
Graph structure learning-based
multivariate time series anomaly detection
in Internet of Things for human-centric
consumer applications
Article

Accepted Version

He, S., Li, G., Yi, T., Alfarraj, O., Tolba, A., Kumar Sangaiah,
A. and Sherratt, R. S. ORCID: https://orcid.org/0000-0001-
7899-4445 (2024) Graph structure learning-based multivariate
time series anomaly detection in Internet of Things for human-
centric consumer applications. IEEE Transactions on
Consumer Electronics, 70 (3). pp. 5419-5431. ISSN 1558-
4127 doi: https://doi.org/10.1109/TCE.2024.3409391 Available
at https://centaur.reading.ac.uk/116885/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1109/TCE.2024.3409391

Publisher: IEEE

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

http://www.reading.ac.uk/centaur

1

Graph Structure Learning-based Multivariate Time
Series Anomaly Detection in Internet of Things for

Human-Centric Consumer Applications.
Shiming He, Genxin Li, Tongzhijian Yi, Osama Alfarraj, Amr Tolba, Senior, IEEE, Arun Kumar Sangaiah, and

R. Simon Sherratt, Fellow, IEEE

Abstract—As the Internet of Things system becomes more pop-
ular and ubiquitous, it has also gradually entered the consumer
electronics field. For example, smart home systems have numer-
ous sensors that monitor the environment and interact with the
Internet to provide smart services. A large amount of multivariate
time series data generated using sensors can provide services
for consumers and identify faulty systems through multivariate
time series anomaly detection (MTSAD), which is crucial for
maintaining system stability. However, representing the complex
relationships among multivariate time series is challenging.
Recently, graph neural networks and graph structure learning,
which can excellently learn complex time series relationships,
have been applied to multivariate time series. However, existing
research on graph structure learning only constructs k-Nearest
Neighbor (kNN) graphs based on the pair-wise similarity between
time series. This generates a quadratic cost and only considers
partial relationships among sensors. Accordingly, we propose
a lightweight graph structure learning-based multivariate time
series anomaly detection (GSLAD), which exploits full graph
parameterization to learn the graph structure without pair-
wise similarity to overcome the quadratic cost and the limited
neighbor relationship. GSLAD exploits diffusion convolutional
recurrent neural network (DCRNN) to extract temporal and
spatial features. The results from the extensive simulations
performed on four public real-world datasets demonstrate that
the F1 score improved by an average of 5% with less training
time compared to existing state-of-the-art methods.

Index Terms—Graph attention neural network, graph struc-
ture learning, multivariate time series

This work partially supported by the National Natural Science Foundation
of China under Grant 62272062, the Science and Technology Innovation
Program of Hunan Province under Grant 2023RC3139, the Scientific Research
Fund of Hunan Provincial Transportation Department under Grant 202143, the
Open Fund of Key Laboratory of Safety Control of Bridge Engineering, Min-
istry of Education (Changsha University of Science Technology) under Grant
21KB07, the Open Research Fund of the Hunan Provincial Key Laboratory of
Network Investigational Technology under Grant 2018WLZC003, and the Re-
searchers Supporting Project Number (RSP2024R102), King Saud University,
Riyadh, Saudi Arabia. (Corresponding author: Arun Kumar Sangaiah.)

Shiming He, Genxin Li and Tongzhijian Yi are with the School of
Computer and Communication Engineering, and the Hunan Provincial
Key Laboratory of Intelligent Processing of Big Data on Transporta-
tion, Changsha University of Science and Technology, Changsha 410114,
China. (e-mail: smhe cs@csust.edu.cn; mapleleavesli@stu.csust.edu.cn; yi-
tong@stu.csust.edu.cn)

Osama Alfarraj and Amr Tolba are with the Computer Science Department,
Community College, King Saud University, Riyadh 11437, Saudi Arabia. (e-
mail: oalfarraj@ksu.edu.sa; atolba@ksu.edu.sa)

Arun Kumar Sangaiah is with the Department of Electrical and Computer
Engineering, Lebanese American University, Byblos, Lebanon, and the Inter-
national Graduate Institute of AI, National Yunlin University of Science and
Technology, Taiwan (ROC). (e-mail: aksangaiah@ieee.org)

R. Simon Sherratt is with the Department of Biomedical Engineering, the
University of Reading, RG6 6AY, UK. (e-mail: sherratt@ieee.org).

I. INTRODUCTION

HUman-centric is at the heart of consumer electronics. In
recent years, the development of the Internet of Things,

5G, and cloud computing technologies has brought about inno-
vations in consumer electronics and generated security risks.
As the functions provided by consumer electronics become
more intelligent, more related devices are included in the
system. For example, in a smart home system, the router serves
as the core device. It is equipped with a central processing unit
(CPU), memory, and ports, and is responsible for receiving
and sending data packets. When the router fails, it may affect
the smart home system’s functions, leading to security risks
[1], [2]. There are two distinct methodologies for detect-
ing faults and safety risks in smart devices: hardware-based
safety strategies [3] and data-based approaches. Hardware-
based security strategies rely on specialized hardware support,
whereas data-based approaches involve identifying faults or
attacks by analyzing anomalies in the data generated by smart
devices. In comparison to hardware-based solutions, data-
based approaches offer a more practical alternative.

Fig. 1. An illustration of anomalies in multivariate time series. Two anomalous
regions are highlighted in pink [4].

In practice, smart home devices generate multivariate in-
dicators1 and form multivariate time series (MTS) [5], [6].

1Here, “indicator” refers to the time series of a particular variable.

2

Fig. 1 shows an example multivariate time series with two
anomalous regions [4]. The MTS can reflect different aspects
of a physical device or system and retain information more
effectively than univariate time series data.

Multivariate time series anomaly detection (MTSAD) is an
important and rapidly developing time series and anomaly
detection sector. Existing MTSAD techniques [4], [7]–[11]
focus primarily on identifying the timestamps where system
errors, attacks, and behavior deviations occur.

MTS includes complex temporal and spatial correlations.
MTSAD should consider each indicator’s temporal relation-
ship and the inter-correlations between indicators or sensors.
As a result, Graph Neural Networks (GNN) models are in-
corporated into MTSAD to extract spatial features [12], [13].
GNNs are particularly effective in capturing the structural
information and relationships within graphs. Moreover, the
relationships among sensors have been exploited to improve
forecasting and anomaly detection accuracy. Hence, most
GNNs rely on a known graph structure. However, the graph
structure is not always available, that is, the sensor relation-
ships are hidden or costly to access. Therefore, graph structure
learning (GSL), a system that can learn the unknown or hidden
graph structure joint using the downstream GNN task, is
proposed [14], [15]. However, multivariate time series anomaly
detection based on graph structure learning and GNNs still
faces many challenges.

• Most existing methods learn a k-Nearest Neighbor
(kNN) graph based on pair-wise similarity, intro-
ducing a quadratic cost, and only considering the
partial relationships among sensors. They randomly
initialize the learnable node embeddings [14] or acquire
them from the input data, measure pair-wise similarity
among the node embeddings, and count the top-k closest
nodes as the neighbors. In addition, node embeddings or
acquired weights are learned with the downstream task.
Consequently, a quadratic cost is generated to obtain the
pair-wise similarity among nodes. The node only has k
neighbors in the learned graph, ignoring the correlation
with the remaining nodes. As a result, the correlation
between the sensors is not extracted effectively.

• Existing methods utilize static GNNs, which cannot
capture the temporal feature. Based on the known
graph [12] or learned graph structure [14], these methods
exploit the graph convolution or attention neural network
to extract features for anomaly detection, where GNN
treats the time series as static feature and ignore the order
in each indicator. Thus, these methods cannot extract
temporal features with static GNN effectively.

