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Abstract

Change Detection (CD) in Synthetic Aperture Radar (SAR) is an essential task in the field

of Earth Observation (EO). It focuses on identifying the change for the same geographical

region between two SAR images acquired at different times. SAR offers several advantages

over optical sensors. For instance, spaceborne SAR sensors are able to provide day/night

capability to map the globe in virtually all weather conditions. Moreover, SAR’s microwave

signals can pass through the cloud cover, allowing it to acquire data and generate images even

in the presence of clouds, fog and dust. Despite these advantages of SAR, CD in SAR remains

a highly challenging problem due to the misregistration of multi-temporal SAR images and

speckle noise. Both these challenges adversely affect the performance of SAR-based CD

techniques. In this thesis research, we have thoroughly discussed these challenges and have

proposed novel solutions to improve the overall performance of SAR-based CD algorithms.

For instance, we have proposed a deep neural network-based despeckling model (DM)

that effectively suppresses speckle noise and enhances the performance of the existing CD

methods. Specifically, the proposed despeckling methodology consists of two modules where

the first despeckling module passes the input SAR image through a series of convolutional

layers to suppress speckle noise and later feeds the resulting noise-reduced image to the

subsequent change detection module.

For change detection, we initiate a preclassification step employing the logarithmic ratio

operator and the hierarchical FCM algorithm. Subsequently, we utilise a layer attention

module that exploits correlations among multi-layer convolutions. This module produces



x

robust cascaded feature representations learned by the network. These robust representations

not only allow the proposed despeckling architecture to be resilient to multi-temporal SAR

acquired from one SAR imaging process (i.e., the same number of SAR images looks before

and after the change) but also enable it to deal with any combination of single or multi-look

images acquired prior and after the change. In addition to this despeckling model, we have

also developed a robust loss function that effectively suppresses the speckle noise, thereby

improving the change detection accuracy. Both the despeckling model and the proposed

noise-tolerant loss function are evaluated extensively on three public real SAR datasets,

achieving superior performance compared to existing state-of-the-art SAR CD methods in

all benchmark datasets.
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Chapter 1

Introduction

1.1 Background of Research Problem

Image-based change detection is one of the significant fields in remote sensing (RS) and

computer vision. RS change detection (CD) here refers to finding differences in an area from

remotely sensed images captured for the same geographical region at different periods [4,

5]. Change detection has been widely used in many applications, such as deforestation

monitoring in the agricultural sector. Civilian applications of change detection include

monitoring urban area development and city extension. In the military, it is used in gathering

information about new military installations, movement of the enemy’s military forces, and

damage assessment. In the areas of climate change, it has been used to monitor deforestation

and disasters [5, 6].

The RS CD process is vital in Earth Observation (EO) because it endeavours to distin-

guish the changed and unchanged pixels of multi-temporal EO images covering the same

geographical region but at different times. The multi-temporal images (images at differ-

ent times) should be co-registered to determine the correct position for each pixel in both

multi-temporal images before being inputted into the change detection method. The more

accurate the image registration process, the better the change detection performance [7–10].
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Once co-registered, the change map (a result of the change detection algorithm) can be easily

obtained using classical change detection methods by computing a difference image (DI),

simply the intensity difference between the two images.

However, change detection in EO is nontrivial owing to inherent challenges such as

co-registration errors, illumination variations, viewpoint, shadows, atmospheric effects

(e.g., presence of clouds, fog, etc.), and varying sensor characteristics. Moreover, surface

reflectance from incoherent objects (such as vegetation) can adversely affect the performance

of optical CD algorithms. Synthetic aperture radar offers distinct advantages over optical

sensors for CD in EO because it is not affected by weather conditions, provides penetration

through clouds and vegetation, and offers sensitivity to small changes, making it capable

of detecting changes that may be missed by optical CD methods. This technique allows

us to remotely map the reflectivity of objects or environments with high spatial resolution

through the transmission and reception of electromagnetic signals in the microwave spectrum,

which easily penetrates through clouds and provides all-weather day/night sensing capability,

making it suitable for applications related to disaster assessment (such as flooding and

earthquake) [11, 5, 12]. However, SAR data suffers from speckle noise caused by random

interference between the coherent returns issued from the many scatterers on the earth’s

surface. This speckle noise is the main challenge that affects CD accuracy. Eliminating the

noise will increase CD accuracy. Existing change detection methods struggle with this noise,

and despeckling it in the pre-processing step is necessary for this case [5, 12].

Therefore, a deep understanding of speckle filters is essential to improve the accuracy of

existing change detection methods. Moreover, a change detection method should be robust

to the noise and identify the difference between relevant and irrelevant information in the

input images to detect the change. Although this challenge with change detection is not easy,

deep learning has recently been used to solve remote sensing and computer vision challenges

and achieve state-of-the-art results in these problems, such as image classification and object
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detection. However, there are still many challenging problems for deep learning to solve.

One of these challenges is change detection. The traditional CD methods have misclassified

changed and unchanged objects or pixels over two periods (multi-temporal). Deep learning is

expected to provide higher accuracy and low computational cost for SAR change detection.

1.2 Motivation and Research Questions

The advancement in satellite imaging technology, characterized by enhanced resolution and

capabilities, particularly the ability to collect data without physical contact, has sparked

increased interest among researchers in Earth’s surface change detection. SAR change

detection aims to determine the difference between multi-temporal images for an exact

location [4, 2, 13]. Change detection techniques are broadly employed in several applications,

such as disaster assessment [14], environmental monitoring [15], land management [16], and

urban change analysis [17, 12]. SAR images are advantageous over optical images because

they can provide information about disasters in the darkness and all weather conditions.

However, SAR images suffer from speckle noise. This kind of noise heavily affects the

performance of change detection techniques. Research studies are trying to resolve this

challenge by despeckling noise or using deep learning SAR change detection methods. These

approaches still struggle with speckle noise, mainly when different noise levels exist between

pre-change and post-change SAR images. Addressing this challenge will enable us to provide

a clear change map image that can help us assess the disasters quickly. Moreover, it can,

in turn, support local governments in making effective and timely decisions to prevent or

mitigate material losses and lives.

The motivation for this research arises from the need to address the existing gaps in the

field of SAR change detection. Current research has encountered a speckle noise challenge

in the SAR change detection task. This study aims to fill this void with two approaches: First,

does despeckling SAR images before changing detection methods enhance CD performance?
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Second, we explore different deep-learning approaches for SAR change detection. We

specifically try to address the question of whether deep learning can deal with speckle noise

without despeckling techniques as a pre-processing step. Finally, we investigate different

image registration-based feature detection algorithms to reduce the change detection error by

misregistering the two SAR images. By addressing these questions, we anticipate that our

research will advance our understanding of SAR change detection tasks.

1.3 Aims and Objectives

To explore and improve the performance of SAR change detection methods, we aim to

address the issue of speckle noise that adversely affects the accuracy of these methods. In

order to achieve this goal, the following specific objectives have been identified:

• Review the literature and investigate different image registration techniques in re-

mote sensing image registration to reduce misregistration errors and improve change

detection accuracy.

• Evaluate the matching and registration process in existing methods for change detec-

tion.

• Review the literature and conduct experiments to evaluate the state-of-the-art algorithm

in SAR change detection.

• Develop a despeckling method based on deep learning to improve the accuracy of

change detection methods by reducing speckle noise.

• Evaluate and compare the performance of the proposed despeckling method with the

state-of-the-art despeckling methods.

• Develop a loss function for deep learning to reduce the influence of speckle noise and

improve the change detection performance.
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1.4 Thesis Overview

The thesis is broken into six chapters. These chapters are listed as the following:

Chapter One: Introduction: This chapter concentrates on the research background,

motivations and research questions, aims and objectives, problems, the structure of the

current thesis and publications and main contributions.

Chapter Two: Literature Review: This chapter discusses change detection and its types:

classical and deep learning change detection techniques. Image registration is discussed as

follows: classical and deep learning image registration techniques are used in producing

change detection. The image registration section also provides details about feature detectors

and then introduces the six famous feature detection and description methods. Feature

matching, outlier rejection, and performance evaluation are also described in Chapter 2.

Moreover, image denoising for optical images and image despeckling for SAR images are

reviewed. Remote sensing change detection is discussed in detail in optical image change

detection, SAR image change detection, and hybrid image change detection. Finally, the

summary of this chapter.

Chapter Three: Systematic Investigation of Image Registration for SAR Change

Detection: This chapter investigates the importance of image registration techniques in

enhancing change detection performance. Two SAR datasets are used for registration and

change detection tasks. The two datasets have large water areas, and changing areas are

small. Therefore, different pre-processing have been investigated for better change detection

accuracy. Four change detection methods have been compared with the SAR datasets. We

rely on the subject image assessment in this chapter because of the absence of a ground truth

label.
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Chapter Four: Enhanced Change Detection Performance Based on Deep Despeck-

ling of SAR Images: This chapter introduces our proposed despeckling model to enhance

the performance of the change detection methods. The proposed model is then compared

to different despeckling methods, including the state of the art methods. Two types of SAR

datasets have been used to train and test our proposed method in this chapter. Subsequently,

intensive experiments are performed over three real SAR datasets for change detection

tasks using four change detection methods, including the current state-of-the-art algorithms.

Following the results and discussion are presented. At the end of this chapter is the summary.

Chapter Five: Deep Learning-Based Change Detection for SAR Images: This chapter

explores deep learning networks that have been used in change detection. A proposed deep

learning method has been introduced, and robust loss function and better setting parameters

have been discussed for the proposed methods. The experiments have been done using three

SAR CD datasets. The results and discussion section compares our method with the state of

art methods.

Chapter Six: Conclusion and Future Work: This chapter offers a conclusion for the

research and outlines the contributions that this research has made. Any limitations faced

during this research are also presented. It also lists the future work that follows the research

done in this thesis.

1.5 Publications and Main Contributions

In this research, we have three main contributions.

• Chapter Three contribution and publication:

We investigated six image registration algorithms with different remote sensing datasets,

including SAR images. We have found that no algorithm can perform best on all SAR
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datasets. In addition, we use an Otsu with a 5x5 Gaussian filter to remove the unwanted

information under the water surface in the Suez dataset. This pre-processing step

assists in identifying the small change for the ships in the image at T1 (pre-change) and

image at T2 (post-change). We published a Survey paper on this work entitled "Image

Registration Techniques and Applications: Comparative Study on Remote Sensing

Imagery" at the DeSE conference. This paper concludes that no singular algorithm

demonstrates superior performance across all datasets. However, after assessing the

average performance across the three datasets, it becomes evident that SIFT exhibits

the most robust performance [7].

• Chapter Four contribution and publication:

We developed a despeckling model (DM) based on a convolutional neural network

(CNN). It is trained on synthetic SAR datasets and tested on synthetic and real SAR

CD datasets. DM is able to suppress the speckle noise and improve the performance of

the change detection methods. A conference paper was published based on this work

for BCD-SGAI 2023. It is entitled "Deep Despeckling of SAR Images to Improve

Change Detection Performance" [18].

• Chapter Five contribution and publication:

Our proposed method adapts from LANTNet. We have proposed a tolerant loss

function that is more resistant to speckle noise. It improves the CD performance. It is

important to mention that combining the despeckling model and the CD loss function

has further enhanced the CD performance. This work was accepted by the IEEE

Access journal. The paper entitled "Enhanced Change Detection Performance Based

on Deep Despeckling of Synthetic Aperture Radar Images" [19].





Chapter 2

Literature Review

Remote sensing images have been developed and utilised across various research domains,

focusing on change detection. The application of remote sensing for change detection is

crucial for discerning alterations between two images captured at different times within the

same geographical area [13, 2]. This process holds significance in diverse sectors, including

deforestation monitoring and damage assessment [4]. Remote sensing images serve as a valu-

able resource for observing the Earth’s surface. In the context of denoising, optical satellite

images offer researchers frequent data for Earth’s surface monitoring. However, this data is

susceptible to interference from darkness, clouds, and atmospheric conditions, necessitating

the collection of images during daylight and in favourable weather conditions [13].

In comparison, SAR images can work at night and are not affected by weather conditions,

darkness and clouds [20]. This characteristic gives SAR data an advantage over other RS data.

The limitation of SAR data is that it is influenced by speckle noise [21, 22]. Despeckling

this noise can improve the change detection result [23, 2, 24]. This chapter is structured as

follows: first, image registration, which is an essential step for change detection, is discussed,

and then image despeckling is also the fundamental step for change detection. The change

detection techniques are debated. Finally, the summary of this chapter is provided.
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2.1 Holistic Overview

Remote sensing change detection aims to identify the change between two multi-temporal

images for the same geographical region at different times [25, 4, 26]. It provides valuable

insights for various purposes, such as monitoring deforestation [4], detecting targets [27],

promoting agricultural progress [28], managing land [16], and analysing urban changes [17].

Moreover, the CD algorithms help to extract vital information to assess the change, especially

in case of natural disasters (e.g., earthquakes, floods, droughts, and hurricanes [14, 29, 30]),

which in turn supports the local governments to make an effective and timely decision to

prevent or mitigate material losses and lives.

Change detection is a quantitative analysis technique used to identify and measure surface

changes in phenomena or objects over two distinct time periods [31]. It is a fundamental

technology within the field of earth observation. It aims to differentiate between changed

and unchanged pixels in multi-temporal remote sensing images captured from the same

geographic area but at different times [32, 33]. The primary objective of a change detection

system is to assign a binary label to each pixel based on a pair or series of co-registered

images. A positive label indicates that the corresponding pixel represents an area that has

changed, while a null label denotes an area that has remained unchanged (refer to Figures 2.1

and 2.2) [34]. Change detection is a powerful tool for various applications, including video

surveillance, urban area mapping, and other forms of multi-temporal analysis.

Let I1 and I2 be two co-registered images that cover the same geographical region and

have the same size W ∗H at different times, T1 and T2, respectively [4, 35]. The same sensor

captures both images. In the context of change detection, it is customary to convert both

images to grayscale prior to analysis, ensuring consistency in their representation throughout

the process.

I1 : X ∗Y � N (2.1)
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Fig. 2.1 Change detection problem

I2 : X ∗Y � N (2.2)

Where X = [1,w] and Y = [1,H].

I1(x,y) and I2(x,y) are the pixel Intensity values at coordinates (x, y). In typical change

detection methods, a change map can be obtained by a difference image operation based on

differencing or log-ratio functions. Both DI operations are defined in equations 2.3 and 2.4.

DI(x,y) = |I1(x,y)− I2(x,y)| (2.3)

DI(x,y) =
∣∣∣∣log

(
I2(x,y)+1
I1(x,y)+1

)∣∣∣∣ (2.4)

The final analysis of the difference image (DI result is to obtain the change map. Obtaining

an accurate CM relies on several steps, including image registration, image denoising or

despeckling (depending on the data type, in optical image denoising is used, whereas, in

SAR images, image despeckling is used) and CD algorithms performance. These steps are

part of the change detection framework. They will be discussed in section 2.2.
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(a) Image at (T1) (b) Image at (T2) (c) Change map (CM)

Fig. 2.2 Typical change detection results for different remote sensing datasets [1–3].
Columns: (1st column) image at T1 before the change, (2nd column) image at T2 after the

change, whereas (3rd column) the change between both images at T1 and T2.

2.2 Change Detection Framework

Change detection identifies the difference in two multi-temporal images for the same loca-

tion [36, 37]. Figure 2.3 demonstrates the change detection framework. Firstly, the process
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starts with two RS images for an exact location captured at different times. These images

are more likely to be affected by atmospheric interference or speckle noise; this depends

on the images’ type. These noises need to be removed before the image registration to

reduce the error in the change detection result. In some cases, image registration has been

executed before the image denoising/ despeckling process, or there will still be some noise

after the denoising process. Most available datasets have co-registered images; therefore,

Figure 2.3 starts with image registration and then the image denoising (despeckling) process.

In addition, image registration is performed to align both images to exact coordinates. These

processes are completed in the pre-processing step. Subsequently, the change detection

technique highlights and classifies images into changed and unchanged pixels to constitute a

change map. Finally, the ground truth image is compared with the change map to compute

the performance evaluation. The following section discusses image registration.

Fig. 2.3 Framework of change detection problem

2.3 Image Registration

Image registration is fundamental for many remote sensing and computer vision applications.

It is the first step in change detection, image fusion, image stitching, and many more [38, 39].

This section studies image registration with possible applied scenarios and techniques used

for feature detection and descriptions, feature matching, and outlier rejection.
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2.3.1 Image Registration Classification

Image registration scenarios for remote sensing can be classified below based on how images

are taken.

• Images taken from different viewpoints (Viewpoints Registration): It is used

to integrate information from one moving sensor or multiple sensors from different

viewpoints into the same object to make a 3D model. Landmark navigation and

plant exploration are examples of applications that take advantage of this kind of

registration [40, 41, 38]. Image stitching is one application of viewpoint registration,

too.

• Multi-temporal Images: They are utilised for change detection and land resource

surveys that include monitoring agricultural and land cover features extracted from

data captured from one or more sensors over time [42, 40, 39, 38].

• Different sensors (Multi-modal Registration): This application is essential for

integrating complementary information from different sensors. It benefits, for instance,

the land cover uses such as yield estimate in agriculture, flood monitoring and detection

of illegal crops. The fusion of different remote sensing data illustrates countless

promises in assisting the decision-making process in several previous applications [42,

39, 38].

2.3.2 Classical Image Registration Techniques

Classical image registration can be categorised into manual and automatic methods.

• Manual Image Registration:

In the last two decades, traditional image geo-referencing started with manual image

registration. A human does this process to allocate the ground control point (GCP),
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called a tie point, in reference to sensed images. This step is equivalent to the feature

detection. The next step is to match this GCP in both images by human operators. This

process is facing many challenges [40], including i) time cost (especially for remotely

sensed images because RS images usually cover a large size), ii) finding and allocating

precise features is more complex in RS than in medical images, and iii) it requires

expert operators. Based on these challenges, there are requirements for semi-automatic

or automatic registration approaches.

• Automatic Image Registration (AIR):

AIR can be categorised into Area-Based Methods and Feature-Based Methods. The

area-based (Intensity-Based) method is usually used when an image reflects a relatively

smooth surface/scene short of essential features. It is popularly used for medical image

registration. However, it is very time-consuming and is influenced by image noise.

In contrast, feature-based methods, such as lines, corners, contours, and edges, aim

to identify a corresponding region in both reference and sensed images. It is less

computationally expensive and more resistant to noise. Therefore, it is commonly

adapted for remote sensing image registration [42, 40, 38]. Our study follows the

feature-based approach, which contains several steps: feature detection and description,

feature matching, outlier removal, homography and image resampling, which is the

process of geometrically transforming digital images. In this case, it will transfer

the sensed image to the reference image coordination system. Figure 2.4 shows

the process of feature-based image registration. Traditional methods, such as Scale

Invariant Feature Transform (SIFT) [43], Speeded-Up Robust Features (SURF) [44],

Oriented FAST and Rotated BRIEF (ORB) [45], KAZE [46], Accelerated-KAZE

(AKAZE) [47] and Binary Robust Invariant Scalable Keypoints (BRISK) [48] are

famous feature detectors and descriptors popularly used in image registration. Feature

matching methods find corresponding features from two feature descriptors: reference
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and sensed images. Nearest neighbour distance ratio (NNDR) is used to reduce initial

false matches from feature matching. NNDR is pre-defined in detail in Equation 3.1

and 3.2. RANSAC is used to remove further outliers from putative matches [49]. The

good matches after RANSAC are used in transformation matrix estimation [49].

Fig. 2.4 Image registration steps with highlighted NNDR, Putative matches and Good
Matches

2.3.3 Conventional Image Registration Methods

Conventional image registration techniques refer to well-established, standard approaches

for aligning images through geometric transformations based on identified common features.

The key steps involve feature detection, matching, outlier rejection and image resampling.

Salient features like edges, corners, or distinct image patches that are common between the

images are first detected [40]. Correspondences between these features are then established

using mathematical methods such as keypoint matching algorithms, a classical technique

in computer vision used to identify and match an object that exists in two images if it has

a similar enough appearance in both images. With a set of matched control points, the

transformation parameters (e.g. rotation, scale, translation) can be estimated to align one

image to the other spatially [50]. This technique allows one image to be warped and overlaid

on the reference image. Resampling of the pixel values is conducted to ensure accurate

alignment. Conventional registration methods work well when point correspondences are
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robust. However, they may fail for images with significant differences in appearance or

geometry. This section discusses the critical steps of conventional feature-based image

registration because it provides better results for remote sensing than area-based image

registration [51, 52].

• Feature Detection Algorithms

Feature detection algorithms detect features (sometimes called keypoints) and provide a

feature descriptor, making it easy to find the relevant feature in other images. Figure 2.4

shows that the first step in image registration is feature detection, which establishes

a feature descriptor. The six feature detection algorithms are briefly described below.

The input images are called reference and sensed images. Lowe [43] introduced the

Scale Invariant Feature Transform (SIFT) to solve corner detecting problems with

scaling invariance. The main stages of computation in SIFT lead to generating a set

of image features. SIFT detector is based on the Difference-of-Gaussians operator,

which approximates Laplacian-of-Gaussian. Feature points are detected by searching

local maxima using Difference-of-Gaussians at various scales of subject images. The

description method extracts a 16*16 neighbourhood around each detected feature and

further segments the region into sub-blocks, rendering 128 values. Bay et al. [44]

presented Speeded-Up Robust Features (SURF), which relies on Gaussian scale-space

analysis of images as SIFT. It uses different detectors and descriptors to speed up the

computation, which is the disadvantage of the SIFT algorithm. Hessian matrix [53]

has been used as a detector. Blob-like structures can be detected at locations where the

determinant of the Hessian matrix is maximum. The Hessian matrix is a mathematical

construct that describes the local curvature or second-order derivatives of a function,

such as the intensity values in an image.

