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Abstract: Accurate snow depth estimation is of significant importance, particularly for preventing
avalanche disasters and predicting flood seasons. The predominant approaches for such snow depth
estimation, based on deep learning methods, typically rely on passive microwave remote sensing
data. However, due to the low resolution of passive microwave remote sensing data, it often results
in low-accuracy outcomes, posing considerable limitations in application. To further improve the
accuracy of snow depth estimation, in this paper, we used active microwave remote sensing data. We
fused multi-spectral optical satellite images, synthetic aperture radar (SAR) images and land cover
distribution images to generate a snow remote sensing dataset (SRSD). It is a first-of-its-kind dataset
that includes active microwave remote sensing images in high-latitude regions of Asia. Using these
novel data, we proposed a multi-scale feature perception and aggregation neural network (MFPANet)
that focuses on improving feature extraction from multi-source images. Our systematic analysis
reveals that the proposed approach is not only robust but also achieves high accuracy in snow depth
estimation compared to existing state-of-the-art methods, with RMSE of 0.360 and with MAE of 0.128.
Finally, we selected several representative areas in our study region and applied our method to map
snow depth distribution, demonstrating its broad application prospects.

Keywords: snowdepth estimation; convolutional neural networks; multi-source data fusion;
SAR images

1. Introduction

Snow is a form of water and a crucial component in the water cycle. It is sensitive
to temperature fluctuations and arguably a key variable in global climate change [1–3].
Against the backdrop of global warming, extreme and adverse weather events are increas-
ingly occurring [4–6]. During spring and summer, the snow cover, glaciers, and permafrost
of the cryosphere melt at an unprecedented rate. The average snow depth in the European
Alps is declining at an almost 10% rate per decade [7]. The rapid melting of snow not only
provides abundant freshwater resources for nearby communities but also brings natural
disasters such as landslides, soil erosion, and floods [8]. Frequent blizzards and prolonged
low temperatures during autumn and winter lead to rapid snow accumulation, posing
threats to agriculture and livestock while increasing the likelihood of avalanches [9]. Snow
depth serves as one of the most intuitive indicators to warn against natural disasters like
avalanches and to assess snow melt changes. Therefore, the research value of monitoring
snow depth is exceptional.

However, due to the lack of meteorological stations in high-altitude or uninhabited
areas where snow persists throughout the year, comprehensive snow depth monitoring in
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frigid regions still lacks effective measures [10,11]. Consequently, exploring wide-ranging,
high-resolution, and high-precision methods for snow depth estimation has become a hot
research topic in various fields such as remote sensing, hydrology, energy planning, and
ecology. Remote sensing technology stands as an effective way to perceive large-scale snow
depth information [12–14]. However, snow depth estimation based on passive microwave
remote sensing is limited by low spatial resolution and large differences (1–25 km), so the
snow depth estimation can only be made at the kilometer level, generally [15,16]. In recent
years, despite numerous scholars conducting a series of downscaling research, it seems that
the spatial resolution has reached a bottleneck of around 500 m [17]. With the development
of satellite remote sensing technology, a large number of active microwave remote sensing
satellites have appeared. High-resolution active microwave remote sensing data, with their
exceptional penetration capabilities and immunity to any weather conditions, hold vast
potential in the field of snow depth estimation research [18–20]. For instance, the open-
source SAR images from the Sentinel-1 satellite launched in 2014 have a spatial resolution
of up to 10 m and possess extremely strong penetration capabilities, capable of penetrating
cloud and snow layers. Furthermore, considering more snow-related influencing factors
and fusing underlying surface information closely associated with snow cover is also
meaningful for achieving higher precision in snow depth estimation. Especially in the deep
learning-based method, multi-source data fusion has been verified as an effective method
for snow depth estimation.

Snow depth estimation based on SAR (an active microwave remote sensing) can be
divided into traditional methods and deep learning-based methods. The traditional method
holds that snow is an isotropic heterogeneous medium, and the Polarimetric Synthetic
Aperture Radar (PolSAR) uses the differences in the propagation speed of HH and VV
polarized signals within the snow layer to generate the Co-Polarization Phase Difference
(CPD). By establishing the relationship between CPD and snow depth, a snow depth re-
trieval model can be constructed [21,22]. Simultaneously, interferometric techniques are
widely applied in the construction of snow parameter inversion models. Utilizing interfer-
ometric processing of more than two SLC images from the same area allows the retrieval
of millimeter-level surface elevation change information. Differential SAR Interferometry
(D-InSAR) uses the geometric correlation between the slant range difference generated by
microwave penetration through the snow layer and the interferometric phase of the snow
layer to acquire snow-related information [23,24]. Yang and Li [25] assimilated snow depth
from D-InSAR data using an Ensemble Kalman Filter. Lievens et al. proposed a physical
model to estimate snow depth using SAR images, employing backscattering σ0 to estimate
snow depth in Northern Hemisphere mountain ranges, demonstrating a strong correlation
between the σVH/σVV ratio and snow depth [26]. Recently, as data-driven approaches,
deep learning-based methods can leverage neural networks to learn nonlinear relationships
inherent in sample datasets, and these techniques have found widespread applications in
the field of remote sensing [27–30]. An increasing number of scholars have applied deep
learning in snow depth research, achieving significant success. Yu et al. demonstrated
the advantages of deep learning by examining changes in snow depth before and after
blizzards in the Texas region using SAR images [31]. Rodrigo Caye Daudt and colleagues
achieved success in snow depth mapping and snow disaster risk assessment in Switzerland
by fusing SAR images with multi-spectral optical imagery data, employing recurrent neural
networks [14].