• Long-term historical data is required when the Trans-
former model is used for prediction and anomaly
detection. Even though Graph Learning with Transformer
for Anomaly detection (GTA) [15] directly learns a global
graph structure, it utilizes the Transformer model for
prediction. These Transformer models, with their self-
attention and multi-head attention mechanisms, effec-
tively enrich the extracted features. In addition, the com-
plexity of the model’s attention mechanisms increases
the model training costs. The Transformer model also

requires long-term historical data to improve its per-
formance. In contrast, GTA requires 60 timestamps as
input data, while only 5 timestamps are needed in Graph
Deviation Network (GDN) [14]. Shortening the length of
the input historical data for the Transformer results in a
significant reduction in detection accuracy.

To overcome these three issues, we design a multivariate
time series anomaly detection based on lightweight graph
structure learning and recurrent graph convolution neural net-
work (GSLAD). Our major contributions can be summarized
as follows:

• We employ full graph parameterization to learn the graph
structure without pair-wise similarity to overcome the
quadratic cost and the limited neighbor relationship.

• We utilize diffusion convolutional recurrent neural net-
work (DCRNN) instead of the traditional graph convolu-
tion network (GCN) to extract the temporal and spatial
features. DCRNN is a powerful spatio-temporal graph
convolutional neural network that accurately predicts
future time series with low complexity and reduced input
data requirements.

• Extensive simulations on four public real-world datasets
demonstrate that our algorithm can achieve a higher F1
score and lower training costs than existing methods. This
shows that our method is useful for rapidly and accurately
monitoring electronic consumer product health.

The remainder of this paper is organized as follows. First,
the related work is reviewed in Section II, and the problem
description is presented in Section III. Then, the overview and
detailed GSLAD steps are outlined in Section IV. Next, Sec-
tion V discusses the performance evaluation via experiments.
Finally, we conclude our research and discuss future work in
Section VI.

II. RELATED WORK

We classify the related works into three types according
to the features: temporal feature, temporal-spatial feature, and
learnable spatial feature.

A. Temporal Feature-based Methods

Several temporal feature-based methods exist that can be
applied in MTSAD. Long Short-Term Memory (LSTM) is
first used in MTSAD due to its ability to process sequence
data. LSTM-NDT [7] uses LSTM to achieve high predic-
tion performance and provides a nonparametric, dynamic,
and unsupervised anomaly thresholding approach to detect
anomalies.

Recurrent neural network joints with generative models are
widely applied in time series anomaly detection to reconstruct
the time series. For instance, LSTM-VAE [8] projects mul-
timodal observations and temporal dependencies into a latent
space and reconstructs the expected distribution. In doing so, it
regards the reconstruction error as an anomaly score. DAGMM
[9] trains a deep autoencoding and Gaussian mixture model
simultaneously to produce a low-dimensional representation
and reconstruction error in order to detect anomalies. Om-
nianomaly [4] utilizes a stochastic recurrent neural network

3

to capture the robust representations of normal patterns and
reconstruct the observations. In addition, MAD-GAN [10]
exploits LSTM as the base model in the GAN framework to
capture the temporal correlation of time series distributions,
extract the latent interactions, and detect anomalies through
discrimination and reconstruction.

LSTM can model the temporal dependence of time series
data well. Due to the heterogeneity between data indicators
[16], the correlation between metrics also needs to be con-
sidered when performing multivariate time series anomaly
detection.

B. Temporal-spatial Feature-based Methods

Graph Neural Networks are specifically designed to process
and analyze graph-structured data. They excel at capturing
correlations between indicators, enabling accurate behavior
prediction. For instance, MTAD-TF [12] exploits multi-scale
convolution and graph attention networks to capture infor-
mation in temporal patterns, and regards the root means
square between the predicted value and the ground truth as
the anomaly score. MTAD-GAT [13] attempts to mine the
correlations between different univariate time series and the
temporal dependencies within each of them using a graph
attention network. It integrates prediction and reconstruction-
based approaches to detect anomalies. Moreover, Arvalus and
its variant D-Arvalus [17] treat system components as nodes,
and their dependencies and positions as edges to improve
anomaly identification and location. The above mentioned
methods make assumptions about the known graph structure
(e.g., Arvalus and D-Arvalus), or they treat the MTS as a
complete graph (e.g., MTAD-TF and MTAD-GAT). As a
result, the computational cost for a complete graph rises with
an increase in dimension.

C. Learnable Spatial Feature-based Methods

To process the MTS without a ground truth graph structure
at a low cost, GSL is incorporated into MTSAD. For instance,
GDN [14] learns a node embedding and constructs a kNN
graph using the learned embedding’s similarities. Then, an
attention-based GNN predicts behavior by extracting the de-
pendence relationships between the nodes, and the prediction
error is used for the anomaly score. Furthermore, GTA [15]
directly treats the adjacency matrix’s elements as learnable
parameters to automatically learn a graph structure. It models
temporal dependency using a Transformer-based architecture.

However, the pair-wise similarity generates a quadratic cost
and the kNN graph only considers partial relationships among
sensors. In addition, Transformers require long-term historical
data. Therefore, lightweight GSL is necessary for accurate
MTSAD.

III. PROBLEM DESCRIPTION AND PRELIMINARIES

A. Problem Description

MTS contains a large number of equally-spaced sampling
and continuous observation points with K indicators and N
timestamps, denoted by X = (x1,x2, . . . ,xK)T ∈ RK×N .

Likewise, the i-th indicator can be represented by xi =
(xi

1, x
i
2, . . . , x

i
N). The t-th timestamp contains the indicators’

K values denoted by xt = (x1
t , x

2
t , . . . , x

K
t)T . Anomaly

ground truths are available at all timestamps. When the label
yt is 1, it means that the value of t-th timestamp xt is
abnormal.

Definition 1 (Anomaly detection): Given the continuous
w + 1 observations xt−w, . . . ,xt, the MTSAD task aims to
identify whether the last observation xt is anomalous.

B. Graph Structure Learning

GSL is a promising solution that learns the unknown or
hidden graph topology joint with the downstream GNN task.

Definition 2 (Graph structure learning): Given the time
series X ∈ RK×N , the graph structure learner’s purpose is
to obtain a graph G = (V,E) and its topology or adjacency
matrix A ∈ RK×K . The node v in the graph represents a
sensor that produces an indicator, while the hidden relationship
between the sensors is represented by the edges E. Further-
more, the adjacency matrix A stores the edge information
in the graph, reflecting the underlying dependencies among
indicators. In this instance, the adjacency matrix’s elements
are composed of 0 and 1. If Ai,j is 1, it represents an edge
between nodes i and j. On the contrary, if Ai,j = 0, there is
no edge between nodes i and j.

There are three types of GSL methodologies: metric-based,
neural network and direct approaches [18].

• Metric-based approaches utilize a metric function to cal-
culate the similarity between the features or embeddings
of node pairs, which is then used as the edge weight.
Edges tend to connect similar nodes, assuming that
network homogeneity is present. For example, AGCN
[19] utilizes the generalized Mahalanobis distance of the
node pair features with a Gaussian kernel to construct the
adjacency matrix. Similarly, GRCN [20] uses the inner
product of node embeddings to obtain the edge weights.

• Neural network approaches utilize deep neural networks
to model edge weights based on node features or rep-
resentations. For example, GLN [21] iteratively learns
graph structures from local and global node embeddings
by a simple single-layer neural network. PTDNet [22]
obtains the adjacency matrix by a multilayer perceptron.

• Direct approaches treat the target graph’s adjacency ma-
trix as independent variables and jointly optimize the
downstream task’s model parameters, independent of
the node representation. However, jointly optimizing the
adjacency matrix and model parameters often involves
non-differentiable operations, making gradient-based op-
timization methods infeasible. To address this, LDS [23]
models the edges between each node pair by sampling
Bernoulli distributions with learnable parameters and
approximates the solution using hypergradient estimation.
In contrast, GLNN [24] employs an alternating optimiza-
tion scheme, iteratively updating the adjacency matrix and
model parameters.