In 2011, Rublee et al. [45] developed Oriented FAST and Rotated BRIEF (ORB) to

deal with the high computational burden of SIFT and SURF, especially for real-time
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applications, for example, visual odometry. ORB consists of the FAST (Features

from Accelerated Segment Test) detector and BRIEF (Binary Robust Independent

Elementary Features) descriptor, performing well with low computational cost. This

combination has provided a fast algorithm for real-time applications requiring corner

feature extraction. FAST [54] is a sufficient corner feature detection for a real-time

application that matches visual features, such as Parallel Tracking and Mapping [45].

In summary, FAST is several times faster than any existing corner detectors. However,

it is affected by a high noise level [45]. The BRIEF descriptor is a simple binary test

between pixels in a smoothed image patch [55]. Although BRIEF’s performance is

similar to SIFT in many cases, such as robustness to lighting, blur and perspective dis-

tortion, it performs poorly with rotation. Therefore, rBRIEF has been developed in [45]

that significantly enhances rotated images compared with BRIEF. In summary, ORB is

much faster than SIFT and SURF. However, it failed to address the scale invariance

issue. Leutenegger et al. [48] introduced Binary Robust Invariant Scalable Keypoints

(BRISK) that uses Adaptive and Generic Accelerated Segment Test (AGAST) [56] as

a corner detector and filter them with FAST corner score when looking for maxima in

a scale-space pyramid. The feature descriptor is built by classifying the characteristic

direction of every feature to achieve rotation invariance. The descriptor is constructed

as a binary string to achieve illumination invariance. BRISK was introduced to provide

solutions for high-performance algorithms such as SIFT and SURF. It was also reported

to be faster than SIFT and SURF.

In 2012, Alcantarilla et al. [46] introduced KAZE, which takes advantage of non-linear

scale-space through non-linear diffusion filtering. This method blurs images locally

adaptive to feature points, reducing noise and retaining regions’ boundaries in images

under processing. Scale normalised determinant of Hessian Matrix is used as KAZE

detector. It is calculated at multiple scale levels. The maxima of detector response are
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chosen as feature points using a moving window. Feature descriptor presents rotation

invariance property by finding dominant orientation in the circular neighbourhood

around every feature detector. KAZE is more computationally expensive than SURF,

but the KAZE experiments in [46] have proved it is less computationally expensive

than SIFT due to the computation in the non-linear scale-space [46, 57]. Alcantarill

et al. [47] developed Accelerated-KAZE (AKAZE). It is similar to KAZE based

on non-linear diffusion filtering. However, it solves the computational burden of

creating a non-linear scale space using a mathematically well-organised framework,

Fast Explicit Diffusion, embedded in a pyramidal framework to accelerate feature

detection in non-linear scale spaces significantly. The AKAZE detector contains a

determinant of the Hessian Matrix. The rotation invariance quality has been improved

by Scharr filters [47]. The maxima of detector responses in spatial locations are

chosen as feature points. The feature descriptor of AKAZE is based on a highly

efficient Modified Local Difference Binary. By experiments, although AKAZE is

computationally less expensive than KAZE, SIFT, and SURF, it is more expensive than

BRISK and ORB [47].

• Feature Matching

Feature matching is essential for many problems in computer vision, such as object

recognition, 3D reconstruction from multiple images, image registration, and motion

tracking [39, 38]. The two main types of matching strategies are Brute Force and

K-nearest neighbours (KNN). Brute Force is classified based on the type of feature

descriptors. It takes the descriptor of one feature in the first set (reference image)

and matches all other features in the second set (sensed image) using some distance

calculation; the closest one is returned. The floating-point descriptor is used in SIFT,

SURF and KAZE, whereas the binary descriptor is used in ORB, BRISK and AKAZE.

The brute force algorithm specifies two parameters between features: distance metric
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and crosscheck boolean. A crosscheck boolean is used to validate if the two features

match. This method classifies the algorithms based on the descriptor types. For

example, the L1-norm function (also called Least Absolute Deviations) is used for

float-point descriptors such as SIFT, SURF and KAZE use, and the second type of

descriptors is Hamming distance is used for ORB, BRISK and AKAZE [40]. Whereas

KNN with a pre-defined value, K is an approach that may produce many matching

points. Therefore, there is a need to identify suitable matches using NNDR, a threshold

introduced by Lowe to reduce the number of false matches (Outlier) [43]. The matching

value after NNDR is called putative matching. After applying NNDR, the RANSAC

algorithm removes the rest of the outliers.

• Outlier Rejection and Image Alignment

Random Sample Consensus (RANSAC) is a famous algorithm for rejecting outlier

points, also known as false matching points [58]. RANSAC is introduced as a general

and straightforward approach applicable to various problems. It is utilised to reject

many outliers and estimate the homography matrix using suitable matches. The

homography matrix transfers the second image (sensed image) to the first (reference

image) for image alignment.

2.3.4 Deep Learning Based Image Registration

Deep learning has made significant achievements in computer vision [59, 60], speech pro-

cessing [61, 62], and image processing [63, 64]. Within deep learning, popular models

such as deep belief networks (DBNs) [65], auto-encoders (AEs) [66], and convolutional

neural networks (CNNs) [67] are commonly used. These models share a similar structure,

consisting of multiple layers that progressively abstract features from lower to higher levels

through non-linear transformations. Some deep models focus on capturing data distribution

characteristics by minimising reconstruction errors [68], while others leverage stochastic
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gradient descent in the backpropagation algorithm to learn semantic features [69]. Deep

learning has demonstrated its superiority and robustness when applied to remote sensing

images [70–72]. Liu et al. [73] applied deep Boltzmann machines to object detection. Cheng

et al. [74] developed a rotation-invariant CNN for object detection in very high-resolution

(VHR) optical remote sensing images, where the object and its rotated counterparts exhibit

similar features. Subsequently, they proposed the rotation-invariant and Fisher discriminative

CNN (RIFD-CNN) for object detection [75]. The RIFD-CNN ensures rotation invariance

and enhances feature discrimination by minimising within-class scatter and maximising

between-class separation using Fisher discrimination. Scott et al. [76] employed deep CNNs

for landcover classification. Zhao and Du [77] introduced a deep-learning approach for

hyperspectral image classification.

Deep learning techniques have also been applied to image registration and patch match-

ing [78, 79]. Wu et al. [80] proposed a stacked auto-encoder for unsupervised deep feature

extraction in medical image registration. Han et al. [81] introduced a Siamese network to

match image patches, extracting patch-pair features through identical CNNs. Alternatively,

Zagoruyko et al. [82] evaluated features extracted by identical or diverse CNNs or jointly

learned from paired image patches. The results demonstrated the clear superiority of the joint

processing approach. Deep learning image registration can have various applications. This

research classifies them as remote sensing image registration and non-remote sensing image

registration.

• Remote Sensing Image Registration

Remote sensing image registration based on deep learning can be classified into

supervised and unsupervised approaches [78]. The supervised deep learning methods

predict geometric transformation parameters from the reference and sensed images [83].

Miao et al. [84, 85] also adopted a supervised approach, converting the registration

problem into a regression problem to learn parameters (such as affine transformation
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matrix or matching point displacement) for image registration. DeTone et al. [86]

also introduced a VGG-style projection transformation parameter regression model to

assess homography between natural images. Moreover, DeTone et al. [87] developed a

deep learning network called SuperPoint for feature point detection and description,

yielding a more extensive feature point set than traditional methods. However, a

notable limitation of SuperPoint is that the positions of interest points are uncertain

and must be obtained through simulation, making them unsuitable for real-world

scenarios. Specifically, using a supervised learning method based on a regression

network faces challenges in simultaneously optimising rotation and scale terms of

different dimensions, thus restricting the accuracy of supervised learning registration.

Unsupervised deep learning matching approaches employ a spatial transformation

network to warp the sensed image and align it with the reference image coordinates [88].

Notably, these methods do not rely on any human annotations for training. The

optimisation of geometric constraints between the two images is achieved through a

similarity loss function. Balakrishnan et al. [89] introduced an unsupervised image

registration framework based on a CNN. This framework involved formulating the

mapping between registration pairs and deformation fields. The sensed image was

then distorted using a spatial transformation network, with the target loss function

measuring the gray similarity between the distorted image and the reference image.

Dalca et al. [90] proposed a probabilistic model and derived an unsupervised learning

inference algorithm by leveraging the latest advancements in CNNs. Furthermore,

De Vos et al. [91] designed flexible ConvNets for both affine image registration and

deformable image registration. This involved stacking multiple ConvNets into a larger

architecture, allowing for image registration at varying levels of detail, from coarse to

fine.

• Non Remote Sensing Image Registration
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Medical image registration using deep learning can be classified into five approaches:

deep similarity metrics, Supervised End-to-End registration, Deep Reinforcement

Learning, and Unsupervised End-to-End registration [92, 93]. The deep similarity

metrics approach involves training various types of Deep Neural Networks to under-

stand visual similarity metrics. This training used a substantial collection of paired and

annotated ground-truth data. As a result of this training process, the networks became

proficient in accurately and meaningfully capturing the structural differences between

inputted pairs of images/patches. Particularly, they excelled in handling deformable

transformations and various modalities, which traditional similarity metrics struggled

with. Two main drawbacks are associated with this approach: it relies heavily on

access to a large set of paired and annotated ground-truth data to train the network.

Unfortunately, obtaining such datasets is often challenging in medical applications.

Additionally, the approach still relies on conventional iterative-based methods, which

are slow and impractical for clinical use [94, 95].

Supervised End-to-End Registration emerged as a significant breakthrough for the

community. It successfully eliminated the computational burden and time constraints

associated with traditional iterative-based registration methods. It has revolutionised

the field by enabling the registration process to be conducted in a single step, making

real-time clinical use feasible. Initially introduced in 2016 by [84] for rigid registration

and later expanded in 2017 by Sokooti et al. [96] to include deformable registration,

it has quickly become the dominant category and continues to be actively researched.

Nevertheless, a significant limitation of this paradigm is its reliance on a large set of

paired annotated ground-truth data for training the network, which poses a substan-

tial obstacle in developing approaches within this category. In recent years, Deep

Reinforcement Learning, also known as Agent-Based Registration, has learned to

iteratively generate the final transformation, aiming to maximise positive envigenerate
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the final transformation iterativelyarity measure. Unlike the Deep similarity metrics

approach, conventional similarity measures like normalised mutual information or

Local Cross-Correlation are regularly utilised. However, a significant challenge in

developing such paradigms is the agents’ inability to interact effectively with the

extensive state space introduced by deformable registration. It’s worth noting that all

the proposed approaches within this paradigm have been designed for rigid registration.

Moreover, the success of this approach still relies on using ground-truth data to train

the agents.

To address this issue, the Unsupervised End-to-End Registration paradigm was intro-

duced. In this approach, various DNNs can be trained without relying on ground-truth

data to build the regression model and determine the transformation parameters in

a single step. Instead of using an extensive ground-truth dataset, data augmentation

techniques are applied to a limited number of input samples as seeds. The learning

process is guided by a traditional similarity measure (or a combination of them) used

as a loss function. While this approach has achieved considerable success in unimodal

registration, multi-modal registration poses a more significant challenge. The main

difficulty lies in the inefficiency of the multi-modal similarity measures used as loss

functions during the network’s learning process. Consequently, networks trained on

such measures inherit this inefficiency. The key to advancing this category lies in

developing more efficient and powerful novel similarity measures in the future. It’s

worth noting that both supervised and unsupervised approaches have their limitations

and drawbacks.

Weakly-semi-supervised End-to-End registration emerged in 2017 [92], effectively

addressing the limitations of supervised and unsupervised approaches while incorpo-

rating their strengths. Some weak-semi-supervised end-to-end registration methods are

label-driven, meaning they can implicitly learn to identify paired landmarks in inputted
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images for the registration process based on just a few fully-annotated ground-truth

samples. Other approaches adopt a dual-supervised approach, leveraging both similar-

ity measures (similar to unsupervised methods) and a small number of ground-truth

samples to fine-tune the network. Remarkably, it has been demonstrated that even with

just a few ground-truth samples, transfer learning from other body organs or modalities

is entirely feasible for medical image registration [97]. Additionally, certain methods

utilise Generative Adversarial Networks (GANs) as their underlying technique, where

the competitive interplay between the generator and discriminator benefits from a few

ground-truth samples to construct and refine the model. This weakly/semi-supervised

paradigm has proven to be highly practical and promising, attracting significant re-

search focus for the future. It effectively combines the advantages of both supervised

and unsupervised methods, making it a compelling and valuable direction for further

exploration.

To summarise this subsection, we highlight the use of image registration in different

fields and here we try to describe the main two subfields in the area of image registration.

Our goal in this research is to focus on SAR change detection, which is a subfield of remote

sensing. Therefore, we discuss remote sensing in general. In the following subsection, noise

removal from remote-sensing images is discussed.

2.4 Noise Removal from Remote Sensing Images

The noise removal process is an essential step for remote sensing change detection. It

helps with noise reduction, which subsequently improves the change detection algorithms’

performance. In this section, the noise removal process has been classified into four classes:

traditional denoising optical images, deep learning denoising optical images, traditional
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Despeckling SAR images and deep learning despeckling SAR images. These classes are

discussed in the following sections.

2.4.1 Denoising Optical Images

Denoising is primarily employed to diminish noise while retaining fine details within an

image. In optical images, the pixel intensities frequently encounter additive Gaussian

noise, characterised by a Gaussian distribution [13]. To counter this noise, linear filters

are commonly employed. For example, Elad et al. [98] introduced a classical denoising

algorithm that denoises through learning dictionaries and sparse representation. Yan et

al. [99] presented non-local dictionary learning that utilises the multi-resolution structure and

sparsity characteristics of wavelets in every decomposition level of the wavelet transform to

denoise the images. Cui et al. [100] employed joint bilateral filtering for image denoising,

effectively minimising noise while preserving edge details without excessively smoothing

the image. This approach enhances the traditional bilateral filter by incorporating colour

distance calculation based on the colour differences between image pixels.

2.4.2 Despeckling SAR Images

Several approaches have been proposed to address speckle noise. For instance, pioneering

work in the despeckling of SAR images was presented by Lee [21]. Later, Lee [101]

refined [102] to remove noisy edge boundaries in SAR images by enhancing the edge

representation using local statistics (average and variance) within a 7x7 window. A drawback

of this approach is its reliance on a fixed mask size [11]. Kuan [103] proposed an adaptive

speckle-noise smoothing filter that can handle different noise types without prior knowledge

of the original statistics of the image. However, it tends to oversmooth image details and

has high computational complexity [11]. Lope et al. [104] then proposed an Enhanced Lee

filter and comprehensively analysed well-known filters by experimenting with varying the
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local coefficients of despeckled SAR images. Their approach allows the preservation of fine

details, such as texture and edge information, in the heterogeneous regions of the observed

SAR image. Zhu et al. [105] further improved despeckling performance by combining an

enhanced Lee filter with a median filter.

Recently, deep learning methods have been employed in despeckling SAR images.

Ravani et al. [106] introduced a practical deep-learning method for despeckling synthetic

aperture radar images. Notably, this approach bypasses the need for ground truth despeckled

images. The experimentation involved assessing results on both the ImageNet dataset

and real SAR images. The outcomes were validated through qualitative and quantitative

measures, showcasing advancements compared to contemporary methods. Gu et al. [107]

proposed a robust, deep, fully convolutional architecture tailored for despeckling multi-

source SAR images. The architecture incorporates convolution and deconvolution layers

to establish a non-linear transformation between noisy and clean SAR images. With skip

connections integrated, the framework retains image details and embraces a residual learning

approach. Initial outcomes using simulated and authentic SAR images exhibit improved

despeckling performance and computational efficiency compared to existing techniques.

Denis et al. [108] delved into a comprehensive analysis of ongoing advancements in image

despeckling methods, specifically comparing patch-based nonlocal filtering and deep learning

strategies. While these two approaches have distinct properties, their combination remains

unexplored. This study aims to extract the maximum benefits from each approach while

addressing inherent challenges [108]. Vitale et al. [109] proposed a novel cost function

considering spatial and statistical characteristics. This approach serves a dual purpose:

to balance the trade-off between spatial resolution and noise suppression and to identify

an optimal cost function for solo learning-based despeckling. Evaluations conducted on

both real and simulated data demonstrate compelling performance outcomes. Gleich and

Sipos [110] were involved in the despeckling of SAR data using deep convolutional structures.
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Preliminary findings showcased promising results using synthetic and real-world images.

Cozzolino et al. [111] scrutinised the integration of deep learning techniques to enhance

nonlocal despeckling. Employing a non-iterative, nonlocal means despeckling approach, the

authors used weights generated by a well-designed deep CNN for each estimation window.

Comparative evaluations of synthetic and real SAR data revealed the superiority of this

approach over traditional nonlocal methods.

2.5 Remote Sensing Change Detection

Change detection is the process of identifying differences in the state of an object or phe-

nomenon by observing it at different times. Two types of remote sensing data, optical and

synthetic aperture radar images, are discussed in this section. Our research concentrates on

SAR change detection images. Therefore, we briefly discuss optical change detection in the

next section.

2.5.1 Optical Images Change Detection

Change detection involves the identification of discrepancies in an object or phenomenon’s

condition by observing it at distinct points in time [112, 113]. Optical change detection

images are employed in tasks like monitoring urban expansion, assessing disasters, and

overseeing environmental preservation and habitat monitoring. As depicted in Figure 2.3, the

change detection process comprises data acquisition, data pre-processing, the application of

a change detection algorithm, and evaluating accuracy [13]. Conventional change detection

methods can be categorised into algebra-based, transformation-based, classification-based,

and clustering-based approaches [5]. Algebraic methods, encompassing techniques like

image differencing [114, 115], image ratioing [116], and change vector analysis [117], typ-

ically derive insights from algebraic operations on corresponding areas of multi-temporal



2.5 Remote Sensing Change Detection 29

data. Transformation-based techniques discern alterations by converting registered images

into feature spaces. Widely-used transformations include principal component analysis

(PCA) [118] and tasselled cap transformation [119]. Classification-oriented change detection

algorithms determine changing regions through classifications, including post-classification

comparisons [120] and direct classification of bitemporal data [121]. Clustering-based algo-

rithms yield change maps by clustering bitemporal data into changed and unchanged areas.

Prominent clustering algorithms include K-means [122] and fuzzy c-means (FCM) [123].

In recent years, numerous DL algorithms have been introduced [124–127, 5, 128]. Early

change detection networks entail classification networks that input small image patches

and output corresponding categories [82, 129]. With the emergence of fully convolu-

tional networks (FCN) [130], fully convolutional change detection networks have gained

favour [131, 132]. In contrast to traditional change detection techniques, DL-based al-

gorithms possess more hyperparameters, greater resilience to input data variations, and

improved generalisation capabilities [131, 126, 128].

Zhan et al. [133] proposed a supervised change detection method for optical aerial images

grounded in the deep Siamese network. Lyu et al. [134] proffered a supervised CD approach

centred around a recurrent neural network. Geng et al. [135] introduced a supervised

binary CD approach based on contractive autoencoders. Specific methods endeavour to

decrease the demand for labelled training samples by employing a pre-classification scheme

to deduce an initial coarse change map. Zhang et al. [136] delineated a binary CD method

leveraging this initial map to spot improbable pairs, subsequently employed to instruct a

mapping neural network. Xu et al. [137] developed a binary CD method deploying an

autoencoder to comprehend the correspondence between pre-change and post-change images.

Nonetheless, these approaches possess limited applicability due to the necessity of training

or fine-tuning the model for specific datasets. Saha et al. [138] proposed unsupervised

context-sensitive framework deep change vector analysis for CD in multi-temporal VHR
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images that exploit convolutional neural network features to obtain deep features that can

model spatial relationships among neighbouring pixels.

In general, Optical image change detection, such as VHR images, provides excellent

visual resolution to humans to identify change during disasters. However, as mentioned

earlier, it struggles during dark, fog, and clouds. Therefore, we concentrate our research on

SAR images change detection, which is discussed in the next section.

2.5.2 SAR Images Change Detection

Synthetic aperture radar offers distinct advantages over optical sensors for CD in EO because

it is not affected by weather conditions, provides penetration through clouds and vegeta-

tion, and shows sensitivity to small changes, making it capable of detecting changes that

optical CD methods may miss. This technique allows us to remotely map the reflectivity

of objects or environments with high spatial resolution through the emission and reception

of electromagnetic signals in the microwave spectrum, which enables ease of penetration

through clouds and provides all-weather day/night sensing capability, making it suitable for

applications related to disaster assessment such as flooding and earthquake [11].

Typically, optical CD methods rely mainly on supervised machine learning approaches [12,

139, 140]. However, owing to the lack of annotated SAR datasets, the majority of SAR

CD approaches primarily rely on unsupervised learning [141–143]. Several methods for

unsupervised SAR CD have been proposed in the literature. For instance, Celik [23] proposed

a simple unsupervised CD method using principal component analysis and k-means where

change detection was achieved by partitioning the feature vector space into two clusters.

Krinidis et al. [144] proposed fuzzy local information C-means (FLICM) to improve the

clustering quality and aim to be robust to noise and preserve the image details. Gong et

al. [145] also proposed fuzzy c-means (FCM), a reformulated FLICM to cluster image pixels

into changed and unchanged. The aforementioned methods are performed under speckle-free
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images. These approaches perform fairly well. However, SAR data suffer from speckle noise,

which arises owing to the coherent nature of SAR imaging, which causes interference patterns

in the received signals. This speckle noise makes information extraction from SAR images

challenging and, consequently, adversely affects change detection accuracy [146–148].