Optical remote sensing can accurately judge snow pixels, but it is difficult to obtain
snow parameter information. SAR remote sensing can actively transmit microwave signals
to obtain backscattered signals reflected by the target. It has penetration power for clouds
and fog, and can penetrate a certain thickness of snow to obtain snow and snow information.
SAR remote sensing has higher spatial resolution than passive microwave remote sensing,
so it is suitable for high-resolution snow parameter monitoring. At present, researchers
have conducted a lot of research on the estimation of snow parameters using SAR remote
sensing. Varade et al. [32] proposed a method for estimating snow density using dual-
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temporal fully polarized C-band radar data, and Singh et al. [33] proposed a C-band SAR
snow density estimation algorithm. Based on dielectric constant inversion, Rodrigo Caye
Daudt et al. [14] realized high-resolution snow depth estimation in Switzerland based on
C-band SAR-GRD data combined with optical remote sensing data. These related works
provide a reliable basis for the data selection of this work.

In this work, taking advantage of the excellent identification capability of optical
remote sensing for snow-covered areas and the exceptional penetration capability of high-
resolution active microwave remote sensing, coupled with the all-weather immunity, a
SAR remote sensing image was combined with a multi-spectral optical remote sensing
image and land cover data to estimate snow depth in high-latitude regions of Asia. We
present a novel ‘area-to-point’ deep model, both in terms of dataset and methodology.

The major contributions can be summed up as follows:

• Constructing a multi-source dataset: This work contributes a snow cover remote
sensing dataset for high-latitude regions of Asia. This dataset fuses multi-spectral
optical satellite images, SAR images, and land cover distribution images. Ground
snow depth measurements from meteorological stations are used as the ground truth.

• Proposing a multi-scale neural network: Unlike ’point-to-point’ predictions ignore
spatial characteristics, our model is an ’area-to-point’ snow depth estimation deep
model. The proposed network comprises a multi-branch feature extraction unit
(MBFE), a multi-scale feature atrous aggregation module (MSFAA), and a high- and
low-level feature fusion module (HLF). These components endow the new model
with multi-scale feature perception capabilities, which is particularly advantageous in
reducing non-snow area spatial interference, thereby achieving high accuracy snow
depth estimation.

• Mapping snow depth distribution: By these optimal parameters of our model, a snow
depth distribution map with a high resolution of 320 m in the study area is shown. It
can be predicted that based on our method, high-resolution snow depth maps in any
area of interest can be generated.

2. Methodology

In this work, the estimation of snow depth can be regarded as a regression task in
deep learning. Feature extraction is a key step, which directly affects the estimation results.
Due to the small-size nature of the input images, the information diminishes after several
convolutional operations. To reduce such information loss, we propose a dual-branch
structure based on the residual network called the MBFE unit. It contains two branches,
where each branch of the downsampling sequence is not the same, and can extract and
fuse different snow feature information. In addition, we introduce an MSFAA module,
which contains multiple receptive fields. It uses the concept of pyramid pool to aggregate
features. The design of cross-pixel extraction features can effectively reduce the non-snow
interference of low gray values in the image. Then, we design the HLF module, which
aims to integrate the extracted low-level and high-level features; this module helps to
avoid the loss of semantic information caused by the simple combination of different scale
features. Finally, we use the global average pool for the aggregated features, and then use
the fully connected layer to output the estimated snow depth value. We employ dropout
regularization to enhance the network’s robustness and generalization ability. The overall
network structure can be seen in Figure 1.
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Figure 1. Framework of multi-scale feature perception and aggregation network.

2.1. Multi-Branch Feature Extraction Unit (MBFE)

We use deep learning techniques to focus on learning and recognizing the charac-
teristics of snow at different depths. Our objective is to explore the correlation between
different input image sources and snow depth values, thereby enhancing prediction accu-
racy. Generally, deeper networks tend to possess stronger capabilities in representing snow
characteristics, allowing them to learn more complex and abstract snow features. However,
as the network depth increases along with the parameters, issues such as vanishing or
exploding gradients may arise. The ResNet proposed by He et al. [34] effectively addresses
this problem. Here, we base our method on the residual network, using a dual-branch
residual network structure as the main framework to extract and fuse features of different
levels. The expression of the residual unit in the residual block is given as follows:

xi+1 = xi + Convi+1{ReLU[Convi(xi)]} (1)

where xi is the input matrix of the first residual unit, xi+1 is the output matrix of the residual
unit, Convi+1 and Convi represent convolution operations, and function represents the
nonlinear function ReLU.

The low-level semantic information in snow remote sensing images is typically closely
associated with fundamental features of snow, such as snow color and texture of the snow
cover. The high-level semantic information involves a multi-dimensional understanding
of the internal structure of snow and various parameters related to snow. Therefore,
extracting multi-scale snow features is crucial for identifying snow and exploring snow
depth information. We designed the MBFE unit as the backbone to explore semantic
information at different depth levels of snow.

We adopted a dual-branch convolutional neural network, configuring the downsam-
pling order of residual units within the two branches to be opposite to each other. To
achieve feature enhancement and complementarity, after the first convolutional downsam-
pling, we set a concatenation operation on two low-level features. Following the second
convolutional downsampling, we combined high-level features extracted from three dis-
tinct branches. We were able to effectively verify the effectiveness of this design in the
experiment part. Through the MBFE unit, we were able to obtain two different scale feature
maps. The details of each layer in MBFE can be seen in Figure 2.
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Figure 2. The structure of the residual layer in MBFE, (a) represents the internal structure of the
residual layer without the downsampling operation, (b) represents the internal structure of the
residual layer with the downsampling operation. f denotes the input of the residual layer, and f ′

denotes the output of the residual layers.