On the one hand, metric-based and neural network ap-
proaches have the advantage of end-to-end training but come

4

with quadratic computation costs. On the other hand, direct
approaches offer flexibility but require addressing the non-
differentiability issue. Nonetheless, GSL is a thriving research
field applied in MTSAD and in various time series prediction
and classification tasks. Therefore, it is crucial to select an
appropriate GSL approach that can be flexibly adapted to
different downstream tasks.

IV. PROPOSED METHODOLOGY

A. Overview

In most real-world scenarios, there are complex topological
relationships among indicators, and these relationships can be
presented as a graph. Each indicator is regarded as a node
and relationships between the indicators are treated as edges
between nodes in the graph. The previous method [14], [25]
calculates the similarity between each node pair based on
the indicator features and connects the top-k most similar
indicators as neighbors. This approach results in a kNN graph,
which only considers the k nearest neighbor relationships.
Therefore, to fully capture the relationships, we leverage the
direct approaches in graph structure learning and propose a
multivariate time series anomaly detection method based on
lightweight graph structure learning and recurrent graph con-
volution neural networks. This allows us to comprehensively
consider the relationships within the graph structure.

The process of GSLAD can be summarized as follows:
firstly, the graph structure learner learns the adjacency matrix
A. Secondly, based on the adjacency matrix A, a DCRNN-
based predicts the value x̂t of the t-th timestamp from the
historical observations xt−w, . . . ,xt−1. Then, the adjacency
matrix is jointly trained with the prediction task, and the
normalized prediction error between the predicted value x̂t

and the ground truth xt is treated as the anomaly score. Finally,
a grid search algorithm is used to select a threshold for best
detection accuracy. Once the anomaly score at timestamp t
exceeds the threshold, timestamp t is taken as an anomaly.

To support the above process, GSLAD involves four main
components: the graph structure learner, a DCRNN-based
predictor, the anomaly score calculation, and the threshold
selection.

(1) Graph structure learner. It learns the relationship
between indicators. Hence, we employ a full graph param-
eterization learner due to the quadratic costs generated by
metric-based and neural network approaches. This learner
directly models each element of the adjacency matrix A
with independent parameters. Furthermore, to handle the non-
differentiability issue, we employ the Gumbel–Softmax repa-
rameterization technique. This approach offers a more com-
putationally efficient alternative than methods with quadratic
costs.

(2) DCRNN-based predictor. It predicts the future value.
DCRNN captures spatial relationships through diffusion con-
volution and temporal dependencies using an encoder–decoder
architecture, enabling the simultaneous modeling of temporal
and spatial features. Consequently, we opt to utilize DCRNN
instead of GCN for prediction. According to the sliding win-
dow, a MTS is divided into multiple subsequences. Based on

TABLE I
LIST OF NOTATIONS

Notation Meaning

X Multivariate time series
xi The i-th indicator values
xt The indicator values at timestamp t
x̂ The prediction
K The number of indicators
N The number of timestamps
yt The label of the t-th timestamp
G Graph
A Adjacency matrix
gi The samples from the Gumbel distribution
πi The probabilities of the i− th class
τ The temperature parameter

H(t) The hidden features at timestamp t
Erri (t) The prediction error at timestamp t for sensor i
s(t) The anomaly scores

the adjacency matrix obtained by the graph structure learner,
the recurrent graph convolution neural network predicts the
following value x̂t of the subsequence xt−w, . . . ,xt−1.

(3) Anomaly score calculation. The anomaly score is
derived from the normalized prediction error between the
predicted value x̂t and the ground truth xt. High anomaly
scores indicate that the ground truth may deviate from the
normal pattern, suggesting that anomalies are more likely to
occur.

(4) Threshold selection. When the anomaly score exceeds
the selected threshold, this indicates that an anomaly has
occured. The threshold should be selected carefully. Therefore,
we employ a grid search algorithm to determine the threshold
that yields the best detection accuracy.

The notations in this paper are shown in Table I. The
following subsection describes each part in detail.

B. Graph Structure Learner

To address the quadratic cost issue associated with pair-wise
similarity in graph structure learning, we employ a full graph
parameterization learner. This approach treats each element of
the adjacency matrix as a learnable parameter, enabling joint
optimization with the downstream task’s model parameters.
However, jointly optimizing the adjacency matrix and model
parameters presents challenges. For instance, the adjacency
matrix A consists of binary and discrete variables, rendering it
non-differentiable. As a result, the backpropagation algorithm
cannot accurately compute the parameter gradients.

Therefore, we apply a reparameterization technique (i.e.,
the Gumbel-Softmax method) [26], which is a continuous
distribution sampled approximately from a class distribution.
As a result, the discrete parameters can be represented by
continuous parameters and parameter gradients can be easily
computed using the Gumbel–Softmax approach.

First, the Gumbel-Max trick is a simple and effective
method for sampling from a class distribution, and its formula
is defined by Eq.(1). Gumbel-Max samples the i-th class using
the class probability πi.

z = argmax
i

(gi + log πi)

gi = − log(− log(u)), u ∼ Uniform(0, 1)
(1)

5

Fig. 2. In the GSLAD framework, the graph structure learner is used to construct the topological relationships among indicators, the DCRNN-based predictor
obtains the indicators’ predictions, the anomaly score calculation is used to calculate the errors between ground truths and predictions, and threshold selection
is employed to determine whether anomalies are present based on the anomaly scores.

where u represents samples drawn from the Uniform(0,1) dis-
tribution, gi is the Gumbel distribution obtained by computing
u, πi denotes the probability of the i-th class, and z shows
the sampled class. The argmax function is not differentiable.
Thus, we search for a smooth argmax approximation (i.e.,
the softmax function). The softmax function is used as a
continuously differentiable approximation to the parameter’s
maximum value, as shown below:

z = softmax (gi + log πi) (2)

For the GSL sampling problem, there are n ∗ n discrete
variables in the adjacency matrix A and only two classes.
Therefore, the Gumbel-Softmax for the adjacency matrix is
finally defined as Eq.(3):

zi,j1 =
exp

((
log πi,j

1 +gi,j
)
/τ

)
∑

v∈{0,1}
exp

((
log πi,j

v +gi,j
)
/τ

) (3)

where gi,j is the gumbel distribution, and πi,j
1 shows the value

of row i and column j of a probability matrix π1 ∈ RK×K .
This represents the probability that node i is connected to node
j in the graph. The probability matrix π1 leads to π0 (πi,j

0 =
1 − πi,j

1), which represents the probability that there is no
edge connecting nodes i and j. τ is the temperature parameter,
which controls the smoothness of the sampling process. When
τ approaches zero, the softmax tends to the argmax, and
samples (z0, z1) from the Gumbel-Softmax distribution tend
to be one-hot vectors, i.e., one element is 1 and another is 0.

Finally, the row i and column j in the adjacency matrix Ai,j

is set to zi,j1 , which is set to 1 with probability πi,j
1 .

In our graph structure learner, we begin by randomly initial-
izing the probability matrix π1. The adjacency matrix is then
generated by performing Gumbel–Softmax sampling on the
probability matrix. This adjacency matrix represents whether
or not there are connections between sensors and is used in the
downstream prediction task. Afterward, the probability matrix
is updated by loss backpropagation for the downstream task,
as shown in Fig. 3. As the probability matrix is updated, the
connections between sensors, i.e., the adjacency matrix, are
also updated. Eventually, we obtain an adjacency matrix that
is most suitable for the current downstream task.

Fig. 3. The graph structure learning process.