SAR change detection has been widely used in many applications such as urban exten-

sion [36], agricultural monitoring [149], target detection [150] disaster monitoring [41] and

assessment [151]. Typically, owing to the lack of annotated SAR datasets, most researchers

rely on unsupervised methods [25, 152, 153, 3] to address SAR CD. However, the problem

is highly challenging owing to the presence of speckle noise, which negatively impacts SAR

images and reduces the change detection accuracy [146, 147, 152]. For this purpose, many

researchers have formulated SAR CD in three sequential steps: image pre-processing, differ-

ence image generation, and classification [154]. The image pre-processing stage includes

despeckling (denoising) and image registration. Image despeckling aims to reduce the impact

of speckle noise and enhance SAR image quality. However, oversmoothing usually occurs

when doing so, which may result in the loss of geometric details. After despeckling, the latter

image registration aids in aligning multi-temporal images in the same reference coordinate

system, enabling accurate change detection [7, 8]. To generate difference image, various

methods have been proposed in the literature, including image differencing (also known as

subtracting) [4], log ratio [155], neighbourhood-based ratio [156], Gauss-ratio operator [157]

and mean- and log-ratio difference [158]. Finally, the classification of DI typically includes

thresholding and clustering [159].

Some approaches use the clustered DI image (preclassification result) to subsequently

train a classifier model and then combine the information from the preclassification and

classifier results to generate a change map. For instance, Gao et al. [160] computed the

preclassification result by computing a DI via log-ratio and fuzzy c-means clustering and

later trained the PCANet model (classifier) to obtain the initial classification, which was
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fused with the preclassification results to obtain the final change map. Similarly, Gao et

al. [161] proposed an approach that employs a neighbourhood-based ratio to generate the

difference image and then adopts an extreme learning machine (ELM) to model the high

probability pixel based on the difference image, which is later used with the initial change

map to yield the final change map. Wang et al. [162] employed a semi-supervised Laplacian

support vector machine (SVM) to differentiate between changed and unchanged regions. To

initialise the SVM, a pseudo-training set is generated using saliency similarity detection. This

pseudo-training set consists of labelled changed and unchanged pixels. The Laplacian SVM

effectively utilises the prior information from the available labelled samples and incorporates

unlabelled samples to improve its discriminatory capabilities. Lv et al. [147] presented feature

learning utilising a stacked contractive autoencoder to extract temporal change features from

superpixels while effectively suppressing noise. Li et al. [163] proposed a Gamma correction

and fuzzy local information c-means clustering model to reduce the impact of speckle noise

and improve the performance. Liu et al. [78] introduced a locally restricted CNN for SAR

change detection. They enhanced the original CNN architecture by incorporating a local

spatial constraint, thereby improving CD performance.

Recently, a few approaches have aimed to explicitly suppress the inherent speckle noise

to improve the SAR CD performance. For example, Qu et al. [2] proposed DDNet, a method

that leverages features extracted from both the spatial and frequency domains to mitigate the

impact of speckle noise. Gao et al. [25] also presented a Siamese adaptive fusion network

for SAR image change detection, which focused on extracting high-level semantic features

from multi-temporal SAR images while effectively suppressing speckle noise. Meng et

al. [164] introduced a layer attention module that leverages the correlation among multiple

convolutional layers and designs a loss function that minimises the influence of speckle

noise, thereby enhancing the change detection performance. A limitation of these approaches

is their inability to tackle different types of speckle noise effectively in images prior and
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after the change, for example, single-look prior image and multi-look post-change image,

which makes it difficult for SAR CD methods to perform well due to varying speckle-noise

characteristics [5]. Table 2.1 summarises the difference between optical and SAR change

detection.

Table 2.1 Comparison between optical and SAR change detection.

Feature Optical Change Detection SAR Change Detection

Data Source Visible and Infrared Microwave
Operational Limitations Affected by Cloud Operate in All Weather Conditions
Day/Night Capability Daylight Only Operate Day or Night

Spatial Resolution Higher Lower (Varies Depending on Sensor)
Temporal Resolution Frequent Less Frequent

Sensitivity to Surface Changes Limited in Certain Conditions High Sensitivity Penetrates Vegetation
Availability of Datasets Widely Available Limited

Learning techniques supervised and Unsupervised Unsupervised manner
Applications Land Cover Monitoring, Agriculture Disaster Monitoring, Deforestation

2.5.3 Hybrid Images Change Detection

Hybrid change detection is also called multisensor images CD or heterogeneous images

CD. It combines the pre-change and post-change images from optical and SAR images.

Several architectures have been introduced for conducting change detection tasks with pre-

change and post-change images captured by the same sensor [165, 124]. However, only a

few methods exist that can effectively address the CD challenge using multi-temporal data

obtained from different sensors [166, 136]. This is due to the complications introduced by

dissimilarities in spatial resolution [136] and spectral attributes among the sensor data [167].

An initial approach to address multisensor inputs is to individually generate classification

or segmentation maps for each multisensory image, followed by a comparison to extract

regions of change [166]. However, such post-classification strategies are susceptible to

errors. Another popular strategy is to project pre-change and post-change images into a

shared feature space, allowing for comparability in this new domain [168, 138]. Various
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techniques achieve this projection, such as employing generative adversarial networks [138]

and homogeneous pixel transformation [168]. Alternatively, learning a mapping function

between the pre-change and post-change images is another approach [136]. Similar to the

methods employed in single-sensor CD, symmetric and Siamese deep neural networks have

also been adopted for multisensor CD. In work by Zhao et al. [169], an approximately

symmetric deep neural network was leveraged to align images within the same feature space.

Wang et al. [170] introduced a deep convolutional neural network-based Siamese architecture,

incorporating a hybrid convolutional feature extraction module for processing multisensor

data. Lastly, Ebel et al. [171] introduced a novel Siamese architecture to fuse SAR and

optical observations for multi-model change detection. The work in this thesis concentrates

on the SAR dataset from the same sensor discussed in section 2.5.2. These datasets will be

discussed in detail in the experimental Chapters 3, 4 and 5.

2.6 Summary

This chapter focused on various aspects of image processing, particularly on image reg-

istration and denoising techniques. This section highlighted the importance and need for

image registration in remote sensing and non-remote sensing data-denoising techniques for

optical images and despeckling methods for synthetic aperture radar images. Traditional

algorithms and the integration of deep learning for improved performance in these areas

were also explored. The discussion started with denoising optical images, highlighting the

prevalence of additive Gaussian noise and introducing denoising techniques like dictionary

learning, nonlocal dictionary learning using wavelets, and joint bilateral filtering. Moving

on to SAR images, the chapter covered despeckling methods. Early approaches by Lee and

others [21, 101, 102] were presented, focusing on addressing the challenges of speckle noise.

Recent advancements in deep learning-based approaches for despeckling were explored,

showcasing their ability to outperform traditional methods.
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The chapter also discussed remote sensing change detection, explaining the concept of

identifying differences in objects over time. Traditional change detection methods, cate-

gorised into algebra-based, transformation-based, classification-based, and clustering-based

approaches, were discussed. The emergence of deep learning algorithms in change detection

was highlighted, emphasising their robustness and improved generalisation. Lastly, the chap-

ter introduced hybrid change detection, combining data from different sensors for enhanced

accuracy. Various strategies for comparing multisensory data, such as shared feature spaces

and deep neural networks, were explored.

This chapter provided a comprehensive overview of denoising, speckle noise reduction,

and change detection techniques in optical and SAR images. The integration of traditional

methods and advanced deep learning approaches demonstrated their potential to enhance the

accuracy and effectiveness of remote sensing applications. This research focused on SAR

data for its advantages over optical images. Therefore, the experimental Chapters 3, 4 and 5

will focus on SAR image registration for change detection, as well as SAR change detection

techniques based on despeckling and deep learning.





Chapter 3

Systematic Investigation of Image

Registration for SAR Change Detection

3.1 Overview

Image registration is a fundamental process in many computer vision applications. Typically,

it aligns reference and sensed images to the same coordinate system [7, 172]. In practical

terms, image registration becomes necessary in order to minimise the disparity between the

coordinate systems used in both images. It is used in change detection, image fusion, and

image stitching [173, 8]. The motivation of this chapter is to illustrate the importance of image

registration in change detection and to elucidate its process, subsequently providing input to

change detection algorithms. For this purpose, six image registration algorithms have been

benchmarked with two multi-temporal SAR datasets. However, the two multi-temporal SAR

datasets have water surfaces with some unwanted information, which misleads the change

detection algorithms by highlighting unchanged areas in the change map. To overcome this

issue, we use the Otsu method that removes unwanted information under the water surface

after the registration process, which increases the change detection performance.
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The remaining sections are structured as follows: pre-processing (includes image regis-

tration methods and the Otsu method) and change detection algorithms. Subsequently, the

datasets section covers non-registered SAR datasets. Next is the experimental results and

discussion section, which discusses the environment setup, evaluation metrics, results, and

discussion. Finally, the summary of this chapter is concluded.

3.2 Methodology

This section discusses the methodology in three stages: first, image registration to align

the two SAR images. Secondly, Otsu’s thresholding [174] is employed to separate the

registered and reference images into two classes, foreground and background, based on the

grayscale intensity values of their pixels. This step helps eliminate unwanted information

under the water’s surface. Finally, the change detection stage briefly discusses four change

detection algorithms. Figure 3.1 presents how the change detection task depends on the

image registration process.

Fig. 3.1 Change Detection process

3.2.1 Pre-processing

This section describes two parts of the pre-processing phase: Image Registration and the

Otsu method.
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1. Image Registration

Image registration is the alignment of two multi-temporal images to one image. It

is a significant step for change detection. The change detection task runs depending

on registered multi-temporal SAR images. The registration aims to align two multi-

temporal images to the same coordinate system. If the multi-temporal images were not

registered correctly, it would provide an inaccurate change detection result. Therefore,

an accurate image registration result is required to perform the change detection task.

For this purpose, six famous image registration algorithms have been discussed in

the previous chapter and are used in this chapter for the registration process. These

algorithms have been performed and compared to choose the best algorithm for each

dataset based on the highest precision result. Based on the following registration,

change detection is performed.

Figure 3.3 demonstrates the existing image registration steps with highlighted NNDR,

Putative matches and Good Matches. This process contains four steps to produce

the registered image. The first step is to obtain feature detection and description

in both input images by the six image registration algorithms. The second step is

feature matching, which matches features in both images by Brute Force and K-nearest

neighbours. NNDR is pre-defined in equation 3.1 [175] and Figure 3.2. In this work,

we have applied brute force and KNN, then set the NNDR threshold value to 0.7 based

on our experimentation. This value is aimed at removing 90% of the false matches

while discarding less than 5% of the correct matches between descriptors in reference

and sensed images.

∥ DR −DS1 ∥
∥ DR −DS2 ∥

< Tratio (3.1)
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Fig. 3.2 Nearest Neighbour Distance Ratio

where DR is the reference image feature descriptor, DS1 and DS2 are the first and second

closest descriptors to DR in the sensed image respectively. ||DR −DS1|| is the distance

of DR to DS1, ||DR −DS2|| is the distance of DR to DS2, and Tratio is threshold, set as

0.7 because it provides best matching result with our datasets.

The matching value after applying NNDR is called Putative Matching (PM). Following

this step, the RANSAC algorithm is executed to remove the rest of the outlier points

and compute the homography matrix using the inlier points. The inlier points are

good matches after removing the rest of the outlier points from the putative matching.

The homography matrix transfers the sensed image I2 at T2 to the reference image

coordinate system I1 at T1. Finally, the image warping is done by aligning both

images to produce the registered image. Once the registration process is finished, the

reference and registered images will be fed to the change detection method to generate

a change detection map. The registration process is applied to the six image registration

algorithms: SIFT, SURF, ORB(5000), KAZE, BRISK and AKAZE. The best way to

evaluate image registration results with the absence of ground truth is to reduce the

shift between the reference image and the registered image. This process can be done
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by calculating the root mean square error (RMSE) [176]. The evaluation metrics and

datasets will be discussed in 3.4 and 3.3.

Fig. 3.3 Image Registration Procedure

2. Otsu Method

This subsection focuses on detecting changes between two SAR images, specifically

within the Suez Canal dataset. This dataset contains small ships in both multi-temporal

images and unwanted data submerged underwater, which can affect change detection

accuracy. To address this issue, we explore various thresholding methods to separate the

image background from the foreground. The first method is Otsu’s thresholding [174],

which initially constructs a histogram of pixel intensities in a grayscale image and then

normalises it to represent probabilities. It tests different threshold values to segment

the image into foreground and background classes at each threshold. It calculates

the variance between these classes for each separation, aiming to maximise it. The

method selects the threshold that maximises interclass variance, effectively pinpointing

the most distinguishable point between foreground and background. This threshold

is then used for image segmentation, proving valuable for automatic thresholding

and segmentation, mainly when clear intensity differences exist between object and

background regions. The second method involves applying a 5x5 Gaussian filter to

reduce noise and smooth SAR images, followed by Otsu’s thresholding. Both methods

will be evaluated, and the results will be discussed in Section 3.4.
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3.2.2 Change Detection

In this section, we investigate the performance of four change detection methods using

two SAR datasets that are described in Section 3.3. The change detection methods are

PCA-k-means (PCAK) [23], NR-ELM [161], DDNet [2] and LANTNet [164] where the

DDNet and LANTNet are the current state-of-the-art CD methods. As we discussed in

the literature review section 2.5.2, PCA-k-means (PCAK) proposed in [23] to perform a

simple unsupervised CD method using principal component analysis and k-means where

change detection was achieved by partitioning the feature vector space into two clusters.

NR-ELM introduced in [161] to execute an approach that employs a neighbourhood-based

ratio to generate the difference image and then adopts an extreme learning machine (ELM) to

model the high probability pixel based on the difference image, which is later used with the

initial change map to yield the final change map. DDNet presented in [2] to obtain features

from spatial and frequency domains to minimise the speckle noise. LANTNet presented

in [164] proposed a robust loss function and a layer attention-based noise-tolerant network

(LANTNet) that benefits from feature correlations among multi-convolutional layers and

suppresses the impact of noisy labels.

3.3 Datasets

The datasets used in this chapter are three Co-registered SAR datasets. These datasets will be

used in chapters five and six. However, in terms of demonstrating the importance of image

registration for the change detection task. In this chapter, the datasets need to meet two

conditions: first, multi-temporal SAR images that have the same size and second, cover the

same geographical region. Two public data meet these requirements, which are the Suez

Canal [177, 7] and Dry River [178] datasets. These data are sufficient to be used for image
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registration and change detection algorithms as they are utilised in an unsupervised manner.

These data are described below:

3.3.1 Suez Canal Dataset

The two SAR images were captured by the Copernicus Sentinel-1 mission on the 21st and

25th of March 2021. On 21st of March, it illustrates the regular maritime traffic in the canal,

with vessels visible every 2 to 3 km. On 25th March, a 400 m ship blocked the canal. Both

images are publicly available on the European Space Agency (ESA) Website [177].

3.3.2 Dry River Dataset

These multi-temporal SAR images were captured at different times for the same area, showing

the river’s drought and vegetation in the second image. There are no known data on when

both images were captured. However, these images are used for image registration tasks in

[178].

Table 3.1 Multi-temporal remote sensing SAR images specifications.
H is height, and W is width

Dataset Name Image H*W in Pixels

1 Dry1 and Dry2 531*787
2 Suez21 and Suez25 956*1140

3.4 Experimental Results & Discussion

Experiments were conducted on two sets of data, which are introduced in detail in section 3.3.

Python 3.7 with OpenCV version 3.4.2.17 were used to perform the experiments. The

platform of the experiments was Google Colaboratory Pro (Colab Pro) environment with a

Tesla GPU P100-PCIE-16 GB RAM 147.15 GB Disk.
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3.4.1 Evaluation Metrics

Three evaluation metrics are used to evaluate the image matching algorithms: the number of

inlier points provided in Table 3.2, Precision and computational cost.

• The number of Inlier points (Good matches) is the number of matching points after

applying the RANSAC algorithm.

• Computational cost is vital to examine which algorithm can be used for real-time

applications.

• Precision (the inlier ratio) defines the number of correct matches out of the putative

matches as shown in Figure 3.3, and it is expressed in Equation 3.2.

Precision =
Good Matches

Putative Matches
∗100% (3.2)

• Registration Accuracy is evaluated by the root-mean-square error (RMSE) crite-

rion [179–181]. A total of N corresponding point pairs (xi,yi),(x”i,y”i) are randomly

selected from the reference and registered images. The point pairs are arbitrarily

chosen and refined to reduce the residual to as low a level as possible. Hence, those

point pairs are used as the reference to test the precision of model parameters. The

RMSE is computed according to:

RMSE =

√
1
N

N

∑
i=1

(xi − x”i)2 +(yi − y”i)2 (3.3)

Where (x”i,y”i) denotes the transformed coordinates of (x′i,y
′
i).

It is essential to mention that the two SAR datasets do not have a ground truth to

evaluate the change detection performance, so we rely on subjective image assessment.
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3.4.2 Image Registration Results

The image registration process goes through four steps: image matching, putative matching,

obtaining inlier points, rejecting outlier points, and finally, using inlier points to obtain the

registered image. This process has been illustrated for both datasets in Figures 3.5 and 3.4.

The image matching step is excluded from both figures because it does not show sufficient

information; just matching lines cover whole images. At the same time, Putative matching is

shown in the first column. The red dots in this column are the number of features detected and

rejected by the ratio threshold. In contrast, the blue lines are putative matching between two

images. The second column is the outlier points rejected by RANSAC algorithm matching.

Subsequently, Inlier points appeared in green lines that were used to generate a homography

matrix to obtain the registered image. From subjective assessment of the Image registration

process for Suez Canal and Dry River datasets in Figures 3.5 and 3.4, it can be seen that

all the diagonal matching between image at (T1) and image at (T2) is wrong matching. It

can be directly classified as outliers. In contrast, all the straight matching with 180 degrees

are likely to be good matching. This notice can be observed in the first three columns. The

fourth column shows a registered image by each algorithm.

The six famous image-matching algorithms have been experimented with different multi-

temporal SAR datasets, as discussed in the previous section. The image registration result has

been demonstrated in Table 3.2. The evaluation metric that is used to evaluate this process

is precision, and it is illustrated in Section 3.4.1. It can be noticed that ORB(50000) has a

high precision percentage of 99.38% with the dry river dataset, and AKAZE performs better

precision with the Suez Canal dataset with 87.05%. It is the lowest computational cost in

both datasets. Therefore, it is recommended for real-time applications. This result proves

that no algorithm performs better in both datasets. It depends on the characteristics of the

dataset. For instance, all the algorithms perform better in the dry river dataset than the Suez
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Canal dataset because the Suez Canal has more illumination, and water covers about half of

the images.

Nonetheless, all algorithms detect more features on the land sides of suez canal data than

dry river data, as seen in Table 3.2 in the FD1 and FD2 columns. Moreover, there are more

outliers in the Suez Canal than in the dry river dataset, as shown in Figures 3.5 and 3.4. From

the results above, the Suez Canal is registered with the AKAZE algorithm, whereas dry river

data is registered with the ORB(50000) algorithm because they provide a high precision

percentage and lowest RMSE values. The final result is demonstrated in Figure 3.6 for the

two datasets and will be used for the change detection task for its high precision and smallest

RMSE, as shown in Table 3.3.

Table 3.2 Quantitative Comparison of the Six Image Registration Algorithms.

The Bold font is the highest value in precision and the smallest Image Matching Time. FD 1:
Number of features Detected in Image 1 and FD 2: Number of features Detected in Image 2.

PM: Putative Matches. IMT: Image Matching Time (s). P%: Precision.

Algorithms FD1 FD2 PM Inliers Outliers P% IMT(s)
Image Pair 1: Dry River

SIFT 3494 2302 381 369 12 96.85 0.27
SURF 4259 3794 213 203 10 95.31 0.28

ORB(50000) 19065 14828 967 961 6 99.38 2.52
BRISK 6514 5184 590 586 4 99.32 0.34
KAZE 1513 1069 218 214 4 98.17 0.04

AKAZE 1214 827 169 166 3 98.22 0.02
Image Pair 2: Suez21 and Suez25

SIFT 7605 7958 366 298 68 81.42 13
SURF 11683 14043 377 289 88 76.66 7.13

ORB(50000) 41690 42272 2592 2068 524 79.78 3.1
BRISK 35861 38253 1423 1013 410 71.19 15.58
KAZE 4896 4490 1141 816 325 71.52 4.1

AKAZE 4347 4291 811 763 48 87.05 2.62
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Fig. 3.4 Image Registration process for Dry River Dataset
PM is putative Matching, Outlier is the rejected points by RANSAC, and Inliers are the good

points that are used for the registration
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Fig. 3.5 Image Registration process for Suez Canal Dataset
PM is putative Matching, Outlier is the rejected points by RANSAC, and Inliers are the good

points that are used for the registration

3.4.3 Change Detection Results

To validate the effectiveness of the pre-processing method, we compared the results of

change detection methods (PCA-k-means (PCAK) [23], NR-ELM [161], DDNet [2] and
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(a) Reference Image at (T1) (b) Sensed Image at (T2) (c) Registered Image

Fig. 3.6 The Registration Result for both SAR datasets
Rows: (1st row) Dry River dataset, and (2nd row) Suez Canal dataset

Table 3.3 Comparison of RMSE.

Method SIFT SURF ORB(50000) KAZE BRISK AKAZE

RMSE (Dry River) 2.97 3.32 2.93 3.46 3.35 3.49
RMSE (Suez) 4.49 5.42 5.48 6.54 7.09 2.28

LANTNet [164]) with and without the Otsu method using two real SAR datasets. Figures 3.7

and 3.8 demonstrate that applying the 5*5 Gaussian filter and then Ostu thresholding con-

siderably enhanced the change map results compared with CM without the Otsu for all the

change detection methods.

In the dry river dataset, CD methods without the Otsu method yield unsatisfactory results.

