
i

Multivariate and Multi-Task Deep Learning

Architectures for Improved Stock Market

Prediction and Risk Management

Osama Assaf

Department of Computer Science

University of Reading

This dissertation is submitted for the degree of Doctor of Philosophy

September 2023

ii

Declaration

I hereby declare that the work presented in this thesis has not been submitted for any other

degree or professional qualification and that it is the result of my own independent work.

Osama Assaf

Signed

01/09/2023

Date

iii

Abstract

Effective investment requires adeptly managing trading activities that can adapt to diverse

market changes and risks. Key stock market metrics such as volatility, daily returns, and trading

volumes play a crucial role in numerous pricing models and trading strategies, including risk

management. However, existing tools used to predict these metrics have shown limitations, as

evident from recent financial crises. As a result, researchers are examining new methods that

leverage machine learning and artificial intelligence to address these weaknesses.

This research makes a significant contribution to the existing body of work on using Deep

Learning (DL) for predicting stock market metrics. Different multivariate and multitasking DL

architectures are introduced to enhance the prediction accuracy for various future prediction

time horizons and different market conditions. For comparison and benchmarking, the models

have been assessed against traditional statistical methods and commonly used DL networks.

The results validate the effectiveness of deep learning models in modelling stock market

volatility, demonstrating their predictive capability in both upward and downward market

conditions across short and long datasets. Furthermore, the study illustrates that deploying

multivariate deep learning enhances stock market volatility prediction compared to single-input

models. This improvement arises from the utilisation of positively correlated input data and

larger datasets, enabling the models to extract crucial information during training and thereby

enhancing prediction accuracy.

The deployment of various multi-task deep learning models with shared input layers resulted

in significant enhancements in predicting stock market volatility, daily returns, and trading

volumes. This improvement stems from the optimisation of the loss function across all output

tasks simultaneously. Determining the optimal combination of weights and inputs required an

initial step of assigning equal weights to two inputs, followed by an iterative testing process.

This iterative testing included the adjustment of the number of inputs and the allocation of

weights. The multi-task models demonstrated superior performance relative to both statistical

models and single-task deep learning models, including those with multivariate input.

Keywords: Stock Market, Deep Learning, Long Short-Term Memory, Volatility, Returns,

Trading Volume, GARCH, ARIMA, Multi-Task Learning, Loss Function

iv

List of Acronyms

AI Artificial Intelligence

API Application Programable Interface

ARIMA Autoregressive Integrated Moving Average

DL Deep Learning

GARCH Generalised Auto Regressive Conditional Heteroskedasticity

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

MSE Mean Squared Error

MTDL Multi-Task Deep Learning

RMSE Root Mean Squared Error

RMSProp Root Mean Square Propagation

RNN Recurrent Neural Network

STDL Single Task Deep Learning

VaR Value at Risk

v

Publications

Published Papers

 Assaf, O., Di Fatta, G., & Nicosia, G. (2022). Multivariate LSTM for Stock Market Volatility

Prediction. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 13164 LNCS, 531–544.

https://doi.org/10.1007/978-3-030-95470-3_40/COVER

Submitted Papers

Multi-Task Deep Learning for Stock market Performance Monitoring and Risk Assessment.

Assaf, O., Di Fatta, G., Nicosia, G. (Engineering Applications of Artificial Intelligence journal,

Submitted in Sep 2023)

Papers in Progress

A comprehensive study of Deep Learning Networks for Forecasting Stock market Volatility.

Assaf, O., Di Fatta, G., Nicosia, G. (ICMLC conference, Feb 2024).

https://www.sciencedirect.com/journal/engineering-applications-of-artificial-intelligence
http://icmlc.org/topic.html

vi

Acknowledgements

In acknowledgment of the support and encouragement I have received throughout my Ph.D.

journey, I extend my heartfelt gratitude to:

My beloved wife, Fidaa, for her unwavering patience, understanding, and endless support

during this challenging yet rewarding endeavour. Your presence has been my anchor, and your

belief in me has been my driving force.

My mother, Zuhriyyah, for her boundless love, sacrifices, and unwavering belief in my

abilities. Your strength and guidance have shaped me into the person I am today.

My esteemed supervisor, Prof. Giuseppe Di Fatta, for your invaluable guidance, mentorship,

and scholarly wisdom. Your expertise and dedication have been instrumental in shaping the

course of my research and academic growth.

I also extend my sincere gratitude to my children, Jana, Zaineddin, and Juri, for their

unwavering support and patience.

Lastly, I want to express my heartfelt gratitude to my employers at Bank of America for

providing me with this invaluable opportunity and for their support throughout my Ph.D.

journey.

vii

Table of contents

Declaration... ii

Abstract ... iii

List of Acronyms .. iv

Publications ... v

Acknowledgements .. vi

Table of contents ... vii

List of figures .. xi

List of tables.. xiii

List of equations .. 15

List of algorithms .. 16

Chapter 1 Introduction... 17

1.1 Problem Statement .. 19

1.2 Research Aims and Objectives .. 19

1.3 Challenges ... 21

1.4 Dissertation Contribution .. 21

1.5 Dissertation Outline... 22

Chapter 2 Stock Market and Risk Management ... 25

2.1 Stock Market ... 26

2.2 Portfolio Management ... 28

2.2.1 Sharpe Ratio ... 29

2.2.2 Treynor Measure .. 29

2.2.3 Jensen Measure (Jensen Alpha) ... 30

2.3 Risk Management .. 31

2.3.1 Portfolio Risk ... 32

2.3.2 Value at Risk (VaR) ... 33

viii

2.4 Volatility.. 34

2.4.1 Historical Volatility ... 34

2.4.2 Implied Volatility ... 36

2.4.3 Beta (β) .. 37

2.4.4 Volatility and Options Pricing ... 38

2.5 Daily Returns... 39

2.6 Trading Volume .. 41

2.7 Statistical Models .. 42

2.7.1 GARCH for Volatility Modelling .. 43

2.7.2 ARIMA for Time Series Modelling ... 44

2.8 Conclusion ... 45

Chapter 3 Deep Learning Networks, Loss Function, and Multitasking 46

3.1 LSTM Deep Learning Network .. 48

3.2 GRU Deep Learning Network .. 54

3.3 Loss Function .. 57

3.4 Gradient Descent ... 59

3.5 Multi-Task Learning ... 64

3.6 Training and Optimization .. 67

3.7 Limitations and Future Directions... 69

3.8 Conclusions ... 70

Chapter 4 Deep Learning Applications to Stock Market Analysis 72

4.1 Deep Learning for Stock Market Prediction ... 73

4.2 Multi-Task Deep Learning for Stock Market .. 74

4.3 Conclusions ... 76

Chapter 5 Deep Learning for Stock Market Prediction: Unveiling Insights and

Enhancing Forecasts ... 78

ix

5.1 Background and Related Works .. 80

5.2 Methodology ... 82

5.2.1 Testing Modules and Metrics... 83

5.2.2 Data Collection .. 83

5.2.3 Experimental Procedures ... 84

5.3 Results ... 92

5.3.1 Evaluation through Benchmark Testing .. 92

5.3.2 Comparing Multivariate and Single-Input Approaches 97

5.4 Conclusions ... 106

Chapter 6 Multitasking in Trading Markets: Enhancing Decision-Making with Multi-

Task Deep Learning .. 107

6.1 Background and Related Works .. 110

6.2 Methodology ... 111

6.2.1 Testing Modules and Metrics... 112

6.2.2 Data Collection .. 112

6.2.3 Experimental Procedures ... 113

6.3 Results ... 123

6.3.1 Evaluation through Benchmark Testing .. 123

6.3.2 Comparing Multitasking and Single-Task Approaches 130

6.3.3 The Art of Multitasking – Finding the Optimal Task Combination 136

6.3.4 Fine-Tuning the Loss Function: Determining Optimal Weights 136

6.4 Conclusions ... 138

Chapter 7 Discussion and Conclusions ... 140

7.1 Utilizing Deep Learning Networks for Market Prediction 141

7.2 Improving Performance by Utilizing the Multivariate Deep Learning (MDL)

Architecture.. 141

x

7.3 Introducing the Multi-Task Deep Learning (MTDL) for Enhanced Predictions 142

7.4 Future Work .. 143

References .. 145

Appendix A Diagrams, Figures, and Charts .. 153

A.1 Diagrams ... 153

A.2 Figures and Charts .. 154

A.2.1 Multivariate Deep Learning – Chapter 5 ... 154

A.2.2 Multi-Task Deep Learning – Chapter 6 ... 181

Appendix B Deep Learning Model Optimization .. 205

Appendix C Experimentation Tool for Stock Market Predictions 209

Appendix D Correlation Matrices ... 212

Appendix E Deep Learning: Dynamic Weights Optimization 214

xi

List of figures

Figure 1.1: S&P 500 volatility, daily returns, and trading volume (2000 – 2022). 18

Figure 2.1: Value at Risk (VaR) – JP Morgan Chase (2017). ... 33

Figure 2.2: S&P 500 index volatility due to COVID-19 – 2020. .. 34

Figure 2.3: S&P 500 volatility and daily returns 2000 – 2022. ... 40

Figure 2.4: S&P 500 volatility and trading volume, 2008. .. 42

Figure 3.1 Feed Forward Neural Networks (FFNN). .. 48

Figure 3.2: RNN network architecture... 49

Figure 3.3: RNN cell architecture. ... 49

Figure 3.4: LSTM network architecture. ... 50

Figure 3.5: LSTM cell architecture. ... 50

Figure 3.6: Tanh activation function output. ... 53

Figure 3.7: Sigmoid activation function output. .. 54

Figure 3.8: GRU network architecture... 55

Figure 3.9: GRU cell architecture. ... 56

Figure 3.10: Gradient descent - small(left) and large(right) learning rates. 61

Figure 3.11: Gradient descent - local minimum(left) and saddle point(right). 63

Figure 3.12: Multitasking architecture. .. 65

Figure 5.1: Portfolio loss probability. JP Morgan daily returns, 2017. 78

Figure 5.2: Testing Application. .. 85

Figure 5.3: Benchmark - GARCH model summary. ... 87

Figure 5.4: Benchmark – LSTM model diagram. .. 88

Figure 5.5: Benchmark – LSTM model diagram. .. 90

Figure 5.6: GARCH vs LSTM - Volatility prediction for BAC in bear market. 94

Figure 5.7: GARCH vs MDL - Volatility prediction for BAC in bull market. 95

Figure 5.8: GARCH vs MDL - Volatility prediction for BAC in bear market. 95

Figure 5.9: GARCH vs MDL - Volatility prediction for BAC in bull market. 96

Figure 5.10: MTL vs STL – Bear and bull markets. .. 98

Figure 5.11: MDL vs SDL - Volatility prediction for BAC in bear market. 101

Figure 5.12: MDL vs SDL - Volatility prediction for BAC in bull market. 101

Figure 6.1: S&P 500 volatility, daily returns, and trading volume - COVID-19 (2020). 108

xii

Figure 6.2: GARCH model summary. ... 116

Figure 6.3: ARIMA model summary – S&P 500 price prediction. 117

Figure 6.4: ARIMA model diagnostics – S&P 500 price prediction. 117

Figure 6.5: Benchmark – MTDL two-tasks model diagram. ... 120

Figure 6.6. MTDL vs STDL – STDL model diagram. ... 121

Figure 6.7: MTDL vs GARCH - Volatility prediction for S&P 500 in bull market. 124

Figure 6.8: MTDL vs GARCH - Volatility prediction for S&P 500 in volatile market. 124

Figure 6.9: MTDL vs ARIMA - Daily returns prediction for S&P 500 in bear market. 125

Figure 6.10: MTDL vs ARIMA - Trading volume prediction for S&P 500 in bull market. 125

Figure 6.11: MTDL vs ARIMA - Index price prediction for S&P 500 in bull market. 126

Figure 6.12: Statistical and DL models performance by market conditions.......................... 127

Figure 6.13: Models Performance by market conditions. .. 128

Figure 6.14: MTDL vs STDL - Index price prediction for S&P 500 in bull market. 130

Figure 6.15: Prediction accuracy comparison - MTDL vs STDL. .. 131

Figure 6.16: Finding the Optimal Task Combinations. ... 136

Figure 6.17: Loss function tuning – Finding optimal weights, bull market. 137

Figure 6.18: Loss function tuning – Finding optimal weights, bear market. 138

xiii

List of tables

Table 5.1: Test Data Definition – Stock Market Symbols. .. 84

Table 5.2: Test Data Definition – Timeseries. ... 84

Table 5.3: CPU specification. .. 86

Table 5.4: GPU specifications. .. 86

Table 5.5: Benchmark - Input and output for GARCH and DL models tests. 86

Table 5.6: Benchmark - LSTM hyperparameters. ... 88

Table 5.7: MDL and SDL hyperparameters. ... 89

Table 5.8: Test 2 – LSTM model parameters. ... 91

Table 5.9: Model accuracy - GARCH vs MDL – Long time window (10-5). 93

Table 5.10: Model accuracy - GARCH vs MDL – Short time window (10-5). 93

Table 5.11: Model accuracy - GARCH vs MDL – Long time window. 97

Table 5.12: Model accuracy - GARCH vs MDL – Short time window. 97

Table 5.13: LSTM forecast accuracy of BAC daily volatility in bear market. 99

Table 5.14: LSTM forecast accuracy of BAC daily volatility in bull market. 99

Table 5.15: Inputs correlation with BAC in bear and bull markets. 100

Table 5.16: MDL vs SDL 1-day pred. accuracy for BAC daily volatility in bull market. 102

Table 5.17: MDL vs SDL 5-day pred. accuracy for BAC daily volatility in bull market. 103

Table 5.18: MDL vs SDL 10-day pred. accuracy for BAC daily volatility in bull market. .. 104

Table 5.19: MDL vs SDL 20-day pred. accuracy for BAC daily volatility in bull market. .. 105

Table 6.1: Test data definition - time series. .. 113

Table 6.2: Test data definition - Indexes. .. 113

Table 6.3: Test environment – Servers specifications. .. 114

Table 6.4: Test environment - GPU specifications. ... 114

Table 6.5: Benchmark - Input and output for GARCH and ARIMA models tests. 115

Table 6.6: Benchmark - MTDL hyperparameters used in the benchmark tests. 118

Table 6.7: Benchmark - Input, output, and loss function weights used in MTDL tests. 118

Table 6.8: Input, output, and loss function weights used in STDL tests. 121

Table 6.9: Input, output, and loss function weights used in different combinations tests. 122

Table 6.10: Finding optimal weights – Tests inputs, outputs, and weights. 122

Table 6.11. 1 Day Prediction Accuracy - Benchmark Testing (10-3). 129

xiv

Table 6.12. MTL vs STL 1-day prediction accuracy (10-4). .. 132

Table 6.13. MTL vs STL 5-day prediction accuracy (10-4). .. 133

Table 6.14. MTL vs STL 10-day prediction accuracy (10-3). .. 134

Table 6.15. MTL vs STL 20-day prediction accuracy (10-3). .. 135

15

List of equations

Equation 2.1: Sharpe ratio formula. ... 29

Equation 2.2: Treynor measure formula. ... 29

Equation 2.3: Jensen measure formula. ... 30

Equation 2.4: Average daily returns formula. .. 35

Equation 2.5: Volatility (Standard-Deviation) formula. .. 35

Equation 2.6: Volatility annualised formula. ... 35

Equation 2.7: Volatility of two assets portfolio formula. .. 35

Equation 2.8: Volatility of multiple assets portfolio formula. ... 36

Equation 2.9: Black Scholes option pricing formula. .. 37

Equation 2.10: Daily Returns – Arithmetic formula. ... 39

Equation 2.11: Daily Returns – Logarithmic formula. .. 40

Equation 2.12: GARCH model formula. ... 43

Equation 2.13: ARIMA model formula. .. 44

Equation 3.1: RNN cell formula. ... 49

Equation 3.2: LSTM cell formulas. ... 50

Equation 3.3. Tanh activation function formula. ... 53

Equation 3.4: Sigmoid activation function formula. .. 54

Equation 3.5: GRU cell formulas... 55

Equation 3.6: Mean Squared Error (MSE) formula. .. 58

Equation 3.7: Root Mean Squared Error (RMSE) formula. .. 58

Equation 3.8: Hyper Loss formula. .. 59

Equation 3.9: Gradient descent – Hypothesis formula. ... 60

Equation 3.10: Gradient descent – Cost function formula. .. 60

Equation 3.11: Gradient descent formula. ... 61

Equation 3.12. Model Loss function formula. ... 66

Equation 5.1: Number of parameters used in DL network formulas. 90

16

List of algorithms

Code 5.1: Benchmark - GARCH model fitting logic. ... 87

Code 6.1: GARCH – Selecting optimal parameters. ... 115

Code 6.2: ARIMA – Prediction of a single day logic. ... 116

Code 6.3: Switching between single-mode and muti-task mode. .. 119

17

Chapter 1

Introduction

In the past few years, particularly following the aftermath of the 2008 financial crisis, the

convergence of deep learning and financial markets has become a focal point of considerable

interest. The intricate intricacies underlying stock market trends and the pursuit of precise

performance forecasting have laid the groundwork for the investigation of inventive

methodologies. In this landscape, the integration of deep learning methodologies emerges as a

fresh and promising avenue [1].

This research embarks on a compelling journey into the uncharted territory of deep

learning for stock market performance prediction, accompanied by a pioneering investigation

into the realm of multi-task deep learning. In the ever-evolving landscape of financial markets,

where traditional models have faced challenges, this study seeks to unravel the untapped

capabilities of these advanced techniques.

The core emphasis of this research centres on three primary goals: firstly, to examine the realm

of applying deep learning models to forecast stock market performance; secondly, to examine

the potential of utilizing a multivariate deep learning architecture to enhance prediction

precision; and thirdly, to investigate the unexamined domain of multi-task deep learning within

this context. In the intricate landscape of risk assessment, portfolio management, and precise

performance prediction within the financial realm, the integration of deep learning introduces

an innovative vantage point.

This topic holds relevance in today financial climate, where the interplay of various market

indicators and the rapid pace of information dissemination have rendered traditional methods

less effective. By leveraging the power of deep learning, this research aspires to uncover

patterns, relationships, and insights that could potentially redefine the way we understand and

predict stock market behaviour.

While this study is relevant to various stock market metrics, particular emphasis has been

directed towards volatility, returns, and trading volume. This focus arises not only from their

18

pivotal role in portfolio management and overall investment performance, along with their

utilization as inputs in numerous pricing and risk assessment models, but also due to their

interconnected nature, making them ideal metrics for comprehensive monitoring.

Figure 1.1: S&P 500 volatility, daily returns, and trading volume (2000 – 2022).

As the research embarks on this investigation, it is essential to recognize the novelty of this

research. While deep learning has undeniably demonstrated its prowess in various domains, its

application to the realm of stock market performance prediction and multi-task learning within

this highly dynamic and complex domain remains an emerging and promising avenue. This

study marks a significant step in unravelling the untapped potential of deep learning in the

financial markets.

This research rigorously examines models and methodologies, seeking to make a substantial

contribution to the expanding knowledge at the intersection of deep learning and financial

markets. The objective is to uncover new insights in stock market predictions and portfolio

monitoring, enhancing precision, insight, and innovation in these domains. This work

represents a distinct fusion of advanced technology and financial expertise, with the potential

to reshape how market participants understand and navigate the intricate landscape of modern

finance and investment banking.

19

1.1 Problem Statement

The existing methodologies deployed for stock market prediction and risk management have

shown ineffectiveness, particularly during financial crises [1], [2]. To address this limitation,

there is a pressing need for alternative methods that can either replace or enhance the current

tools, enabling faster responses and better management of unforeseen fluctuations in the

economy and investments. This research will primarily concentrate on key performance

indicators (KPIs) metrics, including volatility, daily returns, and trading volume, aiming to

provide improved approaches for forecasting and risk assessment in the financial markets.

1.2 Research Aims and Objectives

The main objective of this PhD research is to examine innovative methods for improving the

prediction of key metrics in the stock market, which play a crucial role in trading and risk

management platforms.

The research aims to validate three primary hypotheses based on both literature analysis and

practical experience in developing quantitative models for mitigating risks associated with the

stock market, especially in the context of the recent financial crisis that uncovered significant

deficiencies in risk assessment models deployed by financial institutions and investment

entities.

Hypothesis 1: The utilization of deep learning models has the potential to enhance or even

replace the current models deployed for predicting stock market volatility and optimizing

trading portfolios in different market conditions and for different future time horizons.

Hypothesis 2: The efficacy of a multivariate deep learning model surpasses that of a single-

input model, attributed to the interrelationship among various input data utilized during the

model training phase.

Hypothesis 3: The superiority of a multitasking deep learning model performance compared

to a single-task model can be attributed to the integration of a shared layer and a universally

distributed loss function across all tasks. Furthermore, altering task combinations and adjusting

weights of the loss function can notably influence the precision of predictions.

20

These hypotheses are grounded in the examination of how deep learning methodologies can

address the limitations of existing models and offer innovative solutions to enhance risk

management and prediction accuracy in the ever-evolving landscape of financial markets.

Objectives:

1- Perform an extensive literature review on the application of deep learning and

multitasking in finance, with a specific focus on its usage for stock market metrics,

particularly volatility prediction.

2- Develop innovative Multivariate Deep Learning models designed to improve the

predictive accuracy of stock market indicators. These models will serve to assess

hypotheses 1 and 2, contrasting their performance against the conventional statistical

models currently deployed.

3- Create advanced Multitasking Deep Learning architectures optimized for concurrent

prediction of multiple tasks, specifically tailored to enhance the efficiency and precision

of forecasting stock market metrics. These models will be pitted against both traditional

statistical models and Single-Task Deep Learning models, facilitating the examination

of hypothesis 3.

4- Evaluate the newly developed models under various market conditions and different

time prediction horizons to ensure their comprehensiveness.

5- Conduct a thorough assessment of the accuracy and performance of the newly

developed models in comparison to existing benchmark models, deploying rigorous

testing methodologies.

6- Deploy various well-known deep learning networks to compare their performance and

suitability concerning all testing parameters.

7- Evaluate the adaptivity of the models to changing data volumes and completeness by

conducting tests using both big and small data sets.

The research flow is presented in detail in Diagram 1, which can be found in Appendix A,

Section 1.

21

1.3 Challenges

Model Selection and Validation: Due to the absence of well-established benchmarks, the

process of selecting the suitable deep learning architecture and effectively validating the model

performance can be complex. Consequently, statistical benchmarks are still deployed.

Challenge 1: Stock markets exhibit non-stationarity. Financial markets are dynamic and

non-stationary, making it challenging to capture patterns and trends effectively, as past patterns

may not repeat in the future [3], [4], [5], [6].

Challenge 2: High dimensionality. Stock market data can be high-dimensional, with

numerous features, which can lead to overfitting and increased computational complexity [7].

Challenge 3: Data noise. Stock market data can be noisy, influenced by external factors, and

subject to uncertainty, affecting the accuracy and reliability of predictions [8].

Challenge 4: Changing market conditions. Market conditions can change rapidly, and the

model performance may degrade when applied to new market situations not seen during

training [9], [10].

Challenge 5: Interpreting model decisions. Deep learning models are often considered black-

box models, making it difficult to interpret their decisions, which can be crucial in financial

decision-making [11], [12].

Overcoming these challenges demands meticulous attention to data preprocessing, feature

engineering, model architecture selection, hyperparameter tuning, and deploying robust

evaluation techniques. It is crucial to acknowledge the limitations and uncertainties inherent in

utilizing deep learning for stock market prediction and to augment the models with domain

knowledge and risk management strategies.

1.4 Dissertation Contribution

The primary contribution lies in introducing innovative deep learning architectures for

predicting stock market volatility and returns. These proposed models offer the potential to

enhance portfolio performance and provide valuable insights into the overall market state,

thereby facilitating the development of more robust risk management tools that can either

22

integrate or replace existing ones. In the dissertation, various deep learning architectures were

experimentally compared to assess their accuracy and speed under diverse market conditions.

Additionally, these architectures were juxtaposed with comparable statistical models for

further evaluation.

Specifically, the research contributions can be summarized as follows:

Deep Learning Models for Stock Market Volatility Prediction: Defining the architecture of

a multivariate LSTM model tailored to predict stock market volatility, showcasing its

superiority over traditional statistical models.

Comparison of Single-Input and Multivariate Input Deep Learning Models: Conducting

a thorough analysis of stock market indices and prices, examining various recurrent neural

network (RNN) models commonly used for time series prediction. The results emphasized the

superiority of multivariate deep learning models over single-input ones.

Advancements in Multi-Task Learning: Introducing a multi-task deep learning model that

leverages a shared layer across all inputs, leading to enhanced loss functions for all outputs and

ultimately improving prediction accuracy.

By focusing on these areas, the research examines the possibility to push the boundaries of

deep learning applications in finance, providing valuable insights for portfolio management,

risk assessment, and market forecasting.

1.5 Dissertation Outline

The central thesis of this research revolves around the utilization of deep learning algorithms

to model volatility, portfolio returns, and other financial time series data with the aim of

enhancing trading strategies and risk models to optimize profitability while minimizing risk

exposure.

This dissertation presents a comprehensive and practical evaluation of the thesis, supported by

experimental testing and analysis of novel and innovative models. Through rigorous

experimentation and analysis, the research aims to contribute valuable insights into the

application of deep learning in the financial domain, paving the way for improved trading

approaches and risk management strategies.

23

The following is the structure of the thesis:

Chapter 2: Stock Market and Risk Management

In chapter 2, the research embarks on an examination of the financial market, trading dynamics,

and portfolio management. The research probes extensively into the intricacies of portfolio

performance and risk management, particularly focusing on volatility and returns.

Additionally, this chapter offers a concise overview of the prevalent statistical models deployed

in the current landscape for modelling volatility and time series data.

Chapter 3: Deep Learning Networks, Loss Function, and Multitasking in Machine

Learning

In chapter 3, The research analyses the inner workings of LSTM and GRU deep learning

algorithms, shedding light on their architecture, training setup, tuning methods, and an

investigation of their limitations and potential future advancements.

The chapter also conducts an exhaustive study on the techniques deployed for loss computation

in regression models, subsequently examining gradient descent and potential challenges

encountered in neural networks, particularly in deep learning contexts. Following this, the

chapter examines multitasking, shedding light on common architectures and the process of

calculating loss functions for models designed to handle multiple tasks.

Chapter 4: Deep Learning Applications to Stock Market Analysis

In Chapter 4, a review of the literature regarding machine learning applications in the finance

field is conducted. This review places special emphasis on the incorporation of deep learning

methods to forecast stock market data. Additionally, an examination of literature concerning

the implementation of multitasking to predict multiple stock market metrics is undertaken,

along with an investigation of the advantages associated with this approach.

Chapter 5: Deep Learning for Stock Market Prediction: Unveiling Insights and

Enhancing Forecasts

In Chapter 5, the research addresses one of the primary objectives of this research, focusing on

leveraging deep learning to improve the prediction of financial metrics. Additionally, the

research introduces an innovative deep learning model utilizing multivariate LSTM to forecast

stock market asset volatility.

24

Chapter 6: Multitasking in Trading Markets: Enhancing Decision-Making with Multi-

Task Deep Learning

Chapter 6 undertakes a comprehensive examination of another crucial research objective which

revolves around the introduction of a novel multi-task deep learning architecture for modelling

stock market metrics, including daily returns, trading volume, and the critical market

performance indicator - volatility.

Chapter 7: Concluding Remarks and Future Directions

In Chapter 7, the research draws conclusions from this dissertation, summarizing the main

contributions made throughout the research journey. Furthermore, the research outlines

potential areas for future research and improvements to the proposed thesis.

25

Chapter 2

Stock Market and Risk Management

Chapter 2 will focus on introducing the key concepts and topics that will be analysed

throughout the study. In this chapter, the following topics are covered:

Portfolio Management: This section provides an overview of portfolio management, its

importance in finance, and the various strategies used to construct and manage investment

portfolios.

Stock Market: Within this section, the concept of the stock market and the act of trading are

expounded upon. The reader is introduced to the overarching characteristics that define the

stock market at a broader level.

Risk Management: This section explains the concept of risk management in finance and how

it involves identifying and mitigating risks to achieve financial objectives.

Volatility: This section defines volatility as a measure of price fluctuation in financial assets

and discusses its importance in risk assessment and pricing models.

Daily Returns: This section defines daily returns as a financial metric that measures the

percentage change in the price of an asset from one trading day to the next. It may discuss how

daily returns are calculated and their significance in evaluating investment performance.

Trading Volume: This section introduces trading volume as a metric that measures the total

number of shares or contracts traded during a specified time period. It examines how trading

volume reflects market interest and liquidity.

Statistical Models: This section provides an overview of statistical models commonly used in

finance for forecasting and prediction. It may include an introduction to models such as

ARIMA (Autoregressive Integrated Moving Average) or GARCH (Generalized

Autoregressive Conditional Heteroskedasticity).

26

In Chapter 2, the aim is to lay the foundation for the study, familiarize readers with key

financial concepts, and set the stage for the subsequent chapters that investigate each topic and

examine and analyse their relationships and applications in the context of the research.

2.1 Stock Market

The stock market, often referred to as the equity market, is a vital component of the global

financial system where shares of publicly traded companies are bought and sold. It functions

as a marketplace where investors, such as individuals and institutions, can purchase ownership

stakes, or "shares," in companies. These shares represent a portion of the company ownership

and entitle the shareholder to a portion of its profits and potential growth [10].

Outlined below are the pivotal characteristics of the stock market along with essential

terminology.

Initial Public Offerings (IPOs) take place in the primary market. Companies issue new shares

to the public for the first time, raising capital to fund their operations and expansion. IPOs are

commonly orchestrated by financial institutions through a process known as underwriting,

during which the bank assesses the company that is presenting shares (issuer) and facilitates

the availability of these shares for public purchase [10], [13].

A share refers to an individual unit of ownership in a company. Shares represent the division

of ownership of a company equity among its investors. Shareholders may have certain rights,

such as voting on major corporate decisions and receiving dividends. Shares can be of different

types, such as common shares and preferred shares, each with its own set of rights and

characteristics [13].

After shares are vended to the public in the primary market, they become eligible for trading

on the secondary market, commonly recognized as the stock market. Here, investors engage in

the exchange of shares amongst themselves.

 The stock is a broader term that encompasses the entirety of ownership units in a company. It

refers to the total capital raised by a company through the issuance of shares. In other words,

stocks represent the collection of all shares that are issued by a company [10], [13]. Stocks can

be held by multiple shareholders, and they are traded on stock exchanges. The term "stock" is

27

often used interchangeably with "equity" and is used to indicate the ownership interest of

investors in a company.

A stock option is a financial contract that gives the holder the right, but not the obligation, to

buy or sell a specific number of shares of a company stock at a predetermined price, known as

the "strike price," within a specified period, typically referred to as the "expiration date" or

"maturity date." There are two primary types of stock options, call option and put option [5],

[14], [15].

A call option gives the holder the right to buy shares of stock at the strike price. Call options

are often used by investors who believe the stock price will rise, enabling them to purchase

shares at a lower price than the market value.

A put option gives the holder the right to sell shares of stock at the strike price. Put options are

typically used by investors who anticipate that the stock price will fall, enabling them to sell

shares at a higher price than the market value.

Options are valued through various mathematical models, with one of the most renowned being

the Black-Scholes formula.

The application of multivariate deep learning research, as detailed in Chapter 5, entails

forecasting the performance of Bank of America (BAC) stock while incorporating additional

features or inputs, such as JP Morgan Chase (JPM) stock price, City Bank (C) stock price, and

Crude Oil prices.

Stock exchanges, such as the New York Stock Exchange (NYSE), Nasdaq, London Stock

Exchange (LSE) provide a regulated platform for trading stocks. These exchanges set rules and

facilitate the buying and selling of shares [10], [13].

Stock market indices, such as the S&P 500 or Dow Jones Industrial Average, track the

performance of a specific group of stocks, providing a snapshot of overall market health and

trends. In Chapter 6, the primary focus of investigation revolves around these two indices,

serving as the central study cases for the multitasking deep learning research.

The stock market can be subject to significant price fluctuations due to various factors such as

economic indicators, company performance, geopolitical events, and investor sentiment. Such

changes in price are referred to as volatility [9].

28

Changes to stock prices are referred to as returns, which can be monitored on different time

windows, The number of shares traded on the stock market is referred to as trading volume.

Volatility, daily returns, and trading volumes are explained in the coming sections of this

chapter.

Individuals, institutions, and even governments participate in the stock market as investors.

They buy shares with the expectation of earning a return on their investment through capital

appreciation (increased share value) or dividends (a portion of the company profits).

In addition to investors, the stock market involves various other participants such as brokers,

market makers, regulators, and financial analysts who contribute to the functioning and

regulation of the market [10], [13].

Investors and analysts deploy diverse approaches, encompassing fundamental analysis and

technical analysis, for assessing companies and making well-informed choices regarding stock

transactions. This plays a crucial role in sustaining profitable investments. Consequently,

various pricing models, risk assessment methodologies, and portfolio management strategies

are embraced by entities participating in these activities. Furthermore, vigilant monitoring and

regulation of these practices are overseen by the financial authorities of each respective country

[13].

The stock market plays a crucial role in allocating capital and facilitating economic growth. It

provides companies with a means to raise funds for expansion and innovation while offering

individuals and institutions opportunities to invest and grow their wealth. The dynamics of the

stock market are influenced by a complex interplay of economic, financial, and psychological

factors, making it a dynamic and ever-evolving arena [13].