C. DCRNN-based Predictor
The DCRNN-based predictor predicts future values based

on past values and facilitates anomaly detection according to
the prediction errors. At timestamp t, we define subsequence
Xt according to a sliding window size w over the historical
time series data as follows:

Xt = [xt−w, . . . ,xt−1] ∈ RK×w. (4)

6

The adjacency matrix A and the subsequence Xt are fed into
the predictor to predict the value x̂t of the next timestamp.

Moreover, DCRNN captures spatial dependency using dif-
fusion convolution, and the temporal dependency using the
encoder–decoder architecture. This unique combination allows
DCRNN to simultaneously model and capture both temporal
and spatial features. Therefore, we utilize DCRNN instead of
GCN in our approach.

For capturing spatial dependency, DCRNN exploits a L-
step diffusion process based on a random walk to model
the proximity between nodes and perform feature aggregation
based on the L-hop neighbor node proximity. It also utilizes
an L-step diffusion convolutional layer to replace L-graph
convolutional layers. The diffusion convolution ◦ is defined
as follows:

WQ ◦ Y =
∑L

l=0

(
wQ

l,1

(
D−1

O A
)l
+ wQ

l,2

(
D−1

I AT
)l)

Y

(5)
where DO and DI are the out- and in-degree matrices, wQ

l,1

and wQ
l,2 denote the model parameters, and L is the diffusion

degree. Eq. (6) gives the expansion term of Eq. (5) when L=2.
The first term (wQ

0,1Y +wQ
0,2Y) is the node’s own information.(

D−1
O A

)
and

(
D−1

I AT
)

obtain the first-order input and output
neighbors, respectively. Therefore, the second line in Eq.
(6) is used to aggregate the first-order neighbor information.
Similarly,

(
D−1

O A
)2

and
(
D−1

I AT
)2

obtain the second-order
input and output neighbors, respectively. The third line is
used to aggregate the second-order neighbor information. L
adjusts the information about the neighbor nodes which can
be aggregated.

WQ ◦ Y = wQ
0,1Y + wQ

0,2Y+

wQ
1,1

(
D−1

O A
)
Y + wQ

1,2

(
D−1

I AT
)
Y+

wQ
2,1

(
D−1

O A
)2

Y + wQ
2,2

(
D−1

I AT
)2

Y

(6)

For each node, the diffusion convolutional layer aggregates
information from neighboring nodes up to L steps away in
both the outward and inward directions. This allows the model
to capture the influence of distant nodes in the graph structure,
providing a more comprehensive understanding of the spatial
dependencies in the data.

For capturing temporal dependency, DCRNN uses the Gated
Recurrent Unit (GRU) which is a simple yet powerful variant
of recurrent neural networks (RNNs). Specifically, DCRNN
uses diffusion convolution instead of matrix multiplication in
the GRU, where the diffusion convolution is the frequency
domain graph convolution. The specific formula of DCRNN
is as follows:

Rt= sigmoid
(
WR ◦

[
xt||H(t−1)

]
+ bR

)
(7)

Ct= tanh
(
WC ◦

[
xt||(Rt ⊙H(t−1))

]
+ bC

)
(8)

Ut= sigmoid
(
WU ◦

[
xt||H(t−1)

]
+ bU

)
(9)

H(t) = Ut ⊙H(t−1)+(1−Ut)⊙ Ct (10)

where || is the concatenation operation of two features, ◦ is
the diffusion convolution operation, Ut is the update gate, Rt

is the reset gate, and Ct is the candidate hidden state. An unit

in DCRNN takes the node feature H(t−1) at timestamp t− 1
and the value xt at timestamp t as inputs. The update gate,
reset gate, and the candidate hidden state are generated by
diffusion convolution operation. These inputs are processed to
obtain the node feature H(t) at the timestamp t. The structure
of a DCRNN unit is given in Fig. 4.

Fig. 4. The structure of a DCRNN unit.

Addtionally, DCRNN uses a sequence-to-sequence architec-
ture to predict the value of the next timestamp. Its process can
be summarized as follows.

In the encoder part of the model, the node feature H(·) is
updated from timestamp t − w to timestamp t − 1, where w
denotes the length of the subsequence. This updating process
accumulates the information from multiple past timestamps,
resulting in the total node feature H(t−1) of the subsequence,
as shown in Fig. 2.

Regarding the decoder model, the total node feature H(t−1)

is used as the input. After passing through a layer in the
decoder model, a hidden feature is obtained along with the
predicted value x̂t at timestamp t.

D. Loss Function

There are two tasks: prediction task and graph structure
learning task. For prediction task, we use the mean absolute
error as the loss function lossp to ensure that the predictions
are as close as possible to the ground truth value, as shown
below:

lossp = 1
K

K∑
i=1

|x̂i
t − xi

t| (11)

where x̂i
t and xi

t are respectively the prediction and the ground
truth of i-th indicator value in timestamp t.

For graph structure learning task, to improve the quality
of the learned graph, some prior knowledge can be added
to the model training process. When the graph structure
is unknown, some properties of the kNN graph are still
reasonable knowledge. Therefore, we utilize the kNN graph,
denoted as A′, to incorporate prior knowledge. This graph
represents the similarity between indicator values. By adding
a regularization term lossg to the model training process, we
ensure that the learned graph structure A is consistent with
our prior knowledge. The regularization term lossg is defined
as the cross-entropy loss between the prior knowledge graph
A′ and the learned graph structure A. This regularization loss

7

helps enforce the desired graph structure during the training
process.

lossg =
∑
ij

−A′
i,j logAi,j − (1−A′

i,j) log(1−Ai,j)

(12)

A′
i,j =

xi • xj

||xi|| • ||xj ||
(13)

To balance two loss functions, we introduce the balancing
parameter λ. The total loss function of the model is defined
as Eq. (14).

loss = lossp + λlossg (14)

E. Anomaly Score and Threshold Selection
1) Anomaly Score: Firstly, the comparison between the

ground truth value and the predicted value is conducted at
timestamp t, and the resulting prediction error Erri (t) is
calculated for sensor i as follows:

Erri (t) = |xi
t − x̂i

t| (15)

Subsequently, we performed a standard normalization of
the prediction error and determined the anomaly score at
timestamp t by determining the highest value among all
sensors as follows:

s(t) = max
i

si (t) = max
i

Erri (t)− µi

σi
(16)

where µi and σi are the mean and standard deviation of
Erri (t) respectively.

Finally, if the anomaly score at timestamp t exceeds the
threshold, timestamp t is marked as an anomaly.

2) Threshold Selection: To determine the optimal threshold,
we employ employ a grid search methodology. This involves
iteratively adjusting the threshold within a predefined range
and measuring the performance metric for each threshold set-
ting. The threshold that yields the best performance metric is
then selected as the final threshold. To conduct the grid search,
we set the upper and lower limits of the threshold range as the
maximum and minimum values of s(t), respectively. Then, we
use a step size of 0.01 to ensure thorough threshold evaluation
within this range. By exhaustively evaluating every threshold,
we aim to identify the threshold value that achieves the highest
F1 score. This serves as the threshold for optimal performance.
Furthermore, we implement a point-adjust strategy to fine-tune
the anomaly score [4].

V. PERFORMANCE ANALYSIS

This section describes the experiments we conducted to
answer the following research questions (RQs):

• RQ1: How effective and efficient is GSLAD?
• RQ2: How effective is GSLAD with different compo-

nents?
• RQ3: How robust is GSLAD with different parameters?
• RQ4: How does the GSLAD graph learning work during

anomaly detection? What is the relationship between the
learned graph and the predictions?

• RQ5: How proficient is GSLAD in detecting anomalies
in the filed of consumer electronics products (CEP)?