They highlight the water surface area in the whole image as a changed area. The Otsu

algorithm helps change detection methods to exclude certain water areas that are common

between the two images. However, it highlights many unchanged areas to be changed in
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the change map. Ostu algorithm with Gaussian filter helps CD methods produce better CD

images than the previous two methods as presented in Figure 3.7. In the Suez Canal dataset,

the CD method without the processing step highlights the whole water surface and ignores

the ships. Ostu algorithm provides better accuracy compared to change detection methods

without Otsu. However, based on this method for the four CD algorithms, the result classifies

a wide land area as changed areas, especially in PCAK and NR-ELM. The CM image is much

better with DDNet and LANTNet. Finally, Ostu with Gaussian filter assists the CD methods

in providing the best CM images for the CD methods by removing the unwanted information

under the water surface and highlighting the small ships in CM images. LANTNet and

DDNet provide better results compared to PCAK and NR-ELM methods as illustrated in

Figure 3.8.

3.5 Summary

This chapter discussed the systematic investigation of image registration for SAR change

detection. The process involved four steps: image matching, putative matching, obtaining

inlier and rejecting outlier points, and obtaining the registered image. This process was

illustrated for both the Suez Canal and Dry River datasets, emphasising the importance

of each step. Image-matching lines were excluded from the illustration as they covered

entire images. Putative matching, outliers, and inlier points were visually represented,

leading to the generation of a homography matrix for image registration. Various image-

matching algorithms were tested with precision as the evaluation metric, showing that

different algorithms performed better depending on the dataset characteristics. The Suez

Canal dataset was registered with the AKAZE algorithm, while the Dry River data was

registered with ORB(50000) due to high precision and low RMSE (Root Mean Square Error)

values. Change detection results were also presented, demonstrating the effectiveness of Otsu

thresholding and Gaussian filtering in enhancing change maps for different change detection
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(a) PCA-Kmeans (b) NR-ELM (c) DDNet (d) LANTNet

Fig. 3.7 CM results for Dry River dataset.
Rows: (1st row) CM without Otsu, (2nd row) suez canal data CM with Ostu thresholding,

and (3rd row) CM with Ostu thresholding after applying 5*5 Gaussian filter

methods. To summarise, the registered and reference images needed to be despeckled if they

had speckle noise. However, both datasets seemed to be clear and did not need despeckling.

The next chapter discussed despeckling noise for better change detection accuracy. A

novel despeckling method was developed based on the state of the art and evaluated with

comparisons to different despeckling methods.
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(a) PCAK (b) NR-ELM (c) DDNet (d) LANTNet

Fig. 3.8 CM results for Suez Canal dataset.
Rows: (1st row) CM without Otsu, (2nd row) suez canal data CM with Ostu thresholding,

and (3rd row) is CM with Ostu thresholding after applying 5*5 Gaussian filter



Chapter 4

Enhanced SAR Change Detection Using

Deep Despeckling Model

4.1 Overview

SAR CD identifies the change between two multi-temporal SAR images for the same

geographical region. The main challenge for the CD task is speckle noise. It is caused

by interference patterns that arise when coherent electromagnetic waves reflect off rough

surfaces or scatter from a volume of small particles. In images, speckle noise appears as a

granular pattern that can reduce image quality and change detection performance. Various

techniques have been developed to reduce or remove speckle noise, including filtering [182],

wavelet-based methods [183], and statistical modelling [184]. In the context of CD, many CD

methods are introduced to deal with this challenge. For example, Qu et al. [2] also presented

DDNet to obtain features from spatial and frequency domains to minimise the speckle noise.

Meng et al. [164] proposed a robust loss function and a LANTNet that benefits from feature

correlations among multi-convolutional layers and suppresses the impact of noisy labels.

Despite the robustness of modern deep learning-based methods against various noise types,

they struggle to suppress speckle noise, effectively limiting their change detection capabilities.
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Additionally, speckle noise levels differ between single-look and multi-look SAR imaging

processes [5], further degrading change detection algorithms’ performance. This research

introduces a resilient deep convolutional neural network-based Despeckling Model (DM)

that can suppress speckle noise and improve the performance of state-of-the-art SAR CD

methods.

This chapter is structured to combine two subfields of research: image despeckling and

SAR change detection. We hypothesised that more despeckling for SAR images before the

CD task would improve the CD performance. In other words, the highest despeckling metrics

for our SAR change detection images will provide the highest change detection accuracy. To

investigate this hypothesis by despeckling SAR change detection datasets and computing the

despeckling metrics for despeckling methods. Subsequently, CD methods will be performed

on the despeckled SAR CD datasets. Finally, the CD metrics will be computed and compared

to despeckling metrics to check the hypothesis.

4.2 Proposed Despeckling Model

The proposed methodology is a despeckling model (DM) that passes the input SAR image

through a series of convolutional layers to suppress speckle noise and later feeds the resulting

noise-reduced image to the subsequent change detection method. In the following, we discuss

them in detail, where we first present the proposed despeckling architecture, despeckling

loss function, and adaptations we have made to the baseline change detection approach by

proposing a noise-resilient loss function.

4.2.1 Network Architecture

The proposed method is inspired by ID-CNN method [185]. It consists of ten convolutional

layers that include batch normalisation and ReLU activation functions. Each layer has 64
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Fig. 4.1 The Methodology structure

filters with a stride of one, and zero padding is used to ensure that the output of each layer has

the exact dimensions as the input image, except the last one has one filter. At the network’s

end, a hyperbolic tangent is stacked to work as a nonlinear function. The details of the

proposed method architecture are described in table 4.1. In this context, L1 and L10 refer to a

series of Conv-ReLU layers. Similarly, the layers between L2 and L9 represent Conv-BN and

ReLU layers as described in figure 4.2.

Table 4.1 Proposed Method Network Configuration.

- Layer Filter Size Filters Output Size

L1 Conv + ReLU 3*3*1 64 256*256*64
L2 −L9 Conv + BN + ReLU 3*3*64 64 256 *256* 64

L10 Conv + ReLU 3*3*64 1 256 *256*1

4.2.2 Loss Function

The loss function is essential and part and parcel of the learning process. The utilisation

of loss functions is crucial for learning, particularly in image reconstruction tasks that use

convolutional neural networks (CNNs). Many studies have investigated various loss functions

and their combinations to improve the learning process for tasks like super-resolution [186],



56 Enhanced SAR Change Detection Using Deep Despeckling Model

Fig. 4.2 Despeckling proposed network for better change detection accuracy

semantic segmentation [130], change detection [187], and style transfer [188]. In earlier

studies on CNN-based image restoration, the optimisation process involved calculating the

L2-norm (Euclidean loss) or L1-norm between the predicted (despeckled noise) and ground

truth (clean image) images on a per-pixel basis.

Given an image pair X, Y, where Y is a speckle (noisy) image, and X is the corresponding

ground truth image, X and Y have the same shape W ·H. The pre-pixel Euclidean loss is

defined in equation 4.1.

LE(θ) =
1

W ·H
W

∑
w=1

H

∑
h=1

∥X (w,h)− X̂ (w,h)∥2 (4.1)

Where X̂ is the despeckled output image, and θ is the learning network (parameters) for

generating the despeckled image.

Although the Euclidean loss has effectively solved numerous image restoration problems,

it frequently produces artifacts in the resulting estimated image [189]. To address this

problem, Wang et al [185] has integrated a supplementary total variation (TV) loss into

the loss function to promote smoother outcomes. This method removes the artefacts but

smooths the images, which causes the loss of some information and reduces the performance

of change detection, for instance. To overcome this, I have utilised a structural similarity

index (SSIM), which image quality assessment techniques rely on quantifying errors between

a reference (clean) and a sample image (despeckled) [190]. We use it as supplementary to
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Euclidean loss, which can remove the artifacts and maintain the necessary information. This

causes an increase in the change detection performance. SSIM is described in equation 4.7.

Because the SSIM value is limited between 0 - 1. Therefore, there is a need for a predefined

weight λSSIM for the loss function to increase and adjust the SSIM value and control the

importance of the SSIM loss function.

SSIM(X , X̂) =
(2µX µX̂ +C1) · (2σXX̂ +C2)

(µ2
X +µ2

X̂
+C1) · (σ2

X +σ2
X̂
+C2)

(4.2)

Where X and X̂ are the reference (noise-free) and despeckled images, respectively, µX

and µX̂ are the mean values of X and X̂respectively. Similarly, σX and σX̂ are the standard

deviations of X and X̂ respectively. While σXX̂ is the covariance between X and X̂ . Finally,

C1 and C2 are constants set to be 0.01 and 0.03 respectively [190].

The total loss is thus calculated as follows:

Total − loss = LE(θ)+λSSIM ·SSIM (4.3)

Where LT is the total loss and λSSIM represents the weighting of the auxiliary SSIM in

the loss. Based on the experimental results shown in Tables 4.6 and 4.7, we chose a value of

λSSIM for 5.

4.3 Datasets

This chapter used two types of datasets to train and examine the despeckling model. The first

is the Berkeley Segmentation Dataset 500, which is widely employed to generate synthetic

SAR images. In addition, real SAR images (for the purpose of change detection purpose)

were employed to assess the model’s performance. Both datasets are described in detail In

the following subsections:
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4.3.1 Synthetic SAR Images

The Berkeley Segmentation Dataset 500 (BSD-500) was initially developed to evaluate the

segmentation of natural edges, including object contours, object interior and background

boundaries [191]. It included 500 natural images with carefully manually annotated bound-

aries and edges of natural objects collected from multiple users. This dataset has been widely

used to generate synthetic SAR images for the purpose of despeckling [192–194]. Inspired

by these studies, we have used BCD-500 to train our despeckling model.

Fig. 4.3 Sample of BSD500 dataset that used to train the model

4.3.2 Real SAR Images

For the purpose of change detection, we employed three real SAR image datasets that are

multi-temporal and have been co-registered and corrected geometrically.

• Farmland and Yellow River Datasets:
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Fig. 4.4 Change detection datasets used to test the despeckling model

RADARSAT-2 captured the images for both datasets in the region of the Yellow River

Estuary in China on 18th June 2008 (pre-change) and 19th June 2009 (post-change).

The pre-change images are single-look, whereas the post-change images have been

acquired via a multi-look (four) imaging process. The single-look pre-change image

is significantly influenced by speckle noise compared to the four-look post-change

image [25]. The disparity between the single and four looks in these two SAR datasets

poses a significant challenge for change detection methods.

• Ottawa Dataset:

The images for this dataset were also captured by RADARSAT-2 in May 1997 (pre-

change) and August 1997 (post-change) in the areas affected by floods [1–3]. Because

of the single imaging process, both the pre-and post-change images are less affected

by noise in this dataset.
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4.4 Experimental Results and Discussion

This section has been divided into two subsections. Firstly, we discuss the metrics of

despeckling and change detection. Subsequently, the performance investigation of different

loss functions will be discussed. Performance Investigation of the Despeckling Model will

also be discussed. The results and discussion have two subsections for despeckling and

change detection results.

4.4.1 Despeckling Metrics

The main challenge in SAR image despeckling is reducing speckle noise while still preserving

the image’s fine details. One major issue is the lack of a "ground truth" for the desired speckle-

free reflectivity. Another important consideration is the relationship between the quality

and reliability of the despeckled SAR images. Despeckling techniques can be evaluated by

analysing the degradation in homogeneous regions and the preservation of fine details in

heterogeneous areas. The quality of the despeckled SAR image can be assessed through visual

inspection or by using performance metrics such as with-reference and without-reference

indexes. When a reference image is available, it becomes easier to compare and improve

upon the results of the despeckling process. Some of the major performance metrics using a

reference image are the peak signal-to-noise ratio (PSNR), structural similarity index (SSIM)

[195], Edge Preservation Index (EPI) [196] and UIQI [197], while in without-reference

indexes, the Equivalent Number of Looks (ENL) is used. ENL gives information on the

speckle reduction ability of an algorithm, and it is given by the ratio between the square of the

mean to the Standard deviation. The highest ENL shows the best despeckling performance.

The below table is summarised the despeckling metrics [198, 11].

ENL =
µ2

I

σ2
I

(4.4)
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Table 4.2 Despeckling Metrics.

- Full reference (pair) Non reference (single)

1 SSIM µ

2 PSNR σ

3 UIQI ENL

µI =
1

N ∗M

N,M

∑
N=1,M=1

I(i, j) (4.5)

σ
2
I =

1
N ∗M

N,M

∑
N=1,M=1

(I(i, j)−µ)2 (4.6)

Where I is the despeckled image, µ is the mean, σ is the standard deviation, and σ2 is

the variance.

SSIM(X , X̂) =
(2µX µX̂ +C1) · (2σXX̂ +C2)

(µ2
X +µ2

X̂
+C1) · (σ2

X +σ2
X̂
+C2)

(4.7)

Where X and X̂ are the reference (noise-free) and despeckled images, respectively, µX

and µX̂ are the mean values of X and X̂respectively. Similarly, σX and σX̂ are the standard

deviations of X and X̂ respectively. While σXX̂ is the covariance between X and X̂ . Finally,

C1 and C2 are constants set to be 0.01 and 0.03 respectively [190].

PSNR = 10log10

(
MAX2

MSE

)
(4.8)

Where MAX is the maximum possible pixel value of the image, and MSE is the Mean

Squared Error between the original and compressed images.

UIQI =
σXX̂

σX σX̂
· 2µX µX̂
(µX)2 +(µX̂)

2 ·
2σX σX̂

σ2
X +σ2

X̂

(4.9)
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The first component is the correlation coefficient between the x and y images, quantifying

the extent of their linear correlation. The second component, with a value range of [0,1],

gauges the proximity of the mean luminance levels between x and y. The third component

assesses the similarity in contrast between the images. The range of values for the UIQI

index spans from -1 to 1, with the optimal value of 1 achieved only when the images are

identical.

4.4.2 Change Detection Metrics

Quantitative evaluation indices including false positives (FP), false negatives (FN), true

positive (TP), true negative (TN), precision (P), recall (R), overall accuracy (OA) (also called

observed by change) and F1 score (F1) [199, 200]. All these metrics are represented in the

Formulas 4.10 to 4.13. Clearly, a greater P value leads to a decrease in false alarms, while

a higher R-value indicates a reduced rate of incorrect detections. The OA measures the

proportion of accurately detected pixels in the image. However, when the number of altered

pixels is only a small part of the entire image, relying on these three metrics could result in

overestimating the outcome. To avoid this, the F1 score is used as it addresses the limitations

of P and R and provides a more comprehensive evaluation of the performance. It is important

to note that larger F1 values indicate better overall performance [201].

Table 4.3 Confusion Metrics.

GT GT Metrics

0 0 TN
0 1 FP
1 0 FN
1 1 TP

R =
T P

(T P+FN)
(4.10)
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P =
T P

(T P+FP)
(4.11)

OA =
(T P+T N)

(T P+FP+FN +T N)
(4.12)

F1 =
(2 ·P ·R)
(P+R)

(4.13)

4.4.3 Despeckling Results

To evaluate the despeckling performance of the proposed despeckling model on both synthetic

and real SAR datasets, we compare the performance of the DM with the following four

despeckling methods: Lee [21], Enhanced Lee [104], SAR2SAR [202] and ID-CNN [185].

Note that [202] and [185] are the most recent state-of-the-art image despeckling algorithms.

In the following, we divide the despeckling result into results on synthetic SAR images and

results on real SAR images.

1. Results on Synthetic SAR Images

We have randomly chosen four pairs of images (noise-free and despeckle images): the

desert, riverside, Buildings, and Rivers classes were respectively set up with synthetic

SAR images. To assess the despeckling performance of different methods on synthetic

SAR, we use three fundamental metrics: PSNR, SSIM and UIQI. These metrics show

how proficient each method operates within the context of these data pairs. Table 4.4

represents the performance of despeckling methods on synthetic testing SAR datasets.

In general, Enhanced Lee consistently achieves the highest scores in terms of PSNR

and UIQI, indicating its superior performance in reducing noise and preserving image

quality. On the other hand, SAR2SAR excels in SSIM scores, highlighting its ability to

maintain structural similarity with the original data. However, the despeckling model
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achieves average performance in all three metrics. This divergence in performance can

be attributed to the distinct approaches and algorithms employed by these despeckling

methods.

Table 4.4 Quantitative evaluation of despeckling methods on samples of synthetic testing
SAR datasets

Testing data Metrics Noisy Lee Enhanced Lee SAR2SAR ID-CNN DM

PSNR
x 8.77 8.53 14.64 13.07 9.12 9.65

Pair 1 SSIM
x 0.08 0.02 0.31 0.65 0.05 0.07

UIQI
x 0.67 0.65 0.87 0.85 0.70 0.72

PSNR
x 7.97 11.54 14.64 12.02 8.90 14.14

Pair 2 SSIM
x 0.09 0.15 0.30 0.34 0.11 0.23

UIQI
x 0.76 0.87 0.93 0.87 0.79 0.92

PSNR
x 7.65 11.68 15.78 14.25 9.20 9.94

Pair 3 SSIM
x 0.02 0.05 0.23 0.54 0.03 0.03

UIQI
x 0.72 0.87 0.93 0.90 0.79 0.82

PSNR
x 8.63 12.95 19.04 18.77 10.14 11.12

Pair 4 SSIM
x 0.03 0.07 0.27 0.61 0.05 0.06

UIQI
x 0.74 0.89 0.96 0.95 0.80 0.83

2. Results on Real SAR Images

In this section, we have three genuine SAR datasets designated for change detection

purposes at our disposal. These datasets, however, lack a reference, noise-free (ground

truth) image for direct comparison with the despeckled output. Consequently, there

arises the necessity to employ non-reference image quality assessment metrics, such

as Equivalent Number of Looks, to evaluate and contrast the performance of our

despeckling model against other established despeckling methods. As illustrated in

Figures 4.5, 4.6 and 4.7, these figures depict the performance of various despeckling

techniques applied to synthetic SAR testing datasets. Notably, the SAR2SAR algorithm

tends to oversmooth the three real SAR datasets, resulting in the highest ENL values,

as indicated in Table 4.5. Conversely, Lee and Enhanced methods gently despeckle
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Table 4.5 Quantitative evaluation of filters on Multi-temporal SAR datasets

Metric Image Noisy Lee Enhanced Lee SAR2SAR ID-CNN DM

Farmland1 118.43 118.23 118.3 121.22 134.54 130.91
Farmland2 122.47 122.24 122.23 104.61 149.35 135.37
Ottawa1 60.88 60.63 60.48 66.49 71.93 66.83

µ
x Ottawa2 71.55 70.96 71.25 76.26 88.75 75.44

Yellow River1 101.70 101.48 101.70 112.52 118.49 118.08
Yellow River2 105.57 105.15 105.35 94.29 115.32 109.94

Farmland1 44.85 28.35 26.07 21.02 30.09 28.73
Farmland2 67.43 53.59 38.78 27.64 46.16 49.88
Ottawa1 55.83 51.82 49.43 56.32 61.39 57.69

σ
y Ottawa2 54.77 49.48 48.17 50.6 62.29 52.39

Yellow River1 43.26 33.54 31.58 34.53 39.15 36.63
Yellow River2 68.23 58.00 46.20 38.55 51.68 53.99

Farmland1 6.97 17.4 20.59 33.27 19.99 20.76
Farmland2 3.3 5.2 9.94 14.32 10.47 7.37
Ottawa1 1.19 1.37 1.50 1.39 1.37 1.34

ENL
x Ottawa2 1.70 2.1 2.19 2.27 2.03 2.07

Yellow River1 5.53 9.15 10.37 10.62 9.16 10.39
Yellow River2 2.39 3.29 5.20 5.98 4.98 4.15

the SAR datasets, so ENL values are small. At the same time, our custom despeckling

model effectively eliminates noise, resulting in a significant increase in the ENL scores.

(a) Farm (T2) (b) Lee (c) Enh Lee (d) S2S (e) ID-CNN (f) Proposed

Fig. 4.5 Visualised results of Farmland dataset with different despeckling methods.
The 1st row represents Farmland data at T1 and 2nd row represents Farmland at T2
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(a) Ottawa (b) Lee (c) Enh Lee (d) S2S (e) ID-CNN (f) Proposed

Fig. 4.6 Visualised results of Ottawa dataset with different despeckling methods.
The 1st row represents Ottawa data at T1 and 2nd row represents Ottawa at T2

(a) Yellow (T2) (b) Lee (c) Enh Lee (d) SAR2SAR (e) ID-CNN (f) Proposed

Fig. 4.7 Visualised results of Yellow River dataset with different despeckling methods.
The 1st row represents Yellow River data at T1 and 2nd row represents Yellow River at T2

4.4.4 Varying Loss Functions

In this section, we explore the impact of various loss functions in despeckling methods

on the performance of recent change detection methods. For each loss function, we train

the despeckling model using the respective loss function and subsequently apply change

detection methods, including DDNet and LANTNet. The DM loss function that yields
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Table 4.6 Relationship between different DM loss functions and F1 Score for DDNet.

Loss Function Method Farmland Yellow River Ottawa

MSE+LTV [185] 88.82 77.91 94.62
MSE+10 ·SSIM 89.1 81.5 94.73
MSE+5 ·SSIM 89.70 90.79 94.87

Table 4.7 Relationship between different DM loss functions and F1 Score for LANTNet.

Loss Function Method Farmland Yellow River Ottawa

MSE+LTV [185] 87.60 79.16 93.90
MSE+10 ·SSIM 88.50 80.43 94.20
MSE+5 ·SSIM 89.20 91.72 94.88

the highest change detection accuracy is selected. 4.6 and 4.7 show the change detection

performance with different DM loss functions, with the highest F1 Score highlighted in bold.

4.4.5 Performance Analysis

To validate the effectiveness of the despeckling model, we compared the results of change

detection methods with and without the despeckling model using three real SAR datasets.

Figures 4.8, 4.9 and 4.10 demonstrates that the proposed despeckling model considerably

enhanced the F1 score for existing (including state-of-the-art) change detection methods.