2.2. Multi-Scale Feature Atrous Aggregation Module (MSFAA)

To extract features comprehensively and minimize the interference of non-snow factors,
we incorporated five MSFAA modules into the network. The goal is to extract multi-scale
snow features acquired through the MBFE unit using various receptive fields. The module
consists of three depth-separable convolutions with different dilation rates with a kernel
of 3 × 3, a convolution with a kernel of 1 × 1, and a 2 × 2 average pooling operation; the
output of the module concatenates the features obtained from the five branch operations,
thereby increasing the number of channels. For specific details, they can be seen in Figure 3.
Firstly, the design of dilated convolutions allows the extraction of snow features across
pixels at different scales, effectively reducing the interference from speckle-like non-snow
artifacts in the image. This is crucial for further enhancing the extraction capability of
various snow features in our task. We were inspired by PSPnet and structured it in a
pyramid-like shape [35], effectively consolidating snow features across different scales and
deep semantic information. In addition to the design of dilated convolutions, the input
feature images are also subjected to average pooling and 1 × 1 convolution operations.
Using average pooling can better focus on the spatial information of snow in the image,
enhance global snow features, and using 1 × 1 convolution can enhance the input features
by fusing semantic information from different feature dimensions, which helps to better
estimate the snow depth value in the region. We choose to use depth separable convolution
in the MSFAA module to reduce the number of parameters while ensuring the accuracy of
the estimation.

2.3. High- and Low-Level Feature Fusion Module (HLF)

Previously, we discussed that the characteristics of different scales can represent snow
from different angles. Inspired by the work of Dai et al. [36], Chen et al. [37], and others,
we propose the HLF module, aiming to effectively integrate two distinct scales of features.
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This design enhances the interaction between different channels within the model. The
structural details of the HLF module can be seen in Figure 4.

Avg pooling，upsamping

3×3 DS-Conv rate 2

3×3 DS-Conv rate 4

3×3 DS-Conv rate 8

1×1 Conv

f 'f

Figure 3. The structure of the MSFAA module. f denotes the input of the module, f ′ denotes the
output of the module.
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Figure 4. The structure of the HLF module.

Specifically, we designed two branches, where one branch inputs high-level semantic
information U1 and the other branch inputs low-level U2, and these two branches do
not know each other’s feature information. For the low-level features, we designed two
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sub-branches. The first sub-branch initially applies a depth separable convolution with
a kernel size of 3 × 3, dilation rate of 2, then U22 is obtained by sigmoid activation. The
other sub-branch is first doubled by Avgpool with a kernel of 3 × 3 and stride of 2, and
then U21 is obtained by sigmoid activation. For high-level features, two sub-branches are
similarly arranged. These sub-branches first enhance features through depth-separable
convolutions with a 3 × 3 kernel and a dilation rate of 2, obtaining U11, the other branch
samples through bilinear interpolation to obtain U12 with the same size as the low-level
feature map subsequently. We set a weighted operation on feature maps U11 and U21,
obtaining H1 through bilinear interpolation, the feature map U12 and U22 were weighted
to obtain L1 at the same time. The final step involves adding the same-sized H1 and L1
feature maps. Initially, adjusting the channel numbers through a 1 × 1 kernel convolution is
performed, followed by two layers of 3 × 3 kernel dilated convolution with a dilation rate
of 4 to enhance the fused features. The arithmetic operations involved in the HLF module
can be expressed as follows:

U11 = R(BN(DsConv3×3(U1))) (2)

U12 = Up(R(BN(DsConv3×3(U1)))) (3)

U21 = f (Ap3×3(U2)) (4)

U22 = f (R(BN(DsConv3×3(U2)))) (5)

H1 = Up[U11 ⊗ U21] (6)

L1 = U12 ⊗ U22 (7)

Ot = Conv1×1(H1 + L1) (8)

O = Conv2
3×3(Ot) + Ot (9)

where DsConv3×3 denotes a depth separable dilated convolution with a kernel size of 3 × 3
and a dilation rate of 2, Conv1×1 denotes a 1 × 1 2D convolutional kernel, Conv2

3×3 denotes
a two-layer convolution with dilation rate of 4 and kernel of 3 × 3, Ap3×3 represents a 3 × 3
average pooling operation, BN represents bilinear interpolation upsampling, R represents
the ReLU activation function, f represents the non-linear activation function sigmoid, U1 is
the input high-level feature, U2 is the input low-level feature, Ot is a temporary output in
the module, and O is the fused features obtained through this module.

The HLF module weights the feature maps through a non-linear activation function
sigmoid, merging deep semantic information and shallow detailed information, thereby
complementing the feature representations of the two branches. It can effectively avoid
issues such as distortion of two-level semantic information and loss of diversity caused by
simple combinations.

3. Experiments
3.1. Study Area and Dataset

The study area of this work is located in the high-latitude regions of Asia, including the
Qinghai–Tibet Plateau, Xinjiang and Gansu province (21.28◦N∼48.05◦N, 81.33◦E∼102.67◦E).
As shown in Figure 5, this area is far from the ocean, with low average temperatures in
autumn and winter, and exhibits a markedly continental arid and semi-arid climate. With
high altitude and complex terrain, it is an optimal choice for our research on snow depth.