TABLE II
DATASET DESCRIPTION

Dataset SWAT WADI MSL SMAP

Features 51 127 55 25
Training length 49500 76297 58317 135183
Testing length 45000 17280 73729 427617
Total length 94500 93577 132046 562800
Anomalies 5387 1035 7904 56146

Anomaly ratio(%) 11.97% 5.99% 10.72% 13.13%

A. Datasets

In our experiments, we use four datasets widely used in the
field of anomaly detection in IoT systems to evaluate the model
performance [11], [15]. Table II presents datasets’ statistics,
including the number of features, the training and testing
time series length, the number of anomalies, and the anomaly
ratio. It is important to note that all the training time series
exclusively consist of normal instances, while the anomalies
are present only in the testing time series. Given that the
anomalies in these datasets represent actual occurrences and
cannot be artificially injected, the anomaly ratio remains static
throughout the evaluation. Furthermore, the sample number
can be calculated as the time series length minus the window
size. The four datasets are described below:

1) The Safe Water Treatment (SWAT) dataset2 comes from
a water treatment testbed coordinated by the Public Utilities
Authority of Singapore. The collection process lasts 11 days
and the system operates 24 hours a day, recording the network
traffic and values obtained by all 51 sensors and actuators.

2) The Water Distribution (WADI) dataset3 is a distribution
system consisting of a large number of water distribution
pipelines. WADI, as an extension of the SWAT testbed, forms
a more complete and realistic water treatment, storage, and
distribution network. The dataset includes a total of 16 days of
continuous operations, of which 14 days are regular operations
and 2 days are attack scenarios. The entire testbed contains 127
sensors and actuators.

3) The Mars Science Laboratory rover (MSL) dataset con-
tains sensor and actuator data collected from the Mars rover by
the National Aeronautics and Space Administration (NASA).
MSL includes a total of 55 metrics for 27 entities.

4) The Soil Moisture Active Passive satellite (SMAP)
dataset is a collection of soil samples and telemetry gathered
by NASA using the Mars rover. SMAP contains a total of 25
metrics for 55 entities.

Among the four datasets, SWAT and WADI are both
generated from industrial water treatment IoT system sensor
monitoring, while MSL and SMAP are both from spacecraft
IoT systems. To handle the large amount of raw data in
the SWAT and WADI datasets, a down-sampling technique
is applied. It takes the median value within each 10-second
window. Once an anomaly occurs within a 10-second window,
it is marked as abnormal.

2https://itrust.sutd.edu.sg/itrust-labs-home/itrust-labs swat/
3https://itrust.sutd.edu.sg/itrust-labs-home/itrust-labs wadi/

https://itrust.sutd.edu.sg/itrust-labs-home/itrust-labs_swat/
https://itrust.sutd.edu.sg/itrust-labs-home/itrust-labs_wadi/

8

B. Evaluation Metrics

We consider the detection accuracy and training time as
evaluation metrics. Precision (Prec), recall (Rec), and F1
score (F1) are often used as evaluation metrics for anomaly
detection accuracy, as shown in Eqs. (17), (18.) and (19).
F1 score effectively balances precision and recall, providing
a comprehensive evaluation in anomaly detection scenarios
where imbalanced datasets are commom. Therefore, F1 scores
are widely used as the metric of detection performance [13]–
[15].

Prec =
TP

TP + FP
(17)

Rec =
TP

TP + FN
(18)

F1 =
2× Prec× Rec

Prec + Rec
. (19)

where TP, TN, FP, and FN are the numbers of true positives,
true negatives, false positives, and false negatives, respectively.
Furthermore, the training time is the running time of each
epoch during training.

C. Settings

1) Parameters: For GSLAD , the window size w is 12, the
temperature parameter τ is 0.1, and the loss balance weight λ
is 1 according to the experiment result in the section V-F2. The
number of neighbors k in the prior kNN graph is 10. We take
the Adam optimizer, the learning rate is 0.001, the batch size
is 64, and the epoch number is 30. For DCRNN, the diffusion
degree L is 3, the hidden dimensions of one DCRNN unit are
64, and the dimensions of node feature Ht are 3264.

For GDN and GTA, we use their default experimental
parameters, where the window sizes of GDN and GTA are
5 and 60, respectively.

We run each experiment five times and report the mean
value. All the experiments are conducted on the Google Colab
with NVIDIA Tesla T4 Graphics Processing Units (GPUs).

2) Baselines: We compare GSLAD with 11 machine
and deep learning methods, IF, AE, DAGMM, LSTM-NDT,
LSTM-VAE, MAD-GAN, OmniAnomaly, USAD, MTAD-
GAT, GDN, and GTA. Table III presents a comprehensive
comparison of the various methods’ characteristics, including
method type, features, data requirements, application field, and
complexity.

• AE: Autoencoder is utilized to reconstruct the input data,
and the resulting reconstruction error is used as the
anomaly score.

• IF [27]: The isolation forest method is a tree-based
anomaly detection algorithm. It effectively identifies
anomalous samples by gaining insight into the distribu-
tion of the input data.

• DAGMM [9]: It simultaneously trains a deep autoencod-
ing and Gaussian mixture model, with the objective of
generating a low-dimensional representation and identi-
fying anomalies based on reconstruction errors.

• LSTM-NDT [7]: It uses LSTM to achieve high prediction
performance and provides a nonparametric, dynamic,

and unsupervised anomaly thresholding method to detect
anomalies.

• LSTM-VAE [8]: It projects multimodal observation and
temporal dependencies into a latent space and recon-
structs the expected distribution through LSTM-based
VAE.

• MAD-GAN [10]: It exploits LSTM as the base model in
the GAN framework to capture the temporal correlation
of time series distributions.

• OmniAnomaly [4]: It is a prior-driven stochastic model
for timestamp anomaly detection that directly returns the
reconstruction probability.

• USAD [11]: It adversarially trains an encoder-decoder
framework to achieve rapid and efficient training.

• MTAD-GAT [13]: It treats the relationship between in-
dicators as a complete graph and utilizes graph attention
neural networks for anomaly detection.

• GDN [14]: It uses pair-wise cosine similarity between
nodes to construct graph structures and utilizes attentional
GNNs to learn the dependencies between time series and
predict behavior.

• GTA [15]: It involves automatically learning a graph
structure and utilizes graph convolution and Transformer-
based architecture to model temporal dependency.

D. RQ1. The GSLAD Performance

1) Accuracy: The anomaly detection results in terms of
precision, recall, F1 score, and percent delta between GSLAD
and the second-best method for all datasets are shown in Table
X. The GSLAD performance is significantly better than that of
the other methods. For the SWAT and WADI datasets, GSLAD
achieves the best F1 scores of 95.13 and 83.8, respectively.
Similarly, GSLAD outperforms the baselines on the SMAP
and MSL datasets; it achieves F1 scores of 97.2 and 98.7,
respectively. In contrast, the performance of WADI with all
the methods is lower than other datasets, because the WADI
dataset has the lowest anomaly rate, as shown in Table II.
However, GSLAD still shows the best performance on the
WADI dataset due to the full graph structure learning. Al-
though GSLAD only improves the F1 score by 2-3% compared
with GTS on the WADI dataset, GSLAD greatly reduces the
computational complexity and thus the training time as shown
in Table V. Therefore, GSLAD is more suitable for consumer
electronics and IoT products.

Fig. 5 shows the distribution of F1 scores for the
four datasets over multiple experiments. GSLAD has stable
anomaly detection accuracy. Therefore, it displays improved
effectiveness compared to existing methods even under high-
dimensional time series and imbalanced sample scenarios,
which is very important in practical applications.