In all these experiments, we empirically set the λSSIM to be 5 in the loss objective (4.3) as

a tradeoff between despeckling and change detection performance, as we investigated in

Tables 4.6 and 4.7. It is evident that the performance of the CD methods improves once

we pass them through the proposed despeckling model in three SAR datasets. However, in

Figure 4.10, the NR-ELM algorithm with DM obtained a lower F1 because Ottawa dataset is

less affected by the speckle noise. This is why we see a higher F1 score even with all other

methods without DM. Secondly, Compared to other methods, the NR-ELM is more resistant

to speckle noise because of the inherent despeckling process encoded within its architecture.
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Therefore, the decline in the F1 score when we include the DM module is due to the fact that

an additional despeckling process oversmooths the input image, subsequently decreasing the

F1 score. These results will be explained in more detail in section 4.4.3.

Fig. 4.8 Relationship between DM and F1 score for Farmland dataset

Fig. 4.9 Relationship between DM and F1 score for Yellow River dataset
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Fig. 4.10 Relationship between DM and F1 score for Ottawa dataset

4.4.6 Change Detection Results

To evaluate the impact of the proposed despeckling model on change detection purposes,

we compare the effectiveness of the proposed DM with other existing despeckling methods

such as Lee [21], Enhanced Lee [104], SAR2SAR [202] and ID-CNN [185] on three real

SAR datasets. Subsequently, we feed the despeckled SAR images to four aforementioned

change detection methods, namely PCA-k-means (PCAK) [23], NR-ELM [161], DDNet [2]

and LANTNet [164]. PCAK employs principle component analysis for feature extraction

and utilises the k-means clustering algorithm for classification. NR-ELM incorporates

the neighbourhood ratio for feature extraction using the difference image, followed by

classification using an extreme learning machine. DDNet is a dual-domain network that

exploits spatial and frequency domain features to mitigate speckle noise. LANTNet is a layer

attention-based noise-tolerant network that leverages the correlation between convolutional

layers. Both DDNet and LANTNet are currently state-of-the-art change detection methods.

• Results of Farmland dataset

From Figure 4.11, it can be observed that the change map generated by PCAK misclas-

sifies many unchanged pixels compared to GT. The Enhanced Lee filter significantly

improves the results for PCAK, increasing the accuracy from 47.44% to 79.44%,

while the proposed DM achieves 65.90%. It is worth mentioning that, Farmland
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dataset is heavily influenced by speckle noise, and change detection algorithms usually

perform poorly compared to Ottawa dataset, which is less affected by speckle noise.

Simply applying PCAK, a simple CD method, without despeckling, results in poor

performance, as shown in Table 4.8. Another reason for this poor performance, in

addition to the speckle noise, is because the pre- and post-change images in Farmland

dataset are different looks, i.e., single and multi-looks before and after the change with

varying noise levels. Using the despeckling process somewhat takes this into account

and improves the performance, as seen in Table 4.8, where all despeckling methods

consistently improve the results with PCAK. Specifically, the Enhanced Lee performs

the best here because it is well suited for stronger speckle noise and helps PCAK

to significantly smooth the image, while DM is designed to support and generically

enhance the overall CD performance. NR-ELM produces better results with less noise

but misses some changed pixels. The DM filter improves NR-ELM’s performance

from 78.28% to 84.96%.

Furthermore, DDNet performed better than PCAK and NR-ELM did. The DM en-

hances the F1 score for DDNet from 86.67% to 89.70%, i.e., it demonstrates higher

accuracy than PCAK and NR-ELM, although slightly lower than DDNet, while DM

improves the accuracy of LANTNet from 88.69% to 89.20%. The proposed method

improved performance after incorporating the DM module, increasing accuracy from

89.91% to 91.28%. Notably, the despeckled data using the SAR2SAR filter performed

poorly and yielded lower results than the original methods without the despeckling

model. It is evident that the DM outperforms other despeckling methods in terms of

the F1 score for the purpose of change detection. Moreover, it consistently outperforms

other change detection methods without a DM. In other words, the DM suppresses

speckle noise even when two Farmland image pairs have different looks, such as

single-look (pre-change) and four-look (post-change). This type of suppression is
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reflected positively in the performance of the change detection methods as shown in

Table 4.8.

(a) T1 (b) T2 (c) GT (d) PCAK (e) NR (f) DDN (g) LANT

Fig. 4.11 Visualised results of Farmland dataset with different despeckling methods
Rows: (1st row) Farmland without despeckling (w/o), (2nd row) Farmland despeckled with
lee, (3rd row) Farmland despeckled with enhanced lee, (4th row) Farmland despeckled with
SAR2SAR, (5th row) Farmland despeckled with IDCNN, (6th row) Farmland despeckled

with proposed DM. Columns: Farmland image captured at (a) T1 and (b) T2. (c) refers to the
ground truth (GT) image. Results obtained by methods (d) PCAK [23], (e) NR-ELM [161],

(f) DDNet [2], and (g) LANTNet [164].

• Results of Yellow River dataset

In Figure 4.12, it is noticeable that the change map generated by PCAK misclassifies

many unchanged pixels as changed ones compared with the GT. The Lee filter reduces

speckle noise and improves the CM. The DM performs as the best filter, effectively



72 Enhanced SAR Change Detection Using Deep Despeckling Model

Table 4.8 Quantitative evaluation on Farmland change detection based on different
despeckling filters.

Here, w/o means it is the original method without despeckling, DM is our proposed
despeckling model while S2S is SAR2SAR, Enh refers to Enhanced Lee, OA is Overall

Accuracy, NR is NR-ELM, DDN is DDNet and LANT is LANTNet

Methods Metrics w/o Lee [21] Enh [104] S2S [202] ID-CNN [185] DM

Recall
x 90.04 90.87 67.32 95.69 85.45 90.76

PCAK [23] Precision
x 32.27 57.73 96.89 66.51 54.35 51.74

OA
x 88.22 95.53 97.94 96.89 94.89 94.44

F1
x 47.52 70.60 79.44 78.48 66.44 65.90

Recall
x 65.20 68.82 66.52 97.50 66.64 75.39

NR [161] Precision
x 97.92 99.13 98.51 57.17 97.23 97.33

OA
x 97.86 98.12 97.96 95.52 97.91 98.42

F1
x 78.28 81.24 79.42 72.08 79.08 84.96

Recall
x 82.26 86.58 78.25 99.26 81.52 82.81

DDN [2] Precision
x 91.59 92.76 98.21 48.66 97.57 97.85

OA
x 98.50 98.81 98.63 93.76 98.79 98.87

F1
x 86.67 89.57 87.11 65.30 88.82 89.70

Recall
x 81.35 80.51 81.76 98.46 79.87 81.18

LANT [164] Precision
x 97.50 96.14 96.27 52.74 96.98 98.98

OA
x 98.77 98.66 98.73 94.69 98.66 98.84

F1
x 88.69 87.64 88.42 68.69 87.60 89.20

suppressing noise and significantly improving the F1 score from 72.66% to 87.7% for

the PCAK method. NR-ELM produces better results with less noise but misses some

changed pixels, whereas the DM filter enhances NR-ELM’s performance from 81.59%

to 87.04%.

Furthermore, DDNet outperformed PCAK and NR-ELM results. The DM considerably

enhanced the F1 score from DDNet from 86.65% to 90.79%. LANTNet achieves higher

accuracy than PCAK and NR-ELM. DM has enhanced the F1-score for LANTNet

from 88.44% to 91.1%. After applying the proposed DM, the proposed method’s

performance has improved from 88.44% to 91.83%. It is worth mentioning that the

despeckled data using the SAR2SAR filter does not perform well and yields lower
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results compared to the original methods without despeckling, such as DDNet and

LANTNet. It is evident that DM achieves a superior F1 score for change detection

methods compared to other despeckling methods due to the ability to efficiently cope

with the single-look pre-change and multi-look post-change SAR images via robust

loss function.

• Results of Ottawa dataset

Compared to previous datasets, the Ottawa dataset is less affected by speckle noise.

This is evident from the achieved better change detection results of 91.93% using the

PCAK method without any despeckling process on Ottawa dataset compared to the

previous two datasets. Including the proposed DM further improves the F1 score value

from 91.93% to 94.47%. NR-ELM [161] provides better results compared to PCAK,

Lee slightly improves the F1 score from 94.15% to 94.77%, whereas DM reduces

the performance to 84.84% as shown in Figure 4.10 and Table 4.13. The proposed

DM with the NR-ELM degrades the performance because of oversmoothing. This is

because NR-ELM has an inherent despeckling process encoded within its architecture.

Moreover, this is also the case for other despeckling methods except the Lee method,

which does not degrade (but slightly improve) the performance. A possible reason

for this could be because, in comparison, Lee [21] is the least strong despeckling

method and, therefore, does not result in much oversmoothing, which degrades the

performance.

DDNet performed better than PCAK and NR-ELM, and the proposed DM improves the

F1 score for DDNet from 93.90% to 94.87%. LANTNet produces better accuracy than

PCAK, NR-ELM and DDNet. Its accuracy has further improved by the proposed DM

from 94.46% to 94.88%. With the proposed loss objective, the performance slightly

improves from 94.46% to 94.50%, which is further enhanced from 94.50% to 95.79%

when used in conjunction with the DM as shown in Figure 4.13 and Table 4.8. It can
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(a) T1 (b) T2 (c) GT (d) PCAK (e) NR (f) DDN (g) LANT

Fig. 4.12 Visualised results of Yellow River dataset with different despeckling methods
Rows: (1st row) Farmland without despeckling (w/o), (2nd row) Farmland despeckled with
lee, (3rd row) Farmland despeckled with enhanced lee, (4th row) Farmland despeckled with
SAR2SAR, (5th row) Farmland despeckled with IDCNN, (6th row) Farmland despeckled

with proposed DM. Columns: Farmland image captured at (a) T1 and (b) T2. (c) refers to the
ground truth (GT) image. Results obtained by methods (d) PCAK [23], (e) NR-ELM [161],

(f) DDNet [2], and (g) LANTNet [164].

be observed from the Ottawa dataset results that the CD methods without despeckling

already perform well because the data is less affected by noise. Nevertheless, with

DM, the performance of these CD methods was further improved.
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In summary, addressing our hypothesis, a high Equivalent Number of Looks score

in SAR image processing signifies effective noise reduction, resulting in a less noisy

and more uniform image. However, this heightened noise reduction can introduce a

tradeoff with change detection sensitivity. As observed in our previous results, a high

ENL score often corresponds to an oversmoothing effect on SAR images, leading to

the potential loss of subtle or small changes in the image. This loss is attributed to

the smoothing or averaging processes employed for noise reduction, which can blur

or merge neighbouring pixels, making it challenging to distinguish actual changes

from noise. Consequently, this tradeoff results in a lower F1 score. The challenge

lies in striking a balance between noise reduction and maintaining change detection

sensitivity, a common dilemma in SAR image processing. Our findings show that our

proposed despeckling model does not necessarily attain the highest ENL score. Still, it

excels in achieving a superior F1 score when compared to other despeckling methods.

This superiority can be attributed to DM’s ability to handle single-look pre-change and

multi-look post-change SAR images efficiently.

4.5 Summary

This chapter centred around the goal of enhancing the accuracy of change detection in SAR

imagery by addressing the significant issue of speckle noise. Speckle noise, characterised

by granular patterns in SAR images, posed a major challenge to achieving accurate change

detection. Various despeckling methods were developed to mitigate this noise, including

filtering and statistical modelling. In response to this challenge, we introduced a novel

despeckling model (DM) based on deep convolutional neural networks to enhance SAR

change detection performance.

The methodology detailed in this chapter was designed to test the hypothesis that intensi-

fying the despeckling of SAR images before conducting change detection could lead to more
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(a) T1 (b) T2 (c) GT (d) PCAK (e) NR (f) DDN (g) LANT

Fig. 4.13 Visualised results of Ottawa dataset with different despeckling methods
Rows: (1st row) Farmland without despeckling (w/o), (2nd row) Farmland despeckled with
lee, (3rd row) Farmland despeckled with enhanced lee, (4th row) Farmland despeckled with
SAR2SAR, (5th row) Farmland despeckled with IDCNN, (6th row) Farmland despeckled

with proposed DM. Columns: Farmland image captured at (a) T1 and (b) T2. (c) refers to the
ground truth (GT) image. Results obtained by methods (d) PCAK [23], (e) NR-ELM [161],

(f) DDNet [2], and (g) LANTNet [164].

accurate results. The structured approach involved despeckling SAR datasets, computing

despeckling metrics for different methods, applying change detection to the despeckled

datasets, and comparing the change detection metrics with despeckling metrics to validate
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Table 4.9 Quantitative evaluation on Ottawa change detection based on different despeckling
filters

Here, w/o means it is the original method without despeckling, DM is our proposed
despeckling model while S2S is SAR2SAR, Enh refers to Enhanced Lee, OA is Overall

Accuracy, NR is NR-ELM, DDN is DDNet, and LATNT is LANTNet.

Methods Metrics w/o Lee [21] Enh [104] S2S [202] ID-CNN [185] DM

Recall
x 88.16 91.58 88.74 88.85 92.01 91.00

PCAK [23] Precision
x 96.05 96.28 97.74 82.14 96.85 98.20

OA
x 97.55 98.11 97.89 95.18 98.26 98.31

F1
x 91.93 93.87 93.02 85.36 94.37 94.47

Recall
x 93.14 94.79 87.67 88.68 92.07 73.92

NR [161] Precision
x 95.19 94.74 94.59 80.56 92.65 99.53

OA
x 98.17 98.34 97.25 94.82 97.59 95.82

F1
x 94.15 94.77 91.00 84.42 92.36 84.84

Recall
x 92.70 93.66 93.66 90.78 94.51 91.71

DDN [2] Precision
x 95.12 96.06 96.06 82.91 94.73 98.26

OA
x 98.09 98.39 98.39 95.58 98.30 98.43

F1
x 93.90 94.84 94.85 86.67 94.62 94.87

Recall
x 91.8 94.67 90.73 89.91 92.62 91.66

LANT [164] Precision
x 97.30 94.48 95.11 82.49 95.23 98.33

OA
x 98.3 98.28 97.80 95.39 98.1 98.44

F1
x 94.46 94.57 92.87 86.04 93.90 94.88

the hypothesis. The proposed despeckling model played a pivotal role in this methodology

by effectively reducing speckle noise and improving overall image quality.

To validate its findings, we utilised two types of datasets: synthetic SAR images from the

Berkeley Segmentation Dataset 500 and real SAR images from datasets such as Farmland,

Yellow River, and Ottawa. The experimental results demonstrated that the proposed DM

significantly enhanced change detection accuracy compared to other despeckling techniques.

It struck a balance between noise reduction and preserving sensitivity to changes in SAR

images, resulting in substantially improved change detection performance.

The work in this chapter focused on improving SAR change detection by addressing

the challenge of speckle noise. It introduced the Despeckling Model, outlined a systematic
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Table 4.10 Quantitative evaluation on Yellow River change detection based on different
despeckling filters.

Here w/o means it is the original method without despeckling, DM is our proposed
despeckling model while S2S is SAR2SAR, Enh refers to Enhanced Lee, OA is Overall

Accuracy, NR is NR-ELM, DDN is DDNet, LANT is LANTNet

Methods Metrics w/o Lee [21] Enh [104] S2S [202] ID-CNN [185] DM

Recall
x 74.96 78.40 74.52 81.80 81.37 82.59

PCAK [23] Precision
x 70.50 87.80 82.75 83.31 92.79 93.53

OA
x 89.80 94.12 92.58 93.74 95.49 95.82

F1
x 72.66 82.84 78.42 82.55 86.70 87.72

Recall
x 72.18 48.35 70.19 78.30 79.76 79.32

NR [161] Precision
x 93.83 99.72 92.22 85.53 95.08 96.42

OA
x 94.11 90.63 93.54 93.68 95.59 95.73

F1
x 81.59 65.13 79.71 81.76 86.75 87.04

Recall
x 83.46 86.32 82.86 80.46 64.06 86.58

DDN [2] Precision
x 90.09 91.41 81.89 85.00 90.40 95.44

OA
x 95.35 96.06 93.59 93.90 93.43 96.83

F1
x 86.65 88.79 82.37 82.67 77.91 90.79

Recall
x 82.44 84.00 83.03 79.84 65.93 87.51

LANT [164] Precision
x 92.45 91.18 71.49 87.83 99.04 94.99

OA
x 95.61 95.64 90.94 94.35 93.72 96.91

F1
x 87.16 87.44 76.83 83.64 79.16 91.1

methodology, and demonstrated its effectiveness in enhancing change detection performance.

This research contributed to the field of SAR image processing by providing a robust solution

to mitigate the disruptive effects of speckle noise on change detection outcomes. The next

chapter will concentrate on Deep learning based on change detection for SAR images.



Chapter 5

Deep Learning Based on Change

Detection for SAR Images

5.1 Overview

Change detection is one of the important tasks in computer vision. It is responsible for

highlighting the differences in an area from multi-temporal satellite images captured for

the same geographical region at different periods [23, 6]. Some of the change detection

techniques have been discussed in Chapter 2. The most challenging aspect of SAR change

detection methods is speckle noise [23, 24, 2]. Chapter 3 debates the importance of image

registration for the change detection problem. Moreover, Chapter 4 highlights the importance

of reducing speckle noise to improve the change detection map and F1 Score.

This chapter will explore and develop deep learning in change detection to reduce speckle

noise and improve the F1 score. Deep learning, such as conventional neural networks,

has been employed to solve computer vision challenges and achieve state-of-the-art results

in these problems, such as image classification, semantic segmentation, and object detec-

tion [203, 130, 204, 205]. Therefore, this chapter aims to produce a convolutional neural

network to enhance change detection performance. The results of this method will be com-



80 Deep Learning Based on Change Detection for SAR Images

pared to the state-of-the-art techniques in change detection problems, such as DDNET and

LANTNet.

These two objectives will be discussed in detail in section 5.3. The remaining sections

are structured as follows: related work briefly discusses change detection techniques. Then,

the methodology will discuss the proposed network. Subsequently, three co-registered SAR

datasets have been discussed. Next is the experimental results and discussion section. This

section discusses the environment setup, evaluation metrics, results, and discussion. Finally,

here is the summary of this chapter.

5.2 Methodology

Existing unsupervised change detection methods utilise clustering algorithms such as hierar-

chical Fuzzy C-Means [206] and Fuzzy C-Means (FCM) [207] to generate pseudo-labels

with a high probability for network training. While this method solves the need for label

data, errors commonly affect network performance. In addition, the attention mechanism is

utilised to emphasise the essential parts of the input while disregarding irrelevant information,

but it often neglects the correlations among multiple convolution layers. Meng et al. [164]

proposed a layer attention module to weigh features from different layers based on the learned

correlation matrix to address this limitation. LANTNet is a module that effectively combines

spatial information from low-level layers with semantic information from high-level layers,

emphasising informative layers and suppressing redundant ones. The process involves matrix

multiplication to assign adaptive weights to the input feature groups, followed by calculating

the attention matrix using a softmax operation. The weighted feature matrix is then multiplied

by the attention matrix, reshaped, and combined with the original input to produce the final

output. The change map is generated through a series of convolution and fully connected

layers. The trained network can classify all pixels from the multitemporal SAR images to

obtain the final change map as shown in Figure 5.1.
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5.2.1 Baseline Architecture

In the pre-classification module, we employ the logarithmic ratio operator and the hierarchical

FCM algorithm, and you can find more detailed information about this module in [160]. After

pre-classification, we extract image patches (R × R pixels) from I1, I2, and the difference

image, each labelled accordingly. These patches are then combined to create new image

patches (3 × R × R pixels), which serve as our training data. The convolutional stem consists

of four convolution layers. Initially, a 1 × 1 convolution is used to extract a shallow feature

denoted as F0. Subsequently, we use three 3 × 3 convolution layers to extract intermediate

features Fi, where i ranges from 1 to 3. For the shallow feature F0, we set the channel count

to 16, and for the intermediate features F1, F2, and F3, we set the channel count to 32. We

then apply a 1 × 1 convolution to expand the channel dimensions of F0 to 32. Following this,

F0, F1, F2, and F3 are merged to create a feature group, which is then input into the layer

attention module.

5.2.2 Enhanced Loss Function

In this section, we adapt the training strategy and propose a loss function that is more

noise-resistant to speckle noise. However, this loss function does not provide satisfactory

performance. To this end, we first designed a robust loss function that is more resistant to

speckle noise. The loss function combines MSE and Kullback-Leibler Divergence (KL). The

loss function is expressed as follows:

LMSE(X , X̂) = ∥X − X̂∥2 (5.1)

LKL(X , X̂) = X̂ · (log X̂ −X) (5.2)
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LT = α ·LMSE +β ·LKL (5.3)

where α and β are two weighting hyperparameters that control the relative significance of

the individual components within the model, enabling the precise adjustments to enhance the

performance based on the assigned values of α and β . Based on our empirical study, α and β

were set to 0.9 and 0.1 to trade off noise robustness and convergence efficiency. The KL acts

similarly to CE, with the difference that CE penalises the network based on its predictions.

In contrast, KL mainly evaluates the disparity between the probability distribution predicted

by the network and the distribution of the reference ground truth. Therefore, we argue that

combining MSE and KL can provide a better change detection performance and suppress

speckle noise (see Section 5.3.2). In the following section, we present the results of our

proposed methodology along with the training details.

5.2.3 Enhanced Architecture

In this section, we have made enhancements to LANTNet’s parameters to improve its change

detection performance further. Specifically, we have adjusted the number of training epochs,

increasing it to 70 epochs to allow for more comprehensive model training. Furthermore, we

have fine-tuned the learning rate, setting it at 0.001, facilitating a more precise convergence

of the model during the training process. The chosen of these parameters was based on

the experiments in Table 5.1. These parameter adjustments are instrumental in optimising

LANTNet’s effectiveness in detecting changes within SAR imagery.