2.2 Portfolio Management

Portfolio management involves the process of selecting and managing a combination of assets,

known as a portfolio, to achieve specific financial goals and objectives [10]. Three important

performance measures commonly used in portfolio management are the Sharpe ratio, the

Treynor Measure, and the Jensen Measure.

29

These three performance measures are valuable tools for investors and portfolio managers to

evaluate the risk-adjusted returns of a portfolio and make informed decisions in managing

investments. Each measure provides a different perspective on the portfolio performance and

risk characteristics, helping investors to optimize their investment strategies [1], [10].

2.2.1 Sharpe Ratio

The Sharpe ratio is a risk-adjusted measure that assesses the excess return of a portfolio per

unit of risk taken. It was developed by Nobel laureate William F. Sharpe [10], [16].

The formula for the Sharpe ratio is:

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑅𝑝 − 𝑅𝑓

𝜎𝑝

Equation 2.1: Sharpe ratio formula.

Where:

𝑅𝑝 is the portfolio average rate of return,

𝑅𝑓 is the risk-free rate of return (e.g., government bond yield),

𝜎𝑝 is the standard deviation of the portfolio returns.

The Sharpe ratio quantifies how much additional return an investor receives for each unit of

risk assumed. A higher Sharpe ratio indicates a more favourable risk-to-reward profile for the

portfolio.

2.2.2 Treynor Measure

The Treynor Measure, developed by Jack L. Treynor, is another risk-adjusted

performance measure used in portfolio management [10], [16]. It evaluates the portfolio

excess return per unit of systematic risk. The formula for the Treynor Measure is:

𝑇𝑟𝑒𝑦𝑛𝑜𝑟 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
𝑅𝑝 − 𝑅𝑓

𝛽𝑝

Equation 2.2: Treynor measure formula.

30

Where:

𝑅𝑝 is the portfolio average rate of return,

𝑅𝑓 is the risk-free rate of return (e.g., government bond yield),

𝛽𝑝 is the portfolio beta, a measure of systematic risk (covariance of portfolio returns

with the market divided by the market variance).

The Treynor Measure helps investors assess how well the portfolio manager has performed

relative to the systematic risk taken.

2.2.3 Jensen Measure (Jensen Alpha)

 The Jensen Measure, also known as Jensen Alpha, is a risk-adjusted performance

measure that evaluates a portfolio performance relative to its expected return based on

the Capital Asset Pricing Model (CAPM) [10], [16]. It was developed by Michael C.

Jensen. The formula for the Jensen Measure is:

𝐽𝑒𝑛𝑠𝑒𝑛 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 𝑅𝑝 − (𝑅𝑓 + 𝛽𝑝 × (𝑅𝑚 − 𝑅𝑓))

Equation 2.3: Jensen measure formula.

Where:

𝑅𝑝 is the portfolio average rate of return,

𝑅𝑓 is the risk-free rate of return,

𝛽𝑝 is the portfolio beta,

𝑅𝑚 is the average rate of return of the market.

The Jensen Measure assesses whether the portfolio returns have outperformed or

underperformed what would be expected given its risk exposure according to the CAPM.

31

2.3 Risk Management

Risk management in finance refers to the process of identifying, assessing, and mitigating

potential risks that could adversely affect the financial health of an individual, organization, or

investment portfolio. It involves the implementation of strategies and techniques to minimize

the impact of uncertain events on financial outcomes.

In the context of finance, risk can arise from various sources, including market fluctuations,

credit defaults, interest rate changes, exchange rate fluctuations, and operational issues, among

others. Effective risk management aims to protect assets, preserve capital, and ensure the

stability and sustainability of financial operations.

The first step in risk management is identifying potential risks and understanding their nature

and potential impact on financial performance. This involves analysing market trends,

economic conditions, industry-specific risks, and internal factors.

Once risks are identified, they need to be assessed in terms of their probability of occurrence

and potential severity. Quantitative methods, such as Value at Risk (VaR) and stress testing,

may be used to measure the extent of potential losses [14], [17].

After assessing risks, strategies are developed to mitigate their impact. This may include

diversification of investments, hedging through derivative instruments, using insurance

products, or implementing operational controls and safeguards.

Risk management is an ongoing process that requires continuous monitoring and evaluation of

the effectiveness of risk mitigation strategies. Regular assessments are made to determine if

any adjustments or improvements are necessary.

Financial institutions and investors have specific risk tolerance levels, which represent the

amount of risk they are willing to accept. Risk appetite defines the level of risk they are willing

to take to achieve their financial objectives.

In the financial industry, there are often regulatory requirements related to risk management.

Financial institutions and investment funds must adhere to these regulations to ensure

compliance and avoid potential penalties.

32

Risk management is a critical aspect of financial decision-making, as it helps investors and

financial institutions to make informed choices, optimize returns, and protect against potential

losses. By effectively managing risks, individuals and organizations can maintain financial

stability and enhance their ability to achieve their financial goals.

2.3.1 Portfolio Risk

Portfolio risk refers to the uncertainty or variability of returns associated with holding a

collection of investments, known as a portfolio. When an investor combines multiple assets in

their portfolio, the overall risk of the portfolio is not just the sum of the individual risks of each

asset. Instead, it is influenced by the correlation or relationship between the assets.

Diversification is a key strategy to manage portfolio risk. By combining assets that have low

or negative correlations with each other, investors can reduce the overall risk of the portfolio.

This is because when some assets in the portfolio may perform poorly, others may perform

well, balancing out the overall returns [3], [10].

The two main types of portfolio risk are systematic risk (also known as market risk) and

unsystematic risk (also known as specific risk).

Systematic risk affects the entire market or a broad segment of it. It is caused by factors that

are beyond the control of individual investors, such as changes in interest rates, economic

conditions, political events, and market sentiment. Systematic risk cannot be eliminated

through diversification since it is inherent in the overall market.

Unsystematic is specific to individual assets or industries and can be reduced through

diversification. Unsystematic risk includes risks related to the performance of specific

companies, management issues, industry-specific factors, and other idiosyncratic events. By

holding a diversified portfolio with a mix of assets from different industries and sectors,

investors can mitigate unsystematic risk.

The total risk of a portfolio is the combination of systematic risk and unsystematic risk. To

measure and manage portfolio risk, investors use various risk metrics such as standard

deviation, beta, Sharpe ratio, and Value at Risk (VaR). By understanding and managing

33

portfolio risk, investors aim to achieve their financial objectives while balancing risk and return

according to their risk tolerance and investment goals.

2.3.2 Value at Risk (VaR)

Value at Risk (VaR) is a statistical measure used to estimate the potential loss, at a specific

confidence level, in the value of an investment or portfolio over a given time horizon. VaR is

commonly used in finance to assess the risk of investments and portfolios and is a key tool in

risk management [14], [18], [19].

VaR tackles the question of determining the highest possible loss within a specified timeframe

with a certain level of confidence. For instance, when the one-day 95% VaR is $1 million, it

indicates a 95% probability that the investment or portfolio will not experience a loss exceeding

$1 million in the next day.

Figure 2.1: Value at Risk (VaR) – JP Morgan Chase (2017).

To calculate VaR, historical data on the returns of the investment or portfolio are used to

construct a probability distribution of potential future returns. The confidence level chosen

determines the percentile of the distribution used to estimate VaR. For example, a 95% VaR

uses the 5th percentile of the distribution, which represents the value below which 95% of the

potential losses fall.

VaR - 95% Confidence

VaR - 99% Confidence

-2%

0%

2%

4%

6%

8%

10%

12%

14%

16%

-3.38% -2.62% -1.86% -1.10% -0.34% 0.42% 1.18% 1.94%

Fr
q

u
en

cy

34

VaR takes into account the volatility of the investment or portfolio, as well as the correlations

between different assets if it is a portfolio. It provides a concise and standardized measure of

risk, enabling investors and financial institutions to compare the riskiness of different

investments or portfolios.

However, it is important to note that VaR has limitations. VaR provides a point estimate of

potential losses but does not capture the potential severity of extreme losses beyond the

specified confidence level. Additionally, VaR assumes that the distribution of future returns

will be similar to historical data, which may not always hold true during times of market stress

or extreme events [18].

2.4 Volatility

Volatility is a metric that gauges the level of fluctuation in the price of a security or a market

index. It serves as a fundamental indicator of risk and provides valuable insights for effectively

managing uncertainty in the financial markets [20].

Figure 2.2: S&P 500 index volatility due to COVID-19 – 2020.

2.4.1 Historical Volatility

Volatility holds significant importance in trading and risk management, and various methods

exist to calculate or derive it. Historical Volatility relies on the time series of historical prices

0

1

2

3

4

5

6

7

8

9

10

01/2020 03/2020 05/2020 07/2020 09/2020 11/2020

%

35

for the securities within a portfolio to calculate returns [20], [21]. The return for each asset is

computed independently using this approach. The average return 𝑅𝑎𝑣𝑔 is defined as:

𝑅𝑎𝑣𝑔 =
∑ 𝑅𝑖𝑛

𝑖=1

𝑛

Equation 2.4: Average daily returns formula.

Where:

 𝑛 is the sample size of the time-series.

𝑅𝑖 is the security return.

The volatility 𝜎𝑆𝑒𝑐 of a single asset and the Annualized Volatility 𝜎𝐴𝑛 are given by the

following formulas.

𝜎𝑆𝑒𝑐 = √∑ (𝑅𝑖 + 𝑅𝑎𝑣𝑔)
2𝑛

𝑖=1

𝑛 − 1

Equation 2.5: Volatility (Standard-Deviation) formula.

 𝜎𝐴𝑛 = 𝜎𝑆𝑒𝑐√𝑛

Equation 2.6: Volatility annualised formula.

To calculate volatility for a portfolio comprising multiple assets, it is essential to consider the

correlation coefficient and the respective weights of each asset. These parameters play a crucial

role in determining the overall volatility of the portfolio.

For example, the volatility 𝜎𝑝 of a two-asset portfolio is calculated by the following formula.

𝜎𝑝 = √𝑊1
2𝜎1

2 + 𝑊2
2𝜎2

2 + 2𝑤1𝑊2𝜎1𝜎2𝜌1,2

Equation 2.7: Volatility of two assets portfolio formula.

Where:

36

 𝑊 is the proportion of each asset in relation to the whole portfolio.

𝜎1 is volatility for asset 1 in the portfolio.

𝜎2 is volatility for asset 1 in the portfolio.

𝜌1,2 is the correlation coefficient of assets 1 and 2.

For portfolios comprising more than two assets, the general formula below can be used to

represent the volatility.

𝜎𝑝
2 = [𝑤1 ⋯ 𝑤𝑛] [

𝜎11 ⋯ 𝜎1𝑛

⋮ ⋮
𝜎𝑛1 ⋯ 𝜎𝑛𝑛

] [

𝑤1

⋮
𝑤𝑛

]

Equation 2.8: Volatility of multiple assets portfolio formula.

2.4.2 Implied Volatility

Implied volatility is a measure used in options trading to assess the market expectations of

future price fluctuations for an underlying asset. It is a critical component in determining the

price of options contracts.

Options are financial derivatives that give the holder the right, but not the obligation, to buy or

sell an underlying asset at a predetermined price (known as the strike price) on or before a

specified expiration date. Implied volatility is inferred from the market price of options, as it

reflects the market participants' collective view on the potential magnitude of price movements

for the underlying asset.

When implied volatility is high, it suggests that market participants anticipate significant price

fluctuations in the underlying asset. Conversely, when implied volatility is low, it indicates that

the market expects relatively stable price movements for the underlying asset.

Traders and investors use implied volatility to gauge the market sentiment and make informed

decisions regarding options trading strategies. It can also be used to assess the relative

expensiveness or cheapness of options contracts. High implied volatility may lead to higher

option premiums, while low implied volatility may result in lower option premiums.

37

Implied volatility is an important parameter in option pricing models, such as the Black-

Scholes model [15], [20], [17] which use it to calculate theoretical option prices based on other

factors such as the current market price of the underlying asset, the option strike price, time to

expiration, and risk-free interest rate. The formula of Black-Scholes can be seen below.

𝑑1 =
ln (

𝑆0

𝐾) + (𝑟 +
𝜎2

2
) 𝑇

𝜎√𝑇

𝑑2 = 𝑑1 − 𝜎√𝑇

𝑐 = 𝑆0𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2)

𝑝 = 𝐾𝑒−𝑟𝑇𝑁(−𝑑2) − 𝑆0𝑁(−𝑑1)

Equation 2.9: Black Scholes option pricing formula.

Where:

 S0 is security price.

K is the strike price.

r is interest free rate.

𝑇 is time to expiration in years.

𝜎 is volatility.

N () is normal distribution.

c is the call option price.

p is put option price.

2.4.3 Beta (β)

Market beta, also known as beta coefficient or beta, is a measure of a stock or a portfolio

sensitivity to movements in the overall market or a specific benchmark index. It quantifies the

relationship between the returns of the individual asset or portfolio and the returns of the market

as a whole.

38

The market beta is calculated through regression analysis, where historical data of the asset or

portfolio returns is compared to the returns of the market index [10], [21]. The beta coefficient

is the slope of the regression line, and it represents the change in the asset or portfolio returns

for a one-unit change in the market returns.

A beta value of 1 indicates that the asset or portfolio tends to move in line with the market. A

beta greater than 1 implies that the asset or portfolio is more volatile than the market, and its

price tends to move more than the market in either direction. A beta less than 1 indicates that

the asset or portfolio is less volatile than the market, and its price tends to be more stable than

the market price.

Interpretation of beta:

Beta = 1: The asset or portfolio moves in line with the market.

Beta > 1: The asset or portfolio is more volatile than the market.

Beta < 1: The asset or portfolio is less volatile than the market.

Beta = 0: The asset or portfolio has no correlation with the market; hence, the asset of

portfolio is risk free.

Investors use beta as a risk measure to assess how much an asset or portfolio returns are

influenced by market movements. A high beta indicates higher volatility and risk, while a low

beta suggests lower volatility and risk. Beta is an important tool in portfolio management, as it

helps investors determine how the asset or portfolio behaves relative to the overall market and

enables them to adjust their portfolios based on their risk tolerance and investment objectives.

2.4.4 Volatility and Options Pricing

Volatility plays a crucial role in option pricing. In the context of financial derivatives such as

options, volatility refers to the degree of variation or fluctuation in the price of the underlying

asset. It is a measure of market uncertainty and represents the market expectations about the

future price movements of the asset.

The Black-Scholes model is one of the most widely used models for pricing European-style

options (options that can only be exercised at expiration). This model assumes that the

39

underlying asset price follows a geometric Brownian motion, and it considers factors such as

the current price of the asset, the option strike price, the time to expiration, the risk-free interest

rate, and the asset volatility [10], [20], [21], [22]. Volatility is a critical component in the Black-

Scholes formula as it directly affects the option price. Higher volatility generally results in

higher option prices, as it increases the probability of large price swings and potential profit

opportunities.

Implied volatility is the market expectation of future volatility, derived from the current option

prices. It is a forward-looking measure that represents the collective opinion of market

participants about the asset future price movements. Traders and investors use implied

volatility to gauge the market sentiment and make informed decisions about options trading

strategies. If the implied volatility is high, it suggests that market participants anticipate

significant price swings, leading to higher option prices. Conversely, low implied volatility

indicates expected stability in the asset price, resulting in lower option prices.

Volatility is an essential input in option pricing models, hence, changes in volatility can

significantly impact option prices. Traders and investors closely monitor volatility levels and

make adjustments to their option strategies accordingly to take advantage of market conditions.

Additionally, implied volatility can be used to identify mispriced options and opportunities for

option trading strategies, such as volatility trading and volatility arbitrage.

2.5 Daily Returns

The Profit and Loss (PnL) on an asset is defined as the change in price of the asset over a

specific period of time [5], [10]. Positive returns occur when the new price at time T is greater

than the price at time T-1, whereas negative returns occur when the price at time T is smaller

than the price at time T-1. In many financial applications, the rate of returns is calculated by

measuring the change between two prices from different times, which can be achieved using

either arithmetic or log methods. Arithmetic Returns, 𝑅𝑎𝑟𝑡ℎ and Log Returns 𝑅𝑙𝑜𝑔 for asset

prices 𝑃𝑟𝑖𝑐𝑒𝑡−1 and 𝑃𝑟𝑖𝑐𝑒𝑡 be calculated using the formulas below:

𝑅𝑎𝑟𝑡ℎ =
𝑃𝑟𝑖𝑐𝑒𝑡 − 𝑃𝑟𝑖𝑐𝑒𝑡−1

𝑃𝑟𝑖𝑐𝑒𝑡−1

Equation 2.10: Daily Returns – Arithmetic formula.

40

𝑅𝑙𝑜𝑔 =
log (𝑃𝑟𝑖𝑐𝑒𝑡−1)

log (𝑃𝑟𝑖𝑐𝑒𝑡)

Equation 2.11: Daily Returns – Logarithmic formula.

Daily returns represent the changes in an asset price on a daily basis, and as a result, annual

returns are derived by summing all the daily returns over the course of a year. The same

principle is applied to calculate returns for other custom periods, such as weekly or quarterly

returns.

Figure 2.3: S&P 500 volatility and daily returns 2000 – 2022.

In general, investors are always seeking assets that offer positive returns. The potential for

positive returns largely depends on the performance of the asset during the holding period. For

instance, some investors may engage in short-term trading, buying and selling assets within the

same day to capitalize on immediate profits. Conversely, other investors may opt for longer

holding periods, spanning days, weeks, months, or even years, based on their forecasts of how

the asset returns will evolve during the holding period. The decision to hold an asset for a

Low Returns: 2008 Financial Crisis

High Volatility: 2008 Financial …

High Volatility: Covid-19

-15

-10

-5

0

5

10

15

2000 2003 2006 2009 2012 2015 2018 2021

D
ai

ly
 R

et
u

rn
s/

V
o

la
ti

lit
y

(%
)

S&P 500 Daily Returns S&P 500 Volatility

41

specific duration is influenced by their expectations of its price movements and potential for

favourable returns.

Positive returns in the market are not always guaranteed, and not all traders are solely interested

in bidding on stocks to go up. Therefore, accurate forecasting of returns and overall market

performance is essential for formulating a profitable investment strategy. Additionally,

considering other metrics such as trading volumes and volatility can further enhance the

precision of returns forecasting.

2.6 Trading Volume

Trading volume refers to the total contracts or shares traded during a period of time which is

usually measured on a daily basis and accumulated on different horizons such as weekly,

monthly, yearly, or quarterly. Increase or decrease in trading volume generally reflects the

supply and demand for a particular asset, however, significant changes in volumes usually

indicates market events such as financial crises and global events such as wars and pandemics.

It is a significant metric that reflects the level of activity and liquidity in a particular market or

security.

Trading volume can be used to confirm price trends which is essential for technical analysis, it

can also be used to identify potential trend reversals or continuations and an essential indication

of liquidity. It can also be used by traders to know the precise time to enter or exit a trading

activity.

While high trading volumes can generally indicate an aggressive bull market, it can also be an

indication of financial crises, hence, risk management systems include it to monitor any trends

in the market that could indicate a potential risk to trading portfolios.

42

Figure 2.4: S&P 500 volatility and trading volume, 2008.

In general, trading volume is an essential tool for traders to assess market dynamics, identify

trends, gauge market sentiment, and make informed trading decisions.

Figure 2.1 depicts the observed trend between trading volume and the volatility spike in the

S&P 500 during the 2008 financial crisis, with trading volume showing notable patterns days

before the volatility surge.

2.7 Statistical Models

GARCH and ARIMA models are fundamental tools in time series analysis, with GARCH

specializing in modelling volatility for risk assessment, while ARIMA provides a robust

framework for forecasting and modelling various types of time series data by addressing non-

stationarity and incorporating past values and forecast errors. These models have had a

significant impact on fields were understanding and predicting time-dependent data is crucial.

43

2.7.1 GARCH for Volatility Modelling

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is a

statistical model commonly used to analyse and forecast the volatility of financial time series

data, such as stock prices, exchange rates, or commodity prices. It was introduced by Robert

Engle in 1982 as an extension of the Autoregressive Conditional Heteroskedasticity (ARCH)

model proposed by Robert F. Engle and Clive Granger in 1982 [23], [24].

The GARCH model is designed to capture the time-varying volatility or variance clustering

present in financial time series. Volatility clustering refers to the tendency of financial returns

to exhibit periods of high and low volatility, where periods of high volatility are often followed

by similar periods.

The GARCH model consists of two main components:

1. Autoregressive Component (ARCH): The ARCH component models the past squared

returns, which represent the past volatility, using an autoregressive process. It assumes

that the past volatility has a relationship with the current volatility.

2. Moving Average Component (GARCH): The GARCH component models the past

conditional variance (squared errors) using a moving average process. It enables for the

persistence of past volatility shocks to influence the current conditional variance.

The general GARCH (p, q) model is represented as:

𝜎𝑡
2 = ω + ∑ 𝛼𝑖𝜖𝑡−𝑖

2

𝑝

𝑖=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑞

𝑗=1

Equation 2.12: GARCH model formula.

where:

𝜎𝑡
2 is the conditional variance or volatility at time t.

ω is the constant term.

𝛼𝑖 and 𝛽𝑗 are parameters to be estimated.

𝜖𝑡−𝑖
2 are the squared residuals or squared errors at lag i.

44

The GARCH model is widely used in finance for volatility forecasting, risk management, and

option pricing. By capturing volatility clustering, it provides valuable insights into the

dynamics of financial markets and helps in making informed investment decisions.

2.7.2 ARIMA for Time Series Modelling

The Autoregressive Integrated Moving Average (ARIMA) model is a time series forecasting

model commonly used in statistics and econometrics to analyse and predict future values of a

univariate time series. It was developed by George Box and Gwilym Jenkins in the 1970s and

has become one of the most widely used models for time series analysis [6], [24].

ARIMA models combine three main components to capture the underlying patterns in the data:

1. Autoregressive (AR) Component: This component models the relationship between the

current observation and its previous values. It assumes that the current value of the time

series can be explained by a linear combination of its lagged values.

2. Integrated (I) Component: The integrated component is used to make the time series

stationary by differencing the data. Stationarity is an important assumption in time

series analysis, and differencing helps to stabilize the mean and variance of the series.

3. Moving Average (MA) Component: This component models the relationship between

the current observation and the errors (or residuals) from previous observations. It

assumes that the current value of the time series can be explained by a linear

combination of its past errors.

The general notation for an ARIMA (p, d, q) model is:

𝑌𝑡 = c + ∑ ∅𝑖𝑌𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝜃𝑗𝜀𝑡−𝑗

𝑞

𝑗=1

+ 𝜀𝑡

Equation 2.13: ARIMA model formula.

where:

𝑌𝑡 is the value of the time series at time t.

45

c is a constant term.

∅𝑖 and 𝜃𝑗 are parameters to be estimated.

𝑝 is the order of the autoregressive component (AR).

𝑑 is the degree of differencing required to make the time series stationary (integrated

component).

𝑞 is the order of the moving average component (MA).

𝜀𝑡 represents the error term, which is assumed to be white noise.

ARIMA models are widely used for time series forecasting in various fields, including

economics, finance, engineering, and environmental sciences. They are especially useful when

dealing with non-stationary time series data, where the values may exhibit trends or seasonality.

ARIMA models can provide valuable insights into the underlying patterns in the data and help

make accurate predictions for future values.

2.8 Conclusion

Successfully navigating the stock market requires a wealth of experience, constant monitoring,

and rigorous testing. Investors continuously develop models to simulate various market

conditions, ensuring they remain well-prepared for any scenario. Accurate predictions of stock

market metrics, including daily returns, trading volumes, and key market indicators such as

volatility, offer significant advantages to investors and portfolio managers, placing them on the

winning side of trades.

The novel prediction methods studied in this research hold the potential to enhance existing

pricing and trading models. Moreover, they can serve as valuable tools for risk management,

helping investors maximize profits and minimize losses, the ultimate goal for all market

participants. By leveraging these innovative approaches, investors can gain a competitive edge

and optimize their decision-making process in the dynamic world of finance.

46

Chapter 3

Deep Learning Networks, Loss

Function, and Multitasking

Chapter 3 undertakes and in-depth analysis of deep learning networks, with a particular focus

on recurrent neural networks (RNNs), long short-term memory (LSTM) networks, and gated

recurrent units (GRUs). These specialized architectures have gained prominence due to their

exceptional performance in handling sequential data, making them highly relevant for

analysing financial time series data.

The chapter also analyses the realm of multi-task learning and its intricate connection with loss

functions. Multi-Task learning, a dynamic paradigm in machine learning, takes on the

ambitious challenge of training a single model to effectively handle multiple interrelated tasks

concurrently. The primary aim is to leverage shared insights and representations across these

tasks to elevate the overall performance of the model.

Loss function forms the cornerstone of the examination, marries multi-task learning with loss

functions. The chapter dissects the complex interplay between these two components, shedding

light on how task-specific loss functions are seamlessly integrated into the multi-task learning

framework. This integration is carefully orchestrated to strike a balance—ensuring the

optimization of each task performance while harnessing the synergistic power of shared

knowledge across tasks.

The relationship between gradient descent and loss functions is fundamental in the optimization

process of machine learning models. Gradient descent serves as the guiding force that

minimizes the chosen loss function, shaping the model parameter values to enhance predictive

accuracy.

Multi-Task learning unveils the fundamental principles that underlie this approach, showcasing

its capacity to enhance both efficiency and effectiveness, particularly in scenarios where tasks

demonstrate inherent correlations or interdependencies. This method revolves around the joint

optimization of a model parameters across various tasks, with the overarching goal of achieving

47

superior generalization, heightened accuracy, and fortified robustness. This marks a notable

departure from the conventional practice of training distinct models for each individual task.

The chapter covers the following key topics:

LSTM Deep Learning Networks: This section conducts a study on the fundamentals of

RNNs, examining how they process sequential data by maintaining hidden states that capture

past information. It explains how RNNs suffer from the vanishing gradient problem and

introduces the need for more advanced architectures.

The section is more focused on LSTM networks, a type of RNN designed to overcome the

vanishing gradient problem. It explains the LSTM architecture, which incorporates memory

cells and gates to selectively retain and forget information. LSTM ability to handle long-term

dependencies makes it particularly useful for financial time series data.

GRU Deep Learning Networks: This section introduces GRU networks, another variant of

RNNs that address the vanishing gradient problem. GRUs use fewer parameters than LSTM,

making them computationally more effective while still maintaining effective performance in

modelling sequential data.

Loss Function: This section delineates the examination of various functions applicable to

timeseries and financial market data, encompassing domains such as stock market prices.

Gradient Descent: This section provides a high-level elucidation of its mechanics and

elucidates its interconnectedness with loss functions within the machine learning realm.

Multi-Task Learning: The research investigation then extends to the realm of multi-task

learning. This section examines into the advantages reaped from embracing multi-task learning,

while simultaneously delving into its implications for loss functions and the holistic loss

incurred by a composite model composed of diverse tasks.

Training and Optimization: This section discusses the training process for deep learning

networks, including techniques for optimizing model parameters and avoiding overfitting. It

may cover topics such as gradient descent, backpropagation through time, and hyperparameter

tuning.

Limitations and Future Directions: This section outlines the limitations and challenges of

using RNN, LSTM, and GRU networks in financial applications. It also discusses potential

48

future developments and research directions to improve the performance and applicability of

these models.

3.1 LSTM Deep Learning Network

Recurrent Neural Networks (RNN) were introduced in 1986 by Rumelhart [25] to resolve

gradient errors associated with one of the simplest, commonly deployed form of neural

network, Feed Forward Neural Networks (FFNN).

Figure 3.1 Feed Forward Neural Networks (FFNN).

The architecture of Recurrent Neural Networks (RNNs) grants each cell within the network the

capability to process input data and subsequently transmit the outcomes to the subsequent node.

This intrinsic feature empowers RNNs to emerge as one of the most proficient machine

learning algorithms for handling sequential data. You can observe the standard network and

cell structures of an RNN in Figure 4.1 and Figure 4.2, respectively, which illustrate this

sequential data processing capability.

Long term dependencies have always been a significant weakness of ordinary RNN, the

network struggles to handle gaps between relevant information when it becomes large, in other

in p u t lay e r h id d en lay e r o u tp u t lay e r

 = 1

 = 1

 = 1

 1

 n

 = 1

 m

 2

 1

 1

 2

 0

49

words, ordinary large RNN suffer from short memory issues, this phenomenon is referred to

as Vanishing Gradient Problem [26].

Figure 3.2: RNN network architecture.

Figure 3.3: RNN cell architecture.

𝑌𝑡 = 𝑡𝑎𝑛ℎ(𝑊[𝑌𝑡−1, 𝑋𝑡])

Equation 3.1: RNN cell formula.

Where:

𝑋𝑡 is the input.

𝑌𝑡−1 in the output from previous RNN block.

𝑌𝑡 is the output of the current RNN block.

This limitation can cause several difficulties to the algorithms accuracy which was the rationale

behind looking for a new improved version of RNN.

The solution to vanishing gradient problem came in 1997 by Hochreiter & Schmidhuber [27]

when they introduced the new Long Short-Term Memory (LSTM) algorithm which was

capable of learning long term dependencies and yet, appreciate all the great features of

sequential processing capabilities inherited from the parent RNN architecture. A typical LSTM

network is illustrated in Figure 4.4.

RNN

Cell

RNN

Cell

50

Figure 3.4: LSTM network architecture.

Figure 3.5: LSTM cell architecture.

Within LSTM, a pivotal element known as the cell state, denoted as Ct, plays a central role. It

is visually represented as a horizontal line spanning across the network top.

This cell state is meticulously managed by gates, which are responsible for executing

multiplication and summation operations based on the sigmoid output. These operations serve

as the gatekeepers, determining which pieces of information to retain and which to discard.

This inherent mechanism endows LSTM with a remarkable capability for effectively predicting

sequential data by selectively retaining and processing relevant information.

The internal structure of a single LSTM block is illustrated in Figure 4.5.

𝑓𝑡 = 𝜎(𝑊𝑓[𝑌𝑡−1, 𝑋𝑡] + 𝑏𝑓)

𝑖𝑡 = 𝜎(𝑊𝑖[𝑌𝑡−1, 𝑋𝑡] + 𝑏𝑖)

𝑦𝑡 = 𝜎(𝑊𝑦[𝑌𝑡−1, 𝑋𝑡] + 𝑏𝑦)

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊 𝑐[𝑌𝑡−1, 𝑋𝑡])

𝐶𝑡 = (𝑓𝑡 × 𝐶𝑡−1) + (𝑖𝑡 × 𝑐𝑡
)

𝑌𝑡 = 𝑦𝑡 × tanh (𝐶𝑡)

Equation 3.2: LSTM cell formulas.

LSTM

Cell

LSTM

Cell

forget gate input gate output gate

51

Where:

𝑓𝑡 is the forget function, 𝑊𝑓 forget gate weight, and 𝑏𝑓 is forget bias.

𝑖𝑡 is the input function, 𝑊𝑖 input gate weight, and 𝑏𝑖 is input bias.

𝑦𝑡 is the output function, 𝑊𝑦 output gate weight, and 𝑏𝑦 is output bias.

𝑋𝑡 is the input.

𝐶𝑡 cell state.

𝑌𝑡−1 in the output from previous RNN block.

𝑌𝑡 is the output of the current RNN block.

In LSTM network, there are three main gates that control the flow of information and states

within the LSTM cell: the input gate, the forget gate, and the output gate. These gates help the

LSTM cell to selectively process and store information over different time steps, enabling the

network to capture long-range dependencies and mitigate the vanishing gradient problem [27],

[28].

Forget Gate (𝑓𝑡): The forget gate determines what information from the previous cell state 𝐶𝑡−1

should be retained or discarded. It takes a combination of the current input 𝑋𝑡 and the previous

hidden state 𝑌𝑡−1 as input and passes it through a sigmoid activation function. The output of

the forget gate 𝑓𝑡 is then multiplied elementwise with the previous cell state to decide which

parts of the cell state should be forgotten.

Input Gate (𝑖𝑡): The input gate determines how much new information should be added to the

current cell state 𝐶𝑡 takes a combination of the current input 𝑋𝑡 and the previous hidden state

𝑌𝑡−1 as input and passes it through a sigmoid activation function. This gate decides which

values from the input should be updated into the cell state. Additionally, a tanh activation

function processes the same input to generate a candidate cell state update 𝐶𝑡. The input gate

then modulates the candidate update using the sigmoid-activated input gate output, controlling

which parts of the candidate update should be added to the cell state.

Output Gate (𝑦𝑡): The output gate decides what information from the current cell state 𝐶𝑡

should be used to produce the output 𝑌𝑡 of the LSTM cell at the current time step. Such as the

52

input and forget gates, it takes a combination of the current input 𝑋𝑡 and the previous hidden

state 𝑌𝑡−1 as input and passes it through a sigmoid activation function. The current cell state 𝑋𝑡

is then processed by the tanh activation function to bring it to the desired output range. The

output gate sigmoid-activated output 𝑦𝑡 then modulates the tanh-activated cell state to generate

the final output of the LSTM cell.

By using these gates, an LSTM cell can effectively control the flow of information, selectively

update the cell state, and produce meaningful outputs at each time step, making it well-suited

for tasks involving sequential and temporal data.

Each gate is also controlled by weights and bias, this is the key feature in LSTM as the weights

are continuously updated to reflect gradient and errors from data way back. Without this

feature, the RNN will be biased to recent data changes only, hence, accuracy will decline as

processing continue.