2) Training Time: We select all the existing GSL-based
methods (i.e., GDN and GTA) for training time comparison
due to their superior performance compared to other models.
The results are shown in Table V. our method’s training time
is less than that of GTA and more than that of GDN for all
datasets. GSLAD exploits DCRNN for time series prediction,
while GDN utilizes a static GNN. Although GSLAD has more

9

TABLE III
THE COMPARISON OF EXISTING MTSAD METHODS

Method Type Features Normal
training data Application field ComplexityTemporal Indicator Graph

IF Machine Learning All fields Low
AE Deep Learning ✓ All fields Low
DAGMM Deep Learning ✓ Intrusion detection system, medical disease detection Middle
LSTM-NDT Deep Learning ✓ ✓ Spacecraft monitoring systems Low
LSTM-VAE Deep Learning ✓ ✓ Robot-assisted feeding system Mid
MAD-GAN Deep Learning ✓ ✓ Cyber-physical systems High
OmniAnomaly Deep Learning ✓ ✓ Spacecraft monitoring systems, IT system operations High
USAD Deep Learning ✓ ✓ Cyber-physical systems, IT system operations Low
MTAD-GAT Deep Learning ✓ ✓ ✓ Spacecraft monitoring systems High
GDN Deep Learning ✓ ✓ ✓ Cyber-physical systems Low
GTA Deep Learning ✓ ✓ ✓ ✓ Cyber-physical systems High

*Temporal means the temporal feature, indicator means the inter-indicator feature, and graph means learnable graph structure features. ✓ means that the
method considers the feature or training data should be normal.

TABLE IV
PRECISION, RECALL AND F1 SCORE ON SWAT AND WADI.

Method SWAT WADI SMAP MSL
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

IF 96.2 73.15 83.11 62.41 61.55 61.98 44.23 51.05 46.71 56.81 67.4 59.84
AE 72.63 52.63 61.03 34.35 34.35 34.35 72.16 97.95 77.76 85.35 97.48 87.92

DAGMM 27.46 69.52 39.37 54.44 26.99 36.09 63.34 99.84 71.24 75.62 98.03 81.12
LSTM-NDT 77.78 51.09 61.67 1.38 78.23 2.71 85.23 73.26 78.79 62.88 100 77.21
LSTM-VAE 96.24 59.91 73.85 87.79 14.45 24.82 71.64 98.75 75.55 85.99 97.56 85.37
MAD-GAN 98.97 63.74 77.54 41.44 33.92 37.3 81.57 92.16 86.54 85.16 99.3 91.69

OmniAnomaly 72.23 98.32 83.28 26.52 97.99 41.74 75.85 97.56 85.35 91.4 88.91 90.14
USAD 100.0 56 71.79 43.09 22.51 29.57 74.8 96.27 84.19 79.49 99.12 88.22

MTAD-GAT 21.03 64.46 31.71 11.72 30.55 16.94 79.91 99.91 88.8 79.17 98.24 87.68
GDN 99.35 68.12 80.82 97.5 40.19 56.92 74.8 98.91 85.18 93.08 98.92 95.91
GTA 93.9 85.7 89.6 79.6 79.4 79.5 89.11 91.76 90.41 91.04 91.17 91.11

GSLAD 96.77 93.53 95.1395.1395.13 78.2 90.2 83.883.883.8 94.56 100 97.297.297.2 97.5 100 98.798.798.7

Percentage Increase +3.06% +9.14% +6.1% -1.76% +13.6% +5.41% +6.12% +8.98% +7.51% +4.75% +1.09% +2.91%
*The highest and second-highest results are highlighted in boldface and underlined, respectively.

SWAT WADI MSL SMAP
Datasets

75

80

85

90

95

100

F1

Fig. 5. The F1 scores of GSLAD on four datasets.

training time, it outperforms GDN significantly. Moreover,
GTA utilizes the Transformer to make predictions, and its
complexity far exceeds that of DCRNN and the static GNN.
Thus, GTA’s training time is the longest. GSLAD improves
the F1 score and greatly reduces the training cost.

As the number of nodes in the graph increases, the training
time of the model also increases. When G is sparse, Eq. (5)
can be calculated efficiently using O(L) recursive sparse-dense
matrix multiplication with total time complexity O(L|E|) ≪
O(K2) [28]. Based on prior knowledge, the WADI dataset
with 127 indicators has the largest nodes among all the datasets

TABLE V
TRAINING TIME OF EACH EPOCH(S).

Method SWAT WADI SMAP MSL

GDN 11.13 42.4 0.67 0.57
GTA 107.38 154.33 8.46 4.17

GSLAD 21.72 65.91 1.2 0.85

in the anomaly detection field. The training time of GSLAD
is still less than that of GTA. Notably, data collection and
anomaly detection tasks for smart home and IoT systems
are typically handled by their gateways or data centers. As
a result, it is necessary to employ anomaly detection methods
with low computational complexity and training time to reduce
the computing capability requirements and deployment costs.
Therefore, GSLAD is more suitable for smart home and IoT
systems than other methods.

E. RQ2. Ablation Studies

We compare the effects of different anomaly score methods
and threshold selection methods on experimental performance
to demonstrate the effectiveness of our approach.

1) Anomaly Score: We select three anomaly score methods
to compare with that of GSLAD, which is named by standard
method.

Me-IQR is similar to the standard method, where the
median and inter-quartile range (IQR) are used to normalize

10

TABLE VI
PRECISION, RECALL, AND F1 SCORE WITH DIFFERENT ANOMALY SCORES AND THRESHOLD SELECTION.

Threshold Anomaly Score SWAT WADI MSL SMAP
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

POT

Harmonic-Mean 31.4 17.8 22.8 31.2 85.2 45.7 54.8 79.9 64.8 95 46.6 61.6
2-Norm 23.4 93 37 9.3 93.2 17 87.3 99.9 93.393.393.3 88.7 99.9 94.194.194.1
Me-IQR 96.9 77.2 86 95.9 16.3 27.9 68.5 99.9 81.3 52.1 99.9 68.5
Standard 99.07 90 94.3294.3294.32 74.76 56.03 64.0664.0664.06 70.5 99.9 82.2 95 41.2 57.4

Grid search

Harmonic-Mean 63.3 87.2 73.4 94.2 57.2 71.2 80.5 100 87.8 82.9 100 90.6
2-Norm 93.5 80.3 86.4 9.65 100 17.6 41.1 100 58.2 60.5 100 75.4
Me-IQR 90.8 86.3 88.5 66.8 38.7 49 66.6 100 79.9 87.5 100 93.3
Standard 96.77 93.53 95.1395.1395.13 78.2 90.2 83.883.883.8 97.5 100 98.798.798.7 94.56 100 97.297.297.2

the anomaly score instead of the mean and variance, as shown
below:

Erri (t) = |xi
t − x̂i

t|
si (t) =

Erri(t)−µ̃i

σ̃i

s(t) = max
i

si(t)
(20)

where µ̃i and σ̃i are the median and IQR of the Erri(·),
respectively.

2-Norm compares the ground truth xi
t and the prediction x̂i

t.
The anomaly score is obtained by squaring the second norm
of the deviation between the xi

t and the x̂i
t.

s(t) =

K∑
i=1

|xi
t − x̂i

t|
2

2 (21)

Harmonic-Mean uses Euclidean distance to measure the
difference between the ground truth xi

t and the prediction x̂i
t.

dit =
∣∣xi

t − x̂i
t

∣∣ (22)

To avoid anomaly scores in univariate time series being
dominated by a single significant spike, it uses the anomaly
scores’ harmonic mean:

s(t) = K/

(∑K

i=1

1

dit

)
(23)

The results are summarized in the last four rows of Table
VI. The standard anomaly score method outperforms the other
three anomaly score methods for all the datasets. The standard
method can make the normal and anomaly more obvious.

2) Threshold Selection: We compare the peak over thresh-
old (POT) [29] technique with grid search in the GSLAD.
The POT technique is a statistical theory that aims to find the
extreme value law, and the extreme value is usually located in
the probability distribution’s tail. This technique’s advantage
is that it does not require making assumptions about the data
distribution when searching for extreme values.