5.3 Experimental Results & Discussion

Experiments were conducted on three co-registered SAR datasets, which are introduced

in detail in this section. Python 3.7 was used to perform the experiment. The platform of
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Table 5.1 Enhanced Architecture
Where lr learning rate and Epochs is the number of epochs in the experiment

Parameters Farmland Yellow River Ottawa

Lr 0.01 Epochs 50 82.14 83.85 93.42
Lr 0.001 Epochs 50 85.48 86.91 94.94
Lr 0.01 Epochs 60 88.25 87.15 93.79
Lr 0.001 Epochs 60 89.67 87.06 94.80
Lr 0.01 Epochs 70 88.22 87.33 95.35

Lr 0.001 Epochs 70 89.91 88.44 95.35

the experiments was Tesla GPU P100-PCIE-16 GB RAM 147.15 GB Disk. The result and

discussion will be discussed in the next subsection.

5.3.1 Datasets

Three co-registered SAR change detection datasets were discussed in the previous chapter.

Below is the description for SAR change detection datasets:

• Farmland and Yellow River Datasets

These two datasets were captured by RADARSAT-2 in the region of Yellow River

Estuary in China in June 2008 and June 2009, respectively. Hence, the influence of

speckle noise on the image captured in 2008 is much greater than that of the one

acquired in 2009

• Ottawa dataset It captured two images of a flooding event that caused a rise of lakes

near Ottawa, Canada. It was taken by the RADARSAT-1 satellite SAR sensor in July

and August 1997. The size of each image is 290 × 350 pixels. [3, 2, 1]. Table 5.2

presents the specifications of datasets used in this chapter.
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Fig. 5.1 Proposed Change Detection Method

5.3.2 Ablation Study

This section examines how well our new loss function performs in LANTNet. We do this by

comparing it to other commonly used loss functions in similar applications. To make sure

our evaluation covers a wide range of scenarios, we use three different SAR change detection

datasets. By comparing these results, we aim to demonstrate how our proposed loss function

improves change detection accuracy when used in LANTNet as presented in Table 5.3 and

Table 5.2 Multi-temporal SAR images specifications.
H is height, and W is width

Dataset Name Type of Image Image H*W in Pixels

1 Farmland SAR 306*291
2 Yellow River SAR 257*289
3 Ottawa SAR 290*350
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Fig. 5.2 Visualised Proposed loss function results of Farmland with different loss function

Table 5.3 Ablation Studies of the Proposed Method for LANTNet.

Loss Function Method Farmland Yellow River Ottawa

MAE 89.1 87.24 94.24
MAE+CE [164] 88.69 87.16 94.46

MSE 86.91 86.22 94.75
MSE+CE 89.60 88.23 94.54

MSE+KL(Pro) 89.91 88.44 95.35

Figures 5.2, 5.3 and 5.4. This analysis will help us understand our loss function’s strengths,

showing its resistance against speckle noise in the SAR change detection task.

The proposed loss function has undergone rigorous comparisons with existing loss func-

tions across three distinct SAR change detection datasets. In this comprehensive evaluation,

the proposed loss function consistently outperformed all other counterparts, as evidenced by

the results depicted in Table 5.3 and Figures 5.2, 5.3 and 5.4. Consequently, we have chosen

to employ this superior loss function within our novel change detection method. By doing so,

we aim to mitigate the adverse effects of speckle noise and enhance the overall performance

of our change detection system.
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Fig. 5.3 Visualised Proposed loss function results of Yellow River with different loss function

Fig. 5.4 Visualised Proposed loss function results of Ottawa with different loss functions
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(a) Image at T1 (b) Image at T2 (c) GT (d) MAE+CE (e) Pro (f) Pro+DM

Fig. 5.5 Visualised results of change detection methods
on the (1st row) Farmland dataset, the (2nd row) Yellow River, and the (3rd row) Ottawa

dataset. Image captured at (a) and (b). (c) GT, (d) loss function MAE+ CE and (e) results by
the proposed method MSE +KL(Pro).

5.3.3 Results & Discussions

To assess the effectiveness of our proposed approach, we conduct a comparative analysis

against several established change detection methods, including PCA-k-means (PCAK)[23],

NR-ELM[161], DDNet [2], LANTNet [164] and Pro + DM. PCAK relies on principal

component analysis for feature extraction and employs the PCAK-means clustering algorithm

for classification. NR-ELM incorporates neighbourhood ratio for feature extraction, utilising

the difference image, and subsequently applies an extreme learning machine for classification.

DDNet is a dual-domain network that harnesses spatial and frequency domain features

to mitigate speckle noise. LANTNet, on the other hand, is a noise-tolerant network that

incorporates layer attention mechanisms to exploit correlations between convolutional layers.

Pro + DM refers to the proposed method after despeckling SAR CD datasets with the

despeckling model we introduce in Chapter 4.
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• Results on the Farmland Dataset:

From Figure 5.5 and Table 5.4, it can be observed that the change map generated by

PCAK misclassifies many unchanged pixels as changed ones compared with the GT

which increase FP value and produces insufficient CD performance 47.52%. NR-ELM

produces better results. This can seen from the small value of FP 7. This leads to

yielding the F1 score to 78.28%. Furthermore, DDNet outperformed PCAK and NR-

ELM results. DDNet obtains 86.67% score. This happens because FP and FN are very

small values compared to the TP values. LANTNet gets better performance than the

DDNet method. The proposed method outperforms all previous methods because the

proposed loss function is more resistant to speckle noise. It achieves 89.91% accuracy.

Finally, (Pro + DM), which applies the despeckling model before the proposed method,

can reduce speckle noise and considerably enhance CD performance from 88.91% to

91.28%.

Table 5.4 Change Detection Results of Farmland Dataset.

R here is Recall, P is Precision, Pro is the proposed method, and Pro + DM is the proposed
method with the despeckling model

Methods TP TN FP FN R P OA F1 Score
x

PCAK [23] 4745 73817 9959 525 90.04 32.27 95.53 47.52
NR [161] 3436 83703 73 1834 65.20 97.92 97.86 78.28
DDNet [2] 4335 83378 398 935 82.26 91.59 98.81 86.67

LANTNet [164] 4287 83666 110 983 81.35 97.50 98.77 88.69
Pro 4460 83594 180 810 84.08 97.67 98.89 89.91

Pro + DM 4390 83709 67 880 86.45 96.67 99.02 91.28

• Results on the Yellow River Dataset:

From Table 5.5, distinct trends emerge in the performance of various change detection

methodologies. Firstly, while PCAK yields reasonably satisfactory results, NR-ELM

exhibits superior accuracy at 81.59%, owing to its enhanced resistance to speckle
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noise compared to PCA. DDNet surpasses PCAK and NR-ELM by achieving an

impressive score of 86.65%, primarily due to notably reduced instances of false

positives and false negatives. Exceeding the performance of DDNet, LANTNet attains

a score of 87.16%, signifying its superior change detection capabilities. Our proposed

method emerges as the top-performing approach, achieving an accuracy rate of 88.44%,

primarily attributable to its innovative loss function specifically designed to mitigate

the influence of speckle noise. To further enhance performance, we introduce (Pro

+ DM), which mitigates speckle noise and significantly augments change detection

accuracy to an impressive 91.83%.

Table 5.5 Change Detection Results of Yellow River Dataset.

R here is Recall, P is Precision, Pro is the proposed method, and Pro + DM is the proposed
method with the despeckling model

Methods TP TN FP FN R P OA F1 Score
x

PCAK [23] 10068 56628 42213 3364 74.96 70.50 89.80 72.66
NR [161] 9695 60204 637 3737 72.18 93.83 94.11 81.59
DDNet [2] 11210 59608 1233 2222 83.46 90.09 95.35 86.65

LANTNet [164] 11074 59936 905 2358 82.44 92.45 95.64 87.16
Pro 11293 60028 813 2139 84.08 93.28 96.03 88.44

Pro + DM 11861 59920 921 1571 89.53 94.25 97.12 91.83

• Results on the Ottawa Dataset:

As discussed in Chapter 4, the Ottawa dataset is less affected by speckle noise. This is

evident from the achieved better change detection results of 91.93% using the PCAK

method. NR-ELM provides better results compared to PCAK, with an F1 score of

94.15% as shown in Figure 5.5 and Table 5.6. DDNet performed better than PCAK

but slightly less than NR-ELM, with an F1 score for DDNet of 93.90%. LANTNet

produces better accuracy than PCAK, NR-ELM and DDNet, with an F1 score of

94.46%. The proposed method obtains the highest performance than the previous CD

methods, and its accuracy has further improved by the proposed DM from 94.50%
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to 95.79%. It can be observed from the Ottawa dataset results that the CD methods

without despeckling already perform well because the data is less affected by noise.

Nevertheless, with DM, the performance of these CD methods was further improved.

Table 5.6 Change Detection Results of Ottawa Dataset.

R here is Recall, P is Precision, Pro is the proposed method, and Pro + DM is the proposed
method with the despeckling model

Methods TP TN FP FN R P OA F1 Score
x

PCAK [23] 14148 84869 582 1901 88.16 96.05 97.55 91.93
NR [161] 14948 84695 756 1101 93.14 95.19 98.17 94.15
DDNet [2] 14878 84688 763 1171 92.70 95.12 98.09 93.90

LANTNet [164] 14733 85042 409 1316 91.8 97.30 98.3 94.46
Pro 14717 85069 382 1332 91.70 97.47 98.31 94.50

Pro + DM 15042 85137 314 1007 93.73 97.96 98.70 95.79

5.4 Summary

In this chapter, we explored the improved change detection performance achieved through

the novel inclusion of a specialised loss function. This innovation demonstrated substantial

advantages over current state-of-the-art change detection methods. Furthermore, we provided

a detailed account of the methodology employed to enhance LANTNet’s training regime.

Through extensive experimentation with different hyperparameters, we aimed to augment

its proficiency in change detection further. Specifically, we extended the number of training

epochs to 70, fostering a more comprehensive model training process. Additionally, we

fine-tuned the learning rate to 0.001, enhancing model convergence during training. These

parameter adjustments played a pivotal role in optimising LANTNet’s effectiveness in

identifying changes within SAR imagery.

We utilised three co-registered SAR change detection datasets, including the Farmland,

Yellow River, and Ottawa datasets. Our experiments were conducted using a Google Co-



5.4 Summary 91

laboratory Pro environment with a Tesla GPU P100-PCIE, 16 GB RAM, and 147.15 GB

Disk. We evaluated the performance of different loss functions, including MAE, MAE+CE,

MSE, MSE+CE, and MSE+KL(Pro), within the LANTNet framework. This analysis aimed

to demonstrate the effectiveness of the proposed loss function in improving change detection

accuracy, particularly in scenarios affected by speckle noise. We compared our approach to

established change detection methods, such as PCA-k-means (PCAK), NR-ELM, DDNet,

LANTNet, and Pro + DM. The results showed that our method consistently outperformed

these methods, achieving higher accuracy rates, especially when dealing with speckle noise-

affected data.

This chapter provided insights into the enhancements made to LANTNet’s parameters

and presented a thorough evaluation of the performance of different loss functions. We

demonstrated the effectiveness of our proposed approach in improving change detection

accuracy, with a particular focus on datasets affected by speckle noise. The next chapter will

discuss the conclusion and future work.





Chapter 6

Conclusion & Future Work

6.1 Summary of Research Findings

Change detection, which is based on synthetic aperture radar, is a critical topic in remote

sensing and computer vision areas. Change detection has gained more attention after the

success of deep learning methods in providing better accuracy compared to existing methods.

This research has concentrated on SAR images for change detection because they have an

advantage over optical change detection (CD); they can work in darkness and in difficult

weather. With this advantage, SAR CD can assist in assessing disasters during darkness and

bad weather. SAR CD identifies changes in two multi-temporal SAR images for the same

geographical region. We aim to systematically investigate and enhance the performance of

SAR change detection methods, aiming to address the issue of speckle noise that adversely

affects the accuracy of these methods. This aim can be addressed by the following questions:

first, can the enhancement of image registration accuracy lead to an improvement in change

detection performance? Second, does despeckling SAR images prior to change detection

methods enhance CD performance? Finally, We explore different deep-learning approaches

for SAR change detection. We specifically try to address whether deep learning can deal

with speckle noise without despeckling techniques as a pre-processing step.
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By answering these questions in this thesis, we will advance our understanding of SAR

change detection tasks. In Chapter 3, we investigated the importance and need of image

registration for SAR CD by comparing several commonly used image registration-based

feature detection algorithms. Subsequently, we applied Ostu thresholding with a Gaussian

filter to remove the influence of water surface areas that reduced the capacity of change

detection methods. In Chapter 4, we proposed a solution for the main challenge of SAR CD,

which is speckle noise. Speckle noise influences SAR images and reduces the performance

of change detection methods. We developed a convolutional neural network to despeckle

speckle noise in SAR CD datasets before feeding them to change detection methods. Our

proposed despeckling model outperforms other despeckling methods with regard to the

F1 score for the purpose of change detection using three SAR change detection datasets.

Moreover, we investigated our hypothesis that the more despeckling SAR CD datasets,

the better CD performance (F1) was obtained by comparing the ENL for all despeckling

methods and the F1 score for change detection methods. We found that this hypothesis is

not completely accurate because as we increase the despeckling of SAR change detection

on certain datasets, the image becomes oversmoothed, which results in the loss of essential

information in SAR images. This ultimately results in a degradation of the overall change

detection performance.

In Chapter 5, we addressed the final research question by enhancing the performance of

LANTNet [164]. Our significant contribution involves introducing a novel loss function that

combines two existing ones, rendering it more resilient to speckle noise. This innovation

substantially improved change detection performance, surpassing the capabilities of current

state-of-the-art methods. Furthermore, these enhancements required the fine-tuning of critical

parameters, including extending the training regime by increasing the number of training

epochs to 70 and optimising the learning rate to 0.001. These adjustments played a pivotal

role in maximising the effectiveness of LANTNet for detecting changes in SAR imagery. We
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systematically evaluated various loss functions, including MAE, MAE +CE, MSE, MSE +

CE, and MSE +KL(Pro), within the LANTNet framework. This comprehensive analysis

aimed to showcase the superior performance of our proposed loss function, particularly in

scenarios affected by speckle noise.

Through benchmarking our method against established change detection approaches,

including PCA-k-means (PCAK), NR-ELM, DDNet, LANTNet, and Pro + DM, our findings

consistently demonstrated the superior accuracy of our approach. Notably, our method

exhibited exceptional accuracy, especially when handling speckle noise-affected data. In

summary, this chapter discussed the enhancements made to LANTNet’s parameters and

offered a comprehensive evaluation of the performance of diverse loss functions. Our thesis

highlights the effectiveness of our proposed methodology in significantly improving change

detection accuracy, with a particular emphasis on datasets corrupted with speckle noise.

6.2 Contribution to Knowledge

This thesis has made significant contributions to the field of Synthetic Aperture Radar change

detection, offering novel insights and advancements in several key areas:

• Enhanced SAR Change Detection Techniques:

This study has introduced and validated several techniques aimed at enhancing the

accuracy of SAR change detection. By systematically exploring image registration-

based feature detection algorithms, we have shed light on the critical role of accurate

image alignment in improving change detection results. Additionally, our proposed

despeckling model (DM) stands out as an innovative solution to address speckle noise, a

persistent challenge in SAR imagery. Our research demonstrates that DM outperforms

existing despeckling methods, underscoring its potential to enhance change detection

accuracy significantly.
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• Deep Learning Approaches:

In response to the growing interest in deep learning, particularly convolutional neural

networks, this research has delved into the applicability of deep learning techniques for

SAR change detection. By exploring the capacity of deep learning models to handle

speckle noise without the need for a custom pre-processing step, we have advanced the

understanding in relation to the capabilities and limitations of these models in SAR

applications. Our findings provide valuable insights for researchers and practitioners

seeking to harness the power of deep learning in SAR change detection tasks.

• Comparative Analysis:

This thesis has detailed extensive benchmarking and comparative analyses, system-

atically evaluating various change detection methods and loss functions. By bench-

marking our proposed method against established methods, including PCA-k-means

(PCAK), NR-ELM, DDNet, LANTNet, and Pro + DM, we have contributed valuable

performance metrics and insights. Our research consistently demonstrates the superior

accuracy of our method, particularly when dealing with data corrupted by speckle

noise, offering a reliable benchmark for future research and applications.

• Disaster Assessment and Beyond:

Beyond the realm of academia, our research has practical implications for disaster

assessment and management. The capability of SAR change detection to operate

during darkness and adverse weather conditions makes it a valuable tool for disaster

assessment. By improving the accuracy of change detection methods, especially in

scenarios impacted by speckle noise, our work contributes to more precise disaster

assessment, thereby enhancing the resilience of communities in the face of natural or

man-made disasters.
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This thesis advances the state of knowledge in SAR change detection by providing

valuable techniques, insights, and benchmarking results. The contributions made extend

beyond the academic realm, offering practical benefits in disaster assessment and management

and providing a solid foundation for further research in this critical field.

6.3 Limitations and Future Work

Encountering challenges and setbacks is an inherent part of any research journey. This section

delves into the difficulties encountered during this research and their impact on the study’s

progression. Furthermore, this segment explores potential enhancements that have arisen

from the research, offering valuable insights for future studies to consider and implement.

Limitations

• Limited Generalizability:

While our proposed despeckling model (DM) has shown promise in enhancing SAR

change detection, its performance may vary depending on specific dataset characteris-

tics and applications. Further research is needed to evaluate its generalizability on a

broader range of SAR datasets and scenarios.

• Deep Learning Complexity:

While we have explored the potential of deep learning for SAR change detection, the

computational complexity of deep learning models, particularly when dealing with

large SAR images, remains a challenge. Future work should focus on optimising deep

learning architectures for efficient processing of SAR data.

• Dataset Oversmoothing:
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Our investigation into despeckling revealed that excessive pre-processing can lead

to oversmoothed images, resulting in a loss of essential information. Balancing the

degree of despeckling with preserving critical details remains a challenge that requires

further attention.

Future Work

• Multi-Modal Data Fusion:

Investigate the integration of SAR data with other remote sensing modalities, such as

optical imagery or LiDAR data. The fusion of multiple data sources can provide a

more comprehensive understanding of changes on the Earth’s surface.

• Advanced Deep Learning Architectures:

Explore more advanced deep learning architectures, including recurrent neural net-

works (RNNs) and transformers, to further enhance the capabilities of SAR change

detection models. Experiment with state-of-the-art architectures to improve accuracy

and robustness.

• Open Datasets and Benchmarks:

Contribute to the development of open SAR change detection datasets and benchmarks.

Standardized datasets can facilitate fair comparisons between different methods and

encourage collaboration within the research community.

• Real-time Change Detection:

Develop real-time SAR change detection systems that can process and analyse SAR

data as it becomes available. This could have applications in disaster monitoring and

response, where timely information is crucial.

• Automated Change Interpretation:
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Investigate methods for automatically interpreting the detected changes. This could

involve categorising changes into different classes (e.g., natural disasters, urban expan-

sion) or estimating quantitative attributes of changes (e.g., volume of deforestation).
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Abstract—Image registration is a crucial task in many com-
puter vision applications. It is the process of matching and
aligning two or more images of a scene. These images can be
captured from different viewpoints, different sensors, or different
times. Feature based image registration has four main steps:
feature detection and description, feature matching, outliers
rejection and computing homography and image re-sampling.
Computational cost and registration accuracy of feature-based
image registration mainly depend on the robustness of feature
detection and description methods. Therefore, choosing an opti-
mal feature detection and description method is vital in image
registration applications. This research illustrates a comparison
between popular image registration algorithms; Scale-invariant
feature transform (SIFT), Speeded Up Robust Features (SURF),
Oriented FAST and Rotated BRIEF (ORB), KAZE, Binary
Robust Invariant Scalable Keypoints (BRISK) and Accelerated-
KAZE (AKAZE) in different scenarios: rotation (0 to 360
degrees), scaling (25% to 600%) and multitemporal. The remote
sensing images that are used in the experiments are Radar
images, Aerial images, and Unmanned Aerial Vehicle (UAV)
images. Nearest Neighbour Distance Ratio (NNDR) is performed
in the feature matching, whereas RANSAC is applied to reject
the outliers matching. The results of the experiments show that
SIFT outperforms other algorithms, showing strong stability and
high precision in all scenarios. As for real-time application, ORB
performs well, and it is the fastest algorithm for all scenarios
and then AKAZE as the second fastest one.