To our knowledge, there is currently a lack of publicly available high-resolution snow
remote sensing datasets for research on snow depth in the high-latitude regions of Asia,
especially radar remote sensing data. In this work, we combined data from several different
sources for input data. We chose satellite data from Sentinel-1A launched in 2014 and
Landsat-8 launched in 2013, integrating pre-processed multi-spectral optical remote sensing
data, SAR images, land cover data around the meteorological stations from 2014 to 2017.
As we mentioned earlier, the resolution of estimating snow depth using passive microwave
downscaling can reach approximately 500 m. Considering the high-resolution advantage
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of highlighting radar remote sensing in snow depth estimation tasks, combined with our
computing power and memory resources, we decided to crop the registered remote sensing
images to 32 × 32, representing 320 m × 320 m on the ground, and the snow remote sensing
dataset (SRSD) with a resolution of 30 m was prepared. We used horizontal and vertical
rotation as data augmentation strategies. Finally, a total of about 10,000 eight-channel
snow remote sensing data were obtained. We divided the training set and the test set
according to the ratio of 4:1. The training set contains 8889 images, while the test set
contains 1846 images. Compared with the single point estimation, our model receives
the snow information of a small area as input and learns the spatial pattern of snow so
that it has better estimation effect in the face of complex snow conditions. While ensuring
high resolution, it also provides spatial information of snow for the model and ensures the
credibility of the snow depth value of the label. If the resolution of a single-point pixel is
high enough, it can achieve higher-resolution snow depth estimation. We used the snow
depth observation data from meteorological stations within the research area as labels.
Figure 6 shows the amount of data in the dataset at different depths through a bar graph.
Figure 7 displays a group of example images from our dataset. The following will introduce
the data sources of this work.
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Figure 5. Location of the study area, including the Qinghai–Tibet Plateau, Xinjiang and Gansu
province. The figure shows the elevation information of our study area, and the red marker is the
meteorological station involved in the dataset we collected.
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Figure 6. Data distribution of our SRSD dataset. It is an eight-channel snow remote sensing dataset
that fuses multi-source remote sensing data, including snow depth labels corresponding to 0∼42 cm.
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Figure 7. Multi-source data selection of this work; we randomly cropped and selected a set of data
sources for display. The image on the left is a multi-spectral optical remote sensing image, the
middle image is a VV single-polarization Sentinel-1 SAR image, and the image on the right displays
corresponding land cover data.

3.1.1. SAR Images

The Sentinel-1 GRD data, with a resolution of 10 m, are composed of C-band SAR
images with single VV polarization, downloaded from https://dataspace.copernicus.eu/
(accessed on 1 June 2023). The Sentinel-1 data downloaded in this work are processed
using ESA’s SNAP 8.0 software. The meteorological events captured by the images, such
as changes in solar light, cloud cover, etc., show strong robustness, which makes them a
reliable and timely tool for earth observation. After orbit correction, thermal noise removal,
radiometric calibration, terrain correction, and other operations, the pre-processed SAR
image is obtained.

3.1.2. Multi-spectral Optical Satellite Images

Under clear and cloudless weather conditions, we selected and downloaded optical
images of the study area that coincide with the visits of the Sentinel-1 satellite, with a
resolution of 30 m. We selected four bands from the visible and near-infrared spectral range
of the Landsat-8 satellite, and performed band fusion and resampling operations using
ENVI 5.3 software. This process generated four channels optical images with a resolution
of 10 m. Our multi-spectral optical images were downloaded from the Landsat-8 satellite
https://earthexplorer.usgs.gov/ (accessed on 1 June 2023).

3.1.3. Land Cover

Different land cover types have different effects on the backscattering of snow. The
backscattering coefficient of snow on bare land is higher than that under vegetation
cover [38]. Therefore, the introduction of snow underlying surface land cover informa-
tion is necessary for the detection of snow depth information. The data are produced by
Impact Observatory, Microsoft and Esri, and are generated using the Impact Observatory
’s deep learning AI land classification model with a resolution of 10 m, providing three
channels of information for the dataset, downloaded from https://livingatlas.arcgis.com/
landcoverexplorer/(accessed on 1 June 2023). The rightmost image in Figure 7 shows a
scene of land cover in our study area. The land cover data we used classify the ground into
categories such as water, trees, crops, ice, built-up areas, bare ground, rangeland, flooded
vegetation, etc.

3.1.4. Ground Observation

We obtained the daily surface snow depth observation data from the National Me-
teorological Information Center http://data.cma.cn/site (accessed on 16 May 2020), and
regarded them as the objective truth value as the label data for model training. The obtained
observation data cover the daily monitoring data of more than 200 meteorological stations
in the study area from 2014 to 2017, including station numbers, station longitude and
latitude, and the snow depth values observed on that day. Based on the overlapping visit

https://dataspace.copernicus.eu/
https://earthexplorer.usgs.gov/
https://livingatlas.arcgis.com/landcoverexplorer/
https://livingatlas.arcgis.com/landcoverexplorer/
http://data.cma.cn/site
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frequency of SAR remote sensing and optical remote sensing, we used the daily observed
snow depth values of 23 stations as labels to complete the preparation of the SRSD dataset;
the SRSD dataset we prepared can cover 0∼42 cm of snow depth, which can theoretically
estimate the depth of light snow and deep snow.

3.2. Experimental Parameter Setting

All of the reported experiments were conducted using PyTorch and configured with a
Nvidia GeForce RTX4070Ti GPU card. The optimizer used is adaptive moment estimation
(Adam), and the learning rate strategy is the “ploy” strategy, the formula of which can be
defined as:

lr = base_lr × (1− epoch
num_epoch

)power (10)

where lr is the updated learning rate, base_lr is the baseline learning rate, epoch is the
quantity of iterations, num_epoch is the maximum number of iterations, and power controls
the shape of the curve (usually it is greater than 1). In our model, power is set to 0.9, and
we finally fixed the epoch number to 250. We did not use pre-training parameters during
the training process. We set the batch size to 64. In order to prevent overfitting of the
model, we adopted various methods in the design, including data augmentation, dropout,
and normalization. In addition, we also designed a tenfold cross-validation experiment,
by taking turns selecting onefold of data as the test set and using the remaining ninefold
data for training to ensure the stability of the model and the reliability of the experimental
results. The loss function used in this work is MSE. The equation can be listed as:

MSE(y,
∧
y) =

1
N

N

∑
i=1

(
∧
yi − yi)

2
(11)

In order to evaluate the performance of our network in SRSD datasets, we chose four
main metrics: root mean squared error (RMSE), positive mean error (PME), negative mean
error (NME), and coefficient of determination (R2). And their equations can be defined as:

RMSE(y,
∧
y) =

√√√√ 1
N

N

∑
i=1

(yi −
∧
yi)

2
(12)

MAE(y,
∧
y) =

1
N

N

∑
i=1

∣∣∣yi −
∧
yi

∣∣∣ (13)

PME =
1
p

p

∑
i=1

(
∧
yi −yi),

∧
yi > yi (14)