The results are summarized in Table VI. All the anomaly
score methods with POT display poorer performance than
those with grid search for the SWAT and WADI datasets. In
addition, 2-Norm with POT is better than that with grid search
for the MSL and SMAP datasets. Me-IQR with POT is better
than with grid search for the MSL dataset. This suggests that
using grid search with the standard anomaly score can identify
anomaly data more effectively than other methods.

F. RQ3. Impact of Parameters
We consider the impact of the window sizes, loss function

weight, and sampling interval.

TABLE VII
TRAINING TIME FOR DIFFERENT WINDOW SIZES.

Window Size SWAT WADI SMAP MSL

5 14.412 49.791 0.748 0.535
12 21.723 65.91 1.206 0.854
20 28.41 89.219 1.64 1.17
30 38.07 124.3 2.386 1.717
40 52.23 152.91 3.009 2.53

TABLE VIII
THE IMPACT OF THE SAMPLING INTERVAL

Sampling
interval (s)

SWAT WADI
Prec Rec F1 Prec Rec F1

5 97.71 92.52 95.04 81.9 79.44 80.65
10 96.77 93.53 95.13 78.2 90.2 83.8
20 98.85 87.07 92.59 99.83 65.94 79.42

1) Window Size: We analyze the effect of the window size
on detection accuracy and training time. We set the windows w
to lengths of 5, 12, 20, 30, and 40. The results are summarized
in Fig. 6 (left) and Table VII. The window size has little
impact on the model’s detection performance. Our method’s
performance is stable for the SWAT, SMAP, and MSL datasets.
The performance on WADI on the WADI dataset slightly
reduces with a 5 window size, because WADI has more time
series and a lower anomaly rate. Table VII shows that the
larger th window size, the longer the training time. In general,
when the window size is 12, all the datasets can achieve a high
detection accuracy with an adequate training time. Therefore,
we set the window size to 12.

2) λ Parameter: In the previous sections, to improve the
learned graph’s quality, we add some prior knowledge to the
graph and use the parameter λ to balance out the prediction
and graph learning loss. In this subsection, we use the kNN
graph as prior knowledge to show the effect of the parameter
λ on the anomaly detection results for the four datasets. We
set λ to 0, 1, 5, 10, and 20. The results are shown in Fig. 6
(right). When λ is 1, the F1 scores are the best, indicating that
GSLAD has excellent anomaly detection performance when
the prediction and graph learning loss are balanced. When λ
is set to 0, GSLAD’s detection accuracy without the graph
learning loss decreases significantly for the MSL and WADI
datasets. This indicates that the graph learning loss improves
the detection accuracy.

3) Impact of Sampling Interval: Due to a large amount of
raw data, the SWAT and WADI datasets are down-sampled.
We analyze the impact of different sampling intervals on the

11

Fig. 6. The impact of parameter λ and window size.

TABLE IX
THE TOTAL NUMBER OF EDGES AND NODE AVERAGE DEGREE IN THE

LEARNED GRAPH.

Method SWAT WADI MSL SMAP
Edges Degrees Edges Degrees Edges Degrees Edges Degrees

GDN 167 3.27 388 3.05 74 2.96 152 2.76
GTA 1559 30.57 7492 58.99 404 16.16 2050 37.27

GSLAD 1757 34.45 11195 88.14 420 16.8 2063 37.51

SWAT and WADI datasets. We down-sample the original data
every 5, 10, and 20 seconds. The results are summarized in Ta-
ble VIII. When the sampling interval is 5 and 10 seconds, the
detection performance is similar. When the sampling interval
is 20 seconds, the performance decreases. The main reason is
that average down-sampling enhances the data’s smoothness.
Additionally, it smoothes out anomalies, rendering them more
challenging to detect.

(a) GDN (b) GTA (c) GSLAD

Fig. 7. Graph structure learned by different methods on SWAT dataset.

Fig. 8. Left: Understand the relationship between sensors with ground truth
and prediction, in which abnormal segments are marked by red. Right: Partial
graph structure learned on SWAT dataset.

G. RQ4: Graph Learning and Case Study

To illustrate GSL’s impact, we visualize the learned graph
structure of GDN, GTA, and GLSAD. Fig. 7 shows the learned

graph structures of the SWAT dataset. Table IX shows the
number of edges and the average node degree of the four
datasets. Notably, the graph learned from GDN is the sparsest
and the number of edges in GDN is the smallest. GDN
learns the node embeddings and constructs a kNN graph based
on the top-k most similar node. Moreover, the number of
neighbors or edges depends on the superparameter k. GDN
ignores the relationship among nodes out of top-k. In contrast,
GTA and GLSAD learn dense graphs because they regard the
adjacency matrix as independent variables without the number
of neighbors limitation. GLSAD learned more edges without
self-loop edges and has a higher average node degree than
GTA. This is because the downstream prediction task model
in GLSAD is a recurrent graph convolution neural network
that accounts for the dynamic temporal and spatial features.
Since the nodes in the graph represent indicators or features,
the relationship among nodes is also the relationship among
the indicators or features.

We conduct a case study, as shown in Fig. 8. Fig. 8 (left)
is a partial graph structure learned by GSLAD, and Fig. 8
(right) shows our model’s predictions for the relevant sensors.
In this case, sensor AIT-202 is compromised between the 100
and 210 timestamps. Hence, GSLAD detected an attack due
to the large difference between the predictions and ground
truth on AIT-202 during these two timestamps. Due to the
correlation between the sensors in the water treatment process,
the attack on AIT-202 causes the dosing pump P-203 to shut
down and affects the permeate conductivity analyzer AIT-504.
Furthermore, GSLAD accurately predicts the changes changes
occured in P-203 from the 100 to 210 timestamps and AIT-504
from the 500 timestamps. The values of P-203 and AIT-504
follow the changes in the ground truth and are not regarded as
anomalies, as shown in Fig. 8 (right). This is because GSLAD
learns the correlation among the three sensors correctly, as
shown in Fig. 8 (left).

H. RQ5: Anomaly Detection in Monitoring Data of CEP

To evaluate GSLAD’s efficiency in monitoring data of CEP ,
we conduct an experiment on the Identifying Age-Related Dis-
eases (ICR)4 dataset. ICR, which originates from the Kaggle
competition, is a dataset that encompasses health-related infor-
mation about individual patients or subjects. Generally, health-
related information can be collected by wearable consumer
electronics such as electronic bracelets and electronic watches.
ICR consists of 56 anonymized health features or variables for
each subject, along with a labeled list indicating whether or not
the subject has been diagnosed with certain diseases. Due to
the small size of this dataset, we employ the TimeGAN [30]
model with default parameters for data generation. In total,
we generate 10000 instances of data with an anomaly rate of
4.2%. Previous experiments have demonstrated the superiority
of GSL-based methods over other approaches. Hence, in our
evaluation, we solely compare GSLAD with various GSL-
based methods, using the same metrics. As shown in Table

4https://www.kaggle.com/competitions/icr-identify-age-related-conditions/
data

https://www.kaggle.com/competitions/icr-identify-age-related-conditions/data
https://www.kaggle.com/competitions/icr-identify-age-related-conditions/data

12

5, GSALD outperforms other methods in terms of F1 score
while requiring less training time.

TABLE X
PRECISION, RECALL, F1 SCORE, AND TRAINING TIME ON ICR.