Keywords—SIFT, SURF, ORB, BRISK, KAZE, AKAZE,
RANSAC, Nearest Neighbour Distance Ratio, Image Matching,
Image Registration

I. INTRODUCTION

Image registration is a process to align the features of
two or more images to one image. It is important in many
applications such as image fusion, image stitching and change
detection. Some popular feature detection and description
algorithms are used in the image registration process. This
paper focuses on six of them: SIFT, SURF, ORB, BRISK,
KAZE, and AKAZE. In a real application, there is always
a need to identify which algorithm performs the best in real
scenarios. Many researchers have compared these algorithms
by using the Affine Covariant Regions dataset (also known
as Oxford dataset) or Iguazu dataset images that are used in
KAZE experiments [1] [2]. These researchers have examined
algorithms such as SIFT, SURF, ORB, BRISK, KAZE and

AKAZE [3], [4] [5] [6]. Previous studies have compared
feature detection and description algorithms from different
aspects. Micolajczyk and Schmid in [2], introduced the Affine
Covariant Regions dataset and compared the performance of
local feature descriptors such as SIFT, PCA-SIFT, GLOH
and Cross-correlation using a variety of datasets that include
rotation, zoom+ rotation, viewpoint change, image blur, JPEG
compression and light change (a.k.a Oxford dataset). In con-
trast, rotation and scale change assessed in this research was
based only on 30-45 degrees rotation and 200% to 250%
scaling. Gauglitz, Hobias and Turk [7] assessed various feature
detectors such as Harris Corner Detector, FAST, Hessian,
Difference of Gaussians and several descriptors such as SIFT,
SURF, Image Patch and some others for visual tracking.
However, no rotation, and scaling evaluation were conducted.
Pusztai and Hajder [8] presented a quantitative comparison of
several feature detectors available in OpenCV 3 (SIFT, SURF,
AKAZE, KAZE, MSER, ORB, FAST, GFTT, AGAST and
BRISK). Tareen and Saleem [6] evaluated the feature detec-
tion and description algorithms (SIFT, SURF, ORB, KAZE,
BRISK, AKAZE) using Oxford Dataset, other image pairs
from OpenCV, VLFeat and vision toolbox of MATLAB. It
provides a quantitative comparison of feature detectors and
descriptors. However, a precision evaluation metric has not
been used to evaluate the algorithms. Sharma and Jain [9] eval-
uated the feature detection and description algorithms (SIFT,
SURF, ORB and AKAZE) for image registration and stitching
using building dataset image pair, apartment dataset image
pair and MATLAB dataset image pair. Based on their results,
AKAZE was reported as the most accurate and the second
fastest algorithms for image matching and stitching. Based
on our knowledge no research has compared these algorithms
with special attention on remote sensing data to obtain the
answers to; which algorithm performs the best in precision
with remote sensing datasets in rotation, scale change, and
different viewpoints? Moreover, which algorithm performs
well for real-time applications? This research aims to answer
these questions in a case study with various remotely sensed
images. The rest of the paper is organised as follows. Section
II presents an image registration paradigm with applications
and processes. Section III demonstrates experimental results
with discussions. Finally, Section IV concludes the study.
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II. IMAGE REGISTRATION PARADIGM

Image registration is a fundamental task for many computer
vision applications. It is the first step in image fusion, image
stitching, change detection and many more [10] [11]. This
section studies image registration with possible applied scenar-
ios, and techniques used for feature detection and descriptions,
feature matching, and outlier rejection.

A. Image Registration Scenarios

Image registration scenarios for remote sensing can be
classified as below, based on how images are taken.

• Images taken from different viewpoints (Viewpoints
Registration: it is used to integrate information from
one moving sensor or multiple sensors from different
viewpoints to the same object to make a 3D model.
Landmark navigation and plant exploration are examples
of applications that obtain advantages from this kind
of registration [10] [12] [11]. Image stitching is one
application of viewpoints registration too.

• Images taken from different times (Temporal Reg-
istration or Multi-temporal Images): it is utilised for
change detection, and land resource survey that includes
monitoring agricultural and land cover features extracted
from data captured from one or more sensors over
time [10] [12] [13] [11].

• Different sensors (Multi-modal Registration): this ap-
plication is vital for integrating complementary informa-
tion from different sensors. It benefits, for instance, the
land cover uses such as yield estimate in agriculture,
flood monitoring and detection of illegal crops. The
fusion of different remote sensing data illustrates count-
less promises in assisting the decision-making process in
several previous applications [10] [12] [13] [11].

B. Classical Image Registration

Classical image registration can be categorised into manual
and automatic methods:

• Manual Image Registration: in the last two decades,
traditional image geo-referencing started with a manual
image registration process. A human does this process
to allocate the ground control point (GCP) called Tie
points in both reference and sensed images. This step
is equivalent to feature detection. The next step is to
match this GCP in both images by human operators. This
process is facing many challenges [12]; including, i) time
cost (especially for remote sensed (RS) images because
RS images usually cover a large size), ii) finding and
allocating precise features are more difficult in RS than
in medical images, and iii) it requires expert operators.
Based on these challenges, there are requirements for
semi-automatic or automatic registration approaches.

• Automatic Image Registration (AIR): it can be cat-
egorised into Area Based Methods and Feature-Based
Methods. Area Based Method (also called Intensity-
Based Method) is usually used when an image reflects

a relatively smooth surface/scene short of essential fea-
tures. It is popularly used for medical image registration.
However, it is very time-consuming and is influenced
by image noise. Whereas the feature-based method uses
features such as lines, corners, contour and edges to
find a corresponding region in a reference and sensed
images. It is less computationally expensive and more
resistant to noise. Therefore, it is commonly adapted for
remote sensing image registration [10] [12] [13]. Our
study follows the feature based approach, which contains
several steps: feature detection and description, feature
matching, outliers removal, homography and image re-
sampling. Figure 1 shows the process of feature-based
image registration. Traditional methods such as SIFT,
SURF, ORB, KAZE, BRISK and AKAZE are several
famous feature detectors and descriptors popularly used
in image registration. Feature matching methods find
corresponding features from two feature descriptors of
reference and sensed images. Nearest Neighbour Distance
Ratio (NNDR) is used to reduce initially false matches
from feature matching. RANSAC is used to remove
further outliers from putative matches [14]. The good
matches after RANSAC are used in transformation matrix
estimation [14].

C. Feature Detection Algorithms

Figure 1 shows that feature detection from which a feature
descriptor is established is the first step in image registration.
The six feature detection algorithms are briefly described
below. Feature detection algorithms detect features (also called
keypoints) and provide a feature descriptor, making it easy to
find the relevant feature in other images. The input images are
called reference and sensed images.

• SIFT: Scale Invariant Feature Transform (SIFT) [15] is
to solve corner detecting problems with scaling invari-
ance. The main stages of computation in SIFT lead to
generating a set of images features. SIFT detector is based
on Difference-of-Gaussians (DoG) operator which ap-
proximates Laplacian-of-Gaussian (LoG). Feature points
are detected by searching local maxima using DoG at
various scales of subject images. The description method
extracts a 16*16 neighbourhood around each detected
feature and further segments the region into sub-blocks
rendering a total of 128 values. Equation (1) [15] il-
lustrates the convolution of difference of two Gaussians
(computed at a different scale) convolution with image
I(x, y)

D(x, y, δ) = (G(x, y, kδ)−G(x, y, δ)) ∗ I(x, y) (1)

Where G(x, y, δ) is the Gaussian function with different
scales of δ, k is a constant used for scale change in the
Gaussian function.

• SURF: Speeded-Up Robust Features (SURF) [16] relies
on Gaussian scale-space analysis of images as SIFT.
It uses different detectors, descriptors to speed up the
computation that is the disadvantage of SIFT algorithm.
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Fig. 1: Image registration steps with highlighted NNDR, Putative matches and Good Matches

Hessian matrix has been used as a detector. Blob-like
structures can be detected at locations where the determi-
nant of the Hessian matrix is maximum. Hessian matrix
H(X, δ) at point X= (x, y) in an image I at scale δ is
described as in equation (2) [16].

H (X,σ) =

[
Lxx(X,σ) Lxy(X,σ)
Lxy(X,σ) Lyy(X,σ)

]
(2)

where Lxx(X,σ) is convolution of Gaussian second order
derivative with I in point x, and similarly for Lxy(X,σ)
and Lyy(X,σ).

• ORB: Oriented FAST and Rotated BRIEF (ORB) [4] was
developed to deal with the high computational burden
of SIFT and SURF, especially for real-time applica-
tions, for example, visual odometry. ORB consists of
FAST (Features from Accelerated Segment Test) detec-
tor and BRIEF (Binary Robust Independent Elementary
Features) descriptor; both are performed well with low
computational cost. This combination has provided a
fast algorithm to deal with real-time applications which
require corner feature extraction. FAST [17] is a perfect
corner feature detection for a real-time application that
matches visual features, such as Parallel Tracking and
Mapping [4].
In summary, FAST is several times faster than any
existing corner detectors. However, it is affected by a
high level of noise [4]. The BRIEF descriptor is a simple
binary test between pixels in smoothed image patch [18].
Although BRIEF’s performance is similar to SIFT in
many cases, such as robustness to lighting, blur and
perspective distortion, it performs poorly with rotation.
Therefore, rBRIEF has been developed in [4] that has
significant enhancement in dealing with rotated images
compared with BRIEF. In summary, ORB is much faster
than SIFT and SURF. However, it has not been addressed
the scale invariance in the experiment.

• KAZE: It takes advantage of non-linear scale-space
through non-linear diffusion filtering. This method blurs
images locally adaptive to feature points, reducing noise
and retaining regions’ boundaries in images under pro-
cessing. Scale normalised determinant of Hessian Matrix
is used as KAZE detector. It is calculated at multiple scale
levels. The maxima of detector response are chosen as
feature points using a moving window. Feature descriptor
presents rotation invariance property by finding dominant
orientation in the circular neighbourhood around every
feature detector. KAZE is more computationally expen-
sive than SURF, but the KAZE experiments in [1] have
proved it is less computationally expensive than SIFT due
to the computation in the non-linear scale-space [19] [1].

• BRISK: Binary Robust Invariant Scalable Keypoints
(BRISK) [20] is an algorithm that is used Adaptive and
Generic Accelerated Segment Test (AGAST) [21] as a
corner detector and filters them with FAST corner score
when looking for maxima in a scale-space pyramid. The
feature descriptor is built on classifying the characteristic
direction of every feature for attaining rotation invariance.
The descriptor is constructed as a binary string to achieve
illumination invariance. BRISK is introduced to provide
solutions for high-performance algorithms such as SIFT
and SURF. It was also reported to be faster than SIFT
and SURF.

• AKAZE: KAZE is updated to Accelerated-KAZE
(AKAZE) [3]. It is similar to KAZE based on non-linear
diffusion filtering. However, it solves the computational
burden of creating a non-linear scale-space by using a
mathematically well-organised framework Fast Explicit
Diffusion (FED), embedded in a pyramidal framework to
accelerate feature detection in non-linear scale-spaces sig-
nificantly. The AKAZE detector contains a determinant
of the Hessian Matrix. The rotation invariance quality has
improved by Scharr filters [3]. The maxima of detector
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responses in spatial locations are chosen as feature points.
The feature descriptor of AKAZE is based on a highly
efficient Modified Local Difference Binary (MLDB). By
experiments, although authors in [3] have proved that
AKAZE is computationally less expensive than KAZE,
SIFT, and SURF, it is more expensive than BRISK and
ORB.

D. Feature Matching

Feature matching is an essential process of many problems
in computer vision such as object recognition, 3D recon-
struction from multiple images, image registration and motion
tracking [10] [11]. There are two types of matching strategies:
Brute Force and K-Nearest Neighbours (KNN). Brute Force is
classified based on the feature descriptors’ type. The floating-
point descriptor is used in SIFT, SURF and KAZE, whereas
the binary descriptor is used in ORB, BRISK and AKAZE.

• Brute Force algorithm specifies two parameters between
two features: distance metric and crosscheck boolean.
Crosscheck boolean which is used to validate if the
two features are matched. This method classifies the
algorithms based on the descriptor types. For example,
the L1-norm function from the OpenCV library (also
called Least Absolute Deviations) is used for float-point
descriptors such as SIFT, SURF and KAZE use and the
second type of descriptors is Hamming distance is used
for ORB, BRISK and AKAZE [12].

• KNN with a pre-defined value K is an approach, which
may produce a large number of matching points. There-
fore, there is a need to identify those suitable matches by
using (NNDR), which is a threshold introduced by Lowe
to reduce the number of false matches (Outlier) [15].
In this paper, we have applied Brute force and KNN then
set NNDR threshold value as 0.7, which is a set to remove
90% of the false matches while discarding less than 5%
of the correct matches between descriptors in reference
and sensed images. Equation (3) describes NNDR [22]

‖ DR −DS1 ‖
‖ DR −DS2 ‖

< Tratio (3)

where DR is the reference image feature descriptor, DS1

and DR are the first and second closest descriptors to DR in
the sensed image respectively. ||DR − DS1|| is the distance
of DR to DS1, ||DR −DS2|| is the distance of DR to DS2,
and Tratio is threshold, set as 0.7. The matching value after
NNDR is called putative matching. After applying NNDR,
the RANSAC algorithm is applied to remove the rest of the
outliers.

E. Outliers Rejection

Random Sample Consensus (RANSAC) is a famous algo-
rithm used to reject the outlier points (it is also called false
matching points) [23]. RANSAC is introduced as general
and straightforward applicable to many different problems.
It is used to reject a high number of outliers and estimate
the homography matrix by using good matches. Homography

matrix transfers the second image (sensed image) to the first
one (reference image).

III. EXPERIMENTAL RESULTS WITH DISCUSSIONS

Experiments were conducted in two sets of data, which
will be introduced in detail in Section III A. Python 3.7
with OpenCV 3.4 were used to perform the experiments.
The platform of the experiments was Google Colaboratory
environment with a Tesla GPU P100-PCIE-16 GB RAM,
147.15 GB Disk.

A. Datasets

Two datasets are used for the experiments to compare the
six algorithms. Dataset A has three image pairs selected from
different remote sensing databases, as demonstrated in Table
I. Dataset A is used to evaluate the image matching precision
and computational time both are described in Section III
B. Moreover, it is used to demonstrate image stitching via
image registration by SIFT, as in figure 2. Whereas dataset B
has the same three reference images used in dataset A with
different sizes that are used to examine the rotation and scaling
scenarios. Table II illustrates the dataset B specifications.

TABLE I: Dataset A specifications

P RI SI IT RI size SI size
1 WKC2019 WKC2019P Aerial RGB 1345*983 1427*1165
2 lake lake1 UAV RGB 767*1165 767*1165
3 Suez21 Suez25 Radar 1140*1165 1140*1165

P: pair, RI: Reference Image, SI: Sensed Image, IT: Image Type

TABLE II: Dataset B specifications

Image Image name Type of Image Image Size (H*L)
1 lake [24] UAV RGB image 672*1159
2 WKC2019 [25] Aerial RGB image 672*446
3 Suez21 [26] Radar image 570*478

B. Evaluation metrics

There are two types of experiments based on each dataset.
Dataset A is used to examine the image matching for the six
algorithms using three different evaluation metrics; Precision
[3] [19] [5], the number of inlier points (Good matches) and
computational cost [9].

• The number of Inlier points (Good matches) is the
number of matching points after applying RANSAC
algorithm.

• Computational cost is vital to examine which algorithm
can be used for real-time applications.

• Precision (the inlier ratio) defines the number of correct
matches out of the putative matches as shown in Figure
1, and it is expressed in Equation (4).

Precision =
GoodMatches

Putative Matches
(4)
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Fig. 2: Dataset A: WKC2019 and WKC2019P to demonstrate image stitching via image registration by using SIFT

C. Results and Discussion

Table III presents the image matching results of image pairs
in dataset A. The highest precision and lowest computational
cost are highlighted. The mean value and standard deviation
for all three image pairs show that SIFT provides the highest
precision of 94.11%±4.14, then BRISK with 93.79%±6.86
and then AKAZE with 93.32%±6.63. The experimental results
shown in Figure 3 for dataset B show that SIFT is the only sta-
ble algorithm among the six algorithms in rotation and scaled
scenarios. It provides the highest mean value of precision for
the three image pairs of dataset B in the rotation scenario
and the image scaling range of (25% to 600%) in the scaling
scenario. It has been noticed in figure 3 that the matching
precision of AKAZE, KAZE, BRISK, ORB and SURF have
dramatically dropped after scaling change to 400% of the
original image. However, SIFT has a high computational cost
compared to ORB and AKAZE. It provides a relatively low
computational cost with Suez (radar image) and WKC2019
(aerial image). In the rotation scenario, AKAZE and KAZE
provide high precision with fluctuation in some angles. Most
algorithms provide high precision over 80% in a scaling
scenario, but this precision drops dramatically after scaling the
sensed image to 400% of the original, whereas SIFT matching
precision gradually drops after scaling the sensed image to
500% of the original one. For the computational cost, ORB
is always the fastest algorithm in all experiments with both
datasets, and AKAZE is the second fastest algorithm.

IV. CONCLUSION AND FUTURE WORK

This research has compared the six popular feature detection
and description algorithms used for remotely sensed image
matching. It also covers the different matching strategies
and methods to remove outliers. Performance evaluation to
compare these algorithms are conducted in two datasets with
different scenarios. To summarise, SIFT precision outperforms
all other algorithms in all experiments with Datasets A and B.
However, it has a higher computational cost than ORB and
AKAZE. BRISK and AKAZE have the second-best precision
in experiment dataset A and scaling scenario in dataset B,
respectively. AKAZE has slightly lower precision in the ex-
periments of dataset A but is stabler than BRISK in rotation

scenario and much faster in all scenarios. Therefore, it can
be used as an alternative to SIFT. Furthermore, AKAZE has
the second-best precision in the rotation scenario and the third-
best one in experiment dataset A. ORB is the fastest algorithm
with reasonable precision, usually over 80%. Therefore, it can
be recommended for real-time remote sensing applications,
whilst AKZAE is the second-fastest one. This finding could
further investigate comparing image matching precision and
computational cost of SIFT with deep neural networks using
our remote sensing datasets.

REFERENCES

[1] P. F. Alcantarilla, A. Bartoli, and A. J. Davison, “KAZE Features,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7577
LNCS, no. PART 6, 2012, pp. 214–227.

[2] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 27, no. 10, pp. 1615–1630, 2005.

[3] P. F. Alcantarilla, J. Nuevo, and A. Bartoli, “Fast explicit diffusion
for accelerated features in nonlinear scale spaces,” in BMVC 2013 -
Electronic Proceedings of the British Machine Vision Conference 2013,
2013.

[4] E. Rublee, W. Garage, and M. Park, “ORB : an efficient alternative to
SIFT or SURF.” IEEE, 2011, pp. 2564–2571.

[5] M. Hassaballah, H. A. Alshazly, and A. A. Ali, “Analysis and evaluation
of keypoint descriptors for image matching,” in Recent Advances in
Computer Vision, 2018, vol. 804, no. January, pp. 113–140.

[6] Z. Saleem and S. Tareen, “A Comparative Analysis of SIFT , SURF ,
KAZE , AKAZE , ORB , and BRISK,” in 2018 International Conference
on Computing, Mathematics and Engineering Technologies (iCoMET).
IEEE, 2018, pp. 1–10.

[7] S. Gauglitz, T. Höllerer, and M. Turk, “Evaluation of interest point
detectors and feature descriptors for visual tracking,” International
Journal of Computer Vision, vol. 94, no. 3, pp. 335–360, 2011.

[8] Z. Pusztai and L. Hajder, “Quantitative Comparison of Feature Matchers
Implemented in OpenCV3,” 21 st. Computer Vision Winter Workshop,
Rimske Toplice, 2016.

[9] S. K. Sharma and K. Jain, “Image Stitching using AKAZE Features,”
Journal of the Indian Society of Remote Sensing, vol. 48, no. 10, pp.
1389–1401, 2020.
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[22] S. BAŞ, “Point-based matching of oblique images acquired from
airplane and uav platforms,” Master’s Thesis, Hacettepe University,
Available:openaccess.hacettepe.edu.tr, 2020.

[23] M. A. Fischler and R. C. Bolles, “Random Sample Paradigm for
Model Consensus: A Apphcatlons to Image Fitting with Analysis and
Automated Cartography,” Graphics and Image Processing, vol. 24, no. 6,
pp. 381–395, 1981.

[24] SenseFly, “Thammasat university campus in bangkok dataset,” 2018,
available:sensefly.com,Accessed on 18 Dec 2020.

[25] Digimap, “High resolution 25cm vertical aerial imagery,” 2019,
[JPG geospatial data], Scale 1:500, Tiles: su7371, Updated: 11 Oc-
tober 2013, Getmapping, Using: EDINA Aerial Digimap Service,
digimap.edina.ac.uk, Accessed on: 16 Feb 2021.

[26] ESA, “Suez canal traffic jam seen from space,” 2021, available: esa.int,
Accessed on 30 Mar 2021.

139



(a) Precision during 360 degree rotation for lake (b) Precision of scale change for the lake (c) Computational Cost of lake

(d) Precision during 360 rotation for Suez21 (e) Precision of scale change for the Suez21 (f) Computational Cost of Suez21

(g) Precision during 360 rotation for WKC2019 (h) Precision of scale change for the WKC2019 (i) computational cost of WKC2019

Fig. 3: Results of rotation and scaling scenarios, left column rotation precision and second column is scaling precision and
last one is computational cost
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Abstract. Synthetic aperture radar (SAR) image change detection (CD)
focuses on identifying the change between two images at different times
for the same geographical region. SAR offers advantages over optical
sensors for disaster-related change detection in remote sensing due to its
all-weather capability and ability to penetrate clouds and darkness. The
performance of change detection methods is affected by several chal-
lenges. Deep learning methods, such as convolutional neural networks
(CNNs), have shown promising performance in dealing with these chal-
lenges. However, CNN methods still suffer from speckle noise, adversely
impacting the change detection performance F1 score. To tackle this chal-
lenge, we propose a CNN model that despeckles the noise prior to apply-
ing change detection methods. We extensively evaluate the performance
of our method on three SAR datasets, and the results of our proposed
method demonstrate superior performance compared to state-of-the-art
methods such as DDNet and LANTNet performance. Our method signif-
icantly increased the change detection accuracy from a baseline of 86.65%
up to 90.79% for DDNet and from 87.16% to 91.1% for LANTNet in the
Yellow River dataset.

Keywords: Unsupervised Learning · SAR change detection · Despeck-
ling noise.