NME =
1
r

r

∑
i=1

(
∧
yi −yi),

∧
yi < yi (15)

R2 = [
N − 1

N

n

∑
i=1

(
yi − µ(yi)

σ(yi)
)(

∧
yi −µ(

∧
yi)

σ(
∧
yi)

)]2 (16)

where y means the model estimated snow depth value, and
∧
y means the station observed

snow depth value. µ(•) denotes the mean operator, σ(•) denotes the standard deviation
operator, and N denotes the data sample size. p and r are the number of samples whose
measured snow depths are greater and less than the retrieved snow depth. Among them,

R2 can well characterize the correlation between y and
∧
y.
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3.3. Ablation Studies

In this section, we conduct a series of ablation experiments on MFPANet to examine
the rationality and effectiveness in the structural design of its modules and the selection
of data source. Firstly, we test the MBFE unit and then we gradually add the designed
modules MSFAA and HLF to the model. We show the experimental results through a
series of tables, and accordingly give the parameters (Params), computational complexity
(FLOPs), and other indicators to consider our model.

MBFE Ablation: We experimentally compare the prediction performance of MBFE
under different branch numbers. The experimental results can be seen in Table 1. Due to the
different down-sampling sequences set in the residual blocks of the two different branches
(branch1 and branch2), the two branches will extract different snow features, respectively.
By comparing the experimental results of MBFE-single branch and MBFE-two branches, it
can be found that this design can well realize the complementarity and enhancement of
snow semantic information at the same scale, alleviate the excessive loss of snow semantic
information in the down-sampling process, and greatly improve the prediction ability of
the network. Comparing the experimental results, the addition of branch3 helps to partially
compensate for the semantic information lost during the first downsampling. Therefore,
we consider that the MBFE unit is suitable as our backbone to extract features.

Table 1. Performance comparison of MBFE unit using different branch combinations. (Bold represents
the best result).

Method RMSE
(↓)

MAE
(↓)

PME
(↓)

NME
(↓)

R2

(↑)
Params

(M)
FLOPs

(G)

MBFE—single branch (branch1) 1.192 0.524 0.504 −0.548 0.989 0.85 0.143
MBFE—two branches (branch1 + branch2) 1.008 0.393 0.361 −0.444 0.991 2.25 0.286
MBFE—three branches (branch1 + branch2 + branch3) (Ours) 0.903 0.283 0.286 0.281 0.992 6.75 0.573

MSFAA Ablation: We set up five MSFAA modules in the network. In this part of the
experiment, we first conducted single-scale (MBFE + 3MSFAA) and multi-scale (MBFE
+ 5MSFAA) experiments. Compared with the experimental results in Table 2, we found
that the fusion of different scale features makes the predicted RMSE decrease by 0.337,
and the estimation effect is significantly improved. On the other hand, by comparing the
experimental results, we can also found that the estimation ability of our model is improved
after adding the MSFAA module under the premise of single scale or multi-scale, which
proves that this module is effective and also verifies that the fusion of multi-scale snow
features is necessary for the snow depth estimation task.

Table 2. Step-by-step performance comparison of networks using designed modules (MSFAA and
HLF). (Bold represents the best result).

Method RMSE
(↓)

MAE
(↓)

PME
(↓)

NME
(↓)

R2

(↑)
Params
(M)

FLOPs
(G)

MBFE 0.903 0.283 0.286 −0.281 0.992 6.75 0.57
MBFE + 3MSFAA 0.878 0.231 0.175 −0.273 0.992 8.38 0.67
MBFE + 5MSFAA 0.541 0.146 0.155 −0.138 0.995 10.03 0.74
MBFE + 5MSFAA + HLF (Ours) 0.360 0.128 0.124 −0.129 0.997 13.60 1.36

HLF Ablation: We achieved satisfactory estimation results by simply superimposing
and combining features from two scales (MBFE + 5MSFAA). After that, we no longer simply
combine features of different scales but use the HLF module to fuse features of two scales
(MBFE + 5MSFAA + HLF). By comparing the two experimental results in Table 2, it can be
found that the introduction of the HLF module reduces RMSE by 0.189, which verifies the
effectiveness of the HLF module, avoids the loss of information combination at different
scales, and better integrates snow semantic information at different scales.
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Data Ablation: In this section, we conduct a data ablation study on the multi-source
data we made, using the proposed MFPANet. We separate the eight-channel dataset SRSD
into a four-channel dataset (SAR + Land cover), a five-channel dataset (SAR + multi-spectral
optical satellite) and a seven-channel dataset (multi-spectral optical satellite + Land cover)
by encoding. In addition to the number of channels, the ablation dataset is consistent with
the original dataset in the scale of the training set and test set. By this way, we discuss the
contribution of each data source to snow estimation in our multi-source dataset, and prove
that our strategy of fusing multi-source data is necessary.

Table 3 shows the experimental results of data ablation; it strongly proves the effective-
ness of our data selection combination. According to these results, it is clear that if we only
combine SAR images and land cover data, in the absence of multi-spectral optical remote
sensing to provide spatial information of snow cover, the effect of our network fitting
snow depth true value is very poor, and the model can hardly perceive the existence of
snow cover. On the other hand, with the combination of the SAR image and multi-spectral
optical image or the combination of multi-spectral optical data and land cover data, the
estimation effect is far less than the combination of SAR images, multi-spectral optical
images and land cover data. It can be inferred that each data source is contributing to snow
depth estimation. Optical remote sensing images can provide information on the snow
cover surface to help perceive and identify snow cover. Land cover provides underlying
surface information. SAR can penetrate into the interior of the snow layer, providing
information about the internal structure of the snow and the backscattering intensity from
the underlying surface. We show the scatter plot of the model ’s estimation ability under
different data combinations. It can also be seen from Figure 8 that the model has a better
fitting effect based on our data selection.