Method Prec Rec F1 Training time(s)

GDN 75.31 96.13 84.42 2.13
GTA 91.23 90.76 90.94 16.36

GSLAD 94.91 100 97.39 3.87

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a multivariate time series anomaly
detection framework using lightweight and full graph struc-
ture learning. In this framework, we implement a simpler
and more effective graph structure learning approach and
prediction model by a recurrent graph convolution. Com-
pared with the baseline methods for four public real-world
datasets, our proposed GLSAD achieves the best performance
with short-term data while reducing the training overhead. In
the next generation of consumer electronics products, such
as autonomous driving or wearable devices, sensors exhibit
various interrelationships (e.g., sensor’s distance and data
similarity relationship) and the data contains noise. To take
full advantage of various interrelationships, we can try to
exploit multiple graph structure learners to learn multiple
graph structures to characterize the relationships between
sensors, obtain the hidden information from different graph
structures by multiple GNNs, and finally fuse the hidden
information by concatenation or on average for prediction.
Besides, our method does not consider the presence of noisy
data. To improve the robustness of the model to noise, we can
use the autoencoder to extract the hidden features and detect
anomalies on the hidden features instead of the original data.

REFERENCES

[1] M. Yamauchi, Y. Ohsita, M. Murata, K. Ueda, and Y. Kato, “Anomaly
detection in smart home operation from user behaviors and home
conditions,” IEEE Transactions on Consumer Electronics, vol. 66, no. 2,
pp. 183–192, 2020.

[2] J.-Y. Son, J.-H. Park, K.-D. Moon, and Y.-H. Lee, “Resource-aware
smart home management system by constructing resource relation
graph,” IEEE Transactions on Consumer Electronics, vol. 57, no. 3,
pp. 1112–1119, 2011.

[3] G. Fragkos, C. Minwalla, J. Plusquellic, and E. E. Tsiropoulou, “Ar-
tificially intelligent electronic money,” IEEE Consumer Electronics
Magazine, vol. 10, no. 4, pp. 81–89, 2021.

[4] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly
detection for multivariate time series through stochastic recurrent neural
network,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019, pp. 2828–
2837.

[5] S. He, M. Guo, Z. Li, Y. Lei, S. Zhou, K. Xie, and N. N. Xiong, “A
joint matrix factorization and clustering scheme for irregular time series
data,” Information Sciences, vol. 644, p. 119220, 2023.

[6] S. He, Z. Li, J. Wang, and N. Xiong, “Intelligent detection for key per-
formance indicators in industrial-based cyber-physical systems,” IEEE
Transactions on Industrial Informatics, vol. 17, no. 8, pp. 5799 – 5809,
2021.

[7] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soder-
strom, “Detecting spacecraft anomalies using lstms and nonparametric
dynamic thresholding,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2018, pp. 387–395.

[8] D. Park, Y. Hoshi, and C. C. Kemp, “A multimodal anomaly detector
for robot-assisted feeding using an lstm-based variational autoencoder,”
IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1544–1551,
2018.

[9] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and
H. Chen, “Deep autoencoding gaussian mixture model for unsupervised
anomaly detection,” in International Conference on Learning Represen-
tations, 2018.

[10] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, and S.-K. Ng, “Mad-gan:
Multivariate anomaly detection for time series data with generative
adversarial networks,” in International Conference on Artificial Neural
Networks. Springer, 2019, pp. 703–716.

[11] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga,
“Usad: Unsupervised anomaly detection on multivariate time series,”
in Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 3395–3404.

[12] Q. He, Y. Zheng, C. Zhang, and H. Wang, “Mtad-tf: Multivariate time
series anomaly detection using the combination of temporal pattern and
feature pattern,” Complexity, vol. 2020, p. 8846608, 2020.

[13] H. Zhao, Y. Wang, J. Duan, C. Huang, D. Cao, Y. Tong, B. Xu, J. Bai,
J. Tong, and Q. Zhang, “Multivariate time-series anomaly detection via
graph attention network,” in 2020 IEEE International Conference on
Data Mining (ICDM), 2020, pp. 841–850.

[14] A. Deng and B. Hooi, “Graph neural network-based anomaly detection
in multivariate time series,” in Proceedings of the 35th AAAI Conference
on Artificial Intelligence, 2021.

[15] Z. Chen, D. Chen, X. Zhang, Z. Yuan, and X. Cheng, “Learning
graph structures with transformer for multivariate time-series anomaly
detection in iot,” IEEE Internet of Things Journal, vol. 9, no. 12, pp.
9179–9189, 2022.

[16] J. Pei, Z. Yu, J. Li, M. A. Jan, and K. Lakshmanna, “Tkagfl: a
federated communication framework under data heterogeneity,” IEEE
Transactions on Network Science and Engineering, 2022.

[17] D. Scheinert, A. Acker, L. Thamsen, M. K. Geldenhuys, and O. Kao,
“Learning dependencies in distributed cloud applications to identify
and localize anomalies,” in 2021 IEEE/ACM International Workshop
on Cloud Intelligence (CloudIntelligence), 2021, pp. 7–12.

[18] Y. Zhu, W. Xu, J. Zhang, Y. Du, J. Zhang, Q. Liu, C. Yang, and S. Wu,
“A survey on graph structure learning: Progress and opportunities,” 2021.

[19] R. Levie, M. M. Bronstein, and G. Kutyniok, “Transferability of spectral
graph convolutional neural networks,” J. Mach. Learn. Res., vol. 22, pp.
272:1–272:59, 2021.

[20] D. Yu, R. Zhang, Z. Jiang, Y. Wu, and Y. Yang, “Graph-revised
convolutional network,” in ECML/PKDD, 2020.

[21] D. D. S. Pilco and A. R. Rivera, “Graph learning network: A structure
learning algorithm,” ArXiv, vol. abs/1905.12665, 2019.

[22] D. Luo, W. Cheng, W. Yu, B. Zong, J. Ni, H. Chen, and X. Zhang,
“Learning to drop: Robust graph neural network via topological denois-
ing,” Proceedings of the 14th ACM International Conference on Web
Search and Data Mining, 2021.

[23] L. Franceschi, M. Niepert, M. Pontil, and X. He, “Learning discrete
structures for graph neural networks,” in ICML, 2019.

[24] X. Gao, W. Hu, and Z. Guo, “Exploring structure-adaptive graph learn-
ing for robust semi-supervised classification,” 2020 IEEE International
Conference on Multimedia and Expo (ICME), pp. 1–6, 2020.

[25] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Con-
necting the dots: Multivariate time series forecasting with graph neural
networks,” Proceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, 2020.

[26] E. Jang, S. S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” ArXiv, vol. abs/1611.01144, 2017.

[27] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 eighth
ieee international conference on data mining. IEEE, 2008, pp. 413–422.

[28] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional
recurrent neural network: Data-driven traffic forecasting,” in 6th
International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018. [Online]. Available:
https://openreview.net/forum?id=SJiHXGWAZ

[29] A. Siffer, P.-A. Fouque, A. Termier, and C. Largouët, “Anomaly de-
tection in streams with extreme value theory,” Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2017.

[30] J. Yoon, D. Jarrett, and M. Van der Schaar, “Time-series generative ad-
versarial networks,” Advances in neural information processing systems,
vol. 32, 2019.

https://openreview.net/forum?id=SJiHXGWAZ

	Introduction
	Related work
	Temporal Feature-based Methods
	Temporal-spatial Feature-based Methods
	Learnable Spatial Feature-based Methods

	Problem Description and Preliminaries
	Problem Description
	Graph Structure Learning

	Proposed Methodology
	Overview
	Graph Structure Learner
	DCRNN-based Predictor
	Loss Function
	Anomaly Score and Threshold Selection
	Anomaly Score
	Threshold Selection

	Performance Analysis
	Datasets
	Evaluation Metrics
	Settings
	Parameters
	Baselines

	RQ1. The GSLAD Performance
	Accuracy
	Training Time

	RQ2. Ablation Studies
	Anomaly Score
	Threshold Selection

	RQ3. Impact of Parameters
	Window Size
	 Parameter
	Impact of Sampling Interval

	RQ4: Graph Learning and Case Study
	RQ5: Anomaly Detection in Monitoring Data of CEP

	Conclusion and Future Work
	References