In LSTM network, a bias parameter is a learnable scalar added to the weighted sum of inputs

and recurrent states before passing through activation functions. Each LSTM cell has three

different bias terms: input bias, forget bias, and output bias [27], [28].

Input Bias (𝑏𝑖): This bias term is added to the linear combination of the input data and the

previous hidden state before passing through the sigmoid activation function. It controls the

amount of new information that should be added to the cell state. A higher input bias can

encourage the LSTM cell to consider more of the current input.

Forget Bias (𝑏𝑓): The forget bias is added to the linear combination of the input data and the

previous hidden state before passing through the sigmoid activation function that computes the

forget gate. This bias helps control the extent to which the cell should forget the previous cell

state. A higher forget bias can lead the LSTM cell to forget more of the previous cell state.

Output Bias (𝑏𝑖): The output bias is added to the linear combination of the input data and the

previous hidden state before passing through the sigmoid activation function that computes the

output gate. This bias influences the amount of information that should be used from the cell

state to produce the output of the LSTM cell.

These bias terms are crucial for the functioning of the LSTM cell because they enable the

network to adjust the balance between input, forget, and output behaviours. Bias parameters

are learned during the training process along with the other weights of the network, enabling

the LSTM to adapt to the specific characteristics of the data and the task.

53

Bias terms in LSTMs play a role in ensuring the model ability to capture and retain important

information over time, making them a key component of the LSTM architecture.

In LSTM and deep learning in general, both the hyperbolic tangent (tanh) and sigmoid

activation functions are used, but they serve different purposes based on their characteristics

and properties.

Tanh (Hyperbolic Tangent) Function

The tanh function squashes input values to the range of [-1, 1]. It is zero-cantered, meaning

that its outputs have a mean of approximately zero. Tanh is often used in the hidden layers of

neural networks, particularly in recurrent neural networks (RNNs) and long short-term memory

(LSTM) networks, to introduce non-linearity while enabling the model to capture more

complex patterns in the data. Tanh can help prevent the "vanishing gradient" problem compared

to sigmoid because it has a larger output range, which can result in faster convergence during

training. Figure 4.2 illustrates a tanh function output [11], [12].

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

Equation 3.3. Tanh activation function formula.

Figure 3.6: Tanh activation function output.

Sigmoid Function

The sigmoid function maps input values to the range of [0, 1]. It is commonly used in binary

classification problems, where it transforms the output into a probability value between 0 and

1. The sigmoid function is also used in the output layer of networks for tasks such as binary

54

classification, as it conveniently converts the network final output into a probability score [11],

[12].

𝑆(𝑥) =
1

1 + 𝑒𝑥

Equation 3.4: Sigmoid activation function formula.

Figure 3.7: Sigmoid activation function output.

tanh is often preferred in hidden layers of networks where the zero-centred property can help

with optimization, and it can mitigate the vanishing gradient issue. Sigmoid is suitable for tasks

where you need binary classification probabilities or when you want to restrict outputs to a

specific range. However, in many cases, modern deep learning architectures, such as Rectified

Linear Unit (ReLU) and its variants, have become more popular choices for activation

functions due to their improved training properties and performance.

3.2 GRU Deep Learning Network

Gated Recurrent Unit (GRU) algorithm has been introduced recently by Chao et al [29], it

simplified the original LSTM by combining the input and forget into a single gate and merged

cell and hidden state.

GRU boasts a simpler architecture when compared to LSTM, making it more straightforward

to implement and quicker to train. Moreover, it features fewer parameters, which becomes

advantageous when handling limited data or working with computational resource constraints.

55

Both LSTM and GRU leverage gating mechanisms to regulate information flow, but GRU

takes it a step further by combining the forget and input gates into a single update gate, resulting

in a more streamlined structure.

In scenarios where long sequences of data are involved, GRU tends to outperform LSTM, as it

has demonstrated improved resistance to the vanishing gradient problem. Additionally, thanks

to its simplified architecture and reduced parameter count, GRU exhibits greater computational

efficiency compared to LSTM, rendering it a preferred option for specific applications.

Figure 4.6 illustrates the structure of a GRU network, where 𝑋𝑡 indicates the input and 𝑌𝑡

indicates the output.

Figure 3.8: GRU network architecture.

𝑟𝑡 = 𝜎(𝑊 𝑟[𝑌𝑡−1, 𝑋𝑡] + 𝑏𝑟)

𝑢𝑡 = 𝜎(𝑊 𝑢[𝑌𝑡−1, 𝑋𝑡] + 𝑏𝑢)

𝑦𝑡 = tanh (𝑊 𝑦[(𝑟𝑡 × 𝑌𝑡−1), 𝑋𝑡] + 𝑏𝑦)

𝑌𝑡 = ((1 − 𝑢𝑡) × 𝑌𝑡−1) + (𝑢𝑡 × 𝑦𝑡)

Equation 3.5: GRU cell formulas.

Where:

𝑟𝑡 is the reset function, 𝑊𝑟 reset gate weight, and 𝑏𝑟 is reset bias.

𝑢𝑡 is the update function, 𝑊𝑢 update gate weight, and 𝑏𝑢 is update bias.

𝑦𝑡 candidate output state, 𝑊𝑦 candidate state weight, and 𝑏𝑦 is candidate state bias.

𝑋𝑡 is the input.

𝑌𝑡−1 in the output from previous RNN block.

𝑌𝑡 is the output of the current RNN block.

 R

Cell

 R

Cell

56

Figure 3.9: GRU cell architecture.

In GRU neural network architecture, there are two main gates that regulate the flow of

information and control the memory within the GRU cell: the update gate and the reset gate.

These gates help the GRU to selectively process and update its internal state, enabling it to

capture temporal dependencies and patterns in sequential data [11], [29].

Update Gate (𝑢𝑡): The update gate determines how much of the previous internal state 𝑌𝑡−1

should be retained and how much of the current input 𝑋𝑡 should be incorporated into the new

internal state 𝑌𝑡. It takes the concatenation of the current input and the previous hidden state as

input and passes it through a sigmoid activation function. The output of the update gate controls

the trade-off between retaining the past state and incorporating new information.

Reset Gate (𝑟𝑡): The reset gate determines how much of the previous hidden state 𝑌𝑡−1 should

be forgotten when calculating the new candidate state 𝑦𝑡. Similarly to the update gate, it takes

the concatenation of the current input and the previous hidden state as input and passes it

through a sigmoid activation function. The reset gate output controls the extent to which the

past hidden state is reset when computing the candidate update.

In a GRU neural network, bias terms are additional parameters that influence the behaviour of

the gates and the candidate state. There are typically bias terms associated with the update gate,

the reset gate, and the candidate state computation [11], [29].

Update Gate Bias (𝑏𝑢): The update gate bias is added to the linear combination of the current

input 𝑋𝑡 and the previous hidden state 𝑌𝑡−1 before passing through the sigmoid activation

function that computes the update gate. This bias can influence how much the model prefers to

update the internal state based on the input and the previous state.

reset gate update gate

57

Reset Gate Bias (𝑏𝑟): The reset gate bias is added to the linear combination of the current input

𝑋𝑡 and the previous hidden state 𝑌𝑡−1 before passing through the sigmoid activation function

that computes the reset gate. This bias can control the tendency of the reset gate to reset or

forget the previous hidden state.

Candidate State Bias (𝑏𝑦): The candidate state bias is added to the linear combination of the

current input 𝑋𝑡 and the previous hidden state 𝑌𝑡−1 before passing through the tanh activation

function that computes the candidate state 𝑦𝑡. This bias can influence the initial behaviour of

the candidate state computation.

The inclusion of bias terms within the GRU cell is a dynamic process integrated into the

training phase, wherein these bias terms are learned alongside the other parameters of the GRU

cell. This learning process is vital as it enables the model to exhibit adaptability and precision

by fine-tuning the operations of the gates and the candidate state. These bias terms essentially

serve as adjustable parameters that facilitate the alignment of the model behaviour with the

unique characteristics of the data being processed, thereby enhancing the model performance

in executing specific tasks. This fine-tuning capability contributes significantly to the model

effectiveness in addressing a diverse range of data and tasks.

3.3 Loss Function

A loss function, also known as a cost function or objective function, is a crucial component in

machine learning algorithms, particularly during the training phase. It quantifies the difference

between the predicted values of the model and the actual target values in the dataset. The goal

of training is to minimize this loss function, which essentially measures how well the model

predictions match the ground truth.

In the context of supervised learning, where the algorithm learns from labelled data, the loss

function serves as a guide for adjusting the model parameters to improve its performance.

Different types of machine learning tasks (such as classification, regression, or even more

specialized tasks) often require specific types of loss functions.

Below, presents several instances of loss functions applicable to machine learning tasks

involving timeseries and financial data.

58

Mean Squared Error (MSE) is used in regression tasks, MSE calculates the average squared

difference between the predicted and actual target values. It penalizes larger errors more

heavily [11], [12].

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖

^)2

𝑛

𝑖=1

Equation 3.6: Mean Squared Error (MSE) formula.

Where:

𝑦𝑖 is the actual target value.

𝑦𝑖
^ is the predicted value.

𝑛 is the number of data points used.

Root Mean Squared Error (RMSE) is a variation of MSE that further takes the square root

of the average squared differences [11]. It provides a more interpretable measure in the same

unit as the original values. RMSE is expressed is expressed as:

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖

^)2

𝑛

𝑖=1

Equation 3.7: Root Mean Squared Error (RMSE) formula.

RMSE imposes a greater penalty on larger prediction errors compared to MSE due to the square

root operation, which accentuates the influence of these errors. RMSE finds frequent use when

the intention is to gauge prediction error in the original unit of the target variable. Furthermore,

RMSE offers the advantage of rendering a measure in the same unit as the original data,

facilitating a more intuitive interpretation in real-world contexts.

Conversely, MSE is expressed in squared units and is often favoured when there is substantial

variability in the magnitudes of predicted and actual values. This preference arises as MSE aids

in mitigating the sway of outliers that may skew the assessment.

59

It is imperative to note that RMSE propensity to magnify the impact of large errors stems from

the square root operation. This characteristic can be particularly pertinent when there is a desire

to underscore the significance of substantial deviations from the predicted values.

Huber loss is an alternative to MSE for regression tasks, Huber loss is less sensitive to outliers

and can provide a balance between the robustness of MSE and the absolute error loss (MAE)

[30].

𝑓(𝑥) = {

1

2
(𝑦 − 𝑦^)2, 𝑖𝑓 |𝑦 − 𝑦^| ≤ 𝛿

𝛿(|𝑦 − 𝑦^| −
𝛿

2
), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Equation 3.8: Hyper Loss formula.

Where:

𝛿 is a threshold parameter.

3.4 Gradient Descent

Gradient descent is a fundamental optimization algorithm widely deployed in machine learning

and deep learning to iteratively minimize a loss function and enhance the performance of a

model. It operates by iteratively adjusting the model parameters in the direction that reduces

the value of the loss function, thereby reaching a point of optimal parameter values [11], [12].

The algorithm core idea is rooted in calculus and the concept of gradients. The gradient of a

function at a specific point indicates the direction of the steepest increase of the function. In

the context of gradient descent, the negative gradient points in the direction of the steepest

decrease, which is the direction in which the algorithm seeks to move to minimize the loss.

Gradient descent algorithm typically works in the following order:

Step 1: Initialization: Initialize the model parameters with arbitrary values.

Step 2: Compute Gradient: Calculate the gradient of the loss function with respect to the model

parameters. This involves computing partial derivatives for each parameter.

60

Step 3: Update Parameters: Adjust the parameters in the opposite direction of the gradient by

a certain step size, often referred to as the learning rate. The learning rate determines the size

of the steps taken in each iteration.

Step 4: Repeat steps 2 and 3 iteratively until convergence or a predetermined number of

iterations is reached.

For a deeper understanding, the steps above can be elucidated in the following manner:

The gradient decent start by fitting a hypothesis function ℎ𝜃(𝑥) as shown in Equation 3.4 [11],

[12] which is represents step (1).

ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥

Equation 3.9: Gradient descent – Hypothesis formula.

Where:

ℎ𝜃(𝑥) is the hypothesis function.

𝜃0is the first parameter value.

𝜃1 is the next parameter value.

 𝑥 is the input value.

The cost function of the gradient decent is the squared difference between the hypothesis and

the actual value. This function is generally referred to as loss function.

Calculation by this formula [11], [12] represent step (2).

𝐽(𝜃) =
1

2𝑚
∑[ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖)]

2
𝑚

𝑖

Equation 3.10: Gradient descent – Cost function formula.

Where:

𝐽(𝜃) is the cost function.

ℎ𝜃(𝑥(𝑖)) is the predicted value.

61

𝑦(𝑖) is the actual value.

The new parameter 𝜃𝑛𝑒𝑤 is calculated using the learning rate (𝛼). This calculation represents

step (3).

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 − (𝛼 × ∇𝐽(𝜃𝑜𝑙𝑑))

Equation 3.11: Gradient descent formula.

Where:

𝜃𝑛𝑒𝑤 represents the updated parameter values.

𝜃𝑜𝑙𝑑 represents the current parameter values.

𝛼 is the learning rate, determining the step size for each iteration.

∇𝐽(𝜃𝑜𝑙𝑑) is the gradient of the loss function J with respect to the parameters 𝜃𝑜𝑙𝑑.

Figure 3.1 depicts the sequence of actions undertaken by gradient descent to locate the

minimum data point, considering both modest and substantial learning rates [31].

Opting for a reduced learning rate, while enhancing precision, comes at the cost of extended

computational time needed to reach the minimum point. Conversely, embracing a higher

learning rate enables for more substantial steps during training, yet it introduces the potential

risk of overshooting the minimum point. This trade-off between precision and computational

efficiency is a key consideration in the optimization process.

Figure 3.10: Gradient descent - small(left) and large(right) learning rates.

62

There are different variants of gradient descent, Batch gradient descent, Stochastic gradient

descent, and Hybrid gradient descent [31], [32].

Batch gradient descent computes the gradient using the entire training dataset at each iteration.

It provides a more accurate estimate of the gradient but can be computationally expensive for

large datasets.

Stochastic gradient descent computes the gradient using only a single training sample at each

iteration. It is computationally more effective but can have more noisy updates.

Hybrid gradient descent, aften referred to as “Mini-batch gradient decent”, computes the

gradient using a small subset of the training data. This combines the benefits of both batch and

stochastic gradient descent.

In deep learning, gradient descent is a fundamental optimization algorithm used to update the

parameters of a neural network in order to minimize the loss function. While gradient descent

is powerful and widely used, it can encounter several issues when applied to deep learning

models.

Vanishing gradients, Exploding Gradients, local minimum, and saddle point are known

challenges to recurrent deep neural networks during model training with gradient descent and

backpropagation.

Vanishing gradients scenario arises when gradients become exceedingly small. While

backpropagating through the network layers, the gradient consistently decreases, leading to

gradual learning in earlier layers compared to later ones. This phenomenon may culminate in

weight parameter updates dwindling to insignificance, effectively rendering the algorithm

dormant [31], [33].

The exploding gradients situation emerges when gradients attain excessive magnitudes,

inducing model instability. Consequently, the model weights grow disproportionately large,

ultimately diverging to NaN (Not-a-Number) representations. To address this, a potential

remedy involves harnessing dimensionality reduction techniques, which mitigate model

complexity and promote stability [31], [34].

A local minimum is a point in the parameter space where the loss function has the lowest value

within a certain neighbourhood of that point. In other words, the loss function is lower at this

63

point than at nearby points. However, it is important to note that a local minimum might not be

the global minimum (lowest value of the entire loss function), which is the ultimate goal in

optimization. Gradient descent can sometimes get stuck in a local minimum, preventing it from

finding the global minimum [35].

A saddle point is a point in the parameter space where the loss function has a flat region

surrounded by higher values in some directions and lower values in other directions. At a saddle

point, the gradient of the loss function is close to zero, which makes it difficult for gradient

descent to determine the optimal direction to move in. Saddle points can slow down the

convergence of gradient descent as it may linger in the flat region without making significant

progress toward the minimum [31], [32], [36].

Figure 3.11: Gradient descent - local minimum(left) and saddle point(right).

The concept of a loss function is tightly intertwined with the optimization process in machine

learning, particularly gradient descent. A loss function quantifies the disparity between a model

predictions and the actual target values, serving as a crucial guide for model refinement.

Gradient descent, on the other hand, is an optimization algorithm aimed at minimizing the loss

function by iteratively adjusting the model parameters. It operates by computing the gradient

of the loss function with respect to the model parameters. This gradient points in the direction

of steepest ascent, so to minimize the loss, the algorithm takes steps in the opposite direction

(downhill) by subtracting a fraction of the gradient (learning rate) from the current parameters.

This process continues iteratively until convergence, or a predefined stopping criterion is met.

64

3.5 Multi-Task Learning

Multi-Task learning stands as a machine learning paradigm wherein a model is trained to

adeptly handle multiple interconnected tasks concurrently. This method capitalizes on shared

insights and representations across these tasks to heighten overall performance. Within the

realm of multi-task learning, the model aspires to enhance its proficiency in each task by

gleaning insights from the information embedded within other tasks [37].

This approach proves particularly advantageous when tasks exhibit common underlying

structures or relationships, empowering the model to glean knowledge more effectively and

effectively. Through the collective optimization of model parameters across multiple tasks,

multi-task learning yields improved generalization, heightened accuracy, and augmented

robustness in comparison to the approach of training separate models for each task.

Multi-Task learning finds particular utility in situations where labelled data is scarce for

individual tasks, but ample for the amalgamated task set. Moreover, it aids in refining the

acquisition of representations that encapsulate pivotal features across tasks, consequently

elevating the efficacy of feature extraction.

Instances of multi-task learning applications encompass the domain of natural language

processing, encompassing tasks such as part-of-speech tagging, named entity recognition, and

syntactic parsing—tasks interwoven by linguistic dependencies.

Within the domain of computer vision, the utilization of multi-task learning extends to pursuits

encompassing objectives such as object detection, image segmentation, and facial recognition.

Below are the main benefits of Multitasking [37], [38], [39], [40] :

Efficiency: Multitasking enables the effective utilization of computational resources by

training a single model instead of maintaining multiple models for each task. This consolidation

can lead to reduced memory and processing requirements.

Shared Representations: Multi-Task learning encourages the model to discover shared

representations that capture the essential features across tasks. This shared knowledge can lead

to better generalization on unseen data and improved adaptability to changes in the input

distribution.

65

Data Efficiency: In scenarios with limited data, multitasking can be particularly advantageous.

The model can leverage information from related tasks to improve performance on tasks with

sparse data.

Regularization: Multitasking can act as a form of regularization, preventing overfitting by

encouraging the model to focus on the most important features shared across tasks.

In the context of multi-task learning, where a single model is trained to perform multiple tasks

simultaneously, the concept of loss functions becomes even more significant. Each task in

multi-task learning typically has its own associated loss function, reflecting the specific

objective of that task. The challenge lies in effectively combining these task-specific loss

functions to train the model.

Figure 3.12: Multitasking architecture.

The overarching goal in multi-task learning is to find a balance between optimizing each task

performance while leveraging shared knowledge across tasks. The formulation of the combined

loss function depends on how the tasks are related and how the model parameters are shared

among them.

66

In multi-task learning, the individual task loss functions are combined into a joint objective

function that the model aims to minimize. This joint objective function can take different forms,

depending on how the tasks are weighted relative to each other. It may include summing the

task-specific loss functions with appropriate weights:

𝐿𝑜𝑠𝑠𝑇𝑜𝑡𝑎𝑙 = ∑ 𝑊𝑖 × 𝐿𝑖(𝜃)

𝑛

𝑖

Equation 3.12. Model Loss function formula.

Where:

𝑊𝑖 represents the weight.

𝐿𝑖(𝜃) represents the loss function for task 𝑇𝑖

To encourage shared knowledge and prevent overfitting, regularization terms can be added to

the joint objective function. These terms may penalize the model for diverging too much from

shared parameters.

The choice of 𝑊𝑖 values can reflect the relative importance of each task. Tasks with more

available data or higher priority may receive higher weights to guide the model learning.

In some cases, dynamic weighting or adaptive approaches can be used to adjust the importance

of each task during training, based on factors such as task difficulty or the model current

performance on each task.

Loss scaling can be applied to ensure that the gradients contributed by each task are balanced,

preventing one task from dominating the optimization process.

Multi-Task learning success relies on finding an equilibrium between enhancing individual

task performance and leveraging shared information. The loss functions play a pivotal role in

achieving this balance, guiding the model to learn useful representations that benefit all tasks

simultaneously.

67

3.6 Training and Optimization

Training and optimization of LSTM (Long Short-Term Memory) and GRU (Gated Recurrent

Unit) networks include several key steps to ensure their effectiveness in learning from financial

time series data. Detailed overview of the steps is listed below [11], [26], [27], [29].

Data Preprocessing

Before training the LSTM or GRU model, the financial time series data needs to be pre-

processed. This includes steps such as handling missing values, normalization or scaling of the

data, and splitting it into training, validation, and test sets.

Model Architecture

 The architecture of the LSTM or GRU network is defined, specifying the number of layers,

the number of memory cells (units) in each layer, and other hyperparameters. The choice of

architecture depends on the complexity of the data and the prediction task.

Loss Function

For training a regression model, a common choice for the loss function is Mean Squared Error

(MSE), which measures the difference between the predicted values and the actual targets. For

classification tasks, categorical cross-entropy or binary cross-entropy is used.

Optimization Algorithm

The optimization algorithm is responsible for updating the model parameters (weights and

biases) during training to minimize the loss function. Popular optimization algorithms for

LSTM and GRU networks include Adam, RMSprop, and SGD (Stochastic Gradient Descent).

Root Mean Square Propagation (RMSProp) adjusts the learning rate based on the magnitudes

of recent gradients. It is particularly useful for handling sparse data and can be beneficial when

dealing with time series that exhibit varying levels of volatility.

Adaptive Moment Estimation (Adam) is an adaptive optimization algorithm that combines

elements of both momentum and RMSProp. It adjusts the learning rate for each parameter

individually, making it suitable for non-stationary time series data where the data distribution

might change over time.

68

Stochastic Gradient Descent (SGD) is a widely used optimization algorithm that updates model

parameters based on the gradient of the loss function with respect to a small subset of the

training data. It is beneficial for large datasets and can be adapted for time series data by

considering sequences of data points as mini batches.

Learning Rate

The learning rate is a hyperparameter that controls the step size at which the optimization

algorithm updates the model parameters. A suitable learning rate is essential for faster

convergence and avoiding overshooting the optimal solution.

Backpropagation Through Time (BPTT)

LSTM and GRU networks are recurrent architectures, so training involves propagating the

error gradient backward through time. BPTT helps the model learn from previous time steps

and update the memory cells accordingly.

Regularization

 Regularization techniques such as dropout and L2 regularization are applied to prevent

overfitting. Dropout randomly deactivates neurons during training, and L2 regularization adds

a penalty to the loss function for large weights, both of which improve generalization.

Hyperparameter Tuning

The hyperparameters, such as the number of layers, the number of units in each layer, learning

rate, and dropout rate, are fine-tuned to optimize the model performance. This is typically done

using techniques such as grid search or random search.

Early Stopping

To avoid overfitting, early stopping is deployed. It monitors the performance on a validation

set during training and stops the training process when the performance starts to degrade.

Evaluation

After training, the LSTM or GRU model is evaluated on the test set to assess its performance

on unseen data. Metrics such as Mean Absolute Error (MAE) or Mean Squared Error (MSE)

are used to measure the model accuracy.

By carefully selecting the model architecture, loss function, optimization algorithm, and

hyperparameters, and using regularization techniques, the LSTM and GRU networks can be

69

effectively trained and optimized to make accurate predictions for financial time series data,

enabling optimised portfolio management, risk management, and decision-making in financial

applications.

3.7 Limitations and Future Directions

Deep learning has revolutionized various fields, including natural language processing, time

series analysis, and more. LSTM (Long Short-Term Memory) and GRU (Gated Recurrent

Unit) networks are two popular types of recurrent neural networks (RNNs) that have gained

significant attention for their ability to model sequential data. This research examines the

strengths and weaknesses of LSTM and GRU networks, shedding light on their computational

complexity, susceptibility to overfitting, training time, gradient-related challenges, memory

requirements, interpretability, and the cold start problem.

Computational Complexity and Training Time

LSTM and GRU networks offer sophisticated memory mechanisms to capture long-term

dependencies in sequential data, but these advantages come at a cost. Both networks have

higher computational complexity compared to simpler feedforward neural networks. This

complexity slows down the training process, making them slower to train and demanding more

memory for storage. In particular, the backpropagation through time process used in training

RNNs can be time-consuming, especially for large datasets or deep architectures [11], [12].

Overfitting

One of the challenges faced by LSTM and GRU networks is the risk of overfitting, particularly

when dealing with small datasets. Overfitting occurs when the model becomes too specific to

the training data and fails to generalize well to unseen data. Regularization techniques such as

dropout and L2 regularization are commonly used to mitigate this issue and improve the model

ability to generalize [11], [12].

Vanishing and Exploding Gradients

LSTM and GRU networks may encounter the vanishing and exploding gradient problems

during the training process. The vanishing gradient problem occurs when gradients diminish

exponentially during backpropagation, making it challenging to learn long-range dependencies

in the data. On the other hand, the exploding gradient problem results in gradients becoming

70

too large, causing unstable training. This topic is discussed in detail in section 3.2 [11], [12],

[31], [33].

Parameter Sensitivity

The performance of LSTM and GRU networks is highly sensitive to hyperparameter tuning.

Careful adjustment of hyperparameters is essential to achieve optimal performance, as small

changes can significantly impact the model results.

Memory Requirements

The memory mechanisms in LSTM and GRU networks enable them to store information from

past time steps, facilitating their ability to learn from sequences. However, this advantage

comes with a trade-off as they often require substantial memory, which can be a limitation

when working with large sequences or resource-constrained devices.

Interpretability

LSTM and GRU networks are considered black-box models, meaning their internal workings

can be challenging to interpret. Understanding how these models arrive at their predictions can

be crucial in applications that require transparency and details of implementation or methods

used.

Cold Start Problem

LSTM and GRU networks may face difficulties in making accurate predictions during the

initial time steps, especially when there is limited historical data available. This "cold start

problem" can be a limitation in certain time series forecasting scenarios.

3.8 Conclusions

LSTM and GRU networks are highly effective and powerful architectures for sequential data

processing tasks. They have proven to be very successful in a wide range of applications,

including natural language processing, speech recognition, time series forecasting, sentiment

analysis, and more.

71

LSTM and GRU networks are designed to address the vanishing gradient problem in traditional

recurrent neural networks, which enables them to capture long-term dependencies in sequential

data, which make them a good tool for financial market metrics predictions and trend analysis.

Both LSTM and GRU networks incorporate memory cells to store and manage information

across various time steps. This memory mechanism enables them to retain important patterns

in the data and use that knowledge for future predictions. Additionally, the gating mechanisms

in these networks enable them to control the flow of information, focusing on relevant features

and filtering out noise or irrelevant data. This capability enhances their ability to learn

significant patterns in the data and make precise predictions.

While LSTM and GRU networks have their limitations and require careful hyperparameter

tuning, they are considered powerful tools in the field of deep learning, and their effectiveness

has been demonstrated in numerous applications.

Multitasking in machine learning represents a compelling approach to addressing the

challenges of complex and interconnected tasks. By leveraging shared information across tasks,

multitasking can lead to improved efficiency, accuracy, and adaptability in various domains.

However, successful multitasking requires careful consideration of task relationships,

optimization techniques, and regularization strategies. As machine learning continues to

advance, multitasking stands as a promising avenue for pushing the boundaries of AI

capabilities and driving innovation across a wide range of applications [37].

The loss function acts as a compass, indicating the model performance on the task, while

gradient descent acts as a navigator, steering the model towards parameter values that yield

lower loss. Together, they form a dynamic duo that powers the model learning journey, making

incremental adjustments to improve predictive accuracy and convergence.

In essence, the loss function shapes the landscape that gradient descent traverses, guiding the

optimization process toward optimal model parameters that lead to enhanced performance.

This symbiotic relationship underpins the essence of model training and optimization in

machine learning.

72

Chapter 4

Deep Learning Applications to Stock

Market Analysis

In the intricate realm of financial markets, the pursuit of accurate prediction and informed

decision-making is an unending quest [10], [20], [22]. Over the years, deep learning has

emerged as a formidable tool, revolutionizing the way we analyse and forecast market

behaviours. This chapter serves as an introduction to the extensive literature review that

embarks on a dual investigation: the application of deep learning for stock market prediction

and the emerging paradigm of multitasking, which leverages the power of deep learning to

address multiple interconnected tasks within this complex domain.

Deep learning, inspired by the architecture of the human brain, holds the promise of unravelling

intricate patterns hidden within massive and intricate financial datasets. Within the context of

stock market prediction, deep learning techniques hold the potential to decipher non-linear

relationships, temporal dependencies, and latent variables that drive stock prices [41]. This

introduction lays the foundation for a comprehensive journey into the mechanics of deep

learning, encompassing neural network architectures, training strategies, and evaluation

methodologies, all tailored to decode the intricate behaviours of financial markets.

The chapter covers the following key topics:

Stock Market Prediction: This literature review investigates the realm of deep learning in

stock market prediction by examining existing research. It navigates through various studies,

methodologies, and insights, dissecting the evolution of techniques from inception to cutting-

edge models. The aim is to highlight the transformative potential of deep learning and

multitasking in stock market analysis.

Multi-Task Deep Learning for Stock Market Analysis: Within this literature review, the

research illuminates the multifaceted dimensions of stock market prediction and multitasking,

showcasing how deep learning not only enhances predictive accuracy but also paves the way

for tackling multiple interrelated tasks simultaneously. This includes addressing tasks such as

73

stock price forecasting, volatility estimation, trend identification, and risk assessment, all while

capitalizing on shared information and representations.

As the research journey through the subsequent chapters, it investigates thoroughly into the

core studies, methodologies, and breakthroughs within the expansive landscape of deep

learning for stock market prediction and multitasking. Through meticulous examination and

critical analysis of existing literature, the aim is to extract insights that will illuminate new

pathways toward more precise predictions, holistic perspectives, and empowered decision-

making in the ever evolving and intricate arena of financial markets.

4.1 Deep Learning for Stock Market Prediction

The application of deep learning techniques in the field of market prediction has garnered

substantial attention in recent years. This literature review aims to provide an overview of key

studies and advancements in utilizing deep learning for forecasting market behaviours, with a

focus on stock prices, market trends, and volatility.

Deep learning models have been extensively studied for stock price prediction. In a study [42],

a hybrid model was introduced, integrating Long Short-Term Memory (LSTM) networks with

a Reinforcement Learning (RL) framework for accurate stock price prediction. Additionally,

deep neural networks were deployed in research [43] to capture intricate patterns in stock price

data, demonstrating notable predictive performance.

Deep learning exhibits potential in recognizing market trends. In an extensive investigation, a

comparison was made between the performance of deep learning models and traditional

methods for predicting stock trends, illustrating the superiority of deep learning approaches

[44]. This sentiment is reinforced by those who utilized convolutional neural networks (CNN)

to extract meaningful features for precise trend identification [45].

Forecasting volatility is vital for effective risk management. A hybrid prediction model, which

combines LSTM and GARCH, was introduced for cryptocurrency portfolio volatility in

research [46], yielding superior results compared to conventional models. In an alternative

strategy, a study [47] utilized LSTM with autoencoder models for forecasting foreign exchange

volatility, highlighting deep learning's potential in capturing intricate volatility patterns.

74

Ensemble techniques that incorporate deep learning have gained prominence as well. A

proposed ensemble model for stock market data prediction in study [48] showcases

complementary strengths compared to other predictive models. Additionally, another research

[49] introduced an ensemble of deep learning models for enhanced accuracy in stock market

forecasting, significantly outperforming existing prediction models using the same dataset.

Transfer learning has emerged as a valuable approach. In a study [50], transfer learning was

implemented on financial time series data, utilizing pre-trained neural networks to improve the

accuracy of predicting stock price movements. This investigation underscores the versatility of

deep learning techniques in adapting to the dynamics of financial markets.

The literature review underscores the growing significance of deep learning in market

prediction. These studies collectively demonstrate the capacity of deep learning models to

capture complex patterns, identify trends, and forecast volatility in financial markets. The

integration of ensemble techniques, transfer learning, and innovative approaches such as

multitasking and multimodal fusion highlights the dynamic nature of deep learning impact on

market prediction.

A noteworthy contribution to this field is elucidated in Chapter 5 of this thesis, which is

partially published and references in [51]. A comprehensive methodology was adopted to study

the Multivariate LSTM architecture, encompassing the integration of multiple input features,

aimed at predicting the volatility of banking sector stocks. The model furnishes volatility

projections for varying timeframes 1, 5, 10, and 20 days encompassing diverse market

scenarios, encompassing both bullish trends characterized by ascending prices and bearish

trends marked by descending prices. The outcomes of the research uncover a notable trend

wherein the predictions generated by the Multivariate LSTM model outperform those of the

GARCH model, corroborating earlier investigations. The incorporation of an array of input

features amplifies the model predictive prowess, thereby underscoring the efficacy of this

approach in bolstering volatility forecasts within the financial landscape.

4.2 Multi-Task Deep Learning for Stock Market

The integration of multi-task deep learning into stock market analysis has gained significant

traction, offering a powerful framework to simultaneously address diverse aspects of market

75

behaviour and enhance predictive capabilities. This literature review provides an overview of

key studies and advancements in utilizing multi-task deep learning for stock market prediction,

volatility forecasting, and risk management.