1 Introduction

Remote sensing change detection (CD) is an essential technique for identify-
ing changes in multi-temporal images of the same geographical region [10] [16].
It provides valuable information for various applications, including deforestation
monitoring, target detection, and agricultural advancement [2] [23]. Additionally,
CD algorithms support decision-making during natural disasters, enabling timely
actions to prevent material losses and save lives [13]. Change detection in remote
sensing involves distinguishing changed and unchanged pixels in multi-temporal
Earth Observation (EO) images for the same geographical region. These multi-
temporal EO images are required to be co-registered. This step is important in
aligning EO images to the same coordinate system, which is useful for obtaining
consistent radiometric characteristics, such as brightness and contrast. This pro-
cess enhances the change detection performance [14] [19]. Key point extraction
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techniques like SIFT, SURF, and CNNs are often used for image registration [6].
Classical change detection can be easily obtained by computing the intensity dif-
ference between images. The result of this process is called a change map (CM).
However, challenges such as co-registration errors, illumination variations, and
speckle noise affect the accuracy of change detection algorithms.

Synthetic aperture radar offers advantages over optical sensors for change de-
tection in remote sensing due to its all-weather capability, penetration through
clouds and vegetation, and sensitivity to small changes. SAR change detection
methods primarily rely on unsupervised learning due to the lack of annotated
SAR datasets. Various unsupervised CD methods use clustering algorithms, such
as principal component analysis, fuzzy clustering algorithms (FCM) [12] and
fuzzy local information C-mean (FLICM) [17]. Researchers make an effort to re-
duce the impact of speckle noise on CD methods. Qu et al. [22] introduced a dual
domain neural network (DDNet) incorporating spatial and frequency domains to
reduce speckle noise. Gao et al. [10] proposed a Siamese adaptive fusion network
for SAR image change detection, which extracts semantic features from multi-
temporal SAR images and suppresses speckle noise. Meng et al. [20] presented a
noise-tolerant network called LANTNet that utilises feature correlations among
multiple convolutional layers and employs a robust loss function to mitigate the
impact of noisy labels. While these deep learning-based approaches show some
robustness against speckle noise, they still struggle to eliminate it and reduce its
effectiveness in change detection methods. Furthermore, the presence of speckle
noise varies between single-look (pre-change) and multi-look (post-change) SAR
imaging processes, further degrading the performance of change detection algo-
rithms when considering different instances in time.

To address the issues with degrading CD performance, we propose a robust
despeckling model (DM) architecture that effectively suppresses speckle noise in
SAR CD datasets. This approach leads to significant improvements in change
detection performance. Experimental evaluations on public SAR CD datasets
provide compelling evidence of the superiority of our proposed method when
compared to existing approaches.

2 Related Work

SAR change detection is widely used in various applications, including urban
extension [16], agricultural monitoring [23], target detection [21], and disaster
assessment [2]. Due to the lack of annotated SAR datasets, most researchers rely
on unsupervised methods for SAR change detection. However, the presence of
speckle noise poses a significant challenge and reduces the accuracy of change
detection. Image pre-processing, including despeckling and image registration,
is a crucial step in SAR change detection to enhance image quality and align
multi-temporal images [19].

Generating a difference image (DI) is important in SAR change detection.
Various methods, such as image differencing, log ratio, and neighbourhood-based
ratio, have been proposed to generate the DI [5] [30]. The classification of the
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DI typically involves thresholding and clustering. Some approaches use the pre-
classification result to train a classifier model and combine the preclassification
and classifier results to generate a change map. These methods aim to improve
change detection performance by leveraging preclassification and classifier infor-
mation [8].

Recent approaches in SAR change detection focus on explicitly suppressing
speckle noise to improve accuracy. Methods such as DDNet [22], Siamese adap-
tive fusion networks [10], and LANTNet [20] have been proposed to mitigate
the impact of speckle noise and extract high-level features from multi-temporal
SAR images. However, these approaches have limitations in effectively handling
different speckle noise characteristics in images prior and after the change, es-
pecially when the number of looks varies. To address this challenge, we propose
a despeckling model to suppress speckle noise and achieve effective SAR change
detection for different numbers of looks in pre- and post-change images.

Fig. 1: An overview of the proposed modules

3 Methodology

The despeckling module applies a sequence of convolutional layers to reduce
speckle noise in input SAR images. The resulting image with reduced noise is
then passed to the subsequent CD methods. Figure 1 presents the DM and
CD methods overview. The following sections explain the proposed despeckling
model architecture and the change detection methods.

3.1 Despeckling Model Architecture

The proposed despeckling architecture aims to learn a mapping from the input
SAR image using convolutional layers to generate a residual image containing
only speckle noise. The resulting speckle-only image can be combined with the
original image through either subtraction [4] or division [27] operations to pro-
duce the despeckled image. The division operation is preferred as it avoids an
additional logarithmic transformation step and allows for end-to-end learning.
However, training such a network requires reference despeckled images, which are
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Table 1: Proposed Despeckling Model Configuration. Where L1 and L10 refer to a
series of Conv-ReLU layers, while the layers between L2 and L9 consist of Conv-BN
and ReLU layers as illustrated in Figure 1.

- layer Filter Size Filters Output size
L1 Conv + ReLU 3*3*1 64 256*256*64

L2-L9 Conv + BN + ReLU 3*3*64 64 256 *256* 64
L10 Conv + ReLU 3*3*64 1 256 *256*1

typically unavailable for SAR images. To address this, researchers use synthetic
reference images generated using multiplicative noise models [29] [4] [27]. This
study also employs synthetic SAR reference images to train the proposed de-
speckling network architecture, consisting of ten convolutional layers with batch
normalisation, ReLU activation functions, and a hyperbolic tangent as the final
nonlinear function. The proposed architecture is similar to [27] [29] [4], but with
additional convolutional layers and improved loss function presented in Figure 2.
Moreover, the details on hyperparameters are also provided in Table 1 for clarity.

Fig. 2: Proposed despeckling model architecture

3.2 Proposed Loss Function

A common approach to training the despeckling network is to use the per-pixel
Euclidean loss function LE(θ), computed by comparing the predicted despeck-
led image with the noise-free SAR image. The LE(θ) calculates the squared
Euclidean distance between corresponding pixels. While effective in various im-
age restoration tasks, such as super-resolution, semantic segmentation, change
detection, and style transfer, it often results in artifacts and visual abnormalities
in the estimated image. Researchers have incorporated a total variation (TV)
loss and an Euclidean loss function LE(θ) as supplementary measures. The TV
loss reduces artifacts but may lead to oversmoothing and information loss, thus
impacting change detection performance. To overcome this, we design a loss
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function which combines the LE(θ) and a structural similarity index (SSIM),
initially proposed for image quality assessment, which offers a better trade-off by
removing artifacts while preserving essential information, ultimately enhancing
change detection performance.

LE(θ) =
1

W ·H
W∑

w=1

H∑

h=1

∥X(w,h) − X̂(w,h)∥2 (1)

SSIM(x, y) =
(2µxµy + C1) · (2σxy + C2)

(µ2
x + µ2

y + C1) · (σ2
x + σ2

y + C2)
(2)

The total loss is thus calculated as follows:

LT = LE(θ) + λSSIM · SSIM (3)

Where X and X̂ are the reference (noise-free) and despeckled images, respec-
tively, µX and µX̂ are the mean values of X and X̂respectively. Similarly, σX

and σX̂ are the standard deviations of X and X̂ respectively. While σXX̂ is the
covariance between X and X̂. Finally, C1 and C2 are constants set to be 0.01
and 0.03 respectively [28].

3.3 Change Detection

It is critical to suppress speckle noise in our proposed method to enhance CD
performance. To evaluate the performance of the proposed despeckling model,
we incorporated state-of-the-art CD methods, including DDNet [22] and LANT-
Net [20]. PCA-k -means [3] is an unsupervised change detection method that
utilises principal component analysis and k-means clustering to identify changes
by splitting the feature vector space into two clusters. NR-ELM [9] employs a
neighbourhood-based ratio to create a difference image and subsequently utilises
an extreme learning machine to model high-probability pixels in the difference
image. This information is then combined with the initial change map to produce
the final change detection result. DDNet [22] combines spatial and frequency do-
main techniques to reduce speckle noise, while LANTNet [20] leverages feature
correlations across multiple convolutional layers and incorporates a robust loss
function to mitigate the impact of noisy labels.

4 Experimental Results & Evaluation

In this section, we introduced the datasets and evaluation metrics. Subsequently,
we presented and evaluated the results by comparing them with those obtained
from state-of-the-art CD methods.
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4.1 Datasets and Evaluation Metrics

Two types of datasets were used in this paper. The first is the Berkeley Seg-
mentation Dataset 500, widely employed to generate synthetic SAR images for
training the despeckling model. Real SAR images were used for testing, specifi-
cally for change detection purposes, to assess the model’s performance. Detailed
descriptions of both datasets can be found in the following subsections:

– Synthetic SAR Images
The Berkeley Segmentation Dataset 500 (BSD-500) was originally developed
to evaluate the segmentation of natural edges, including object contours,
object interior and background boundaries [1]. It included 500 natural images
with carefully manually annotated boundaries and edges of natural objects
collected from multiple users. This dataset has been widely used to generate
synthetic SAR images for the purpose of despeckling [25] [18] [15]. Inspired
by these studies, we have used it to train our despeckling model.

– Real SAR Images
For the purpose of change detection, we employed three real SAR image
datasets that are multi-temporal and have been co-registered and corrected
geometrically.

• Farmland and Yellow River Datasets: The images for both datasets were
captured by RADARSAT-2 in the region of the Yellow River Estuary
in China on 18th June 2008 (pre-change) and 19th June 2009 (post-
change). The pre-change images are single-look, whereas the post-change
images have been acquired via a multi-look (four) imaging process. The
single-look pre-change image is significantly influenced by speckle noise
compared to the four-look post-change image [10]. The disparity between
the single and four looks in these two SAR datasets poses a significant
challenge for change detection methods.

• Ottawa Dataset: The images for this dataset were also captured by
RADARSAT-2 in May 1997 (pre-change) and August 1997 (post-change)
in the areas affected by floods [22] [26] [11]. Because of the single imag-
ing process, the pre- and post-change images are less affected by noise
in this dataset.

The synthetic SAR images were utilised to train the proposed DM, as de-
picted in Figure 1. In contrast, the real SAR images were despeckled for the pur-
pose of change detection (CD datasets). Figure 3 presents the real SAR datasets.

To evaluate the results, we used two common evaluation metrics, including
Overall Accuracy and F1 score. The F1 score is usually used to evaluate the
change detection accuracy [24] [7].
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(a) Imag1 T1 (b) Imag2 T2 (c) GT

Fig. 3: The real SAR datasets. (a) Image acquired in T1. (b) Image acquired in T2.
(c) Ground truth image(GT).

Table 2: Quantitative evaluation on three CD datasets based on despeckling model.
Here, w/o means it is the original method without despeckling, and DM is our

proposed despeckling model.

Yellow River Farmland Ottawa
Methods Metrics w/o DM w/o DM w/o DM

PCAK [3] OA
x 89.80 95.82 88.22 94.44 97.55 98.31

F1-Score
x 72.66 87.72 47.52 65.90 91.93 94.47

NR-ELM [9] OA
x 94.11 95.73 97.86 98.42 98.17 95.82

F1-Score
x 81.59 87.04 78.28 84.96 94.15 84.84

DDNet [22] OA
x 95.35 96.83 98.50 98.87 98.09 98.43

F1-Score
x 86.65 90.79 86.67 89.70 93.90 94.87

LANTNet [20] OA
x 95.61 96.91 98.77 98.84 98.3 98.44

F1-Score
x 87.16 91.1 88.69 89.20 94.46 94.88

4.2 Experimental Results & Discussion

To evaluate the effectiveness of the despeckling model, we compared the results
of change detection methods ( namely PCA-k -means (PCAK) [3], NR-ELM [9],
DDNet [22] and LANTNet [20]) with and without the despeckling model using
three real SAR datasets. Figures 5, 6 and 7 demonstrate the proposed despeck-
ling model performance on Yellow River, Farmland and Ottawa datasets. DM
has considerably enhanced the F1 score for existing (including state-of-the-art)
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change detection methods. In all these experiments, we empirically set the λSSIM
to be 5 in the loss objective (3) as a trade-off between despeckling and change
detection performance. Table 2 presents the OA and F1 score on three real SAR
datasets for four CD methods. However, in Figure 4, the NR-ELM algorithm
with despeckling model achieved a lower F1 score because the Ottawa dataset
is less affected by speckle noise. This is why we observe a higher F1 score for
all other methods without DM. Additionally, compared to other methods, NR-
ELM exhibits more resistance to speckle noise due to its built-in despeckling
process within its architecture. Therefore, the decrease in the F1 score when
incorporating the DM module is attributed to the extra despeckling process,
which over-smooths the input image and subsequently reduces the F1 score.

Fig. 4: The correlation between DM and the F1 score for SAR CD datasets

It can be observed that in Yellow River and Farmland datasets, the pro-
posed DM achieves a superior F1 score for CD methods compared to without
DM (W/O) results due to the ability to efficiently cope with the single-look
pre-change and multi-look post-change SAR images via robust loss function.
It should be noted that CD methods without the despeckling model perform
well on Ottawa dataset because the dataset is slightly affected by speckle noise.
Nevertheless, the performance of CD methods was further improved with the
proposed DM as presented in Table 2 and Figure 4.

4.3 Hardware & Running Times

The experiments were conducted using three datasets (described in section 4.1)
on a Tesla GPU P100 with 16 GB of RAM and 147.15 GB of disk space, resulting
in a training duration of approximately 11 hours. The framework used to train
the proposed despecking model was TensorFlow 2.0.
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(a) PCAK (b) NR-ELM (c) DDNet (d) LANTNet

Fig. 5: Change detection results on Yellow River dataset. Rows: (1st row) Yellow River
ground truth(GT), (2nd row) CD methods results without despeckling, (3rd row) the
CD methods results with the proposed DM. Columns: (a) PCAk [3], (b) NR-ELM [9],
(c) DDNet [22], and (d) LANTNet [20].

(a) PCAK (b) NR-ELM (c) DDNet (d) LANTNet

Fig. 6: Change detection results on Farmland dataset. Rows: (1st row) Yellow River
ground truth(GT), (2nd row) CD methods results without despeckling, (3rd row) the
CD methods results with the proposed DM. Columns: (a) PCAk [3], (b) NR-ELM [9],
(c) DDNet [22], and (d) LANTNet [20].

5 Conclusion

In recent years, deep-learning architectures have shown promise in improving
SAR change detection performance. However, the challenge of speckle noise per-
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(a) PCAK (b) NR-ELM (c) DDNet (d) LANTNet

Fig. 7: Change detection results on Ottawa dataset. Rows: (1st row) Yellow River
ground truth(GT), (2nd row) CD methods results without despeckling, (3rd row) the
CD methods results with the proposed DM. Columns: (a) PCAk [3], (b) NR-ELM [9],
(c) DDNet [22], and (d) LANTNet [20].

sists in these methods. To overcome this challenge, we propose a despeckling
model that effectively suppresses speckle noise and enhances the performance of
existing change detection methods. Extensive evaluations and comparisons with
state-of-the-art methods demonstrate the superior performance of our proposed
despeckling model. It should be noted that our current approach focuses solely
on a single-imaging modality. Future work of this work could explore the domain
of multi-modal change detection, incorporating both optical and SAR data.
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ABSTRACT
Synthetic aperture radar (SAR) image change detection (CD) focuses on identifying changes between two
images at different times for the same geographical region. Recently, several deep learning methods have
been proposed for performing SAR based CD. However, speckle noise remains a major challenge for these
methods. To address this, we propose a despeckling model (DM) that effectively suppresses speckle noise
and enhances the performance of the existing CD methods. The proposed despeckling architecture is not
only resilient to multi-temporal SAR acquired from one SAR imaging process (i.e., the same number of
SAR images looks before and after the change) but also deals with any combination of single or multi-look
images acquired prior and after the change. Moreover, as a second contribution, we have also proposed a loss
function that effectively suppresses speckle noise, thereby improving the change detection accuracy. Both
the despeckling model and the proposed tolerant noise loss function are evaluated extensively on three public
real SAR datasets, achieving superior performance compared to existing state-of-the-art SAR CD methods
in all datasets.

INDEX TERMS Change Detection, Convolutional Neural Network, Despeckling Noise, Synthetic Aperture
Radar, Unsupervised Learning.

I. INTRODUCTION

REMOTE sensing (RS) change detection (CD) aims
to identify the change between two multi-temporal

images for the same geographical region at different
times [1] [2] [3] [4]. It offers valuable information for nu-
merous applications, including deforestation monitoring [2],
target detection [5], and agriculture investigation [6]. More-
over, the CD algorithms help to extract vital information to
assess the change, especially in case of natural disasters (e.g.,
earthquakes, floods, droughts, and hurricanes [7] [8]), which
in turn supports the local governments to make an effective
and timely decision to prevent or mitigate material losses and
lives.

In remote sensing, change detection endeavours to distin-
guish the changed and unchanged pixels of multi-temporal
remote sensing images, this is Earth Observation (EO) images
acquired for the same geographical region, but at different
times [9] [10]. Typically, these multi-temporal images are co-
registered (i.e., transformed into the same coordinate system)
to obtain consistent radiometric characteristics such as bright-
ness and contrast [11]. This enhances the change detection

performance by aligning the correct position for each pixel in
both multi-temporal images prior to feeding them as input to
the subsequent change detection process [12] [13] [14] [15].
Most image registration algorithms rely on robust extraction
of key points either using shallow extraction methods such
as Scale-Invariant Feature Transform (SIFT) [16], Speeded-
Up Robust Features (SURF) [17] or deep methods including
convolutional neural networks (CNNs) [18], Siamese net-
works [19], and spatial transformer networks [20].
Once co-registered, the change map (a result of the change

detection algorithm) can be easily obtained using classical
change detection methods by computing a difference image
(DI), simply the intensity difference between the two images.
However, change detection in EO is nontrivial owing to inher-
ent challenges such as errors in co-registration, variations in
illumination, viewpoint, shadows, atmospheric effects (e.g.,
presence of clouds, fog, etc.), and varying sensor character-
istics. Moreover, surface reflectance from incoherent objects
(such as vegetation) can adversely affect the performance of
optical CD algorithms.
Synthetic aperture radar (SAR) offers distinct advantages
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over optical sensors for CD in EO because it is not affected
by weather conditions, provides penetration through clouds
and vegetation, and offers sensitivity to small changes, mak-
ing it capable of detecting changes that may be missed by
optical CD methods. This technique allows us to remotely
map the reflectivity of objects or environments with high
spatial resolution through the emission and reception of elec-
tromagnetic signals in the microwave spectrum, which en-
ables ease of penetration through clouds and provides all-
weather day/night sensing capability, making it suitable for
applications related to disaster assessment (such as flooding
and earthquake) [21].

Typically, optical CD methods rely mainly on supervised
machine learning approaches [22] [23] [24]. However, ow-
ing to the lack of annotated SAR datasets, the majority of
SAR CD approaches primarily rely on unsupervised learn-
ing [25] [26] [27]. Several methods for unsupervised SAR
CD have been proposed in literature. For instance, Celik [28]
proposed a simple unsupervised CD method using principal
component analysis and k-means where change detection was
achieved by partitioning the feature vector space into two
clusters. Krinidis et al. [29] proposed fuzzy local information
C-means (FLICM) to improve the clustering quality and aim
to be robust to noise and preserve the image details. Gong et
al. [30] also proposed fuzzy c-means (FCM), a reformulated
FLICM to cluster image pixels into changed and unchanged.
The aforementioned methods are performed under speckle-
free images. These approaches perform fairly well. However,
SAR data suffer from speckle noise, which arises owing to the
coherent nature of SAR imaging, which causes interference
patterns in the received signals. This speckle noise makes
information extraction from SAR images challenging and,
consequently, adversely affects change detection accuracy
[31] [32] [33].

Several approaches have been proposed to address speckle
noise. For instance, pioneering work in the despeckling of
SAR images was proposed by Lee [34]. Later, Lee [35]
refined [36] to remove noisy edge boundaries in SAR images
by enhancing the edge representation using local statistics
(average and variance) within a 7x7 window. However, a
drawback of this approach is its reliance on a fixed mask
size [21]. Kuan et al. [37] proposed an adaptive speckle-
noise smoothing filter that can handle different noise types
without prior knowledge of the original statistics of the image.
However, it tends to over smooth image details and has high
computational complexity. Lope et al. [38] then proposed
an Enhanced Lee filter and comprehensively analysed well-
known filters by experimenting with varying the local coef-
ficients of despeckled SAR images. Their approach allows
the preservation of fine details, such as texture and edge
information, in the heterogeneous regions of the observed
SAR image. Zhu et al. [39] further improved despeckling
performance by combining an enhanced Lee filter with a
median filter.

In the context of change detection, several recent ap-
proaches have tackled the despeckling problem using deep

neural networks. For instance, Zhang et al. [40] proposed
unsupervised change detection using deep learning methods
that employ multi-scale superpixel reconstruction method to
suppress the speckle noise and generate a difference image.
Subsequently, two-stage centre-constrained fuzzy c-means
clustering algorithm is executed to classify the DI pixel into
changed, unchanged and intermediate classes. Image patches
belonging to changed and unchanged pixels are used as
pseudo-label training samples, whereas the image patches
belonging to the intermediate class are utilised as testing
samples. The final stage is to train a convolutional wavelet
neural network on the image patches belonging to changed
and unchanged pixels to classify the intermediate classes.
Wang et al. [41] introduced a sparse model that exploits
structural features of changed regions in noisy DIs gener-
ated from multi-temporal SAR images. Wenhua et al. [42]
introduced a multi-objective sparse feature learning mode.
In this model, the sparsity of representation is dynamically
learned to enhance robustness against various noise levels.
The network is further fine-tuned using correctly labelled
samples chosen from coarse results, allowing for learning
semantic information related to changed and unchanged pix-
els. Liu et al. [43] presented a local restricted CNN for SAR
change detection in which the original CNN was improved
by incorporating a local spatial constraint. Qu et al. [44] also
presented a dual domain neural network (DDNet) to obtain
features from spatial and frequency domains to minimise the
speckle noise. