3] P. Kucherbaev, A. Psyllidis, and A. Bozzon, “Chatbots as
conversational recommender systems in urban contexts,”
in Proceedings of the International Workshop on Recom-
mender Systems for Citizens, 2017, pp. 1–2.

[4] T. Mahmood, F. Ricci, and A. Venturini, “Learning
adaptive recommendation strategies for online travel
planning,” Information and Communication Technologies
in Tourism 2009, pp. 149–160, 2009.

[5] R. Li, S. Ebrahimi Kahou, H. Schulz, V. Michalski,
L. Charlin, and C. Pal, “Towards deep conversational
recommendations,” Advances in neural information pro-
cessing systems, vol. 31, 2018.

[6] I. Vendrov, T. Lu, Q. Huang, and C. Boutilier, “Gradient-
based optimization for bayesian preference elicitation,”
in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 06, 2020, pp. 10 292–10 301.

[7] S. Li, W. Lei, Q. Wu, X. He, P. Jiang, and T.-S.
Chua, “Seamlessly unifying attributes and items: Con-
versational recommendation for cold-start users,” ACM
Transactions on Information Systems (TOIS), vol. 39,

[9] D. Kang, A. Balakrishnan, P. Shah, P. Crook, Y.-L.

no. 4, pp. 1–29, 2021.
[8] K. Christakopoulou, F. Radlinski, and K. Hofmann, “To-

wards conversational recommender systems,” in Proceed-
ings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, 2016, pp. 815–
824.
Boureau, and J. Weston, “Recommendation as a commu-
nication game: Self-supervised bot-play for goal-oriented
dialogue,” arXiv preprint arXiv:1909.03922, 2019.

[10] S. Li, B. P. Majumder, and J. McAuley, “Self-supervised
bot play for transcript-free conversational recommenda-
tion with rationales,” in Proceedings of the 16th ACM
Conference on Recommender Systems, 2022, pp. 327–
337.

[11] A. Das, S. Kottur, J. M. Moura, S. Lee, and D. Batra,
“Learning cooperative visual dialog agents with deep
reinforcement learning,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp.
2951–2960.

[12] F. Radlinski, K. Balog, B. Byrne, and K. Krishnamoorthi,
“Coached conversational preference elicitation: A case
study in understanding movie preferences,” in SIGDIAL
Conferences, 2019.

[13] F. M. Harper and J. A. Konstan, “The movielens datasets:
History and context,” Acm transactions on interactive
intelligent systems (tiis), vol. 5, no. 4, pp. 1–19, 2015.

[14] R. S. Sutton and A. G. Barto, Reinforcement learning:
An introduction. MIT press, 2018.

[15] A. H. Miller, W. Feng, A. Fisch, J. Lu, D. Batra, A. Bor-
des, D. Parikh, and J. Weston, “Parlai: A dialog research
software platform,” arXiv preprint arXiv:1705.06476,
2017.