The utilization of multi-task deep learning architecture extends to diverse stock market

prediction tasks. In a study by [52], a multi-task deep learning model was introduced,

simultaneously addressing stock price prediction and financial risk assessment. By capitalizing

on shared information, this innovative approach enhances the accuracy of predictions for both

tasks. The research underscores the advantages of capturing interdependencies between tasks,

thereby augmenting the overall predictive performance.

Additionally, multi-task deep learning has found application in the realms of risk evaluation

and portfolio management. A noteworthy example is presented in research [53], where they a

multi-task framework was devised within a deep neural network structure. This innovative

approach involves the simultaneous acquisition of insights into portfolio construction alongside

various auxiliary tasks linked to volatility. Notably, the model excels in forecasting realized

volatility, gauged through diverse volatility estimators, thereby surpassing established

strategies. In reference [54] an innovative multi-task strategy was introduced, leveraging

domain-specific textual attributes and precise audio alignment to forecast financial risk and

price behaviour. their approach enhances current methodologies along two dimensions: firstly,

by customizing a sophisticated deep multimodal model that focuses on both text and audio

inputs, and secondly, by enhancing the prediction of volatility and price movements through a

comprehensive ensemble formulation that addresses multiple tasks simultaneously.

Transfer learning and multimodal fusion techniques have been integrated into multi-task deep

learning for enhanced stock market analysis. In study [55], transfer learning was leveraged to

enable knowledge transfer between related financial tasks, leading to improved predictive

performance in comparison to single task model. Moreover, multimodal deep learning models

have been extended to incorporate scatter plots to overcome the complexity of cross-correlation

between domestic and foreign markets to further enriching the predictive capabilities of the

model [56].

Multi-Task deep learning has demonstrated efficacy in capturing temporal dependencies in

time series data. In the research [57], a multi-task architecture was introduced for stock price

prediction and temporal trend analysis, showcasing the potential of joint learning to capture

76

evolving market dynamics during extreme market condition such as one experienced during

COVID-19.

While multi-task deep learning offers promising avenues for stock market analysis, challenges

include task weighting, optimal model architecture design, and potential overfitting. Adequate

task weighting and selection are crucial to ensure that each task contributes meaningfully to

the overall learning process.

The reviewed literature underscores the growing significance of multi-task deep learning in

stock market analysis. These studies collectively emphasize the potential of joint learning to

capture interdependencies among various financial metrics, leading to improved prediction

accuracy and enhanced risk management strategies. The integration of transfer learning,

multimodal fusion, and temporal analysis further underscores the versatility and dynamism of

multi-task deep learning approaches in the domain of stock market analysis.

In Chapter 6 of this thesis, an inventive solution is detailed for predicting multiple crucial

stock market metrics through the application of multi-task deep learning. The study is

conducted on the S&P 500 and Dow Jones indexes across varying market conditions—bull

markets, bear markets, and volatile periods deploying prominent deep learning networks within

this domain, namely LSTM and GRU. To ensure comprehensiveness, the predictive accuracy

is benchmarked against well-established statistical models, GARCH and ARIMA, and

juxtaposed with a single-task model for future predictions spanning 1, 5, 10, and 20 days.

The observed outcomes validate that the multi-task model capitalizes on the shared layer and

dataset deployed across all tasks, thereby positioning it as superior to its single-task counterpart

and highly competitive when compared to existing statistical models.

4.3 Conclusions

In the realm of financial markets, the integration of deep learning and multitasking stands as a

transformative force. Deep learning, drawing inspiration from neural networks and the human

brain, has emerged as a potent tool for decoding complex market behaviours. Its application

spans across stock price prediction, volatility estimation, and trend identification, offering

nuanced insights into intricate relationships within financial data.

77

Multitasking, on the other hand, introduces a paradigm shift by enabling a single model to

concurrently tackle multiple related tasks. This approach leverages shared knowledge and

representations, enhancing the model ability to decipher interdependencies and uncover hidden

patterns within the market. By jointly optimizing parameters across tasks, multitasking leads

to improved generalization, enhanced accuracy, and robustness in predictions.

In the financial domain, this synergy of deep learning and multitasking offers a holistic

approach. It empowers traders and investors to address a multitude of market analysis

dimensions, from stock price movements to risk assessment, all within a unified framework.

The integration of advanced technologies and algorithms further amplifies this approach,

automating tasks and delivering real-time insights for informed decision-making.

In essence, the fusion of deep learning and multitasking in financial markets redefines

predictive capabilities, paving the way for more precise forecasts, improved trading strategies,

and ultimately, enhanced performance within the dynamic and intricate world of finance.

78

Chapter 5

Deep Learning for Stock Market

Prediction: nveiling Insights and

Enhancing Forecasts

Participating in the stock market necessitates an understanding of financial exchanges and the

assets being traded. Additionally, it entails embracing specific investment strategies and

approaches chosen thoughtfully to maximize gains and minimize potential losses, it also

demands ongoing recognition and control of various investment prospects and the

corresponding risks they entail [10], [13].

Effective risk management plays a crucial role in achieving success with investment and

trading strategies. Diverse categories of risks exist, capable of negatively influencing an

investment or trading collection, necessitating the application of varied approaches to reduce

and safeguard against them. Figure 1 provides a visual representation of common probabilities

that can result in losses in returns [13].

Figure 5.1: Portfolio loss probability. JP Morgan daily returns, 2017.

Volatility serves as a quantification of the oscillation observed in the price of a security or a

market index, playing a fundamental role in assessing risk and functioning as a pragmatic tool

for navigating uncertainty within financial markets [9]. A variety of volatility categories exist,

P
ro

b
ab

ili
ty

Portfolio Returns

Expected Loss

Volatility

79

encompassing a security volatility in relation to a benchmark index (Beta), volatility derived

from historical price movements (Historical Volatility), and the projected volatility spanning

an option lifespan (Implied Volatility), as detailed in references [18] and [15]. The latter,

Implied Volatility, finds application in the renowned Black-Scholes formula for pricing options

[19].

The realm of volatility forecasting has engaged the attention of both industry practitioners and

scholarly researchers for numerous decades. Enhanced precision in predicting market volatility

yields superior risk management capabilities and refined pricing models, thereby facilitating

the implementation of strategies geared toward maximizing profitability in trading and

investments. In contemporary financial practices, statistical models such as GARCH [3] and

[24] typically assume the role of forecasting volatility and deciphering price movements in

stock markets. Given the substantial surge in trading volumes and the amplification of market-

impacting factors in recent times, attributed to the rapid advancements in internet technologies

and mobile networks, an appetite for alternative approaches to model volatility has emerged.

This demand seeks to augment processing speed and accuracy when handling extensive

datasets characterized by intricate structures.

Notably, the spotlight has turned towards Artificial Neural Networks (ANN) and Deep

Learning methodologies, as these have garnered considerable attention due to their algorithmic

advancements. These techniques hold potential to address the aforementioned challenges and

further enrich the arsenal of tools available for volatility modelling and analysis.

The prevalence of extensively available vast datasets, coupled with the advancements in

computing hardware such as specialized TensorFlow cores designed to handle substantial data

volumes, has paved the way for utilizing specific algorithmic approaches.

This study investigates the application of a distinct variant of Recurrent Neural Networks

(RNN) for the purpose of volatility prediction. RNNs, a type of feed-forward artificial neural

network, deploy loops that enable the retention of information, thus furnishing a memory

mechanism capable of capturing sequential patterns in time series data [25]. Notably, this

investigation adopts the utilization of LSTM networks [27], an exceptionally potent subset of

RNNs.

Within this chapter, the primary aim of this study is elucidated – to gauge the efficacy of a

Multivariate LSTM architecture. This assessment involves a comparative analysis of its

80

predictive precision in relation to two benchmarks: the GARCH model, and a singular-input

deep learning architecture.

The aim of this research is to validate the first two hypotheses outlined in this thesis: (1) The

deployment/use of deep learning for market volatility prediction yields outcomes matches or

outperforms those of statistical models such as GARCH; (2) The utilization of stacked

multivariate deep learning with a composite input consisting of multiple stock prices enhances

the predictive accuracy of a key stock market performance indicator (future realized volatility

is selected for this research).

To evaluate the model efficacy, a series of tests were conducted utilizing a custom-built tool in

Python, deploying TensorFlow libraries.

The subsequent sections of this chapter are structured as follows:

Section 5.1: Section 5.1 offers a comprehensive literature review, examining prior research

pertaining to the utilization of deep learning for volatility prediction within the financial

domain.

Section 5.2: Section 5.2 elucidates the methodology adopted for constructing the multivariate

deep learning model, expounding on the testing procedures, variables deployed, dataset

specifics, and the array of conducted experiments.

Section 5.3: Section 5.3 delineates the outcomes derived from benchmark testing, coupled with

a comparative analysis of single-input and multivariate deep learning models.

5.1 Background and Related Works

Various methodologies are currently deployed to model market dynamics and volatility. Recent

years have witnessed an intensified drive for reassessment and enhancement of prevailing

pricing models and risk management strategies, propelled by the influx of extensive data

volumes and the lingering apprehensions stemming from the 2008 financial crisis [1], [2].

Numerous studies have juxtaposed Artificial Neural Networks (ANN) with statistical models

such as GARCH for the purpose of forecasting volatility, consistently revealing that ANN can

offer heightened effectiveness and accuracy. The rationale behind this preference rests in the

81

intricate characteristics of ANN – their propensity to handle high non-linearity, continuous

data, large-scale datasets, temporal dependencies, and dynamic patterns [58]– making them a

compelling choice for time series prediction within this specific domain.

In the study [59], an incisive examination was conducted into the computational prowess of

ANN for modelling time-varying data. Their study underscored that ANN not only align with

conventional time-series theory but also hold potential as robust alternatives to established

models, particularly in cases where non-linearity plays a pivotal role. Similarly, the research in

[60] corroborated the time-series capabilities of ANN while underscoring the significance of

the sampling window size. Their findings illuminated that optimal performance materializes

when the appropriate embedding dimension is maintained, with deviations from this window

size leading to performance degradation.

In a parallel undertaking, [61] executed an empirical study aimed at forecasting the Japanese

Nikkei 255 index. The study evaluated the classical Back Propagation Neural Network (BPNN)

against Genetic Algorithm (GA) and Simulated Annealing (SA), ultimately concluding that the

fusion of classical BPNN with global search techniques enhances both accuracy and speed.

Notably, other investigations have also showcased promising outcomes in stock price

prediction through the utilization of Deep Learning methodologies [7].

In the study outlined in [62], researchers deployed a Wavelet De-noising-based Back

Propagation (WDBP) neural network. Within this model, the initial dataset underwent wavelet

transform-based decomposition, resulting in multiple layers of data representation.

In a separate investigation detailed in [63], the implementation of Long Short-Term Memory

(LSTM) was deployed using a dataset spanning 23 years of SP500 daily index prices, with

sequences of 240 days. The findings indicated that LSTM exhibited superior predictive

capabilities in comparison to random forest. The study concluded that LSTM can effectively

facilitate the formulation of profitable trading strategies. In [64], the researchers combined a

multi-layer LSTM architecture with Empirical Mode Decomposition (EMD) to enhance time

series prediction. The resultant model showcased enhanced forecasting aptitude when

contrasted with the Support Vector Machine (SVM). Similarly, the study presented in [65]

introduced an LSTM-based model engineered to prevent overfitting while predicting the

SP500. The outcomes showcased a commendable level of forecasting accuracy.

In [66], Deep LSTM (DLSTM), a specialized architecture derived from LSTM, was proposed

as a potent tool for time series modelling. Comparative assessments against the Autoregressive

82

Integrated Moving Average (ARIMA) model confirmed the superiority of DLSTM. While the

research examined various lagging configurations, no definitive evidence for an optimal setup

emerged.

A stacked LSTM architecture to model time series data has been used in many studies, the

research in [67] exhibited significant advancements in prediction performance compared to

single LSTM models, while the research conducted in [68] echoed these findings and

emphasized the heightened accuracy of this approach over traditional statistical methodologies

in time series modelling.

In an innovative approach presented by [69], the fusion of traditional Artificial Neural

Networks (ANN) with LSTM and bidirectional LSTM (BLSTM) was conducted to refine time

series forecasting accuracy. Results indicated the superior performance of BLSTM for

predicting volatility three weeks ahead, while LSTM demonstrated proficiency in shorter time

horizons. [70] adopted a hybrid model combining LSTM and traditional ANN techniques to

enhance gold volatility forecasting. Through experiments deploying varied lagging setups to

facilitate temporal learning, this hybrid model showcased heightened accuracy compared to

classic GARCH and standalone LSTM models.

5.2 Methodology

Multiple experiments were carried out to evaluate the efficiency of a multivariate deep learning

architecture. The aim was to compare its predictive accuracy against single-input models and

the traditional statistical model, GARCH. These experiments encompassed the application of

diverse deep learning architectures and statistical models to gauge their precision in forecasting

various stock market volatilities. These evaluations are crucial not only for substantiating and

examining "Hypothesis 1" and "Hypothesis 2," which pertain to the efficacy of deep learning

in stock market volatility prediction and its potential to enhance or replace existing models, but

also for assessing the effectiveness of the multivariate deep learning architecture in enhancing

the performance of deep learning.

83

5.2.1 Testing Modules and Metrics

The research involved multiple experiments focused on different stock market volatility for

key global banks stocks, utilizing statistical and deep learning models. The metrics used to test

performance is the Mean Squared Error (MSE) between actual volatility and predicted

volatility in different market condition and different future prediction horizons.

Three main test modules were created to achieve this:

GARCH Module: This module expects a single input variable representing the stock market

matric. The input is fed into a GARCH model, subsequently contrasting the resultant output

(realized volatility) with the factual volatility. The performance of the model is gauged using

MSE.

Single-Input Deep Learning Module: This implementation expects single input variables

representing a stock market metric. It feeds the input to the model, and a single output is

compared against actual data. MSE is used to measure the model accuracy.

Multivariate Deep Learning Module: This implementation anticipates numerous input

variables that signify an individual stock or an assemblage of stocks from the stock market.

These inputs are then supplied to the model, with a singular output being juxtaposed against

real data. The accuracy of the model is assessed using MSE.

5.2.2 Data Collection

The yfinance Python 3.9 Application Programming Interface (API) from Yahoo Finance

(https://finance.yahoo.com) was deployed to fetch the historical daily closing prices for a

specific set of stocks. Two different time periods were selected: a period when the market was

experiencing an upward trend (bull market) and a period when it was in a downward trend

(bear market). Furthermore, data for oil prices was obtained from the U.S. Energy Information

Administration (www.eia.gov), whereas gold prices were acquired from the World Gold

Council (https://www.gold.org).

84

Two distinct window horizons were gathered from varying market conditions, serving as stress

tests for the models. This approach aimed to evaluate their performance under both short and

extended training windows.

Comprehensive information regarding the data deployed in the examinations is presented in

Table 5.1 and Table 5.2.

Table 5.1: Test Data Definition – Stock Market Symbols.

Symbol Company Sector

BAC Bank of America Financial Services

JPM JP Morgan Chase Financial Services

WFC Wells Fargo Financial Services

C City Bank Financial Services

DB Deutsche Bank Financial Services

MS Morgan Stanley Financial Services

GS Goldman Saches Financial Services

WMT Walmart Inc Consumer Defensive

IBM IBM Technology

Table 5.2: Test Data Definition – Timeseries.

Market Condition Name Sample Size Window

Bear Long 2304 03/01/2000 - 03/03/2009

Bull Long 4467 03/01/2000 - 01/10/2017

Bear Short 603 03/08/2006 - 29/01/2009

Bull Short 607 26/08/2014 - 31/01/2017

5.2.3 Experimental Procedures

During the testing phase, Multivariate and Single-Input learning Recurrent Neural Network

(RNN) architectures were constructed using Python 3.7 and TensorFlow 2.0. In order to carry

out comparative evaluations, a GARCH statistical model was coded utilizing the arch and other

Python 3.7 libraries. All experimentation was conducted within a consistent testing

environment and application context.

85

Application structure used in testing is depicted in Figure 5.2. Sample pseudocode

demonstrating the calculation of daily returns and volatility is presented in Appendix D for

reference.

Figure 5.2: Testing Application.

In each trial, the hold-out performance estimation technique was deployed. The training data

for both the Deep Learning networks and the statistical model consisted of historical daily stock

prices, daily gold prices, and daily crude oil prices. The experiments encompassed a range of

market scenarios, including bear and bull markets, to comprehensively evaluate the model

performance across diverse conditions. To ensure robustness, each test was iterated 10 times,

resulting in comprehensive outcomes. These test outcomes include both the average Mean

Squared Error (MSE) and the standard deviation of MSE, providing a comprehensive analytical

perspective.

The details of the server, GPU card, and other computational resources utilized for the entire

testing process are listed in Table 5.3 and Table 5.4.

86

Table 5.3: CPU specification.

Server Specifications

CPU Intel Xeon CPU E5-2640 @3.0GHz (2 processors, 24 cores)

Memory 32 GB

Environment UBUNTU 18.04

Language Python 3.7

ML Framework TensorFlow 2.0, GPU

Table 5.4: GPU specifications.

GPU Specifications

GPU GeForce RTX 2060 SUPER

Memory 8 GB

CUDA Cores 2176

GPU Clock 1650 MHz

5.2.3.1 Evaluation through Benchmark Testing

The purpose of these experiments is to contrast the accuracy of Deep Learning models with the

reference benchmark statistical model, GARCH. This comparison is essential for providing

support to the core of "Hypothesis 1".

The executed tests for both GARCH and DL models are elaborated upon in Table 5.5. Each

test is executed using data obtained from both bull and bear market scenarios.

Table 5.5: Benchmark - Input and output for GARCH and DL models tests.

Model Input/ Output Prediction Days Trials Market Condition Window

GARCH, LSTM BAC 1, 5, 10, 20 10 Bear, Bull Short, extended

In the process of training the GARCH model, the daily returns were computed using Equation

2.10, and the data was normalized using the training dataset. Following that, the testing dataset

was scaled using the training data before being deployed for model evaluation. A representative

summary of the GARCH model can be seen in Figure 5.3, which was utilized to forecast the

5-day rolling realized volatility of BAC. The procedure for training and fitting the GARCH

87

model is depicted in Code 5.1. Once the model is trained, it is applied to the test data for

volatility prediction.

Figure 5.3: Benchmark - GARCH model summary.

Code 5.1: Benchmark - GARCH model fitting logic.

 1: rolling_predictions List()

 2: for i from 1 to test_data.size() do

 3: train_data returns[:i - test_data.size()]

 4: model = garch(tarain_data)

 5: model_fit model.fit(p, o, q)

 6: prediction forecast GARCH model_fit(horizon days_to_predict)

 7: predictions.insert(sqrt(prediction.variance))

 8: end for

A comparable strategy was deployed during the testing phase involving the LSTM DL model.

The data underwent scaling using the training dataset, and subsequently, the predicted testing

data was scaled back accordingly. The hyperparameters utilized for the LSTM model are

presented in Table 5.6 which resulted from a similar code depicted in Code 5.1. The visual

representation of the LSTM model diagram for forecasting BAC 5-day rolling realized

volatility can be observed in Figure 5.4.

88

Table 5.6: Benchmark - LSTM hyperparameters.

Epochs Neurons Batch Size Optimization Algorithm

100 64 100 RMSProp

Figure 5.4: Benchmark – LSTM model diagram.

5.2.3.2 Comparing Multivariate and Single-Input Models

The set of experiments has been meticulously planned to validate the central hypothesis of this

research. The primary objective is two-fold: first, increase the accuracy of Multivariate Deep

Learning (MDL) models when juxtaposed with Single-Input Deep Learning (SDL) models,

and secondly, to accentuate the merits inherent in adopting the MDL architecture. It worth

noting that this MDL architecture forms the crux of “Hypothesis 2” that this study revolves

around.

These experiments critically substantiate the core findings of this research study. By

empirically demonstrating the superior accuracy of MDL models over their SDL counterparts,

the experiments contribute to the broader understanding of the effectiveness of advanced neural

network architectures in time series analysis. Furthermore, the emphasis on the advantages

brought by the MDL architecture underscores the significance of examining innovative

approaches in the pursuit of more accurate and reliable predictive modelling techniques.

Through meticulous experimentation and comparison, this series of tests serves to provide

substantial evidence to support the central claims made by this research. The conclusive

input 1

InputLayer

input:

output:

 (None, 1, 1)

 (None, 1, 1)

SharedLayer

LSTM

input:

output:

(None, 1, 1)

(None, 1, 4)

BAC utLayer

LSTM

input:

output:

(None, 1, 4)

(None, 4)

BAC utLayer2

Dense

input:

output:

(None, 4)

(None, 2)

89

findings will contribute valuable insights to the field and offer a robust foundation for further

advancements in time series prediction methodologies.

To ensure an equitable comparison between the models, the hyperparameters deployed for both

the Multivariate Deep Learning (MDL) and Single-Input Deep Learning (SDL) models were

deliberately kept identical. This strategic decision was made to eliminate any potential bias that

could favour one model over the other due to disparate hyperparameter settings. By

maintaining consistent hyperparameters, the comparison becomes more valid and enables for

a more accurate assessment of the models' intrinsic capabilities.

It is important to highlight that this approach aligns with recommended practices in

experimental design, as it minimizes the influence of external factors and enables a focused

evaluation of the models' performance differences. The choice to match hyperparameters

underscores the research commitment to a rigorous and unbiased analysis of the MDL and SDL

models.

For a comprehensive understanding of the specific hyperparameters deployed in both the MDL

and SDL models, the complete details are meticulously documented in Table 5.7.

Table 5.7: MDL and SDL hyperparameters.

Epochs Neurons Batch Size Output (Days) Optimization Algorithm

100 8 1000 1, 5, 10, 20 RMSProp

The LSTM model utilized for Single-Input Deep Learning (SDL) is identical to the one

deployed in the benchmark testing, as depicted in Figure 5.4 with neurons equal to 8 instead of

64. In contrast, distinct models were constructed for the MDL experiments. These MDL models

were designed to accommodate diverse combinations of multivariate inputs, serving the

purpose of rigorously validating the hypothesis. This validation was achieved by systematically

evaluating the impact of deploying varied input combinations, encompassing different numbers

of correlated and non-correlated instruments drawn from disparate sectors. A comparative

analysis with the SDL model was then carried out.

An exemplar of the MDL architecture designed to predict BAC realized volatility utilizing

three inputs is visually represented in Figure 5.5. This specific architecture configuration serves

to provide a tangible illustration of the underlying method.

90

For a comprehensive understanding of the full spectrum of MDL tests undertaken, a

comprehensive list is documented in Table 5.8. This list encapsulates the variations in input

combinations, each aimed at uncovering insights into the efficacy of the MDL approach in

comparison to the SDL model across diverse scenarios and conditions.

Figure 5.5: Benchmark – LSTM model diagram.

The model optimization process involves assessing its trainable parameters and adjusting them

to align with various testing requirements. Equation 7.1 is used to calculate and every new

model before adjusting hyperparameters [11], [12].

If there is an abundance of parameters, there is an increased risk of overfitting, while a scarcity

of parameters may lead to suboptimal performance.

𝐿𝑆𝑇𝑀 𝑃𝑟𝑎𝑚𝑠𝑁𝑜. = 4 ((𝑖 + ℎ) 𝑥 ℎ + ℎ)

𝐺𝑅𝑈 𝑃𝑎𝑟𝑎𝑚𝑠𝑁𝑜. = 3 ((𝑖 + ℎ) 𝑥 ℎ + (2 𝑥 ℎ))

𝑅𝑁𝑁 𝑃𝑎𝑟𝑎𝑚𝑠𝑁𝑜. = ((𝑖 + ℎ) 𝑥 ℎ) + ℎ

Equation 5.1: Number of parameters used in DL network formulas.

Where:

𝑖 the number of inputs.

ℎ is the number of hidden networks.

input 1

InputLayer

input:

output:

 (None, 1, 1)

 (None, 1, 1)

concatenate

Concatenate

input:

output:

 (None, 1, 1), (None, 1, 1), (None, 1, 1)

(None, 1, 3)

input 2

InputLayer

input:

output:

 (None, 1, 1)

 (None, 1, 1)

input 3

InputLayer

input:

output:

 (None, 1, 1)

 (None, 1, 1)

SharedLayer

LSTM

input:

output:

(None, 1, 3)

(None, 1,)

BAC utLayer

LSTM

input:

output:

(None, 1,)

(None,)

BAC utLayer2

Dense

input:

output:

(None,)

(None, 1)

91

Table 5.8: Test 2 – LSTM model parameters.

Model Input Output Prediction Days Trials Market Condition Window

SDL BAC BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, C BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, DB BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, GOLD BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, GS BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, IBM BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, JPM BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, MS BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, OIL BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, WMT BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, DB, C BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, DB, MS BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, GOLD, DB BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, GOLD, IBM BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, GOLD, WMT BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, GS, C BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, GS, MS BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, JPM, C BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, JPM, DB BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, JPM, GS BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, JPM, MS BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, MS, C BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, OIL, DB BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, OIL, IBM BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, OIL, JPM BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, OIL, WMT BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, DB, GS, C BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, DB, GS, MS BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, GS, MS, C BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, JPM, GS, C BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, JPM, GS, DB BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, JPM, GS, MS BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, JPM, GS, DB, C BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, JPM, GS, DB, MS BAC 1, 5, 10, 20 10 Bear, Bull Long, short

MDL BAC, JPM, GS, DB, C, MS BAC 1, 5, 10, 20 10 Bear, Bull Long, short

92

5.3 Results

The presentation of the results adheres to the systematic experimental protocols delineated

within their respective sections. The sequence of conducted tests holds particular significance,

as outcomes from specific tests play a role in shaping the results of other test sets. This

deliberate arrangement holds strategic importance, as it facilitates the extraction of meaningful

conclusions and a holistic evaluation of the extent to which the core objectives have been

successfully attained. By establishing a structured flow between interrelated experiments, this

approach ensures that the resulting analysis is both comprehensive and coherent, thereby

contributing to a well-rounded understanding of the study achievements.

The full list of charts produced by this test is included in Appendix A, Section 2.1.

5.3.1 Evaluation through Benchmark Testing

Both a GARCH (1,1) model and a stacked Long Short-Term Memory (LSTM) model, utilizing

a single input without auxiliary assets, were harnessed to forecast forthcoming realized

volatility for Bank of America stock (BAC). To rigorously evaluate the models and ensure a

robust analytical comparison, these tests were iterated across both short and long windows,

systematically subjecting the models to varied temporal horizons.

When examining the outcomes of the extended window testing, which commences from the

year 2000 as demonstrated in Table 5.9, the findings decisively establish the superiority of

LSTM DL model over the GARCH model across all future prediction durations and market

scenarios.

93

Table 5.9: Model accuracy - GARCH vs MDL – Long time window (𝟏𝟎−𝟓).

 MSE

 Bear Market Bull Market

Prediction (Days) GARCH LSTM GARCH LSTM

1 59.30 0.58 3.57 0.00

5 59.28 3.40 3.67 0.06

10 59.25 8.64 3.81 0.12

20 59.20 11.34 4.12 0.20

Furthermore, a notable trend emerges from the results: the LSTM model adeptly captures the

evolving patterns within the data for each of the prediction days, particularly under extreme

market conditions. In contrast, the GARCH model appears to exhibit a tendency to converge

around the average point of the testing data, exhibiting a relatively uniform behaviour

regardless of the specific future prediction horizon. This divergence in behaviour between the

two models underscores the dynamic capabilities of the LSTM model in capturing nuanced

changes within the data, particularly when facing challenging market conditions.

While inspecting the outcomes of the brief window analysis as presented in Table 5.10, a

recurrence of the previously described behaviour is evident, particularly in bear market

conditions. This observation reinforces the initial inference drawn from the results.

Table 5.10: Model accuracy - GARCH vs MDL – Short time window (𝟏𝟎−𝟓).

 MSE

 Bear Market Bull Market

Prediction (Days) GARCH LSTM GARCH LSTM

1 74.79 70.01 2.44 1.20

5 74.86 90.71 3.05 1.04

10 74.96 89.62 3.80 1.96

20 75.16 143.00 5.00 2.39

To visually interpret the aforementioned outcomes, charts depicting the performance of the

GARCH and LSTM models for 1-Day future prediction of BAC volatility in both bear and bull

markets, across both long and short windows, are presented in the figures below. A discernible

94

pattern emerges from Figure 5.6 and Figure 5.8, where it becomes evident that GARCH

exhibits a comparatively weaker performance in bear markets as opposed to LSTM. Notably,

GARCH demonstrates relatively improved performance in short windows in comparison to

long ones.

Shifting focus to bull markets, as depicted in Figure 5.7 and Figure 5.9, GARCH showcases a

performance level that closely approximates that of LSTM. Despite this, the overarching

performance superiority remains with LSTM. Interestingly, GARCH exhibits an aptitude for

capturing volatility spikes more effectively, which is particularly evident in the visualization.

These visual representations provide an accessible means of grasping the observed trends,

substantiating the analytical findings derived from the comprehensive experiments.

GARCH Model.

Deep Learning Model.

Figure 5.6: GARCH vs LSTM - Volatility prediction for BAC in bear market.

95

GARCH Model.

Deep Learning Model.

Figure 5.7: GARCH vs MDL - Volatility prediction for BAC in bull market.

GARCH Model.

Deep Learning Model.

Figure 5.8: GARCH vs MDL - Volatility prediction for BAC in bear market.

96

GARCH Model.

Deep Learning Model.

Figure 5.9: GARCH vs MDL - Volatility prediction for BAC in bull market.

Moving forward, the focus shifts to the assessment of execution times for both models.

Notably, the GARCH model exhibits relatively swifter performance when applied to smaller

data subsets. However, this trend undergoes a complete reversal when larger datasets are

considered. Analysing the timing outcomes for the concise window analysis, as presented in

Table 5.11, it becomes evident that the GARCH model showcases a speed advantage of 34%

in bear markets and 47% in bull markets. On the contrary, delving into the results of the

prolonged window evaluation, detailed in Table 5.12, reveals that the LSTM model exhibits

superior speed in both bear and bull market conditions, achieving efficiency gains of 66% and

100%, respectively. This analysis underscores the nuanced interplay between model

performance and dataset scale, which has implications for selecting the most suitable model

for specific use cases.

97

Table 5.11: Model accuracy - GARCH vs MDL – Long time window.

 Execution Time (Sec)

 Bear Market Bull Market

Prediction (Days) GARCH LSTM GARCH LSTM

1 33.88 19.90 70.32 33.50

5 32.10 19.73 69.32 33.11

10 31.19 19.81 69.30 35.00

20 34.43 20.07 70.05 37.55

Table 5.12: Model accuracy - GARCH vs MDL – Short time window.

 Execution Time (Sec)

 Bear Market Bull Market

Prediction (Days) GARCH LSTM GARCH LSTM

1 5.56 8.16 4.58 8.64

5 5.17 8.57 4.60 8.63

10 5.77 8.58 4.85 8.74

20 5.92 8.77 4.54 8.90

5.3.2 Comparing Multivariate and Single-Input Approaches

Upon the initial examination of the outcomes derived from this series of experiments, a clear

pattern emerges. Multivariate Deep Learning (MDL) consistently outperforms the Single-Input

Deep Learning (SDL) model across all future prediction horizons and market scenarios. It is

important to note, though, that these compelling results are contingent on the varying

combinations of inputs deployed to fuel the MDL model.

Figure 5.10 offers a succinct overview of the experiments carried out in this particular set of

tests. It illuminates a noteworthy finding: MDL exhibits impressive performance in bear

markets across all future prediction durations. However, a distinct trend emerges in bull

markets, where models utilizing more than three inputs tend to exhibit underperformance,

notably in the 10-day and 20-day future prediction scenarios.

98

Bear Market.

Bull Market.

Figure 5.10: MTL vs STL – Bear and bull markets.

Following a thorough analysis of the results within bear market conditions, as meticulously

presented in Table 5.13, a discernible pattern becomes evident. Most notably, the Multivariate

Deep Learning (MDL) model consistently demonstrates its superior performance across all

future prediction horizons. Furthermore, an intriguing observation comes to light: an increase

in the number of inputs seems to correlate with improved prediction accuracy. This

phenomenon underscores the beneficial effect of incorporating a broader array of inputs within

the MDL model, ultimately resulting in a substantial enhancement of predictive capabilities,

particularly when confronted with challenging market conditions.

0.00

0.50

1.00

1.50

1 2 3 4 5 6 Inputs

mse

0.000

0.010

0.020

0.030

1 2 3 4 5 6 Inputs

mse

99

Table 5.13: LSTM forecast accuracy of BAC daily volatility in bear market.

 Predictions (Days)

No. Inputs 1 5 10 20

1 0.7997 1.0563 1.0540 0.9568

2 0.3243 0.6092 0.6426 0.4538

3 0.1971 0.3535 0.4517 0.4060

4 0.1854 0.3106 0.3408 0.3269

5 0.1129 0.2733 0.2906 0.2077

6 0.0833 0.1959 0.1811 0.2354

The summarized results from the tests conducted in the bull market scenario, which serve as

the basis for the subsequent analysis, are visually presented in Table 5.14.

Table 5.14: LSTM forecast accuracy of BAC daily volatility in bull market.