Table 3. Performance comparison of data combination approaches. (Bold represents the best result.)

Data Combination Approach Channels RMSE
(↓)

MAE
(↓)

R2

(↑)

SAR + Land cover 4 9.285 7.022 0.320
SAR + Multi-spectral optical 5 0.981 0.190 0.991
Multi-spectral optical + Land cover 7 0.768 0.172 0.994
Multi-spectral optical + SAR + Land cover (Ours) 8 0.360 0.128 0.997

RMSE=9.285

MAE=7.022

R2=0.302

RMSE=0.981

MAE=0.768

R2=0.992

RMSE=0.768

MAE=0.172

R2=0.994

RMSE=0.360

MAE=0.128

R2=0.997

Figure 8. A 2D scatter diagram of measured snow depth values versus estimated by different data
combinations using our method, where the green line is y = x line. The 4 channels represent the data
combination of SAR + land cover, 5 channels represent the data combination of SAR + multi-spectral
optical, 7 channels represent the data combination of multi-spectral optical + land cover, and our
8 channels’ data combination strategy (multi-spectral optical + SAR + Land cover) has better fitting
ability by our method.

3.4. Comparative Analysis

Firstly, through an extensive literature review, we discovered several outstanding deep
learning methods that use multi-source remote sensing data for snow depth estimation.
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They are adaptable for comparison on our SRSD dataset. We selected DSDR [17], Con-
vNet [39], and ResSD [13] for experimentation to demonstrate the superiority of MFPANet
in snow depth estimation. These existing methods fuse multi-source data based on pas-
sive microwave remote sensing. Similarly, the study area also includes the Qinghai–Tibet
Plateau, Xinjiang, Gansu, and other regions.

Next, considering the similarity to our task, in order to further prove the advantages of
MFPANet in the snow depth estimation task, we selected some image classification and seg-
mentation methods to apply and compare their performance on our SRSD dataset, including
VGG-16 [40], MobileNetV3 [41], ShuffleNetV2 [42], DenseNet121 [43], ResNet-18, ResNet-
50, MNASNet [44], EfficientNetV2 [45], Vision Transformer [46], and DeepLabV3+ [47]. We
modified the number of input channels and the number of output neurons of the model
to make the model output the estimated snow depth. All comparative experiments were
completed on our SRSD dataset, trained on the same training set and tested on the same
test set. We selected the RMSE, MAE, PME, NME, and R2 Params as evaluation metrics for
the experimental results.

Table 4 shows the performance of existing snow depth estimation models on our
SRSD dataset, and Table 5 shows the performance of other deep learning models on our
SRSD dataset. By comparing the experimental results, it can be found that MFPANet is far
ahead of other algorithms in all indicators. Figure 9 shows the scatter map of the snow
depth values estimated by all the comparison methods on our test set and the station
observations, demonstrating the fitting ability of different models to actual snow depth
values under the same number of test samples after training intuitively. For the existing
snow depth estimation models, DSDR can hardly provide deep snow estimation of >30 cm,
and both ConvNet and DSDR models cannot provide accurate snow depth estimation, and
the error is very large compared with the site observation value, which shows that the
simple multi-layer perceptron and ordinary CNN network cannot extract the characteristic
information of snow well. Compared with DSDR and ConvNet, ResSD has been greatly
improved, but ResSD cannot take into account the spatial information of snow well, and a
single residual structure has a certain bottleneck in the accuracy of snow depth estimation.
It can be seen from the scatter plot that ResSD is unstable in the prediction of snow depth
of >20 cm, indicating that the robustness of the model is poor.

Compared with image classification and segmentation models, MFPANet not only
gives the best estimation accuracy but also has a small number of model parameters, which
further proves the superiority of our model in snow depth estimation tasks. This shows
that MFPANet can better adapt to snow depth prediction tasks by obtaining multi-scale
features of snow and considering more details of snow spatial distribution.

Table 4. Performance comparison of the existing methods in snow depth estimation with ours. We
selected three snow depth estimation methods based on deep learning to test on our SRSD dataset. The
experimental results show that our method has obvious advantages. (Bold represents the best result.)

Method RMSE (↓) MAE (↓) PME (↓) NME (↓) R2 (↑) Params

DSDR 8.099 6.387 6.038 −6.797 0.494 0.821k
ConvNet 4.095 2.672 2.658 −2.686 0.871 78.32k

ResSD 1.087 0.307 0.249 −0.372 0.991 1.43M
Ours 0.360 0.128 0.124 −0.129 0.997 13.60M

We reselected, downloaded, and processed multi-source data captured in the Jimunai
area of Xinjiang province on 6 January 2016. Using various methods, we generated snow
depth maps and standardized the snow depth scale for a comprehensive understanding of
the models’ estimation capabilities across varying depths of snow at a larger scale. Addi-
tionally, we selected two key regions marked by different colored rectangles, combining
optical remote sensing images to assess the alignment between each model’s visualized
snow depth results and the terrain as shown in Figure 10. Among them, we can see from
the figure that the snow depth map estimated by the DSDR model is lighter in color than
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the estimation results of all other models and cannot perceive deep snow. The VGG-16
Vision transformer model performs well in our dataset, but it cannot well match the terrain
features such as ridges and valleys in a wide range of snow depth visualization, and the
generalization ability is limited. From the key areas we selected, we can find that MFPANet
has a good agreement with the terrain, and has a good perception of deep snow and shallow
snow. The visual results prove that MFPANet has a better generalization effect than other
models in a wide range.

Table 5. Performance comparison of other methods with ours. We selected ten excellent algorithms
in the field of computer vision to test on our SRSD dataset. They have different parameter quantities
and strong feature extraction capabilities. The experimental results show that our method is ahead of
other algorithms in various evaluation metrics. (Bold represents the best result.)

Method RMSE (↓) MAE (↓) PME (↓) NME (↓) R2 (↑) Params

MobileNetV3 4.081 2.116 1.697 −2.528 0.871 455.25k
VGG-16 3.533 2.116 1.806 −2.439 0.903 7.64M

MNASNet 2.856 1.848 1.681 −2.026 0.935 3.41M
ShuffleNetV2 2.503 1.234 1.128 −1.309 0.951 2.78M
DenseNet121 1.926 0.624 0.427 −0.938 0.971 7.25M

ResNet-18 1.746 0.795 0.642 −0.952 0.976 11.17M
ResNet-50 1.291 0.512 0.421 −0.660 0.987 23.15M

EfficientNetV2 1.541 0.471 0.411 −0.522 0.981 19.89M
ViT 1.512 0.764 0.676 −0.854 0.982 86.64M

DeepLabV3+ 1.379 0.621 0.595 −0.652 0.985 10.18M
Ours 0.360 0.128 0.124 −0.129 0.997 13.60M

RMSE=8.099

MAE=6.387

R2=0.494

RMSE=4.095

MAE=2.672

R2=0.871

RMSE=4.081

MAE=2.116

R2=0.871

RMSE=3.533

MAE=2.116

R2=0.903

RMSE=2.856

MAE=1.848

R2=0.935

RMSE=2.503

MAE=1.234

R2=0.951

RMSE=1.926

MAE=0.624

R2=0.971

RMSE=1.291

MAE=0.512

R2=0.987

RMSE=1.746

MAE=0.795

R2=0.976

RMSE=1.541

MAE=0.471

R2=0.981

RMSE=1.512

MAE=0.764

R2=0.982

RMSE=1.379

MAE=0.621

R2=0.985

RMSE=1.087

MAE=0.307

R2=0.991

RMSE=0.360

MAE=0.128

R2=0.997

Figure 9. A 2D scatter diagram of the measured snow depth values versus those estimated by
different deep learning methods in the comparable studies section, which include existing snow
depth estimation methods and excellent methods in image classification or image segmentation. The
accuracy of snow depth estimation is also shown on the scatter plots of each method. The green line
is y = x line. It is obvious that our method has better fitting ability.



Remote Sens. 2024, 16, 2087 15 of 21

0

50

0 900m

OursResSD

ConvNetDSDR

MNASNet

MobileNetV3

DenseNet121

DeepLabV3+

VGG16

ResNet18

EfficientNetV2

ShuffleNet ResNet50

Vison Transformer

Figure 10. Snow depth mapping by different methods in the comparable studies section. We used
purple and red matrix boxes to mark the parts with large differences in snow depth distributions
in each model. We unified the snow depth scale in 0∼50 cm to observe the snow depth estimation
ability of different models. According to the boxed area, we can find that the model has problems in
a wide range of generalization applications when it performs similarly on our dataset; it may not
be able to predict deep snow well, or it may not fit the terrain distribution well. In contrast, our
proposed network can better fit terrain features and better estimate deep snow.

Finally, we selected the backbone network of VGG-16, ResNet-18 and ResNet-50 to
replace the MBFE unit we designed as the backbone, and added the MSFAA module and
HLF module we designed for experiments. The experimental results are shown in Table 6.
Through the experimental results in the table, our method has obvious advantages in both
parameter quantity and prediction accuracy. We can see that MFPANet with MBFE as the
backbone has the best estimation effect, which makes us more convinced that the MBFE
unit is suitable as the backbone of this snow depth estimation task.

Table 6. Performance comparison of different backbone. Based on the results of comparative
experiments, we select three commonly used backbones to replace the MBFE unit. Our method
performs the best experimental results. (Bold represents the best result.)

Backbone RMSE (↓) MAE (↓) PME (↓) NME (↓) R2 (↑)

VGG-16 2.377 1.126 1.017 −1.235 0.956
ResNet-18 0.756 0.201 0.163 −0.246 0.988
ResNet-50 0.470 0.134 0.153 −0.111 0.996
MBFE 0.360 0.128 0.124 −0.129 0.997

3.5. Estimated Snow Depth Distribution
3.5.1. Mapping Varying Snow Depths

We re-selected and downloaded four groups of multi-source snow remote sensing
images in the study area, and used our method to generate four groups of snow depth
maps with a resolution of 320 m. As shown in Figure 11, there are four groups of pictures.
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Each group of figures shows the multi-spectral optical remote sensing image from left to
right, the snow depth map of the corresponding area, and the detailed snow depth map
including local stations.

0

41.97

0 450m

33cm

0

43.36

0 900m

0

41.68

0 900m

41.36

0

0 450m

24cm

0

40.22

0 450m
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0 900m

37cm(a)

(b)

(c)

0

43.68

0 900m

17cm

43.18

0

0 450m

(d)

Figure 11. Snow depth mapping by our method. (a,b) Two sets of snow depth maps show the
estimation effect of our method on >30 cm deep snow through local amplification of the station.
(c,d) Two sets of snow depth maps show the estimation effect of our method on <30 cm light snow
through local amplification of the station, and the pink circle represents the location of the station.
The red value denotes the measured snow depth value of the station on the day.

Among them, group a is the area of TaCheng station in Xinjiang taken on 2 February
2015, group b is the area of ZhaoSu station in Xinjiang taken on 9 December 2014, group c
is the area of NiKeLe station in Xinjiang taken on 9 December 2014, and group d is the area
of PuLan station in Tibet taken on 12 January 2015. From the four groups of images, it is
evident that the snow depth maps generated by our method align well with the shapes of
ridges, valleys, and other terrain features. The distribution appears quite reasonable. By
combining the actual measurements from the monitoring stations with our snow depth
maps, it is apparent that our method can effectively estimate both shallow and deep snow.
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3.5.2. Visualizing Snow Depth Changes

For the time dimension, we also re-selected and downloaded two sets of multi-source
snow remote sensing images of the TuoLi station in Xinjiang. As shown in Figure 12 a,b,
two sets of images show the snow depth of the TuoLi station area on 4 February 2015 and
27 February 2015, respectively, from left to right. Multi-spectral optical remote sensing data
and corresponding snow depth maps are displayed. In order to clearly perceive the change
in snow depth, we unified the snow depth gradient interval of 0∼45 cm. From the snow
depth map, we can clearly see the change in snow cover in the whole area. Furthermore, in
terms of details, based on the actual measurements from the meteorological stations over
two days combined with the snow depth map, it can also be concluded that our method can
effectively identify the accumulation trend of snow at TuoLi station. Hence, our method
can be well applied to the snow depth mapping, effectively detecting different depths of
snow and their changing trends.

0

45

0 450m

0

45

0

20cm

12cm

(a)

(b)

20cm

12cm

450m

Figure 12. Snow depth mapping by our method. (a,b) Two sets of images in this figure show the
snow depth of TuoLi station area on 4 February 2015 and 27 February 2015. We can infer from the
diagram that our method can perceive the changing trend in snow cover well.

4. Discussion

A series of experimental results demonstrate that our proposed deep learning method
based on SAR remote sensing as a multi-source data input is feasible for estimating snow
depth, achieving the best performance among all the metrics in the current research. In
the ablation research section, data ablation shows that each data source is contributing to
the final result in different ways, through model ablation, it shows that each module of
MFPANet we proposed is effective, and they contribute to the realization of high-precision
snow depth estimation. In the comparative study section, we show the improvement of
our model in the field of snow depth estimation by comparing the relevant methods. It is
worth mentioning that our model performs well in the estimation of shallow snow, and
also shows excellent accuracy in the prediction of >30 cm deep snow, with RMSE of 0.474,
with MAE of 0.221. Table 7 shows the snow depth estimation result of our network in
each depth interval. Due to the accumulation of snow cover, the snow layer of deep snow
usually presents a multi-layer structure with instability, so deep snow is usually considered
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to be one of the potential hidden dangers of avalanches. The experiments have shown that
our work on the accurate estimation of deep snow has a good application prospect in the
prevention of avalanches and the avoidance of snow disasters.

On the other hand, compared to passive microwave remote sensing, which receives
weak signals from the ground, SAR remote sensing actively generates signals and captures
higher-quality echo signals for imaging. This results in a higher signal-to-noise ratio and
provides high-quality, high-resolution remote sensing images for snow depth estimation
studies. With the advancement of active microwave remote sensing technology and the de-
ployment of multiple satellites, future snow depth estimation will benefit from even higher
spatiotemporal resolution, helping to address various natural disasters and challenges
more effectively.

Table 7. The estimation results of our method on different snow depth ranges.

Snow Depth Range RMSE MAE

1–10 cm 0.118 0.043
10–20 cm 0.328 0.109
20–30 cm 0.423 0.167
>30 cm 0.479 0.198

4.1. Limitations

Although our snow depth estimation work has proposed MFPANet which is more
suitable for the snow depth estimation task and shows better estimation accuracy than
previous work, we should also recognize its limitations. At present, our proposed network
cannot be well extended to other regions outside high-latitude regions of Asia. Because
of the differences in altitude, annual average temperature, and snow media properties in
different regions, the estimation of snow depth in different places is often ineffective. If
there are enough local snow remote sensing data to support the training, our method can
be extended to other regions, but for the time being, the lack of publicly available snow
remote sensing datasets makes it difficult to achieve greater expansion and verification.
Additionally, if the single pixel resolution of the satellite remote sensing used is high
enough, then I think our method can be extended to provide higher resolution snow
depth information.

4.2. Future Work

Although our current work has made progress in estimating snow depth in the high-
latitude regions of Asia, and the proposed model shows decent predictive accuracy, looking
ahead, with the continuous advancements and developments in radar and optical remote
sensing technologies, our method holds significant potential for wider application and
further exploration in both data and neural network methodologies. In terms of data,
we can explore using remote sensing satellites or unmanned aerial vehicles (UAVs) with
higher revisit frequencies and spatial resolutions. We could also consider employing
polarimetric SAR with richer polarization modes or fully polarized SAR to acquire more
precise ground station snow depth data. Additionally, fusing various auxiliary data sources
such as temperature, elevation, and others is of great significance to promote snow depth
estimation. In terms of the model, exploring more mainstream deep learning architectures
or attention mechanisms could be beneficial. The continued exploration and adaptation of
network structures suitable for snow depth estimation tasks could enable more accurate
predictions of complex snow depths at higher spatial and temporal resolutions.

5. Conclusions

Achieving high-resolution snow depth estimation in high-latitude regions of Asia has
always been an important issue. In order to solve this problem, we propose MFPANet,
which is based on high-resolution multi-spectral optical remote sensing, SAR remote
sensing and land cover data, and which relies on the measured snow depth data of ground



Remote Sens. 2024, 16, 2087 19 of 21

meteorological stations. It shows unprecedented accuracy in snow depth prediction with a
resolution of 320 m, with RMSE of 0.360, and with MAE of 0.128, R2 reaches 0.997, which is
of great value for hydrological simulation and regional snow disaster assessment in alpine
regions. In addition, we use the residual network to build an MBFE unit, design modules
such as MSFAA and HLF, mine semantic information at different scales, integrate features
at different levels, and alleviate the complex ground object interference caused by spatial
high resolution to snow depth estimation. Thus, a novel ’area-to-point’ neural network
suitable for snow depth estimation is obtained. Finally, our method can be used to generate
high-resolution snow depth maps which play a role in hydrological simulation and snow
disaster assessment. We hope that the proposed method can provide larger-scale, higher-
resolution, and more accurate snow depth estimations for high-latitude regions of Asia,
stimulate further research on snow depth estimation topics, and achieve comprehensive
monitoring of the snow cryosphere. This is of great significance for solving the problem of
more snow parameters in the cryosphere, and is crucial for the future of water resources
management and sustainable development.
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