 Predictions (Days)

No. Inputs 1 5 10 20

1 0.0051 0.0167 0.0322 0.0079

2 0.0018 0.0140 0.0063 0.0075

3 0.0010 0.0072 0.0050 0.0100

4 0.0062 0.0162 0.0090 0.0207

5 0.0158 0.0243 0.0342 0.0333

6 0.0097 0.0195 0.0334 0.0385

Conversely, within bull market conditions, the MDL model once again asserts its superiority

over SDL. Intriguingly, it worth noting that the most effective MDL configuration was not

necessarily the one featuring the highest number of inputs, instead, it was the one with the

strongest negative correlation which was for the inputs IBM and GOLD. A full list of

correlation between all inputs and BAC is illustrated in Table 5.15. This observation

underscores a nuanced trend: while MDL consistently maintains its superiority, the

performance dynamics of various input combinations within the MDL framework exhibit

divergent behaviours under distinct market conditions. This highlights the intricate interplay

between input composition and market context, underscoring the necessity of thoughtful input

selection for optimal performance across different scenarios.

100

Table 5.15: Inputs correlation with BAC in bear and bull markets.

Symbol Bear Market Bull Market

JPM 0.53 -0.12

C 0.39 0.72

MS 0.38 0.66

GS 0.72 0.13

DB 0.78 0.73

IBM -0.09 -0.58

WMT -0.29 -0.43

GOLD 0.48 -0.53

OIL 0.56 -0.12

Figure 5.11 serves as compelling visual evidence to the unmistakable superiority of

Multivariate Deep Learning (MDL) over Single-Input Deep Learning (SDL). This distinction

becomes vividly apparent during the training phase, where MDL exhibits an exceptional ability

to grasp underlying data trends right from the outset. It steadfastly mirrors the evolving patterns

of volatility throughout the learning process, resulting in substantially more robust predictions.

Notably, this proficiency persists even in scenarios characterized by a scarcity of data points

and the deliberate imposition of challenging hyperparameters.

Figure 5.12 exhibits a similar pattern; however, as detailed in Table 5.14, an interesting

observation arises. SDL displays a comparatively optimised performance in bull markets than

in bear markets. This discrepancy could be attributed to the relative stability of bull markets,

where forecasting becomes more straightforward. This distinction is particularly evident in the

early stages of the models' learning processes. Nonetheless, it is crucial to emphasize that MDL

maintains its position as the superior model.

In conclusion, it is evident that both models encounter difficulties in achieving precise testing

predictions. This outcome is a deliberate consequence of the test parameters and data points

chosen to facilitate this subjective comparison. It worth noting that an enhanced MDL model,

fine-tuned with improved hyperparameters, was deployed in the benchmark testing outlined in

Section 5.4.1, with the corresponding results illustrated in Figure 5.6 and Figure 5.7.

The complete results of all the tests conducted in this set have been organized into separate

tables, each corresponding to a specific future prediction horizon. These tables can be found in

Table 5.16, Table 5.17, Table 5.18, and Table 5.19.

101

LSTM- SDL model.

LSTM- MDL model.

Figure 5.11: MDL vs SDL - Volatility prediction for BAC in bear market.

LSTM – SDL model.

LSTM – MDL model.

Figure 5.12: MDL vs SDL - Volatility prediction for BAC in bull market.

102

Table 5.16: MDL vs SDL 1-day pred. accuracy for BAC daily volatility in bull market.

 Bear Market Bull Market

 MSE SD MSE SD

Input VAL DIFF VAL DIFF VAL DIFF VAL DIFF

BAC 0.800 0 0.136 0 0.005 0 0.002 0

BAC, C 0.897 12% 0.127 -7% 0.008 55% 0.008 399%

BAC, DB 0.324 -59% 0.132 -3% 0.017 238% 0.023 1266%

BAC, GOLD 1.442 80% 0.223 64% 0.003 -44% 0.003 93%

BAC, GS 0.416 -48% 0.117 -14% 0.005 0% 0.006 283%

BAC, IBM 0.875 9% 0.280 105% 0.046 795% 0.047 2684%

BAC, JPM 0.405 -49% 0.177 30% 0.015 194% 0.014 719%

BAC, MS 0.457 -43% 0.160 17% 0.003 -46% 0.003 62%

BAC, OIL 1.085 36% 0.433 218% 0.002 -66% 0.003 64%

BAC, WMT 0.582 -27% 0.173 27% 0.043 737% 0.039 2216%

BAC, DB, C 0.376 -53% 0.121 -11% 0.002 -61% 0.001 -25%

BAC, DB, MS 0.293 -63% 0.103 -24% 0.005 -1% 0.005 170%

BAC, GOLD, DB 1.273 59% 0.170 25% 0.018 256% 0.020 1090%

BAC, GOLD, IBM 1.439 80% 0.273 100% 0.001 -80% 0.001 -41%

BAC, GOLD, WMT 1.325 66% 0.277 103% 0.013 161% 0.008 374%

BAC, GS, C 0.286 -64% 0.090 -34% 0.008 58% 0.008 348%

BAC, GS, MS 0.465 -42% 0.107 -21% 0.004 -17% 0.003 72%

BAC, JPM, C 0.662 -17% 0.134 -2% 0.011 118% 0.013 670%

BAC, JPM, DB 0.197 -75% 0.034 -75% 0.020 293% 0.013 652%

BAC, JPM, GS 0.304 -62% 0.088 -35% 0.008 49% 0.007 302%

BAC, JPM, MS 0.368 -54% 0.119 -12% 0.012 124% 0.020 1065%

BAC, MS, C 0.847 6% 0.178 31% 0.001 -74% 0.001 -40%

BAC, OIL, DB 0.692 -13% 0.153 13% 0.003 -45% 0.002 46%

BAC, OIL, IBM 1.036 30% 0.324 137% 0.006 13% 0.007 292%

BAC, OIL, JPM 1.105 38% 0.286 109% 0.009 83% 0.009 411%

BAC, OIL, WMT 0.603 -25% 0.188 38% 0.008 48% 0.004 156%

BAC, DB, GS, C 0.210 -74% 0.047 -65% 0.006 20% 0.008 366%

BAC, DB, GS, MS 0.377 -53% 0.042 -69% 0.013 155% 0.023 1248%

BAC, GS, MS, C 0.200 -75% 0.143 5% 0.007 29% 0.004 135%

BAC, JPM, GS, C 0.185 -77% 0.073 -46% 0.008 48% 0.006 261%

BAC, JPM, GS, DB 0.187 -77% 0.076 -44% 0.014 180% 0.019 1001%

BAC, JPM, GS, MS 0.490 -39% 0.118 -13% 0.019 272% 0.015 791%

BAC, JPM, GS, DB, C 0.113 -86% 0.090 -34% 0.021 308% 0.015 801%

BAC, JPM, GS, DB, MS 0.360 -55% 0.138 1% 0.016 208% 0.009 426%

BAC, JPM, GS, DB, C, MS 0.083 -90% 0.020 -85% 0.010 88% 0.007 292%

103

Table 5.17: MDL vs SDL 5-day pred. accuracy for BAC daily volatility in bull market.

 Bear Market Bull Market

 MSE SD MSE SD

Input VAL DIFF VAL DIFF VAL DIFF VAL DIFF

BAC 1.056 0 0.248 0 0.017 0 0.020 0

BAC, C 0.951 -10% 0.128 -49% 0.039 130% 0.022 11%

BAC, DB 0.609 -42% 0.263 6% 0.061 266% 0.050 149%

BAC, GOLD 1.355 28% 0.433 74% 0.019 11% 0.015 -27%

BAC, GS 0.668 -37% 0.219 -12% 0.024 42% 0.041 104%

BAC, IBM 1.153 9% 0.181 -27% 0.068 308% 0.064 221%

BAC, JPM 0.712 -33% 0.266 7% 0.034 105% 0.037 84%

BAC, MS 0.780 -26% 0.298 20% 0.015 -9% 0.017 -13%

BAC, OIL 0.976 -8% 0.442 78% 0.014 -16% 0.023 14%

BAC, WMT 0.685 -35% 0.154 -38% 0.102 508% 0.077 285%

BAC, DB, C 0.534 -49% 0.237 -5% 0.042 149% 0.047 133%

BAC, DB, MS 0.468 -56% 0.133 -46% 0.007 -56% 0.005 -75%

BAC, GOLD, DB 1.155 9% 0.312 26% 0.036 114% 0.013 -33%

BAC, GOLD, IBM 1.639 55% 0.408 64% 0.007 -57% 0.009 -57%

BAC, GOLD, WMT 1.205 14% 0.284 15% 0.017 4% 0.010 -48%

BAC, GS, C 0.545 -48% 0.391 58% 0.020 21% 0.011 -45%

BAC, GS, MS 0.906 -14% 0.306 23% 0.011 -37% 0.010 -50%

BAC, JPM, C 0.712 -33% 0.104 -58% 0.044 161% 0.039 94%

BAC, JPM, DB 0.353 -67% 0.177 -29% 0.082 391% 0.087 333%

BAC, JPM, GS 0.600 -43% 0.221 -11% 0.043 157% 0.046 131%

BAC, JPM, MS 0.509 -52% 0.136 -45% 0.021 25% 0.028 38%

BAC, MS, C 1.087 3% 0.227 -9% 0.015 -9% 0.037 82%

BAC, OIL, DB 0.819 -22% 0.309 25% 0.026 58% 0.030 50%

BAC, OIL, IBM 1.030 -2% 0.459 85% 0.051 206% 0.029 45%

BAC, OIL, JPM 1.170 11% 0.608 145% 0.027 62% 0.038 88%

BAC, OIL, WMT 0.847 -20% 0.270 9% 0.014 -14% 0.011 -47%

BAC, DB, GS, C 0.353 -67% 0.159 -36% 0.035 109% 0.027 33%

BAC, DB, GS, MS 0.580 -45% 0.353 42% 0.023 38% 0.027 34%

BAC, GS, MS, C 0.540 -49% 0.317 28% 0.017 -1% 0.011 -47%

BAC, JPM, GS, C 0.311 -71% 0.219 -12% 0.016 -3% 0.019 -8%

BAC, JPM, GS, DB 0.539 -49% 0.311 25% 0.022 33% 0.014 -32%

BAC, JPM, GS, MS 0.591 -44% 0.109 -56% 0.026 53% 0.020 -2%

BAC, JPM, GS, DB, C 0.273 -74% 0.094 -62% 0.024 45% 0.011 -43%

BAC, JPM, GS, DB, MS 0.471 -55% 0.131 -47% 0.028 70% 0.013 -34%

BAC, JPM, GS, DB, C, MS 0.196 -81% 0.089 -64% 0.020 17% 0.014 -31%

104

Table 5.18: MDL vs SDL 10-day pred. accuracy for BAC daily volatility in bull market.

 Bear Market Bull Market

 MSE SD MSE SD

Input VAL DIFF VAL DIFF VAL DIFF VAL DIFF

BAC 1.054 0 0.171 0 0.032 0 0.027 0

BAC, C 1.094 4% 0.412 141% 0.056 73% 0.031 17%

BAC, DB 0.643 -39% 0.319 87% 0.066 106% 0.042 59%

BAC, GOLD 1.348 28% 0.399 134% 0.020 -38% 0.018 -32%

BAC, GS 0.759 -28% 0.271 58% 0.049 52% 0.055 108%

BAC, IBM 1.204 14% 0.276 61% 0.085 165% 0.052 95%

BAC, JPM 0.688 -35% 0.299 75% 0.062 92% 0.032 21%

BAC, MS 0.797 -24% 0.284 66% 0.007 -77% 0.005 -81%

BAC, OIL 1.064 1% 0.304 78% 0.006 -80% 0.007 -74%

BAC, WMT 0.928 -12% 0.137 -20% 0.123 282% 0.067 154%

BAC, DB, C 0.599 -43% 0.235 37% 0.052 61% 0.044 65%

BAC, DB, MS 0.653 -38% 0.336 96% 0.031 -5% 0.018 -32%

BAC, GOLD, DB 1.267 20% 0.334 96% 0.086 167% 0.040 52%

BAC, GOLD, IBM 1.497 42% 0.501 193% 0.044 37% 0.044 64%

BAC, GOLD, WMT 1.104 5% 0.248 45% 0.040 24% 0.028 3%

BAC, GS, C 0.538 -49% 0.254 49% 0.017 -46% 0.015 -42%

BAC, GS, MS 0.613 -42% 0.406 138% 0.023 -29% 0.015 -45%

BAC, JPM, C 0.858 -19% 0.166 -3% 0.049 52% 0.042 57%

BAC, JPM, DB 0.486 -54% 0.290 69% 0.074 130% 0.046 74%

BAC, JPM, GS 0.751 -29% 0.380 122% 0.081 151% 0.127 377%

BAC, JPM, MS 0.728 -31% 0.415 142% 0.024 -26% 0.045 71%

BAC, MS, C 1.008 -4% 0.253 48% 0.005 -84% 0.004 -83%

BAC, OIL, DB 0.794 -25% 0.278 62% 0.056 75% 0.044 66%

BAC, OIL, IBM 1.034 -2% 0.366 114% 0.062 91% 0.057 112%

BAC, OIL, JPM 1.343 27% 0.588 244% 0.039 21% 0.031 15%

BAC, OIL, WMT 0.755 -28% 0.241 41% 0.047 45% 0.039 46%

BAC, DB, GS, C 0.380 -64% 0.235 37% 0.029 -9% 0.034 29%

BAC, DB, GS, MS 0.508 -52% 0.074 -57% 0.068 110% 0.060 125%

BAC, GS, MS, C 0.401 -62% 0.138 -19% 0.013 -61% 0.011 -59%

BAC, JPM, GS, C 0.341 -68% 0.167 -2% 0.009 -72% 0.005 -83%

BAC, JPM, GS, DB 0.690 -34% 0.444 160% 0.039 21% 0.036 37%

BAC, JPM, GS, MS 0.824 -22% 0.363 112% 0.032 -1% 0.020 -26%

BAC, JPM, GS, DB, C 0.291 -72% 0.207 21% 0.034 6% 0.024 -9%

BAC, JPM, GS, DB, MS 0.517 -51% 0.161 -6% 0.043 35% 0.019 -28%

BAC, JPM, GS, DB, C, MS 0.181 -83% 0.111 -35% 0.033 4% 0.018 -33%

105

Table 5.19: MDL vs SDL 20-day pred. accuracy for BAC daily volatility in bull market.

 Bear Market Bull Market

 MSE SD MSE SD

Input VAL DIFF VAL DIFF VAL DIFF VAL DIFF

BAC 0.957 0 0.148 0 0.008 0 0.011 0

BAC, C 0.994 4% 0.199 35% 0.062 678% 0.028 158%

BAC, DB 0.454 -53% 0.259 76% 0.070 778% 0.052 373%

BAC, GOLD 1.132 18% 0.325 120% 0.025 218% 0.030 176%

BAC, GS 0.585 -39% 0.226 53% 0.054 578% 0.075 591%

BAC, IBM 1.142 19% 0.097 -34% 0.149 1779% 0.055 399%

BAC, JPM 0.680 -29% 0.242 64% 0.059 641% 0.019 70%

BAC, MS 0.679 -29% 0.261 77% 0.011 38% 0.007 -32%

BAC, OIL 0.900 -6% 0.197 34% 0.007 -6% 0.004 -66%

BAC, WMT 0.770 -20% 0.203 37% 0.137 1628% 0.159 1357%

BAC, DB, C 0.567 -41% 0.329 123% 0.106 1238% 0.101 828%

BAC, DB, MS 0.484 -49% 0.308 109% 0.038 375% 0.037 236%

BAC, GOLD, DB 1.114 16% 0.176 19% 0.104 1216% 0.062 463%

BAC, GOLD, IBM 1.026 7% 0.197 33% 0.032 307% 0.031 180%

BAC, GOLD, WMT 0.979 2% 0.273 85% 0.047 495% 0.037 242%

BAC, GS, C 0.443 -54% 0.132 -10% 0.024 209% 0.014 30%

BAC, GS, MS 0.495 -48% 0.116 -22% 0.023 186% 0.009 -13%

BAC, JPM, C 0.785 -18% 0.184 24% 0.081 929% 0.058 428%

BAC, JPM, DB 0.492 -49% 0.226 53% 0.077 872% 0.075 583%

BAC, JPM, GS 0.406 -58% 0.115 -22% 0.038 381% 0.037 236%

BAC, JPM, MS 0.510 -47% 0.270 83% 0.031 298% 0.031 179%

BAC, MS, C 1.017 6% 0.211 43% 0.010 27% 0.014 31%

BAC, OIL, DB 1.189 24% 0.563 282% 0.069 769% 0.030 174%

BAC, OIL, IBM 0.917 -4% 0.376 155% 0.067 743% 0.042 282%

BAC, OIL, JPM 1.148 20% 0.513 248% 0.025 217% 0.035 219%

BAC, OIL, WMT 0.694 -27% 0.199 35% 0.043 437% 0.020 85%

BAC, DB, GS, C 0.388 -59% 0.421 186% 0.023 185% 0.017 54%

BAC, DB, GS, MS 0.542 -43% 0.298 102% 0.052 559% 0.038 243%

BAC, GS, MS, C 0.721 -25% 0.280 90% 0.021 162% 0.009 -13%

BAC, JPM, GS, C 0.327 -66% 0.106 -28% 0.038 380% 0.043 296%

BAC, JPM, GS, DB 0.367 -62% 0.113 -23% 0.044 453% 0.027 146%

BAC, JPM, GS, MS 0.609 -36% 0.237 61% 0.042 435% 0.018 64%

BAC, JPM, GS, DB, C 0.208 -78% 0.073 -50% 0.033 320% 0.017 55%

BAC, JPM, GS, DB, MS 0.530 -45% 0.149 1% 0.038 384% 0.015 38%

BAC, JPM, GS, DB, C, MS 0.235 -75% 0.222 51% 0.038 387% 0.016 50%

106

5.4 Conclusions

The primary objectives of this study encompass addressing the viability of deploying Long

Short-Term Memory (LSTM) as an alternative to conventional statistical models such as

Generalized Autoregressive Conditional Heteroskedasticity (GARCH). This investigation

seeks to assess LSTM potential for predicting market volatility, constructing more profitable

trading portfolios, and enhancing options pricing models.

The secondary objective revolves around the proposal and examination of a multivariate LSTM

architecture with the aim of elevating the accuracy of volatility forecasting. Benchmark testing

results validate the initial hypothesis, unequivocally demonstrating that deep learning,

specifically LSTM-based volatility forecasting, outperforms GARCH. This outcome further

underscores LSTM suitability for modelling intra-day volatility, particularly owing to its

proficiency in detecting short-term market influencers.

Subsequent test sets reveal that a multivariate LSTM can notably enhance volatility forecasting

in both bear and bull markets. Notably, improvements are evident in both 1-day and 5-day

predictions when incorporating additional asset prices into the multivariate input, corroborating

the second hypothesis. Additionally, it becomes apparent that introducing a lag window is

essential for refining LSTM prediction accuracy, especially in bear market conditions. This lag

window aids in training the model to adapt to rapid market fluctuations and accommodate

potential gaps in data.

107

Chapter

Multitasking in Trading Markets:

Enhancing Decision-Making with

Multi-Task Deep Learning

The stock market, which is referred to as the equity market, is a fundamental component of the

global financial system where shares of publicly traded companies are bought and sold. It

functions as a marketplace where investors, such as individuals and institutions, can purchase

ownership shares in companies. These shares represent a portion of the company ownership

and entitle the shareholder to a portion of its profits and potential growth [13].

A trading portfolio, commonly known as an investment portfolio or securities portfolio, is a

collection of various financial assets held by an individual or entity for the purpose of trading

or investment. It encompasses a diverse range of securities, such as stocks, indices, bonds,

mutual funds, exchange-traded funds, options, and other investment instruments [10], [17].

Effective risk management is crucial in portfolio trading. Investors analyse and assess the risk

associated with each investment, considering factors such as market volatility, economic

conditions, and company performance.

Investors seek to generate returns on their trading portfolio through capital appreciation,

increase in asset value and income from dividends, interest, etc.

Portfolios can be actively managed, where investment decisions are actively made based on

market analysis, or passively managed, where investments track a specific market index or

benchmark [10].

The primary objective of a trading portfolio is to achieve specific financial goals, which can

include capital appreciation, income generation, risk mitigation, and wealth preservation.

Traders and investors strategically allocate their funds across different assets to achieve a

balance between risk and return, aiming to optimize their overall portfolio performance [13].

108

Vigilant monitoring of stock market performance is a critical factor in achieving successful

investments. By formulating suitable trading strategies, pricing models, and risk management

tools, investors and financial firms can continuously assess and react to market fluctuations,

strategically positioning themselves to capitalize on profitable opportunities. This approach

enhances their chances of being on the winning side of trades and optimizing overall portfolio

performance [10], [13].

S&P 500 Daily returns and volatility.

S&P 500 daily returns and trading volumes.

Figure 6.1: S&P 500 volatility, daily returns, and trading volume - COVID-19 (2020).

Volatility, returns, and trading volumes are fundamental metrics extensively utilized in the

stock market performance monitoring, with volatility also recognized as a critical Key

Performance Indicator (KPI) in this domain [9]. Multiple studies have presented evidence of

correlations between these metrics, including the relationship between volatility and returns,

volatility and trading volume, and returns and trading volume [71], [72], [73], [74]. Figure 6.1

-15

-10

-5

0

5

10

15

D
ai

liy
 R

et
u

rn
s/

V
o

la
ti

lit
y

(%
)

Daily Returns Volatility

0

2

4

6

8

10

-15

-10

-5

0

5

10

15

01/2020 03/2020 05/2020 07/2020 09/2020 11/2020

Tr
ad

in
g

V
o

lu
m

e
(B

ill
io

n
s)

D
ai

ly
 R

et
u

rn
s

(%
)

Daily Returns Trading Volume

109

depicts the correlation among volatility, returns, and trading volumes for the SP500 index

during COVID-19 pandemic peak in 2020.

Effectively monitoring stock market performance is paramount for achieving successful

investments. Investors and financial firms can enhance their chances of success by developing

suitable trading strategies, pricing models, and risk management tools, enabling them to

continuously monitor and respond to market changes and position themselves on the winning

side of trades [75]. This proactive approach helps produce superior returns while controlling

risk, contributing to overall portfolio optimization [10].

Over the course of several decades, both practitioners and academics have extensively

researched the forecasting of volatility. Improved prediction accuracy in market volatility plays

a crucial role in enhancing risk management and pricing models, leading to more effective

trading and investment strategies [76].

Currently, statistical models such as GARCH and ARIMA are commonly deployed in financial

applications to forecast volatility and stock market price movements. However, with the rapid

increase in trading volumes and market complexity, driven by faster Internet technologies and

mobile cellular networks, there is a growing demand for alternative methods that can process

vast amounts of data with higher speed and accuracy.

Artificial Neural Networks (ANN) and Deep Learning have emerged as promising approaches

due to their algorithmic improvements, the availability of large datasets, and advancements in

computing hardware, such as TensorFlow cores, which enable the processing of extensive data

with these specific algorithms [7], [8], [41], [77].

The aim of this research to address the third hypothesis of the thesis which is the use of multi-

task deep learning model to improve prediction accuracy of key stock market metrics by taking

advantage of common shared layer of all tasks and their distributed loss function.

In this research, a Multi-Task Deep Learning (MTDL) Recurrent Neural Network (RNN)

model was constructed, incorporating various Deep Learning (DL) algorithms, namely Long

Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Recurrent Neural Network

(RNN). The primary focus of the research was to predict Volatility, while also considering

daily returns and trading volume as secondary targets. To optimize the model performance, a

shared layer was utilized for all input data, and a dynamic loss function was introduced,

enabling for the tuning of weights favouring specific outputs.

110

The results of all different DL algorithms were compared with GARCH, a statistical model

used for Volatility and Trading Volume modelling, and ARIMA, another statistical model

applied for index price prediction. To provide a comprehensive analysis, the same set of tests

were replicated on a Single-Task Deep Learning (STDL) model and compared the outcomes

with those obtained from the Multi-Task Deep Learning (MTDL) model.

The upcoming portions of this chapter are organized in the subsequent manner:

Section 6.1: In Section 6.1, an extensive review of literature is presented, examining the realm

of multi-task deep learning both in a broader context and, more specifically, in the finance

domain concerning the prediction of crucial stock market metrics.

Section 6.2: Section 6.2 provides an in-depth explanation of the methodology chosen for

constructing the multi-task deep learning and statistical models. This section investigates

thoroughly the testing protocols, variables utilized, intricacies of the dataset, and the range of

experiments carried out.

Section 6.3: The findings obtained from benchmark tests are detailed in Section 6.3,

accompanied by a comparative assessment of single-task and multi-task deep learning models.

6.1 Background and Related Works

In the context of trading markets, multitasking refers to the strategic utilization of various

analytical tasks simultaneously to enhance decision-making processes. By concurrently

considering multiple dimensions of market behaviour and related factors, traders aim to gain a

more comprehensive and nuanced understanding of market dynamics. This approach enables

for more informed and potentially more effective trading strategies [53].

Multitasking involves processing and analysing multiple streams of data concurrently. This

includes examining historical price trends, trading volumes, market news, sentiment analysis,

and various technical indicators to capture a holistic view of the market environment.

Different analytical tasks often provide complementary insights. For instance, while technical

analysis may highlight potential price patterns, fundamental analysis can shed light on the

underlying factors influencing those patterns. Combining these insights can lead to more robust

trading decisions.

111

Multitasking extends to risk assessment and management. Traders simultaneously evaluate

diverse risk factors, such as market volatility, potential economic events, and geopolitical

developments, to make well-informed decisions that mitigate potential losses [54].

Markets are dynamic and can change rapidly, multitasking enables traders to monitor various

indicators in real-time, facilitating prompt responses to evolving market conditions [52].

There is a noticeable gap in the existing literature when it comes to investigating the application

of multitasking methodologies within the context of the stock market. Despite the significant

advancements in deep learning and its various applications in financial analysis, there remains

a limited examination of multitasking approaches specifically tailored to stock market

prediction and portfolio management.

While numerous studies have investigated deep learning techniques for stock market prediction

and risk assessment, the integration of multitasking principles appears to be an unexamined

avenue. Multitasking has shown promise in other domains, such as natural language processing

and computer vision, yet its potential to enhance predictive accuracy and decision-making in

the stock market realm remains relatively uncharted.

By addressing this gap in the literature, the current research seeks to contribute to a more

comprehensive understanding of how multitasking strategies can be harnessed to improve the

prediction of stock market behaviour, portfolio management, and risk assessment. Through a

meticulous study of multitasking models, loss functions, and their interplay within the financial

domain, this study aims to shed light on the untapped potential of multitasking deep learning

in driving innovation and precision within stock market analysis and decision-making.

6.2 Methodology

A series of experiments were conducted to assess the effectiveness of multi-task learning

compared to single task learning and traditional statistical models. These experiments involved

the implementation of various deep learning architectures and statistical models to evaluate

their accuracy in predicting different stock market metrics. These assessments are also essential

for the validation and examination of “Hypothesis 3” and its associated sub-hypotheses.

112

6.2.1 Testing Modules and Metrics

The research involved multiple experiments focused on different stock market metrics,

utilizing statistical and deep learning models. The tests are executed for different market

conditions, different future prediction horizons, and different combinations of input tasks.

Mean Squared Error (MSE) is used as the performance metrics between actual predicted metric

and the predicted one.

Three main test modules were created to achieve this:

GARCH Module: This module takes an input variable representing daily returns, feeds it to a

GARCH model, and compares the output (realized volatility) against actual volatility. The

Mean Squared Error (MSE) is used to measure the model accuracy.

ARIMA Module: This module takes an input variable representing any stock market metric,

feeds it to an ARIMA model, and compares the output against actual data. MSE is used to

measure the model accuracy.

Single-Task Deep Learning Module: This module expects multiple input variables

representing a single or a collection of stock market metrics. It feeds the input to the model,

and a single output is compared against actual data. MSE is used to measure the model

accuracy.

Multi-Task Deep Learning Module: This module also expects multiple input variables

representing a single or a collection of stock market metrics. It feeds the input to the model,

and the output, consisting of 2 or more metrics, is compared against actual data. MSE is used

to measure the model accuracy.

6.2.2 Data Collection

Daily closing prices for main stock indexes were downloaded using Yahoo Finance

Application Programmable Interface (API). Formulas elucidated in Section 2.5, pertaining to

Volatility, and Section 2.6, concerning Returns, were deployed to compute both Returns and

5-Day rolling volatility. Full details of the data sets are illustrated in Table 6.1 and Table 6.2.

113

Table 6.1: Test data definition - time series.

Market Training Data

Bear 29/08/2007 - 29/01/2009

Bull 27/08/2018 - 29/01/2020

Volatile 28/08/2019 - 29/01/2021

Table 6.2: Test data definition - Indexes.

Symbol Name Type

GSPC_PRICE

DJI_PRICE

NYA_PRICE

S&P 500 Index Price

Dow Jones Index Price

New York Stock Exchange Index

Observed

Observed

Observed

GSPC_VOLUME

DJI_VOLUME

GSPC_RETURNS

S&P 500 Index Trading Volume

Dow Jones Index Trading Volume

S&P 500 Index Daily Returns

Observed

Observed

Calculated

DJI_RETURNS

GSPC_VOLATILTIY

DJI_VOLATILTIY

Dow Jones Index Daily Returns

S&P 500 Index Volatility

Dow Jones Index Volatility

Calculated

Calculated

Calculated

6.2.3 Experimental Procedures

During the testing stage, Python 3.9 and TensorFlow 2.1 were deployed to create Multi-Task

and Single-Task learning RNN architectures. To conduct benchmark assessments, GARCH

and ARIMA statistical models were coded using the arch and statsmodels.tsa.arima.model

libraries within Python 3.9. All experimentation took place within a uniform testing

environment and application context. Sample pseudocode illustrating GARCH and ARIMA

models training are included in Appendix D.

In all the trials conducted, the hold-out performance estimation technique was deployed. The

training data consisted of historical stock prices, serving as input for both the DL networks and

statistical models. These experiments were designed to cover a spectrum of market scenarios,

spanning bear, bull, and volatile markets. This diversity enabled us to thoroughly evaluate the

models' effectiveness under varying conditions. To ensure the reliability of the findings, each

test was repeated 10 times, resulting in a comprehensive set of outcomes. The analysis

114

encompassed not only the average Mean Squared Error (MSE) but also the standard deviation

of MSE, providing a comprehensive and in-depth perspective. It worth noting that a total of

over 8,000 tests were executed for this test.

The selection of hyperparameters and the overall optimization of the models deployed in the

testing phase were guided by the number of parameters present in the newly compared models.

You can find a comprehensive account of the optimization process for deep learning models in

Appendix B, which provides detailed insights into this aspect of the research.

The details of the server, GPU card, and other computational resources utilized for the entire

testing process are listed in Table 6.3 and Table 6.4.

Table 6.3: Test environment – Servers specifications.

Server Specifications

CPU

Memory

Environment

Language

ML Framework

Intel Xeon CPU E5-2640 @3.0GHz, 2 processors with 24 cores)

128 GB

UBUNTU 22.04

Python 3.9

TensorFlow 2.0

Table 6.4: Test environment - GPU specifications.

GPU Specifications

GPU GeForce RTX 2060 SUPER

Memory 8 GB

CUDA Cores 2176

GPU Clock 1650 MHz

6.2.3.1 Evaluation through Benchmark Testing

The intention behind these experiments is to juxtapose the precision of multi-task learning

against the benchmark statistical models, GARCH and ARIMA. This comparison is also

crucial for substantiating the crux of "Hypothesis 3".

The conducted statistical model tests are detailed in Table 6.5. Each test is performed utilizing

data from bull, bear, and volatile market conditions. It worth mentioning that GARCH is

115

exclusively deployed for modelling volatility, thus limiting its application to the 5-day rolling

projected volatility predictions of the S&P 500 Index and Dow Jones Index.

Table 6.5: Benchmark - Input and output for GARCH and ARIMA models tests.

Model Input/ Output

ARIMA [GSPC PRIC]

ARIMA [GSPC RETURNS]

ARIMA, GARCH [GSPC VOLATILTIY]

ARIMA [GSPC VOLUME]

ARIMA [DJI PRIC]

ARIMA [DJI RETURNS]

ARIMA, GARCH [DJI VOLATILTIY]

ARIMA [DJI VOLUME]

Code 6.1: GARCH – Selecting optimal parameters.

1: for p from 1 to trials do

2: for q from 1 to trials do

3: garch model.fit(returns, mean='zero', vol='GARCH', p, o, q)

4: append garch.bic to bic_garch

5: if garch.bic equals minimum value of bic_garch then

6: best_param (p, q)

7: end if

8: end for

9: end for

The GARCH models were constructed by determining the optimal values for "p" and "q,"

which correspond to the autoregressive (AR) and moving average (MA) orders in the model,

respectively. To identify these optimal values, the process outlined in Code 6.1 was deployed.

This procedure involves cycling through various combinations of "p" and "q," fitting the model

with the cyclic values, and then comparing the results against the smallest value among all

prior cycles. When newly derived outcomes prove smaller, they replace the current values;

otherwise, they are disregarded. During model training, daily returns were deployed, and the

data was scaled using the training dataset. Subsequently, the testing data underwent scaling

based on the training data before being used to assess the model. A sample GARCH model

116

summary is showcased in Figure 6.2 which was used to predict S&P 500 5-day rolling realised

volatility.

Figure 6.2: GARCH model summary.

Code 6.2: ARIMA – Prediction of a single day logic.

1: for x in range(length of testData) do

 2: model ARIMA(history, order=(p, o, q))

 3: model_fit model.fit()

 4: output model_fit.forecast()

 6: append output[0] to predictions

 8: nextDay testData[x]

 9: append nextDay to history

10: end for

ARIMA models were constructed to assess prices, daily returns, volatility, and trading volume.

The testing procedure commences by inputting data into the model and determining the

optimised "p" and "q" values, following a process akin to the one elucidated for GARCH. Once

these values are established, the procedure in Code 6.2 is activated to forecast forthcoming

values of the chosen stock market metrics, as enumerated in Table 6.5.

A representative summary of an ARIMA model, along with the model diagnostic results, is

portrayed in Figure 6.3 and Figure 6.4, respectively.

117

Figure 6.3: ARIMA model summary – S&P 500 price prediction.

Figure 6.4: ARIMA model diagnostics – S&P 500 price prediction.

Moreover, dual feature multi-task assessments were undertaken for the identical symbols as

projected by the statistical models. Each assessment concurrently predicted two tasks. The

hyperparameters utilized for the Multi-Task Deep Learning (MTLDL) model can be located

within Table 6.6.

118

Table 6.6: Benchmark - MTDL hyperparameters used in the benchmark tests.

Epochs Output Neurons Batch Size Previous Days Optimization Algorithm

100 16 100 1 RMSProp

Table 6.7: Benchmark - Input, output, and loss function weights used in MTDL tests.

Model DL Network Input/Output Weights

MTDL

MTDL

MTDL

MTDL

LSTM, GRU, RNN

LSTM, GRU, RNN

LSTM, GRU, RNN

LSTM, GRU, RNN

[GSPC PRICE, DJI PRICE]

[GSPC RETURNS, DJI RETURNS]

[GSPC VOLATILTIY, DJI VOLATILTIY]

[GSPC VOLUME, DJI VOLUME]

[0.5, 0.5]

[0.5, 0.5]

[0.5, 0.5]

[0.5, 0.5]

Similarly to GARCH and ARIMA, the multi-task test application rescales the data before

conducting tests. It employs the scaling used for training data on both the training and testing

data. Consequently, all predicted values are rescaled before being used to generate charts.

The testing procedure examines both the inputs and weights. If there are multiple inputs, it

evaluates the weights. In cases where a single weight is utilized, the model is categorized as a

multivariate single-task model. However, when multiple weights are deployed, the application

activates the multitasking segment of the model, passing these weights during the training

process. The logic used by the testing application is illustrated in Code 6.3.

An exemplar multi-task deep learning model is visualized in Figure 6.5. This particular model

was deployed to concurrently forecast prices of both the S&P 500 and Dow Jones indices.

Optimization algorithm, Root Mean Square Propagation (RMSProp) is used for all tests which

is used to update the weights on the neural network during training.

119

Code 6.3: Switching between single-mode and muti-task mode.

1. procedure testModel(inputs, weights):

2. if count(inputs) > 1:

3. evaluateWeights(weights)

4. end if

5. if count(inputs) == 1:

6. modelType = "multivariate single-task model"

7. end if

8. if count(weights) > 1:

9. activateMultitasking(weights)

10. end if

11. procedure evaluateWeights(weights):

12. if count(weights) == 1:

13. modelType = "multivariate single-task model"

14. end if

15. if count(weights) > 1:

16. activateMultitasking(weights)

17. end if

18. procedure activateMultitasking(weights):

19. application.activateMultitaskingSegment(weights)

20. modelType = "multitasking model"

21. trainModelWithWeights(weights)

22. end if

Ultimately, the datasets utilized for all tests were confined within narrow windows, each

reflecting distinct market conditions as outlined in Table 6.2. These condensed datasets were

intentionally chosen to exert pressure on all models due to their limited number of data points.

This constraint heightens the challenge of achieving precise predictions, thereby facilitating a

subjective evaluation of performance across various statistical and deep learning models, as

well as between single-task and multi-task deep learning models.

120

Figure 6.5: Benchmark – MTDL two-tasks model diagram.

6.2.3.2 Comparing Multitasking and Singl-Task Approaches

This series of meticulously planned experiments serves a dual purpose, meticulously designed

to rigorously validate the core thesis of this research and achieve two pivotal objectives. Firstly,

its primary aim is to establish the superiority of Multi-Task Deep Learning (MTDL) in contrast

to Single-Task Deep Learning (STDL) models, thereby reaffirming the central hypothesis that

forms the crux of this study. Secondly, it thoroughly examines and compares the performance

of two prominent RNN architectures, namely LSTM and GRU, within the contexts of both

MTDL and STDL frameworks.

The comprehensive testing procedures are meticulously documented in Table 6.7, delineating

the specific tests conducted for the MTDL framework, and in Table 6.8, which provides an

intricate breakdown of the tests carried out within the STDL framework. These tables serve as

essential reference points, elucidating the experimental design and the nuances of each test,

ensuring transparency and replicability in the pursuit of empirical insights and robust

conclusions.

input 1

InputLayer

input:

output:

 (None, 1, 1)

 (None, 1, 1)

concatenate

Concatenate

input:

output:

 (None, 1, 1), (None, 1, 1)

(None, 1, 2)

input 2

InputLayer

input:

output:

 (None, 1, 1)

 (None, 1, 1)

SharedLayer

LSTM

input:

output:

(None, 1, 2)

(None, 1, 12)

 SPC PRICE utLayer

LSTM

input:

output:

(None, 1, 12)

(None, 32)

D I PRICE utLayer

LSTM

input:

output:

(None, 1, 12)

(None, 32)

 SPC PRICE utLayer2

Dense

input:

output:

(None, 32)

(None, 1)

D I PRICE utLayer2

Dense

input:

output:

(None, 32)

(None, 1)

121

For MTDL tests, the number of neurons used in the shared layer and epochs are multiplied by

the number of outputs. For STDL, the hyper parameters used are matching those used for

MTDL which are listed in Table 6.6.

Figure 6.6 visually represents one of the conducted tests, where, in this instance, it predicts the

prices of the S&P 500 index.

Table 6.8: Input, output, and loss function weights used in STDL tests.

Model Input/Output Weights

STDL [GSPC PRICE] [1.0]

STDL [GSPC RETURNS] [1.0]

STDL [GSPC VOLATILITY] [1.0]

STDL [GSPC VOLUME] [1.0]

STDL [DJI PRICE] [1.0]

STDL [DJI RETURNS] [1.0]

STDL [DJI VOLATILTIY] [1.0]

STDL [DJI VOLUME] [1.0]

Figure 6.6. MTDL vs STDL – STDL model diagram.

input 1

InputLayer

input:

output:

 (None, 1, 1)

 (None, 1, 1)

concatenate

Concatenate

input:

output:

 (None, 1, 1), (None, 1, 1)

(None, 1, 2)

input 2

InputLayer

input:

output:

 (None, 1, 1)

 (None, 1, 1)

SharedLayer

LSTM

input:

output:

(None, 1, 2)

(None, 1, 4)

 SPC PRICE utLayer

LSTM

input:

output:

(None, 1, 4)

(None, 32)

 SPC PRICE utLayer2

Dense

input:

output:

(None, 32)

(None, 1)

122

6.2.3.3 The Art of Multitasking – Finding the Optimal Task Combination

The aim of this series of experiments is to confirm the primary research goal along with one of

the secondary hypotheses within "Hypothesis 3." This hypothesis posits that refining the

accuracy of Multi-Task Deep Learning (MTDL) is achievable by identifying the optimal fusion

of interrelated metrics. To accomplish this, a subjective approach is deployed by selecting one

poorly predicted MTDL metric from benchmark testing results and using it for this specific

test. Tests performed in this set are listed in Table 6.9.

Table 6.9: Input, output, and loss function weights used in different combinations tests.

Model Input/Output Weights Market

MTDL [GSPC PRICE, DJI RETURNS] [0.5, 0.5] Bear

MTDL [GSPC PRICE, DJI VOLATILITY] [0.5, 0.5] Bear

MTDL [GSPC PRICE, DJI VOLUME] [0.5, 0.5] Bear

MTDL [GSPC PRICE, GSPC VOLATILITY, DJI VOLATILITY] [0.333, 0.333,0.333] Bear

6.2.3.4 Fine-Tuning the Loss Function: Determining the Optimal Weights

The purpose of conducting this series of experiments is to verify the primary research objective

and one of the subsidiary hypotheses within "Hypothesis 3". This particular sub-hypothesis

proposes that enhancing the accuracy of Multi-Task Deep Learning (MTDL) can be achieved

by ascertaining the optimal weights for the output components. To achieve this, a subjective

approach is adopted by selecting one poorly MTDL predicted metric from section 6.2.3.1 tests

and utilizing it for this specific test.

Table 6.10: Finding optimal weights – Tests inputs, outputs, and weights.

Model Input/Output Weights Weight Increment Market

MTDL [GSPC PRICE, DJI PRICE] [0.01, 0.99] to [0.99,0.01] 0.01 Bull

MTDL [GSPC PRICE, NYA PRICE] [0.01, 0.99] to [0.99,0.01] 0.01 Bear

This series of tests illustrated in Table 6.10 serves as a substitute for the initial research work,

which focused on the dynamic adjustment of weights during the training of deep learning

123

models. However, due to the inherent instability and unpredictability of the solution, this

approach was set aside and replaced with the current set of experiments.

For comprehensive insights into the original research work concerning the dynamic adjustment

of weights, please refer to the details provided in Appendix C.

6.3 Results

The results have been structured according to the experimental procedures outlined in the

respective section. The sequence of tests conducted is significant as the outcomes from certain

tests contribute to the results of other sets. This strategic arrangement enables for effective

conclusions and a comprehensive assessment of whether the primary objectives have been

achieved. The full list of charts produced by this test is included in Appendix A, Section 2.2.

6.3.1 Evaluation through Benchmark Testing

In this series of tests, the primary emphasis will be on predicting the 1-Day future values. This

deliberate choice aims to create a highly demanding challenge for deep learning models,

thereby facilitating a comprehensive and accurate study.

Upon initial observation, it is evident that the MTDL outperforms both statistical models in all

market conditions. While ARIMA competes well in price prediction, it lags behind in returns

and volume prediction accuracy. On the other hand, GARCH demonstrates a relatively weaker

performance in bear markets which are known to be associated with the most unpredictable

market conditions. Figure 6.7 and Figure 6.8 present a sample of prediction charts for GARCH,

comparing them to the MTDL model. These charts provide visual insights into the performance

differences among the models. ARIMA and MTDL models appear to demonstrate varying

effectiveness across particular financial instruments and market conditions. Figure 6.9 and

Figure 6.10 vividly demonstrate the superior performance of the DMTL model over the

ARIMA model.

124

GARCH Model.

Multi-Task GRU Model.

Figure 6.7: MTDL vs GARCH - Volatility prediction for S&P 500 in bull market.

GARCH Model.

Multi-Task GRU Model.

Figure 6.8: MTDL vs GARCH - Volatility prediction for S&P 500 in volatile market.

125

ARIMA Model.

Multi-Task GRU Model.

Figure 6.9: MTDL vs ARIMA - Daily returns prediction for S&P 500 in bear market.

ARIMA Model

Multi-Task GRU Model

Figure 6.10: MTDL vs ARIMA - Trading volume prediction for S&P 500 in bull market.

126

ARIMA Model.

Multi-Task LSTM Model.

Figure 6.11: MTDL vs ARIMA - Index price prediction for S&P 500 in bull market.

The Figure 6.11 depicts a comparison between the ARIMA and LSTM MTDL models in

predicting the S&P 500 index. Notably, the ARIMA model exhibits a higher level of accuracy

and precision in its predictions when contrasted with the deep learning models. This suggests

that, for the specific task of forecasting stock price movements, the ARIMA approach

outperforms the deep learning approach. Similar results observed for S&P 500 Index price and

Down Jones Index prices for LSTM, GRU, and RNN in all bull and bear market conditions,

but not during volatile market.

Further analysis is done on the correlation coefficient between index prices for S&P 500 and

Dow Jones and it is observed to be positively high (0.99) in bull and bear markets and slightly

lower in volatile market (0.92). A full list of correlations is available at Appendix E.

Figure 6.12 and Figure 6.13 showcases the performance across different market conditions for

all models. It is evident that all models face challenges in achieving accuracy during bear

markets. This difficulty stems from the scarcity of data, making predictions about market

direction particularly complex. Despite this, it is noteworthy that ARIMA, GRU, and LSTM

127

exhibit remarkably similar behaviours across all market conditions. Notably, Multi-Task Deep

Learning (MTDL) models demonstrate superior performance in volatile markets.

Figure 6.12: Statistical and DL models performance by market conditions.

Upon conducting a comprehensive examination of the outcomes through the lens of Multi-

Task Deep Learning (MTDL), a salient and intriguing pattern discernibly emerges, providing

valuable insights into the comparative performance of the models under examination. Notably,

it becomes conspicuously evident that Recurrent Neural Networks (RNN) lag significantly

behind their counterparts, namely Long Short-Term Memory (LSTM) and Gated Recurrent

Unit (GRU) models, in terms of predictive capabilities.

This insightful observation harmoniously aligns with a recurring theme that has pervaded the

landscape of Single-Task Deep Learning (STDL) models. However, what sets this study apart

is its pioneering extension of this corroborated finding into the uncharted territory of Multi-

Task Deep Learning (MTDL), thereby illuminating a critical facet of RNN performance. This

illumination unequivocally affirms that RNN suboptimal performance is not a characteristic

LSTM

bear

bull

volatile

GRU

bear

bull

volatile

RNN

bear

bull

volatile

ARIMA

bear

bull

volatile

GARCH

bear

bull

volatile

128

exclusive to STDL models; it permeates into the MTDL domain as well, leaving an indelible

mark on its overall efficacy.

Delving into the underlying causes of this discernible performance gap, the root of the issue is

traced back to RNN inherent limitation in effectively managing sequence memory. This

limitation inherently handicaps RNNs, rendering them less adept in grasping the intricate

nuances of sequential data. In stark contrast, both LSTM and GRU models strategically harness

this deficiency, adeptly capitalizing on their superior capacity to capture, retain, and manipulate

sequence memory. It is this strategic advantage that propels LSTM and GRU models to

outperform RNNs across the spectrum of tasks and scenarios evaluated in this study,

underscoring the pivotal role played by memory capabilities in the landscape of deep learning

models.

Figure 6.13: Models Performance by market conditions.

In summary, among the models deployed, both LSTM and GRU demonstrate superior

performance, with GRU particularly most accurate with exceptional results.

As illustrated in Table 6.7, all tests performed in this section are setup using two inputs with

equal weights of [50,50]. In Section 6.3.3, the research undertakes a comprehensive

examination by isolating one underperforming task and conducting prediction experiments

with different task weight combinations.

Subsequently, in Section 6.3.4, the research investigation is taken a step further by selecting

another task that exhibits inferior performance. The objective is to embark on a comprehensive

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

GRU LSTM RNN GRU LSTM RNN GRU LSTM RNN

bear bull volatile

mse sd

129

study, experimenting with multiple tasks and varying their weights to identify the optimal

combinations, ultimately aiming to enhance prediction performance.

Finally, the results for all tests performed in this set are included in Table 6.11.

Table 6.11. 1 Day Prediction Accuracy - Benchmark Testing (𝟏𝟎−𝟑).

Bear Market

ARIMA GARCH GRU LSTM RNN

Dow Jones Price 1.546 - 2.857 0.501 23.389

Dow Jones Returns 2251.697 - 0.851 0.504 3.784

Dow Jones Volatility 21.223 65431.364 2.533 1.110 6.587

Dow Jones Volume 158.403 - 0.396 0.157 1.457

S&P 500 Price 1.944 - 13.469 23.213 24.862

S&P 500 Returns 2313.947 - 1.200 1.082 4.933

S&P 500 Volatility 20.585 84310.574 5.595 3.619 8.958

S&P 500 Volume 86.839 - 0.590 0.188 1.055

Bull Market

ARIMA GARCH GRU LSTM RNN

Dow Jones Price 0.001 - 1.516 10.375 32.507

Dow Jones Returns 145.750 - 0.181 0.058 0.170

Dow Jones Volatility 0.004 57.187 0.109 0.013 0.170

Dow Jones Volume 146.261 - 0.392 0.351 1.118

S&P 500 Price 0.005 - 3.044 4.691 36.469

S&P 500 Returns 130.809 - 0.147 0.029 0.291

S&P 500 Volatility 0.028 38.409 0.162 0.024 0.482

S&P 500 Volume 235.451 - 0.328 0.425 0.881

Volatile Market

 ARIMA GARCH GRU LSTM RNN

Dow Jones Price 1.391 - 0.979 0.950 8.000

Dow Jones Returns 202.776 - 0.153 0.077 0.222

Dow Jones Volatility 0.003 241.160 0.056 0.041 0.128

Dow Jones Volume 75.712 - 0.171 0.078 0.405

S&P 500 Price 1.881 - 1.036 0.717 6.191

S&P 500 Returns 256.703 - 0.113 0.054 0.224

S&P 500 Volatility 0.053 207.824 0.088 0.070 0.132

S&P 500 Volume 107.954 - 0.150 0.251 0.445

130

6.3.2 Comparing Multitasking and Single-Task Approaches

Upon observing the results for all future predictions and market conditions, it is evident that

Multi-Task Deep Learning (MDTL) outperforms Single-Task Deep Learning (STDL)

significantly when the prediction horizon is just one future day. However, as the prediction

horizon extends to longer periods, the performance gap between MTDL and STDL narrows

due to increased future uncertainty. Nevertheless, MTDL maintains its overall superiority

across all market conditions and future prediction horizons. Figure 6.14 depicts performance

between STDL and MTDL.

Additionally, it is worth noting that the performance of GRU and LSTM is comparable.

However, GRU appears to be superior during bear market conditions, indicating its advantage

in handling more challenging market scenarios.

STDL – GRU.

MTDL – GRU.

Figure 6.14: MTDL vs STDL - Index price prediction for S&P 500 in bull market.

The prediction accuracy charts for MTL and STL in various market conditions and future

prediction time horizons are depicted in Figure 6.15. The complete results of all the tests

conducted in this set have been organized into separate tables, each corresponding to a specific

131

future prediction horizon. These tables can be found in Table 6.12, Table, 6.13, Table 6.14, and

Table 6.15.

1 Day.

5 Days.

10 Days.

20 Days.

Figure 6.15: Prediction accuracy comparison - MTDL vs STDL.

0.00

0.01

0.02

0.03

MTDL STDL MTDL STDL MTDL STDL MTDL STDL MTDL STDL MTDL STDL

GRU LSTM GRU LSTM GRU LSTM

bear bull volatile

mse sd

0.00

0.01

0.02

0.03

0.04

MTDL STDL MTDL STDL MTDL STDL MTDL STDL MTDL STDL MTDL STDL

GRU LSTM GRU LSTM GRU LSTM

bear bull volatile

mse sd

0.00

0.05

0.10

0.15

0.20

MTDL STDL MTDL STDL MTDL STDL MTDL STDL MTDL STDL MTDL STDL

GRU LSTM GRU LSTM GRU LSTM

bear bull volatile

mse sd

0.00

0.20

0.40

0.60

MTDL STDL MTDL STDL MTDL STDL MTDL STDL MTDL STDL MTDL STDL

GRU LSTM GRU LSTM GRU LSTM

bear bull volatile

mse sd

132

Table 6.12. MTL vs STL 1-day prediction accuracy (𝟏𝟎−𝟒).

Bear Market

GRU LSTM

MTDL STDL MTDL STDL

MSE SD MSE SD MSE SD MSE SD

Dow Jones Price 28.57 35.79 73.13 61.74 5.01 6.96 24.00 6.59

Dow Jones Returns 8.51 5.57 40.08 22.19 5.04 3.33 23.60 7.43

Dow Jones Volatility 25.33 17.14 54.93 39.66 11.10 5.62 52.13 27.54

Dow Jones Volume 3.96 5.97 9.94 8.95 1.57 0.99 7.96 4.43

S&P 500 Price 134.69 91.38 199.37 118.26 232.13 83.30 165.22 64.32

S&P 500 Returns 12.00 4.37 27.76 9.54 10.82 7.56 39.78 10.53

S&P 500 Volatility 55.95 26.80 67.52 47.63 36.19 23.08 32.26 10.64

S&P 500 Volume 5.90 11.06 10.49 6.87 1.88 1.19 4.85 4.17

Bull Market

GRU LSTM

MTDL STDL MTDL STDL

MSE SD MSE SD MSE SD MSE SD

Dow Jones Price 15.16 7.91 586.52 101.75 103.75 60.04 568.81 90.87

Dow Jones Returns 1.81 1.51 2.65 1.72 0.58 0.21 0.53 0.32

Dow Jones Volatility 1.09 1.01 1.79 2.28 0.13 0.09 0.59 0.17

Dow Jones Volume 3.92 1.23 17.35 7.28 3.51 1.27 21.42 4.15

S&P 500 Price 30.44 29.80 1019.18 175.09 46.91 24.83 1586.93 152.42

S&P 500 Returns 1.47 1.33 2.03 1.48 0.29 0.12 1.10 0.89

S&P 500 Volatility 1.62 1.29 2.02 3.84 0.24 0.20 0.54 0.14

S&P 500 Volume 3.28 1.66 13.01 3.21 4.25 1.06 15.50 2.11

Volatile Market

GRU LSTM

MTDL STDL MTDL STDL

MSE SD MSE SD MSE SD MSE SD

Dow Jones Price 9.79 9.70 123.26 41.42 9.50 13.06 53.27 12.54

Dow Jones Returns 1.53 1.06 2.23 1.84 0.77 0.44 1.36 0.62

Dow Jones Volatility 0.56 0.42 1.05 0.97 0.41 0.23 0.39 0.13

Dow Jones Volume 1.71 1.67 4.90 2.35 0.78 0.39 1.37 1.07

S&P 500 Price 10.36 11.09 297.33 86.08 7.17 3.76 261.81 29.94

S&P 500 Returns 1.13 0.92 2.74 1.87 0.54 0.26 0.95 0.50

S&P 500 Volatility 0.88 0.81 1.02 1.31 0.70 0.28 0.79 0.29

S&P 500 Volume 1.50 1.29 16.72 3.32 2.51 1.53 9.90 2.73

133

Table 6.13. MTL vs STL 5-day prediction accuracy (𝟏𝟎−𝟒).

Bear Market

GRU LSTM

MTDL STDL MTDL STDL

MSE SD MSE SD MSE SD MSE SD

Dow Jones Price 83.33 70.93 206.89 126.05 275.69 169.09 418.93 124.08

Dow Jones Returns 23.19 3.76 66.65 21.50 87.79 9.17 207.54 21.56

Dow Jones Volatility 100.00 76.65 280.32 122.86 256.37 41.41 925.77 306.14

Dow Jones Volume 25.59 11.21 61.80 8.64 124.89 31.07 60.11 5.66

S&P 500 Price 244.67 209.69 541.06 203.20 641.90 333.52 553.54 165.18

S&P 500 Returns 92.87 28.41 83.01 20.47 216.46 13.38 200.01 22.37

S&P 500 Volatility 291.66 95.19 255.22 148.62 399.61 67.22 579.59 152.71

S&P 500 Volume 44.27 36.22 99.49 43.07 59.72 13.36 101.62 21.70

Bull Market

GRU LSTM

MTDL STDL MTDL STDL

MSE SD MSE SD MSE SD MSE SD

Dow Jones Price 260.46 152.71 607.46 132.82 285.35 105.86 322.06 75.43

Dow Jones Returns 3.55 1.19 3.05 0.96 5.15 5.21 6.37 1.33

Dow Jones Volatility 3.75 2.74 18.73 6.09 21.01 3.43 15.51 2.25

Dow Jones Volume 55.95 18.30 115.19 39.07 68.54 21.87 206.57 38.06

S&P 500 Price 216.93 162.57 2163.70 371.24 374.73 218.08 2064.41 364.41

S&P 500 Returns 3.35 1.32 3.43 1.03 5.65 1.83 6.78 1.28

S&P 500 Volatility 5.31 3.21 15.95 5.49 8.98 3.48 11.05 3.80

S&P 500 Volume 50.57 13.10 115.14 27.32 48.81 24.72 214.73 75.34

Volatile Market

GRU LSTM

MTDL STDL MTDL STDL

MSE SD MSE SD MSE SD MSE SD

Dow Jones Price 78.53 49.22 536.57 112.82 91.80 33.43 392.51 66.92

Dow Jones Returns 6.81 2.50 13.58 3.93 120.29 17.26 61.36 6.98

Dow Jones Volatility 8.48 5.32 24.23 8.22 36.54 1.89 38.30 8.99

Dow Jones Volume 16.15 5.88 24.96 10.19 29.48 10.01 53.59 5.72

S&P 500 Price 105.82 93.63 1152.38 283.57 489.78 178.02 1009.75 147.80

S&P 500 Returns 6.78 2.70 9.49 3.22 65.39 10.51 39.82 7.91

S&P 500 Volatility 8.59 1.32 11.76 4.37 38.21 4.49 13.74 3.30

S&P 500 Volume 6.13 2.89 11.67 4.73 12.06 5.49 48.36 14.40

134

 Table 6.14. MTL vs STL 10-day prediction accuracy (𝟏𝟎−𝟑).

Bear Market

GRU LSTM

MTDL STDL MTDL STDL

MSE SD MSE SD MSE SD MSE SD

Dow Jones Price 22.82 23.28 58.14 16.62 43.86 28.84 171.46 30.57

Dow Jones Returns 1.90 0.89 225.02 21.79 11.46 1.12 227.92 11.92

Dow Jones Volatility 60.81 49.00 245.82 63.98 111.63 20.86 530.67 50.67

Dow Jones Volume 4.64 2.48 16.85 3.75 23.64 8.27 16.39 1.62

S&P 500 Price 58.79 28.17 140.62 32.59 58.97 32.19 171.80 29.86

S&P 500 Returns 7.55 3.10 125.47 21.73 16.48 1.60 125.83 12.41

S&P 500 Volatility 26.64 17.61 118.66 20.94 8.71 4.81 183.97 14.09

S&P 500 Volume 3.56 1.31 10.50 4.32 8.30 2.94 16.06 2.90

Bull Market

GRU LSTM

MTDL STDL MTDL STDL

MSE SD MSE SD MSE SD MSE SD

Dow Jones Price 121.13 73.08 75.05 28.37 69.62 22.90 32.65 8.96

Dow Jones Returns 0.63 0.24 0.28 0.11 6.26 1.77 0.98 0.23

Dow Jones Volatility 0.42 0.17 2.37 0.57 5.68 0.64 4.12 0.46

Dow Jones Volume 7.57 3.23 25.89 11.13 27.52 19.08 72.36 4.93

S&P 500 Price 63.76 36.54 298.12 34.21 8.04 4.60 265.30 21.15

S&P 500 Returns 0.49 0.19 0.49 0.17 2.32 0.47 0.39 0.12

S&P 500 Volatility 1.07 0.59 1.43 0.50 2.35 0.50 2.69 0.35

S&P 500 Volume 5.38 2.40 31.36 10.35 26.54 21.52 74.17 16.99

Volatile Market

GRU LSTM

MTDL STDL MTDL STDL

MSE SD MSE SD MSE SD MSE SD

Dow Jones Price 30.06 25.86 137.52 35.01 25.74 8.62 135.60 22.08

Dow Jones Returns 1.69 1.30 6.49 1.26 17.69 1.53 16.75 2.57

Dow Jones Volatility 0.66 0.40 4.11 1.13 3.59 0.73 6.84 0.78

Dow Jones Volume 2.01 0.69 3.37 1.10 12.18 2.48 4.80 1.18

S&P 500 Price 55.83 29.99 258.01 56.18 132.83 30.88 258.83 29.30

S&P 500 Returns 1.03 0.81 1.70 0.71 5.96 1.22 5.20 0.98

S&P 500 Volatility 2.44 0.52 2.87 1.32 6.56 1.26 4.66 0.86

S&P 500 Volume 1.20 0.66 2.86 0.86 4.50 4.27 11.29 2.21

135

Table 6.15. MTL vs STL 20-day prediction accuracy (𝟏𝟎−𝟑).

Bear Market

GRU LSTM

MTDL STDL MTDL STDL

MSE SD MSE SD MSE SD MSE SD

Dow Jones Price 564.35 193.93 1452.16 104.60 994.49 279.38 2126.33 153.95

Dow Jones Returns 52.64 12.23 116.54 22.27 35.50 6.41 142.92 12.93

Dow Jones Volatility 159.84 61.07 271.50 49.31 242.14 33.66 300.24 28.12

Dow Jones Volume 15.39 6.24 24.58 6.12 41.29 5.55 33.92 3.97

S&P 500 Price 501.69 219.70 1888.00 206.74 882.59 427.18 2121.85 147.74

S&P 500 Returns 22.21 9.97 58.69 16.02 14.87 3.27 76.65 8.23

S&P 500 Volatility 80.06 50.53 175.24 40.59 21.59 13.89 114.51 17.29

S&P 500 Volume 18.05 7.05 28.87 5.96 23.35 4.88 39.40 6.30

Bull Market

GRU LSTM

MTDL STDL MTDL STDL

MSE SD MSE SD MSE SD MSE SD

Dow Jones Price 162.39 99.99 157.65 35.87 103.21 93.28 190.84 94.75

Dow Jones Returns 0.84 0.29 0.19 0.13 8.01 1.11 2.18 0.39

Dow Jones Volatility 3.97 2.70 12.81 5.33 20.25 3.82 12.67 1.59

Dow Jones Volume 15.70 10.91 62.93 21.88 106.06 21.71 153.80 9.59

S&P 500 Price 117.32 71.04 480.72 121.20 99.93 59.85 817.97 70.44

S&P 500 Returns 0.46 0.19 0.65 0.20 4.13 0.62 0.99 0.35

S&P 500 Volatility 2.66 2.58 6.55 3.19 9.00 3.11 11.41 1.54

S&P 500 Volume 14.30 4.22 75.82 15.80 137.38 71.02 247.60 33.69

Volatile Market

GRU LSTM

MTDL STDL MTDL STDL

MSE SD MSE SD MSE SD MSE SD

Dow Jones Price 126.24 67.16 179.27 75.83 36.30 13.53 305.08 43.13

Dow Jones Returns 1.66 1.29 13.95 5.04 10.74 1.65 22.24 2.73

Dow Jones Volatility 2.43 0.74 5.80 2.33 3.68 1.33 13.43 1.50

Dow Jones Volume 2.28 0.78 6.32 0.84 14.06 2.78 10.58 1.30

S&P 500 Price 303.68 155.74 425.51 102.01 222.26 44.37 531.60 66.66

S&P 500 Returns 3.10 2.03 2.07 1.14 7.39 1.11 5.24 1.03

S&P 500 Volatility 2.48 1.03 1.78 0.50 4.93 1.55 3.87 0.36

S&P 500 Volume 3.78 2.07 9.26 2.17 16.46 8.60 28.59 4.68

136

6.3.3 The Art of Multitasking – Finding the Optimal Task Combination

The results obtained support the hypothesis that incorporating additional outputs in Multi-Task

Deep Learning (MTDL) can enhance prediction accuracy. This improvement is achieved by

iteratively adjusting the model parameters based on the error gradient, which leads to a

reduction in loss and improved predictions. It was also noted that various combinations of

metrics or features can yield similar effects on the error gradient, thus resulting in improved

prediction accuracy. The results obtained from this set of tests are depicted in Figure 6.16.

Figure 6.16: Finding the Optimal Task Combinations.

6.3.4 Fine-Tuning the Loss Function: Determining Optimal Weights

In the benchmark testing phase, the Mean Squared Error (MSE) for S&P 500 and Dow Jones

prices within a bull market stood at 0.00469 and 0.01037, respectively, using the weight setup

[GSPC_PRICE, DJI_PRICE: 0.5, 0.5]. However, following the optimization of weights, the

MSE exhibited significant improvements. For S&P 500, with weights [0.82, 0.18], the MSE

decreased by approximately 37% to 0.00293. Similarly, for Dow Jones, using weights [22, 78],

the MSE experienced a substantial reduction of 78.6% to 0.00390.

To validate these findings, an additional test was conducted using the weight setup

[GSPC_PRICE and NYA_PRICE: 0.5, 0.5] within a bear market scenario. This test yielded

Prediction result from benchmark testing

0.000

0.005

0.010

0.015

0.020

0.025

S&P 500 Price:0.5
DJI Returns:0.5

S&P 500 Price:0.5
DJI Volatility 5D:0.5

S&P 500 Price:0.5
DJI Volume:0.5

S&P 500 Price:0.333
S&P 500 Volatility:0.333
DJI Volatility 5D:0.333

S&P 500 Price:0.5
DJI Price:0.5

mse sd

137

similar outcomes, with a reduction of 13% observed in the case of S&P 500 (MSE decreasing

from 0.003178 to 0.00275), and a substantial 59% reduction for the New York Stock Exchange

(MSE decreasing from 0.00281 to 0.00115).

For a thorough and insightful examination of the tests outcomes, the focus is directed to Figure

6.17, which pertains to the bull market test, and Figure 6.18, which focuses on the bear market

test. These figures encapsulate the nuanced details and patterns uncovered during the extensive

evaluation process.

This noteworthy discovery lends credence to the hypothesis that metric weights need not be

uniform or weighted equally. Instead, it underscores the paramount importance of discerning

the optimal weight relative to the specific test metrics deployed to nourish the model. In

essence, this emphasizes the tailored and context-sensitive nature of metric weighting in the

realm of Multi-Task Deep Learning (MTDL), where precision in weight assignment can

significantly impact predictive performance across diverse market conditions.

S&P 500 index price optimal weight.

Dow Jones index price optimal weight.

Figure 6.17: Loss function tuning – Finding optimal weights, bull market.

0.0029

0

0.02

0.04

0.06

0.08

0.1

0.00

0.05

0.10

0.15

0.20

7

1
2

1
7

2
2

2
7

3
2

3
7

4
2

4
7

5
2

5
7

6
2

6
7

7
2

7
7

8
2

8
7

9
2

9
7

sd
 (

%
)

m
se

weight (%)

sd

0.0039

0

0.02

0.04

0.06

0.08

0.1

0.00

0.05

0.10

0.15

0.20

1
0

0

9
5

9
0

8
5

8
0

7
5

7
0

6
5

6
0

5
5

5
0

4
5

4
0

3
5

3
0

2
5

2
0

1
5

1
0 5

sd
 (

%
)

m
se

weight (%)

sd

138

S&P 500 index price optimal weight.

NYSE index price optimal weight.

Figure 6.18: Loss function tuning – Finding optimal weights, bear market.

6.4 Conclusions

The research introduces a novel implementation of Multi-Task Deep Learning (MTDL),

aiming to significantly enhance the prediction accuracy of key stock market metrics. The study

commences with three primary hypotheses: Firstly, that multi-task learning can improve the

prediction accuracy of deep learning models. Secondly, that varying combinations of metrics

can lead to distinct levels of accuracy, thereby determining the right metrics for specific market

conditions to achieve optimal performance. Lastly, the thesis examines the impact of adjusting

the weight of metrics fed into the MTDL model.

To ensure the maximum accuracy of the proposed model, extensive testing was conducted

across different market conditions, using various prediction horizons, and deploying two

0.0028

0.00

0.02

0.04

0.06

0.08

0.10

0.000

0.010

0.020

0.030

0.040

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

sd
 (

%
)

m
se

weight (%)

sd

0.0012

0.00

0.02

0.04

0.06

0.08

0.10

0.000

0.010

0.020

0.030

0.040

1
0

0

9
5

9
0

8
5

8
0

7
5

7
0

6
5

6
0

5
5

5
0

4
5

4
0

3
5

3
0

2
5

2
0

1
5

1
0 5

sd
 (

%
)

m
se

weight (%)

sd

139

commonly used deep learning RNN architectures, LSTM and GRU. Each test was repeated ten

times for further validation and confirmation.

The results observed have confirmed that multi-task deep leaning prediction accuracy is

improved by using a shared layer of the metrics inputs. It is also observed that adding more

input/output to the model can significantly improve the prediction performance.

Although ARIMA can exhibit superiority in price prediction during bull markets, it falls behind

MTDL in predicting returns and volume across all market conditions. This disparity can be

attributed to the trend in the average of data points, which is a fundamental concept of the

ARIMA model.

On the other hand, GARCH did not perform well in the experiments, primarily due to the

deliberately selected small volume of data used for short time horizons. This was done to stress-

test the performance of all models when dealing with limited data, and it impacted the accuracy

of the GARCH model.

As validated in references [47], [50], [51], deep learning models exhibit superiority in time

series data prediction owing to their memory capabilities and effective handling of previously

processed sequence data. In this research, it is established from results obtained that GRU

outperforms LSTM, primarily due to the horizon of data used in the experiments [78], [79].

140

Chapter 7

Discussion and Conclusions

This comprehensive research has examined three key dimensions, each contributing

significantly to the advancement of stock market prediction and the potential for enhanced

financial modelling. These dimensions have encompassed the utilisation of Deep Learning, the

introduction of Multivariate Deep Learning (MDL), and the innovative concept of Multi-Task

Deep Learning (MTDL). Within this multifaceted research, several noteworthy innovations

have taken centre stage as follows:

Comprehensive Model Testing: This research set out to conduct a rigorous battery of tests

spanning diverse stock market conditions, including bear, bull, and volatile scenarios. This

comprehensive approach ensured that all models underwent scrutiny across the entire spectrum

of market dynamics, providing a holistic view of their performance.

Varied Time Horizons: To assess model performance with precision, predictions were made

across different time horizons, encompassing 1-day, 5-day, 10-day, and 20-day forecasts. This

multifaceted evaluation captured the capability of models to adapt to varying prediction

horizons, a crucial aspect of their utility.

Multivariate Input Combinations: The research has examined the impact of utilizing

multiple combinations of inputs during multivariate testing. This extensive examination has

evaluated how different input combinations influenced the predictive capabilities of the model,

shedding light on the most effective data configurations.

Weight Variations in Multi-Task Learning: In the realm of Multi-Task Deep Learning

(MTDL), this research has introduced the concept of using different weights during multi-task

testing. By examining the effects of varying weights on loss functions and overall MTDL

model performance, this innovation uncovers valuable insights into optimizing the model

learning process.

Task Diversity in Multitasking Models: Within the MTDL framework, various combinations

of tasks were examined during multitasking model testing. This approach sought to understand

141

how the inclusion of various tasks impacts the overall performance of the multi-task model,

providing valuable guidance on task selection and model optimization.

These innovative elements collectively contributed to a comprehensive and insightful analysis

of stock market prediction and financial modelling. Through systematic testing under diverse

time horizons, input permutations, weight adjustments, and task diversity, this work has paved

the way for enhanced predictive models and a deeper understanding of their adaptability across

multifaceted market conditions.

7.1 Utilizing Deep Learning Networks for Market Prediction

The first strand of this research ventures into the realm of deep learning, in particular, LSTM,

seeking to challenge the traditional stronghold of classical statistical models such as GARCH.

This research is multifaceted, aiming to assess the LSTM potential in predicting market

volatility, optimising trading portfolios, and refining options pricing models.

The benchmark testing provided a resounding confirmation of the initial hypothesis – that

LSTM, powered by deep learning, improves over the performance of GARCH in volatility

forecasting. These finding underscores the adaptability of LSTM for intra-day volatility

modelling, particularly due to its capability in detecting short-term market influencers.

7.2 Improving Performance by Utilizing the Multivariate

Deep Learning (MDL) Architecture

The second strand of this research extended to the realm of multivariate LSTM architectures,

showcasing their efficacy in enhancing volatility forecasting. As evidenced across both bear

and bull markets, the inclusion of additional asset prices within the multivariate input has led

to marked performance improvements, especially in 1-day and 5-day predictions. The

introduction of a lag window proved to be a critical factor, particularly for enhancing LSTM

prediction accuracy amidst the turbulence of bear markets. It is worth noting that the most

accurate predictions often arise from input combinations characterised by strong correlations,

whether they are positive or negative.

142

The next steps included further enhancing the predictive accuracy of LSTM and extending its

forecasting horizon. This entailed optimising the multivariate input by examining various

lagging periods and integrating new types of time series data, including news and weather

information. Furthermore, delving into the correlation between test stocks and the correlation

among feature inputs unveiled additional opportunities for fine-tuning the multivariate models.

7.3 Introducing the Multi-Task Deep Learning (MTDL) for

Enhanced Predictions

The third strand of the research introduced the novel concept of Multi-Task Deep Learning

(MTDL), aimed at substantially enhancing the accuracy of stock market predictions. With a

foundation based on three primary hypotheses, the study examined the various benefits of

MTDL.

The rigorous testing, encompassing diverse market conditions, varying prediction horizons,

and the utilisation of two prevalent deep learning RNN architectures, LSTM and GRU, resulted

in compelling insights. Multi-Task deep learning with the shared layer of metric inputs,

improves prediction accuracy significantly. Moreover, the results have shown that expanding

the input/output dimensions of the model can yield substantial performance enhancements.

In the context of conventional models, ARIMA has stood out for price prediction during bull

markets yet lagged behind MTDL in predicting returns and volume across diverse market

conditions. The inherent trend-capturing capability of ARIMA constrains its adaptability to

intricate market dynamics.

On a different note, GARCH performance waned, primarily due to deliberately restricting the

data volume for short time horizons. This constraint, intentionally introduced for robust stress-

testing, notably impacted the model accuracy.

Consistent with previous research findings, deep learning models, given their memory

capabilities and adeptness in handling sequential data, tended to show superior performance.

This research revealed GRU outperformance over LSTM, primarily attributed to the extended

data horizon utilised.

143

MTDL emerged as a frontrunner in most market conditions, with the potential to most

significant performance gains in stock market predictions. However, additional research is

warranted to devise optimal strategies for metric selection. Notably, the presence of highly

correlated inputs did not consistently yield improved performance.

Further complexity arises when determining the optimal weights for MTDL in scenarios

involving more than two stocks. Dynamic weight adjustments during the learning process stand

as a promising avenue for minimising gradient errors and enhancing model performance.

Multitasking represents a relatively novel area in stock market analysis, leaving ample space

for enhancements and research. Preliminary experiments have shown promise in improving the

gradient descent behaviour through such weight adjustments. These investigations will

contribute to the ongoing evolution of multi-task deep learning in stock market analysis. The

sample code of the experiment has been included to Appendix D.

7.4 Future Work

Future work could focus on further refining LSTM prediction accuracy and extending the

prediction horizon. This will include fine-tuning the multivariate input by examining various

lagging periods and introducing new categories of time series input data, such as news and

weather information. Additionally, forthcoming research could leverage the proposed LSTM

model to predict implied volatility which is a critical parameter in options pricing models.

MTDL has demonstrated its superior performance in almost all market conditions. However,

additional research is needed to determine the most effective approach for selecting the metrics

to be fed into the model. It is noted that highly correlated inputs do not always lead to improved

performance.

While finding the optimal weights for MTDL was relatively straightforward when using two

metrics, the complexity increased when dealing with more than two stocks. Further

investigation was required to dynamically adjust the weights during the learning process to

help the model achieve minimum gradient error and enhance its performance.

Future research could address the need for a detailed examination of the correlation between

tasks and input data, aiming to develop a feature-selection system that could be seamlessly

integrated into the feature input list of multi-task models before the training phase.

144

Additionally, this would have to include optimisation studies aimed at dynamic allocating

weights to features during the training process.

145

References

[1] D. Colander et al., “THE FINANCIAL CRISIS AND THE SYSTEMIC FAIL RE F

THE EC N MICS PR FESSI N,” Critical Review, vol. 21, no. 2–3, pp. 249–267,

Jun. 2009, Doi: 10.1080/08913810902934109.

[2] S Supervisors roup, “Risk Management Lessons from the lobal Banking Crisis of

2 Senior Supervisors roup,” 2 9

[3] P. Jorion, Financial Risk Manager Handbook. John Wiley & Sons, 2003.

[4] R Bhowmik and S Wang, “Stock Market Volatility and Return Analysis: A

Systematic Literature Review,” Entropy, vol. 22, no. 5, May 2020, doi:

10.3390/E22050522.

[5] C. Alexander, Market Risk Analysis Volume II Practical Financial Econometrics.

2008.

[6] George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung, Time

Series Analysis: Forecasting and Control, 5th Edition. 2015.

[7] E Chong, C Han, and F C Park, “Deep learning networks for stock market analysis

and prediction: Methodology, data representations, and case studies,” Expert Syst Appl,

vol. 83, pp. 187–205, 2017, doi: 10.1016/j.eswa.2017.04.030.

[8] W Long, Z Lu, and L Cui, “Deep learning-based feature engineering for stock price

movement prediction,” Knowl Based Syst, vol. 164, pp. 163–173, Jan. 2019, doi:

10.1016/J.KNOSYS.2018.10.034.

[9] E Easterling, “Volatility In Perspective,” 2 7 nline Available:

www.CrestmontResearch.com

[10] Z. , Bodie, A. Kane, and A. Marcus, Investments, Eighth edition. McGraw-Hill/Irwin,

2008.

[11] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. 2015.

[12] M Nielsen, “Neural Networks and Deep Learning”, Accessed: Aug. 11, 2023.

[Online]. Available: http://neuralnetworksanddeeplearning.com

146

[13] L. Harris, Trading and Exchanges: Market Microstructure for Practitioners. Oxford

University Press, 2003.

[14] S. Benninga, Financial Modeling, Third. The MIT Press, 2008.

[15] F Black and M Scholes, “The Pricing of ptions and Corporate Liabilities ”

Accessed: Jan. 22, 2019. [Online]. Available:

https://www.cs.princeton.edu/courses/archive/fall09/cos323/papers/black_scholes73.p

df

[16] W F Sharpe, “The Arithmetic of Active Management,”

https://doi.org/10.2469/faj.v47.n1.7, vol. 47, no. 1, pp. 7–9, Jan. 2018, doi:

10.2469/FAJ.V47.N1.7.

[17] P. Wilmott, Paul Wilmott Introduces Quantitative Finance, Second. John Willey &

Sons, Ltd, 2007.

[18] C. Alexander, Market Risk Analysis, Volume IV, Value at Risk Models. JohnWiley &

Sons Ltd, 2009.

[19] C Marshall and M Siegel, “Value at Risk: Implementing a Risk Measurement

Standard,” 199 , Accessed: un 15, 2 17 nline Available:

http://ssrn.com/abstract=1212

[20] C. Alexander, Market Models. John Willey & Sons Ltd, 2003.

[21] C. Alexander, Market Risk Analysis - Volume III. 2008. doi: 10.1007/s13398-014-

0173-7.2.

[22] P orion, “VAL E AT RISK: The New Benchmark for Managing Financial Risk”

[23] R F Engle, “Autoregressive Conditional Heteroscedasticity with Estimates of the

Variance of nited Kingdom Inflation,” Econometrica, vol. 50, no. 4, p. 987, Jul.

1982, doi: 10.2307/1912773.

[24] C. Alexander, Market Risk Analysis, Practical Financial Econometrics. 2008.

[25] D E Rumelhart, E Hinton, and R Williams, “Learning internal representations

by error propagation (No. ICS- 5) ,” California Univ San Diego La Jolla Inst For

Cognitive Science, vol. 1, pp. 318–362, 1986, doi: 10.1016/B978-1-4832-1446-

7.50035-2.

147

[26] S Hochreiter, “The Vanishing radient Problem During Learning Recurrent Neural

Nets and Problem Solutions ” Accessed: an 22, 2 19 nline Available:

https://www.bioinf.jku.at/publications/older/2304.pdf

[27] S Hochreiter and rgen Schmidhuber, “Long Short Term Memory,” Neural

Comput, vol. 9, no. 8, pp. 1735–1780, 1997, doi: 10.1162/neco.1997.9.8.1735.

[28] H H Sak, A Senior, and B oogle, “Long Short-Term Memory Recurrent Neural

Network Architectures for Large Scale Acoustic Modeling,” 2 14

[29] K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for

Statistical Machine Translation,” 2 14

[30] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning Data

Mining, Inference, and Prediction, Second Edition. 2008.

[31] Cong, Bhardwaj, and M Feng, “An Efficient, Distributed Stochastic radient

Descent Algorithm for Deep-Learning Applications,” Proceedings of the International

Conference on Parallel Processing, pp. 11–20, Sep. 2017, doi: 10.1109/ICPP.2017.10.

[32] S Ruder, “An overview of gradient descent optimization algorithms *”, Accessed:

Aug. 08, 2023. [Online]. Available: http://caffe.berkeleyvision.org/tutorial/solver.html

[33] S Hochreiter, “The Vanishing radient Problem During Learning Recurrent Neural

Nets and Problem Solutions,” https://doi.org/10.1142/S0218488598000094, vol. 6,

no. 2, pp. 107–116, Nov. 2011, doi: 10.1142/S0218488598000094.

[34] M Liu, L Chen, X Du, L in, and M Shang, “Activated radients for Deep Neural

Networks,” IEEE Trans Neural Netwok Learn Syst, vol. 34, no. 4, pp. 2156–2168,

Apr. 2023, doi: 10.1109/TNNLS.2021.3106044.

[35] B Liu, Z Liu, T Zhang, and T Yuan, “Non-differentiable saddle points and sub-

optimal local minima exist for deep ReL networks,” Neural Networks, vol. 144, pp.

75–89, 2021, doi: 10.1016/j.neunet.2021.08.005.

[36] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio,

“Identifying and attacking the saddle point problem in high-dimensional non-convex

optimization,” 2 14

[37] R Caruana, L Pratt, and S Thrun, “Multitask Learning,” vol 2 , pp 41–75, 1997.

148

[38] R Collobert and Weston, “A nified Architecture for Natural Language Processing:

Deep Neural Networks with Multitask Learning,” 2 , nline Available:

http://wordnet.princeton.edu

[39] S. El-Sappagh, T Abuhmed, S M Riazul Islam, and K S Kwak, “Multimodal

multitask deep learning model for Alzheimer’s disease progression detection based on

time series data,” Neurocomputing, vol. 412, pp. 197–215, Oct. 2020, doi:

10.1016/J.NEUCOM.2020.05.087.

[40] L Di Persio, Honchar, and L DI Persio, “Multitask machine learning for financial

forecasting Forward-Looking Volatility Estimation for Risk-Managed Investment

Strategies after the Covid-19 Crisis View project Multitask machine learning for

financial forecasting,” 2 1

[41] K lorunnimbe and H Viktor, “Deep learning in the stock market—a systematic

survey of practice, backtesting, and applications,” Artif Intell Rev, 2022, doi:

10.1007/s10462-022-10226-0.

[42] L. Zhang, C. Aggarwal, and G.- Qi, “Stock Price Prediction via Discovering Multi-

Frequency Trading Pat-terns,” KDD, vol. 17, 2017, doi: 10.1145/3097983.3098117.

[43] X Ding, Y Zhang, T Liu, and Duan, “Deep Learning for Event-Driven Stock

Prediction,” 2015.

[44] Shen and M mair Shafiq, “Short-term stock market price trend prediction using a

comprehensive deep learning system,” 2020, doi: 10.1186/s40537-020-00333-6.

[45] Y.-C. Tsai, J.-H. Chen, and J.- Wang, “Predict Forex Trend via Convolutional Neural

Networks,” 2 1

[46] A. García-Medina, E. Aguayo-Moreno, A. García-Medina, and E. Aguayo-Moreno,

“LSTM-GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency

Portfolios,” 2 23, doi: 1 1 7/s1 14-023-10373-8.

[47] G. Jung and S.-Y Choi, “Forecasting Foreign Exchange Volatility sing Deep

Learning Autoencoder-LSTM Techniques,” 2 21, doi: 1 1155/2 21/ 47534

[48] V Ingle and S Deshmukh, “Ensemble deep learning framework for stock market data

prediction (EDLF-DP),” Global Transitions Proceedings, vol. 2, no. 1, pp. 47–66, Jun.

2021, doi: 10.1016/j.gltp.2021.01.008.

149

[49] Y Li and Y Pan, “A novel ensemble deep learning model for stock prediction based

on stock prices and news,” Int J Data Sci Anal, vol. 13, pp. 139–149, 2022, doi:

10.1007/s41060-021-00279-9.

[50] M Kraus and S Feuerriegel, “Decision support from financial disclosures with deep

neural networks and transfer learning,” ct 2 17, doi: 1 1 1 /j dss 2 17 1 1

[51] Assaf, Di Fatta, and Nicosia, “Multivariate LSTM for Stock Market Volatility

Prediction,” Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 13164 LNCS, pp.

531–544, 2022, doi: 10.1007/978-3-030-95470-3_40/COVER.

[52] L Yang, Li, R Dong, Y Zhang, and B Smyth, “NumHTML: Numeric-Oriented

Hierarchical Transformer Model for Multi-task Financial Forecasting,” an 2 22,

[Online]. Available: http://arxiv.org/abs/2201.01770

[53] ng and D Herremans, “Constructing Time-Series Momentum Portfolios with Deep

Multi-Task Learning,” un 2 23, doi: 1 1 1 /j eswa 2 23 12 5 7

[54] R. Sawhney, P. Mathur, A. Mangal, P. Khanna, R. Ratn Shah, and R. Zimmermann,

“Multimodal Multi-Task Financial Risk Forecasting,” p 1 , 2 2 , doi:

10.1145/3394171.3413752.

[55] T Mehmood, A E erevini, A Lavelli, and I Serina, “ScienceDirect Combining

Multi-task Learning with Transfer Learning for Biomedical Named Entity

Recognition,” 2 2 , doi: 1 1 1 /j procs 2 2 9

[56] S Il Lee, · Seong, and Yoo, “Multimodal deep learning for finance: integrating and

forecasting international stock markets,” J Supercomput, vol. 76, pp. 8294–8312,

2019, doi: 10.1007/s11227-019-03101-3.

[57] C Yuan, X Ma, H Wang, C Zhang, and X Li, “C VID19-MLSF: A multi-task

learning-based stock market forecasting framework during the COVID-19 pandemic,”

Expert Syst Appl, vol. 217, p. 119549, 2023, doi: 10.1016/j.eswa.2023.119549.

[58] Fu Kai and Xu Wenhua, “Training neural network with genetic algorithms for

forecasting the stock price index,” in 1997 IEEE International Conference on

Intelligent Processing Systems (Cat. No.97TH8335), IEEE, pp. 401–403. doi:

10.1109/ICIPS.1997.672809.

150

[59] Dorffner, “Neural Computation and Applications in Time Series and Signal

Processing,” J Signal Process Syst, 1996.

[60] R Frank, N Davey, and S P Hunt, “Time Series Prediction and Neural Networks,”

J Intell Robot Syst, vol. 31, pp. 91–103, 2001.

[61] M Qiu, Y Song, and F Akagi, “Application of artificial neural network for the

prediction of stock market returns: The case of the apanese stock market,” Chaos

Solitons Fractals, vol. 85, pp. 1–7, 2016, doi: 10.1016/j.chaos.2016.01.004.

[62] Z Wang, Wang, Z Zhang, and S P uo, “Forecasting stock indices with

back propagation neural network,” Expert Syst Appl, vol. 38, no. 11, pp. 14346–14355,

2011, doi: 10.1016/j.eswa.2011.04.222.

[63] T Fischer and C Krauss, “Deep learning with long short-term memory networks for

financial market predictions,” Eur J Oper Res, vol. 270, no. 2, pp. 654–669, Oct. 2018,

doi: 10.1016/j.ejor.2017.11.054.

[64] Cao, Z Li, and Li, “Financial time series forecasting model based on CEEMDAN

and LSTM,” Physica A: Statistical Mechanics and its Applications, vol. 519, pp. 127–

139, Apr. 2019, doi: 10.1016/J.PHYSA.2018.11.061.

[65] Y Baek and H Y Kim, “A new forecasting framework for stock market index value

with an overfitting prevention LSTM module and a prediction LSTM module,” Expert

Syst Appl, vol. 113, pp. 457–480, Dec. 2018, doi: 10.1016/J.ESWA.2018.07.019.

[66] A Sagheer and M Kotb, “Time series forecasting of petroleum production using deep

LSTM recurrent networks,” Neurocomputing, vol. 323, pp. 203–213, Jan. 2019, doi:

10.1016/J.NEUCOM.2018.09.082.

[67] S Krstanovic and H Paulheim, “Stacked LSTM Snapshot Ensembles for Time Series

Forecasting,” 2 19, pp 7–98. doi: 10.1007/978-3-030-26036-1_7.

[68] A Sagheer and M Kotb, “ nsupervised Pre-training of a Deep LSTM-based Stacked

Autoencoder for Multivariate Time Series Forecasting Problems,” Sci Rep, vol. 9, no.

1, 2019, doi: 10.1038/s41598-019-55320-6.

[69] Y Hu, Ni, and L Wen, “A hybrid deep learning approach by integrating LSTM-

ANN networks with ARCH model for copper price volatility prediction,” Physica A:

151

Statistical Mechanics and its Applications, vol. 557, Nov. 2020, doi:

10.1016/j.physa.2020.124907.

[70] A Vidal and W Kristjanpoller, “ old volatility prediction using a CNN-LSTM

approach,” Expert Syst Appl, vol. 157, p. 113481, Nov. 2020, doi:

10.1016/j.eswa.2020.113481.

[71] meng Chen, M Firth, and M Rui, “The Dynamic Relation Between Stock

Returns, Trading Volume, and Volatility,” Financial Review, vol. 36, no. 3, pp. 153–

174, Aug. 2001, doi: 10.1111/J.1540-6288.2001.TB00024.X.

[72] A F Darrat, S Rahman, and M Zhong, “Intraday trading volume and return volatility

of the D IA stocks: A note,” J Bank Financ, vol. 27, no. 10, pp. 2035–2043, Oct. 2003,

doi: 10.1016/S0378-4266(02)00321-7.

[73] A Kudryavtsev, “The effect of stock return sequences on trading volumes,”

International Journal of Financial Studies, vol. 5, no. 4, pp. 1–15, 2017, doi:

10.3390/ijfs5040020.

[74] D Lawa Tan Toe and · Salifou uedraogo, “Dynamic relationship between trading

volume, returns and returns volatility: an empirical investigation on the main African’s

stock markets,” Journal of Asset Management, 2022, doi: 10.1057/s41260-022-00274-

0.

[75] Connor, “Active Portfolio Management: A Quantitative Approach to Providing

Superior Returns and Controlling Risk,” Review of Financial Studies, vol. 13, no. 4,

2000, doi: 10.1093/rfs/13.4.1153.

[76] R Engle, “ ARCH 1 1: The se of ARCH/ ARCH Models in Applied

Econometrics,” Journal of Economic Perspectives, vol. 15, no. 4, pp. 157–168, 2001,

doi: 10.1257/JEP.15.4.157.

[77] B Heaton, N Polson, and H Witte, “Deep learning for finance: deep

portfolios,” Appl Stoch Models Bus Ind, vol. 33, no. 1, pp. 3–12, Jan. 2017, doi:

10.1002/ASMB.2209.

[78] A Bhavani, A V Ramana, and A S N Chakravarthy, “Comparative Analysis

between LSTM and R in Stock Price Prediction,” in International Conference on

Edge Computing and Applications, ICECAA 2022 - Proceedings, Institute of Electrical

152

and Electronics Engineers Inc., 2022, pp. 532–537. doi:

10.1109/ICECAA55415.2022.9936434.

[79] M Hamayel and A Y wda, “A Novel Cryptocurrency Price Prediction Model

Using GRU, LSTM and bi-LSTM Machine Learning Algorithms,” AI, vol. 2, no. 4,

pp. 477–496, Oct. 2021, doi: 10.3390/ai2040030.

153

Appendix A

Diagrams, Figures, and Charts

A.1 Diagrams

Diagram 1: PhD project diagram.

C
u
rr
e
n
t
m
e
th
o
d
o
lo
g
ie
s
 t
o
 p
re
d
ic
t
th
e
 m
a
rk
e
t,
 m
e
a
s
u
re
 v
o
la
ti
li
ty
,
a
n
d
 p
ri
c
e
 o
p
ti
o
n
s
 a
re
 p
ro
v
e
n
 t
o
 b
e
 i
n
e
ff
e
c
ti
v
e

In
v
es
ti
ga
ti
n
g
th
e

b
en
ef
it
 o
f
m
u
lt
ip
le

fe
at
u
re
s
o
n

p
re
d
ic
ti
o
n
 a
cc
u
ra
cy

S
e
a
rc
h
in
g
 f
o
r
n
e
w

m
o
d
el
s
to
 p
re
d
ic
t

m
u
lt
ip
le
 f
e
a
tu
re
s

S
ea
rc
h
in
g
fo
r
n
ew

m
et
h
o
d
s
to
 p
re
d
ic
t

th
e
st
o
ck
 m

ar
k
et

M
o
ti
v
at
io
n
 /

ap
s

W
o
u
ld
 a
 m

u
lt
iv
ar
ia
te

m
o
d
el
 h
av
e
an

im
p
ro
v
ed
 p
re
d
ic
ti
o
n

ac
cu
ra
cy

W
o
u
ld
 M

u
lt
i-
T
as
k

m
o
d
el
 s
p
ee
d
 u
p

p
re
d
ic
ti
o
n
 t
im
e
an
d

ac
cu
ra
cy

C
an
 n
o
n
-s
ta
ti
st
ic
al

m
et
h
o
d
s
b
e
u
se
d
 t
o

p
re
d
ic
t
th
e
st
o
ck

m
ar
k
et

Q
u
es
ti
o
n
s/
 P
ro
b
le
m
s

A
 D
L
 m

o
d
el
 w
it
h

m
u
lt
ip
le
 i
n
p
u
ts

w
o
u
ld
 l
ea
rn
 m

o
re

an
d
 p
re
d
ic
t
b
et
te
r

M
u
lt
it
as
k
D
L
 m

o
d
el

w
o
u
ld
 i
m
p
ro
v
e

o
u
tp
u
ts
 p
re
d
ic
ti
o
n

ac
cu
ra
cy

D
ee
p
 L
ea
rn
in
g
(D

L
)

ca
n
 b
e
u
se
d
 t
o

p
re
d
ic
t
th
e
st
o
ck

m
ar
k
et

H
y
p
o
th
es
es

P
re
d
ic
t
st
o
ck
 m

ar
k
et

m
et
ri
cs
 u
si
n
g
si
n
gl
e

an
d
 m

u
lt
i-
in
p
u
t

m
o
d
el
s

P
re
d
ic
t
st
o
ck
 m

ar
k
et

m
et
ri
cs
 u
si
n
g
si
n
gl
e

an
d
 M

u
lt
it
as
k

m
o
d
el
s

P
re
d
ic
t
st
o
ck
 m

ar
k
et

m
et
ri
cs
 u
si
n
g
D
L

al
go
ri
th
m
s

E
x
p
er
im
en
ts

R
es
u
lt
s/
 A
n
al
y
si
s

u
tc
o
m
e
2

u
tc
o
m
e
3

u
tc
o
m
e
1

u
tc
o
m
es

T
he

ex
is
tin
g

m
et
ho
d
o
lo
gi
es

em
p
lo
ye
d

fo
r
st
o
ck

m
ar
k
et

p
re
d
ic
tio
n

an
d
ri
sk

m
an
ag
em

en
t

ha
ve

sh
o
w
n
in
ef
fic
ie
nc
y,

p
ar
tic
ul
ar
ly

d
ur
in
g

fin
an
ci
al

cr
is
es

T
o
ad
d
re
ss

th
is

lim
ita
tio
n,

th
er
e
is
a
p
re
ss
in
g
ne
ed

fo
r
al
te
rn
at
iv
e

m
et
ho
d
s
th
at

ca
n
ei
th
er

re
p
la
ce

o
r
en
ha
nc
e
th
e
cu
rr
en
t
to
o
ls
,
en
ab
lin
g

fa
st
er

re
sp
o
ns
es

an
d
b
et
te
r
m
an
ag
em

en
t
o
f
un
fo
re
se
en

flu
ct
ua
tio
ns

in

th
e
ec
o
no
m
y

an
d
in
ve
st
m
en
ts

T
hi
s
re
se
ar
ch

w
ill

p
ri
m
ar
ily

co
nc
en
tr
at
e

o
n
k
ey

p
er
fo
rm
an
ce

in
d
ic
at
o
rs

(K
P
Is
)
m
et
ri
cs
,
in
cl
ud
in
g

vo
la
til
ity
,

d
ai
ly

re
tu
rn
s,

an
d
tr
ad
in
g

vo
lu
m
e,

ai
m
in
g

to
p
ro
vi
d
e
im
p
ro
ve
d

ap
p
ro
ac
he
s
fo
r
fo
re
ca
st
in
g

an
d
ri
sk

as
se
ss
m
en
t
in

th
e
fin
an
ci
al

m
ar
k
et
s

P
ro
b
le
m

D
ef
in
it
io
n
 S
ta
te
m
en
t

D
is
c
u
ss
io
n
 o
f
o
u
tc
o
m
es
 a
n
d
 c
o
n
c
lu
si
o
n
s

C
o
m
p
ar
e
p
re
d
ic
ti
o
n

ac
cu
ra
cy
 w
it
h

b
en
ch
m
ar
k
 s
ta
ti
st
ic
al

m
o
d
el
s

C
o
m
p
ar
e
p
re
d
ic
ti
o
n

ac
cu
ra
cy
 o
f
th
e

m
o
d
el
s

C
o
m
p
ar
e
p
re
d
ic
ti
o
n

ac
cu
ra
cy
 o
f
th
e

m
o
d
el
s

K
n
o
w
le
d
ge

P
ro
v
e/

D
is
p
ro
v
e

P
ro
v
e/

D
is
p
ro
v
e

P
ro
v
e/

D
is
p
ro
v
e

b
je
c
ti
v
e
s

L
it
e
ra
tu
re
 R
e
v
ie
w

M
e
th
o
d
o
lo
g
y

R
e
su
lt
s

D
is
c
u
ss
io
n
 a
n
d
 C
o
n
c
lu
si
o
n
s

h

s
is

tr

t
r

154

A.2 Figures and Charts

A.2.1 Multivariate Deep Learning – Chapter 5

A.2.1.1 Benchmark Testing

A.2.1.1.1 GARCH Model

Fig 1: BAC price volatility prediction in bear market (long window).

Fig 2: BAC price volatility prediction in bear market (short window).

155

Fig 3: BAC price volatility prediction in bull market (long window).

Fig 4: BAC price volatility prediction in bull market (short window).

A.2.1.1.2 Deep Learning Model (LSTM)

Fig 5: BAC price volatility prediction in bear market (long window).

156

Fig 6: BAC stock price volatility prediction in bear market (short window).

Fig 7: BAC price volatility prediction in bull market (long window).

Fig 8: BAC price volatility prediction in bull market (short window).

157

A.2.1.2 Multivariate vs Single-Input Deep Learning Models

A.2.1.2.1 Single-Input Deep Learning Model

Fig 9: BAC price volatility prediction in bear market.

Fig 10: BAC price volatility prediction in bull market.

158

A.1.1.2.2 Multivariate Deep Learning Model

Fig 11: BAC price volatility prediction in bear market with C price feature input.

Fig 12: BAC price volatility prediction in bear market with DB and C price feature inputs.

Fig 13: BAC price volatility prediction in bear market with DB, GS, and C and price feature inputs.

159

 Fig 14: BAC price volatility prediction in bear market with DB, GS, C, and MS price feature inputs.

Fig 15: BAC price volatility prediction in bear market with DB, GS price feature inputs.

Fig 16: BAC price volatility prediction in bear market with DB and MS price feature inputs.

160

Fig 17: BAC price volatility prediction in bear market with DB price feature input

Fig 18: BAC price volatility prediction in bear market with GOLD and DB price feature inputs.

Fig 19: BAC price volatility prediction in bear market with GOLD and IBM price feature inputs.

161

Fig 20: BAC price volatility prediction in bear market with GOLD and JPM price feature inputs.

Fig 21: BAC price volatility prediction in bear market with GOLD and OIL price feature inputs.

Fig 22: BAC price volatility prediction in bear market with GOLD and WMT price feature inputs.

162

Fig 23: BAC price volatility prediction in bear market with GOLD price feature input.

Fig 24: BAC price volatility prediction in bear market with GS and C price feature inputs.

Fig 25: BAC price volatility prediction in bear market with GS, MS, and C price feature inputs.

163

Fig 26: BAC price volatility prediction in bear market with GS and MS price feature inputs.

Fig 27: BAC price volatility prediction in bear market with GS price feature inputs.

Fig 28: BAC price volatility prediction in bear market with IBM price feature input.

164

Fig 29: BAC price volatility prediction in bear market with JPM and C price feature inputs.

Fig 39: BAC price volatility prediction in bear market with JPM and DB price feature inputs.

Fig 31: BAC price volatility prediction in bear market with JPM, GS and C price feature inputs.

165

Fig 32: BAC price volatility prediction in bear market with JPM, GS and DB price feature inputs.

Fig 33: BAC price volatility prediction in bear market with JPM, GS, and MS price feature inputs.

Fig 34: BAC price volatility prediction in bear market with JPM and GS price feature inputs.

166

Fig 35: BAC price volatility prediction in bear market with JPM and MS price feature inputs.

Fig 36: BAC price volatility prediction in bear market with JPM price feature input.

Fig 37: BAC price volatility prediction in bear market with MS and C price feature inputs.

167

Fig 38: BAC price volatility prediction in bear market with MS price feature input.

Fig 39: BAC price volatility prediction in bear market with OIL and DB price feature inputs.

Fig 40: BAC price volatility prediction in bear market with OIL and IBM price feature inputs.

168

Fig 41: BAC price volatility prediction in bear market with OIL and JPM price feature inputs.

Fig 42: BAC price volatility prediction in bear market with OIL and WMT price feature inputs.

Fig 43: BAC price volatility prediction in bear market with OIL feature input.

169

Fig 44: BAC price volatility prediction in bear market with WMT price feature input.

Fig 45: BAC price volatility prediction in bull market with C price feature input.

Fig 46: BAC price volatility prediction in bull market with DB and C price feature inputs.

170

Fig 47: BAC price volatility prediction in bull market with DB, GS, and C and price feature inputs.

 Fig 48: BAC price volatility prediction in bull market with DB, GS, C, and MS price feature inputs.

Fig 49: BAC price volatility prediction in bull market with DB, GS price feature inputs.

171

Fig 50: BAC price volatility prediction in bull market with DB and MS price feature inputs.

Fig 51: BAC price volatility prediction in bull market with DB price feature input

Fig 52: BAC price volatility prediction in bull market with GOLD and DB price feature inputs.

172

Fig 53: BAC price volatility prediction in bull market with GOLD and IBM price feature inputs.

Fig 54: BAC price volatility prediction in bull market with GOLD and JPM price feature inputs.

Fig 55: BAC price volatility prediction in bull market with GOLD and OIL price feature inputs.

173

Fig 56: BAC price volatility prediction in bull market with GOLD and WMT price feature inputs.

Fig 57: BAC price volatility prediction in bull market with GOLD price feature input.

Fig 58: BAC price volatility prediction in bull market with GS and C price feature inputs.

174

Fig 59: BAC price volatility prediction in bull market with GS, MS, and C price feature inputs.

Fig 60: BAC price volatility prediction in bull market with GS and MS price feature inputs.

Fig 61: BAC price volatility prediction in bull market with GS price feature inputs.

175

Fig 62: BAC price volatility prediction in bull market with IBM price feature input.

Fig 63: BAC price volatility prediction in bull market with JPM and C price feature inputs.

Fig 64: BAC price volatility prediction in bull market with JPM and DB price feature inputs.

176

Fig 65: BAC price volatility prediction in bull market with JPM, GS and C price feature inputs.

Fig 66: BAC price volatility prediction in bull market with JPM, GS and DB price feature inputs.

Fig 67: BAC price volatility prediction in bull market with JPM, GS, and MS price feature inputs.

177

Fig 68: BAC price volatility prediction in bull market with JPM and GS price feature inputs.

Fig 69: BAC price volatility prediction in bull market with JPM and MS price feature inputs.

Fig 70: BAC price volatility prediction in bull market with JPM price feature input.

178

Fig 71: BAC price volatility prediction in bull market with MS and C price feature inputs.

Fig 72: BAC price volatility prediction in bear market with MS price feature input.

Fig 73: BAC price volatility prediction in bull market with OIL and DB price feature inputs.

179

Fig 74: BAC price volatility prediction in bull market with OIL and IBM price feature inputs.

Fig 75: BAC price volatility prediction in bull market with OIL and JPM price feature inputs.

Fig 76: BAC price volatility prediction in bull market with OIL and WMT price feature inputs.

180

Fig 77: BAC price volatility prediction in bull market with OIL feature input.

Fig 78: BAC price volatility prediction in bull market with WMT price feature input.

181

A.2.2 Multi-Task Deep Learning – Chapter 6

A.2.2.1 Benchmark testing

A.2.2.1.1 GARCH

Fig 79: DJI volatility prediction in bear market.

Fig 80: GSPC volatility prediction in bear market.

182

Fig 81: DJI volatility prediction in bull market.

Fig 82: GSPC volatility prediction in bull market.

Fig 83: DJI volatility prediction in volatile market.

183

Fig 84: GSPC volatility prediction in volatile market.

A.2.2.1.2 ARIMA

Fig 85: DJI volatility prediction in bear market.

Fig 86: DJI returns prediction in bear market.

184

Fig 87: DJI volatility prediction in bear market.

Fig 88: DJI trading volume prediction in bear market.

Fig 89: GSPC price prediction in bear market.

185

Fig 90: GSPC returns prediction in bear market.

Fig 91: GSPC volatility prediction in bear market.

Fig 92: GSPC trading volume prediction in bear market.

186

Fig 93: DJI price prediction in bull market.

Fig 94: DJI returns prediction in bull market.

Fig 95: DJI volatility prediction in bull market.

187

Fig 96: DJI trading volume prediction in bull market.

Fig 97: GSPC price prediction in bear market.

Fig 98: GSPC returns prediction in bear market.

188

Fig 99: GSPC volatility prediction in bear market.

Fig 100: GSPC volume prediction in bear market.

189

A.2.2.2 Multi-Task Deep Learning Model

Fig 101: DJI price prediction in bear market, GRU model.

Fig 102: DJI returns prediction in bear market, GRU model.

Fig 103: DJI volatility prediction in bear market, GRU model.

190

Fig 104: DJI trading volume prediction in bear market, GRU model.

Fig 105: GSPC price prediction in bear market, GRU model.

Fig 106: GSPC returns prediction in bear market, GRU model.

191

Fig 107: GSPC volatility prediction in bear market, GRU model.

Fig 108: GSPC trading volume prediction in bear market, GRU model.

Fig 109: DJI price prediction in bear market, LSTM model.

192

Fig 110: DJI returns prediction in bear market, LSTM model.

Fig 111: DJI volatility prediction in bear market, LSTM model.

Fig 112: DJI trading volume prediction in bear market, LSTM model.

193

Fig 113: GSPC price prediction in bear market, LSTM model.

Fig 114: GSPC returns prediction in bear market, LSTM model.

Fig 115: GSPC volatility prediction in bear market, LSTM model.

194

Fig 116: GSPC trading volume prediction in bear market, LSTM model.

Fig 117: DJI price prediction in bull market, GRU model.

Fig 118: DJI returns prediction in bull market, GRU model.

195

Fig 119: DJI volatility prediction in bull market, GRU model.

Fig 120: DJI trading volume prediction in bull market, GRU model.

Fig 121: GSPC price prediction in bull market, GRU model.

196

Fig 122: GSPC returns prediction in bull market, GRU model.

Fig 123: GSPC volatility prediction in bull market, GRU model.

Fig 124: GSPC trading volume prediction in bull market, GRU model.

197

Fig 125: DJI price prediction in bull market, LSTM model.

Fig 126: DJI returns prediction in bull market, LSTM model.

Fig 127: DJI volatility prediction in bull market, LSTM model.

198

Fig 128: DJI trading volume prediction in bull market, LSTM model.

Fig 129: GSPC price prediction in bull market, LSTM model.

Fig 130: GSPC returns prediction in bull market, LSTM model.

199

Fig 131: GSPC volatility prediction in bull market, LSTM model.

Fig 132: GSPC trading volume prediction in bull market, LSTM model.

Fig 133: DJI price prediction in volatile market, GRU model.

200

Fig 134: DJI returns prediction in volatile market, GRU model.

Fig 135: DJI volatility prediction in volatile market, GRU model.

Fig 136: DJI trading volume prediction in volatile market, GRU model.

201

Fig 137: GSPC price prediction in volatile market, GRU model.

Fig 138: GSPC returns prediction in volatile market, GRU model.

Fig 139: GSPC volatility prediction in volatile market, GRU model.

202

Fig 140: GSPC trading volume prediction in volatile market, GRU model.

Fig 141: DJI price prediction in volatile market, LSTM model.

Fig 142: DJI returns prediction in volatile market, LSTM model.

203

Fig 143: DJI volatility prediction in volatile market, LSTM model.

Fig 144: DJI trading volume prediction in volatile market, LSTM model.

Fig 145: GSPC price prediction in volatile market, LSTM model.

204

Fig 146: GSPC returns prediction in volatile market, LSTM model.

Fig 147: GSPC volatility prediction in volatile market, LSTM model.

Fig 148: GSPC trading volume prediction in volatile market, LSTM model.

205

Appendix B

Deep Learning Model ptimization

This appendix serves as a valuable resource for understanding the intricacies of performance

optimization strategies deployed throughout this research. These methodologies played a

pivotal role in the fine-tuning of hyperparameters for the tests conducted in both Chapter 5 and

Chapter 6. The optimization efforts were twofold: one set aimed at enhancing performance to

meet benchmark testing standards, while the other set aimed at deliberately degrading

prediction performance to facilitate the testing of diverse deep learning implementations.

The mathematical expressions and formulas used for these calculations can be found in

Equation 7.1, providing a comprehensive reference for the methods applied during the tuning

process.

Single input/ Single Output

Figure 149: DL model with single input/output.

input 1

InputLayer

input:

output:

 (None, 1, 1)

 (None, 1, 1)

SharedLayer

LSTM

input:

output:

(None, 1, 1)

(None, 1, 4)

 SPC PRICE utLayer

LSTM

input:

output:

(None, 1, 4)

(None, 32)

 SPC PRICE utLayer2

Dense

input:

output:

(None, 32)

(None, 1)

206

 Layer (type) utput Shape Param #

===

 input 1 (InputLayer) (None, 1, 1)

 SharedLayer (LSTM) (None, 1, 4) 1 9

 SPC PRICE utLayer (LSTM) (None, 32) 1241

 SPC PRICE utLayer2 (Dense (None, 1) 33

)

===

Total params: 29,345

Trainable params: 29,345

Non-trainable params:

Figure 150: Single-Input DL model summary.

model.weights[0].shape: TensorShape([1, 256])

model.weights[1].shape: TensorShape([64, 256])

model.weights[2].shape: TensorShape([256])

model.weights[3].shape: TensorShape([64, 128])

model.weights[4].shape: TensorShape([32, 128])

model.weights[5].shape: TensorShape([128])

model.weights[6].shape: TensorShape([32, 1])

model.weights[7].shape: TensorShape([1])

param1 (layer1) = 4 ((1 + 64) * 64 + 64) = 16896

param2 (layer2) = 4 ((64 + 32) * 32 + 32) = 12416

param3 = 32 +1 = 33

Total = 16896 + 12416 + 33 = 29345

207

Multiple input/ Multiple Output

Figure 151: Multi-Task DL model with multiple inputs and outputs.

 Layer (type) utput Shape Param # Connected to

==

 input 1 (InputLayer) (None, 1, 1)

 input 2 (InputLayer) (None, 1, 1)

 input 3 (InputLayer) (None, 1, 1)

 concatenate (Concatenate) (None, 1, 3) 'input 1 ',
 'input 2 ',

 'input 3 '

 SharedLayer (LSTM) (None, 1, 4) 174 'concatenate 1 '

 SPC PRICE utLayer (LSTM) (None, 32) 1241 'SharedLayer 1 '

 D I PRICE utLayer (LSTM) (None, 32) 1241 'SharedLayer 1 '

 NYA PRICE utLayer (LSTM) (None, 32) 1241 'SharedLayer 1 '

 SPC PRICE utLayer2 (Dense) (None, 1) 33 ' SPC PRICE utLayer 1 '

 D I PRICE utLayer2 (Dense) (None, 1) 33 'D I PRICE utLayer 1 '

 NYA PRICE utLayer2 (Dense) (None, 1) 33 'NYA PRICE utLayer 1 '

==

Total params: 54,755

Trainable params: 54,755
Non-trainable params:

Figure 151: Multi-Task DL model summary.

input 1

InputLayer

input:

output:

 (None, 1, 1)

 (None, 1, 1)

concatenate

Concatenate

input:

output:

 (None, 1, 1), (None, 1, 1), (None, 1, 1)

(None, 1, 3)

input 2

InputLayer

input:

output:

 (None, 1, 1)

 (None, 1, 1)

input 3

InputLayer

input:

output:

 (None, 1, 1)

 (None, 1, 1)

SharedLayer

LSTM

input:

output:

(None, 1, 3)

(None, 1, 4)

 SPC PRICE utLayer

LSTM

input:

output:

(None, 1, 4)

(None, 32)

D I PRICE utLayer

LSTM

input:

output:

(None, 1, 4)

(None, 32)

NYA PRICE utLayer

LSTM

input:

output:

(None, 1, 4)

(None, 32)

 SPC PRICE utLayer2

Dense

input:

output:

(None, 32)

(None, 1)

D I PRICE utLayer2

Dense

input:

output:

(None, 32)

(None, 1)

NYA PRICE utLayer2

Dense

input:

output:

(None, 32)

(None, 1)

208

model.weights[0].shape: TensorShape([3, 256])

model.weights[1].shape: TensorShape([64, 256])

model.weights[2].shape: TensorShape([256])

model.weights[3].shape: TensorShape([64, 128])

model.weights[4].shape: TensorShape([32, 128])

model.weights[5].shape: TensorShape([128])

model.weights[6].shape: TensorShape([64, 128])

model.weights[7].shape: TensorShape([32, 128])

model.weights[8].shape: TensorShape([128])

model.weights[9].shape: TensorShape([64, 128])

model.weights[10].shape: TensorShape([32, 128])

model.weights[11].shape: TensorShape([128])

model.weights[12].shape: TensorShape([32, 1])

model.weights[13].shape: TensorShape([1])

model.weights[14].shape: TensorShape([32, 1])

model.weights[15].shape: TensorShape([1])

model.weights[16].shape: TensorShape([32, 1])

model.weights[17].shape: TensorShape([1])

param1 (layer1) = (64 * 4)(64+1) +(64*4) +(64*4) +(64*4) = 17408

param2 (layer2/ putput1) = (32 * 4)(32+64) +(32*4) = 12416

param3 (layer2/ putput2) = (32 * 4)(32+64) +(32*4) = 12416

param4 (layer2/ putput3) = (32 * 4)(32+64) +(32*4) = 12416

param5 (layer2/ putput1) = 32 +1 = 33

param7 (layer2/ putput2) = 32 +1 = 33

param8 (layer2/ putput3) = 32 +1 = 33

Total = 17408 + 12416 + 12416 + 12416 +12416 + 33 + 33 + 33 = 54755

209

Appendix C

Experimentation Tool for Stock Market

Predictions

This appendix contains several essential sections of the code utilized in the development of

the Python testing application.

Daily Returns and Volatility Calculations

file = "prices.csv"

dataset = None

stocks = '^GSPC, ^DJI, ^IXIC, ^VIX,^NYA'

start = start_date

end = end_date

data = yf.download(stocks, start=start, end = end, interval='1d')

data = data[data['Adj Close', 'BAC'] > 0]

for stock in stocks.split(','):

 returns = 100 * (data.pct_change()[1:]['Adj Close', stock])

 volatility_5d = returns.rolling(5).std()

 column_name = stock.replace('=F', '').replace('^', '')

 if dataset is None:

 dataset = DataFrame(

 returns.index.values[18:len(returns)],

 columns=['Date'])

 dataset = dataset.join(DataFrame(

 data['Adj Close', stock].values[19:],

 columns=['%s_PRICE' % column_name]))

 dataset = dataset.join(DataFrame(

 returns.values[18:],

 columns=['%s_RETURNS' % column_name]))

 dataset = dataset.join(DataFrame(

 volatility.values[18:],

 columns=['%s_VOLATILITY'

 % column_name]))

 dataset = dataset.join(DataFrame(

 data['Volume', stock].values[19:],

 columns=['%s_VOLUME' % column_name]))

210

GARCH Testing

function garch(symbol, start_date, end_date):

 stocks = symbol

 start = start_date

 end = end_date

 # Get daily prices

 prices = yf.download(stocks,

 start=start,

 end=end,

 interval='1d')

 # Calculate Returns

 returns = 100 * (prices.pct_change()[1:]['Adj Close'])

 # Calculate Volatility (Standard Deviation)

 realized_vol = returns.rolling(5).std()

 # 262 business days

 days = 262

 # Getting the start date for start data

 test_plit = returns.iloc[-days:].index

 # Fit GARCH Model

 garch_model = arch_model(returns,

 mean='zero',

 vol='GARCH',

 p=1,

 q=1).fit(disp='off')

 # Forecast Volatility

 forecast = garch_model.forecast(start=test_plit[0])

 # MSE calculation

 mse_garch = np.sqrt(

 mse(

 realized_vol[-days:] / 100,

 np.sqrt(

 forecast.variance.iloc[-len(days):]/100

)

)

)

 # Return the MSE value

 return mse_garch

211

ARIMA Testing

function arima(symbol, start_date, end_date):

 stocks = symbol

 start = start_date

 end = end_date

 # Get daily prices

 prices = yf.download(stocks,
 start=start,
 end=end,
 interval='1d')

 # Calculate Returns

 returns = 100 * (prices.pct_change()[1:]['Adj Close'])

 # Calculate Volatility (Standard Deviation)

 realized_vol = returns.rolling(5).std()

 # 262 business days

 days = 262

 # Initialize an empty list for predictions

 predictions = []

 # Loop through the test data

 for t in range(len(test_data)):

 # Create an ARIMA model

 model = ARIMA(history, order=(p=p, o=o, q=q), trend='n')

 model_fit = model.fit()

 # Make a forecast

 forecast = model_fit.forecast()

 # Append the forecast to the predictions list

 predictions.append(forecast[0])

 # Update the history with the current test data point

 history.append(test_data[t])

 # Calculate the scaled test MSE

 mse_arima = mse(
 realized_vol.shift(1)[-n:]/100,
 predictions /100)

 # Return the ARIMA MSE

 return mse_arima

212

Appendix D

Correlation Matrices

Table 1: Correlation matrix for symbols used in multivariate testing (Chapter 5).

Bull Market

 BAC JPM C WFC MS GS DB IBM WMT GOLD OIL

BAC 1 -0.12 0.72 -0.12 0.66 0.13 0.73 -0.58 -0.43 -0.53 -0.12

JPM -0.12 1 -0.52 0.92 0.15 0.84 -0.39 0.69 0.81 0.53 0.15

C 0.72 -0.52 1 -0.6 0.67 -0.44 0.62 -0.8 -0.7 -0.88 -0.51

WFC -0.12 0.92 -0.6 1 -0.03 0.82 -0.41 0.74 0.86 0.63 0.27

MS 0.66 0.15 0.67 -0.03 1 0.28 0.58 -0.38 -0.25 -0.55 -0.31

GS 0.13 0.84 -0.44 0.82 0.28 1 0.05 0.55 0.57 0.53 0.41

DB 0.73 -0.39 0.62 -0.41 0.58 0.05 1 -0.52 -0.64 -0.39 0.2

IBM -0.58 0.69 -0.8 0.74 -0.38 0.55 -0.52 1 0.86 0.89 0.53

WMT -0.43 0.81 -0.7 0.86 -0.25 0.57 -0.64 0.86 1 0.68 0.25

GOLD -0.53 0.53 -0.88 0.63 -0.55 0.53 -0.39 0.89 0.68 1 0.69

OIL -0.12 0.15 -0.51 0.27 -0.31 0.41 0.2 0.53 0.25 0.69 1

Bear Market

 BAC JPM C WFC MS GS DB IBM WMT GOLD OIL

BAC 1 0.53 0.39 0.87 0.38 0.72 0.78 -0.09 -0.29 0.48 0.56

JPM 0.53 1 0.26 0.65 0.74 0.82 0.85 0.55 -0.09 0.53 0.58

C 0.39 0.26 1 0.06 0.65 0.12 0.35 -0.14 -0.39 -0.49 -0.31

WFC 0.87 0.65 0.06 1 0.29 0.8 0.78 0.07 -0.17 0.76 0.74

MS 0.38 0.74 0.65 0.29 1 0.64 0.73 0.43 -0.32 0.04 0.18

GS 0.72 0.82 0.12 0.8 0.64 1 0.94 0.45 -0.2 0.73 0.76

DB 0.78 0.85 0.35 0.78 0.73 0.94 1 0.36 -0.29 0.57 0.67

IBM -0.09 0.55 -0.14 0.07 0.43 0.45 0.36 1 0.31 0.34 0.41

WMT -0.29 -0.09 -0.39 -0.17 -0.32 -0.2 -0.29 0.31 1 0.07 0.03

GOLD 0.48 0.53 -0.49 0.76 0.04 0.73 0.57 0.34 0.07 1 0.87

OIL 0.56 0.58 -0.31 0.74 0.18 0.76 0.67 0.41 0.03 0.87 1

213

Table 2: Correlation matrix for symbols used in multitasking testing (Chapter 6).
Bull Market

 GSPC_PRICE DJI_PRICE GSPC_RETURNS DJI_RETURNS GSPC_VOLATILITY DJI_VOLATILITY GSPC_VOLUME DJI_VOLUME

GSPC_PRICE 1 0.99 0.1 0.09 -0.54 -0.55 -0.28 -0.46

DJI_PRICE 0.99 1 0.11 0.11 -0.57 -0.58 -0.26 -0.45

GSPC_RETURNS 0.1 0.11 1 0.97 0.06 0.06 -0.14 -0.2

DJI_RETURNS 0.09 0.11 0.97 1 0.06 0.06 -0.14 -0.18

GSPC_VOLATILITY -0.54 -0.57 0.06 0.06 1 0.97 0.26 0.36

DJI_VOLATILITY -0.55 -0.58 0.06 0.06 0.97 1 0.26 0.35

GSPC_VOLUME -0.28 -0.26 -0.14 -0.14 0.26 0.26 1 0.87

DJI_VOLUME -0.46 -0.45 -0.2 -0.18 0.36 0.35 0.87 1

Bear Market

 GSPC_PRICE DJI_PRICE GSPC_RETURNS DJI_RETURNS GSPC_VOLATILITY DJI_VOLATILITY GSPC_VOLUME DJI_VOLUME

GSPC_PRICE 1 1 0.08 0.08 -0.68 -0.66 -0.62 -0.33

DJI_PRICE 1 1 0.09 0.09 -0.67 -0.66 -0.64 -0.33

GSPC_RETURNS 0.08 0.09 1 0.99 0.05 0.05 -0.02 0.01

DJI_RETURNS 0.08 0.09 0.99 1 0.06 0.07 -0.01 0.01

GSPC_VOLATILITY -0.68 -0.67 0.05 0.06 1 0.99 0.62 0.44

DJI_VOLATILITY -0.66 -0.66 0.05 0.07 0.99 1 0.61 0.42

GSPC_VOLUME -0.62 -0.64 -0.02 -0.01 0.62 0.61 1 0.73

DJI_VOLUME -0.33 -0.33 0.01 0.01 0.44 0.42 0.73 1

Volatile Market

 GSPC_PRICE DJI_PRICE GSPC_RETURNS DJI_RETURNS GSPC_VOLATILITY DJI_VOLATILITY GSPC_VOLUME DJI_VOLUME

GSPC_PRICE 1 0.92 0.08 0.08 -0.57 -0.59 -0.27 -0.22

DJI_PRICE 0.92 1 0.09 0.09 -0.71 -0.72 -0.46 -0.45

GSPC_RETURNS 0.08 0.09 1 0.98 -0.06 -0.04 -0.1 -0.14

DJI_RETURNS 0.08 0.09 0.98 1 -0.06 -0.04 -0.08 -0.12

GSPC_VOLATILITY -0.57 -0.71 -0.06 -0.06 1 0.99 0.64 0.71

DJI_VOLATILITY -0.59 -0.72 -0.04 -0.04 0.99 1 0.65 0.7

GSPC_VOLUME -0.27 -0.46 -0.1 -0.08 0.64 0.65 1 0.87

DJI_VOLUME -0.22 -0.45 -0.14 -0.12 0.71 0.7 0.87 1

214

Appendix E

Deep Learning: Dynamic Weights

 ptimization

In this experiment, our objective was to enhance the performance of a two-task model by

dynamically adjusting the weights assigned to its tasks during the training process. To

accomplish this, modifications were introduced to the built-in method, specifically the

on_epoch_end() function. This customization enabled us to read and update the weights, often

referred to as "K values" in the context of Keras, in real-time without the need to recompile the

entire model.

class MultiTaskMultiInputModel(BaseModel):

 """

 Multi task model

 """

 code_version = "MT_V2"

 file_name = 'test'

 alpha = K.variable(0.5)

 beta = K.variable(0.5)

 class MyCallback(tf.keras.callbacks.Callback):

 def __init__(self, alpha, beta):

 self.alpha = alpha

 self.beta = beta

 # customize your behavior

 def on_epoch_end(self, epoch, logs={}):

 self.alpha = self.alpha - 0.01

 self.beta = self.beta + 0.01

 K.get_value(self.alpha)
 K.get_value(self.beta)

 losses = np.array([v for k, v in logs.items() if

 k in [
 'val_GSPC_PRICE_OutLayer2_loss',
 'val_DJI_PRICE_OutLayer2_loss',
 'GSPC_PRICE_OutLayer2_loss',
 'DJI_PRICE_OutLayer2_loss']],

 dtype=np.float64)

 losses = (losses - 0.5 * losses.min()) /

 (losses.max() - 0.5 * losses.min())

 losses = losses / np.sum(losses)

 K.set_value(self.alpha, losses[0])

 K.set_value(self.beta, losses[1]

215

This approach represents a dynamic and adaptive way to fine-tune the model behaviour as it

learns from the data. By adjusting the weights interactively during training, the aim is to

optimize the model gradient descent behaviour and, ultimately, improve its overall

performance. Such dynamic weight adjustments can be especially valuable when dealing with

complex tasks or evolving data patterns, as they enable the model to respond and adapt more

effectively to changing conditions.

This experiment reflects the versatility and flexibility of deep learning frameworks such as

Keras, which enable researchers and practitioners to tailor models to specific needs and

examine innovative strategies for improving model training and performance.

During the model training process, the weights were continuously updated for each epoch using

a callback mechanism. Specifically, two weights were involved in this process: alpha, which

corresponds to the weight assigned to the first task, and beta, which represents the weight for

the second task. These weight updates occurred systematically throughout the training, could

influence the model performance and learning behaviour as it progressed through epochs.

if loss_callback and len(predict_cols) > 1:

 self.alpha = K.variable(weights[0])

 self.beta = K.variable(weights[1])

 call_backs.append(self.MyCallback(self.alpha, self.beta))

 loss_weights = [self.alpha, self.beta]

It is important to note that this test was done to experiment with dynamic weights and use this

as the seed for the next research. The method used to update the weights is not based on any

statistical model and it was more about understanding the behaviour and the impact of such

change on the model performance. Therefore, due to lack of stability, this test was taken out

from thesis and replaced with more stable one detailed in Section 7.2.3.4: Fine-Tuning the

Loss Function: Determining Optimal Weights.

	Declaration
	Abstract
	List of Acronyms
	Publications
	Acknowledgements
	Table of contents
	List of figures
	List of tables
	List of equations
	List of algorithms
	Chapter 1 Introduction
	1.1 Problem Statement
	1.2 Research Aims and Objectives
	1.3 Challenges
	1.4 Dissertation Contribution
	1.5 Dissertation Outline

	Chapter 2 Stock Market and Risk Management
	2.1 Stock Market
	2.2 Portfolio Management
	2.2.1 Sharpe Ratio
	2.2.2 Treynor Measure
	2.2.3 Jensen Measure (Jensen Alpha)

	2.3 Risk Management
	2.3.1 Portfolio Risk
	2.3.2 Value at Risk (VaR)

	2.4 Volatility
	2.4.1 Historical Volatility
	2.4.2 Implied Volatility
	2.4.3 Beta (β)
	2.4.4 Volatility and Options Pricing

	2.5 Daily Returns
	2.6 Trading Volume
	2.7 Statistical Models
	2.7.1 GARCH for Volatility Modelling
	2.7.2 ARIMA for Time Series Modelling

	2.8 Conclusion

	Chapter 3 Deep Learning Networks, Loss Function, and Multitasking
	3.1 LSTM Deep Learning Network
	3.2 GRU Deep Learning Network
	3.3 Loss Function
	3.4 Gradient Descent
	3.5 Multi-Task Learning
	3.6 Training and Optimization
	3.7 Limitations and Future Directions
	3.8 Conclusions

	Chapter 4 Deep Learning Applications to Stock Market Analysis
	4.1 Deep Learning for Stock Market Prediction
	4.2 Multi-Task Deep Learning for Stock Market
	4.3 Conclusions

	Chapter 5 Deep Learning for Stock Market Prediction: Unveiling Insights and Enhancing Forecasts
	5.1 Background and Related Works
	5.2 Methodology
	5.2.1 Testing Modules and Metrics
	5.2.2 Data Collection
	5.2.3 Experimental Procedures
	5.2.3.1 Evaluation through Benchmark Testing
	5.2.3.2 Comparing Multivariate and Single-Input Models

	5.3 Results
	5.3.1 Evaluation through Benchmark Testing
	5.3.2 Comparing Multivariate and Single-Input Approaches

	5.4 Conclusions

	Chapter 6 Multitasking in Trading Markets: Enhancing Decision-Making with Multi-Task Deep Learning
	6.1 Background and Related Works
	6.2 Methodology
	6.2.1 Testing Modules and Metrics
	6.2.2 Data Collection
	6.2.3 Experimental Procedures
	6.2.3.1 Evaluation through Benchmark Testing
	6.2.3.2 Comparing Multitasking and Singl-Task Approaches
	6.2.3.3 The Art of Multitasking – Finding the Optimal Task Combination
	6.2.3.4 Fine-Tuning the Loss Function: Determining the Optimal Weights

	6.3 Results
	6.3.1 Evaluation through Benchmark Testing
	6.3.2 Comparing Multitasking and Single-Task Approaches
	6.3.3 The Art of Multitasking – Finding the Optimal Task Combination
	6.3.4 Fine-Tuning the Loss Function: Determining Optimal Weights

	6.4 Conclusions

	Chapter 7 Discussion and Conclusions
	7.1 Utilizing Deep Learning Networks for Market Prediction
	7.2 Improving Performance by Utilizing the Multivariate Deep Learning (MDL) Architecture
	7.3 Introducing the Multi-Task Deep Learning (MTDL) for Enhanced Predictions
	7.4 Future Work

	References
	Appendix A Diagrams, Figures, and Charts
	A.1 Diagrams
	A.2 Figures and Charts
	A.2.1 Multivariate Deep Learning – Chapter 5
	A.2.1.1 Benchmark Testing
	A.2.1.1.1 GARCH Model
	A.2.1.1.2 Deep Learning Model (LSTM)

	A.2.1.2 Multivariate vs Single-Input Deep Learning Models
	A.2.1.2.1 Single-Input Deep Learning Model
	A.1.1.2.2 Multivariate Deep Learning Model

	A.2.2 Multi-Task Deep Learning – Chapter 6
	A.2.2.1 Benchmark testing
	A.2.2.1.1 GARCH
	A.2.2.1.2 ARIMA

	A.2.2.2 Multi-Task Deep Learning Model

	Appendix B Deep Learning Model Optimization
	Appendix C Experimentation Tool for Stock Market Predictions
	Appendix D Correlation Matrices
	Appendix E Deep Learning: Dynamic Weights Optimization

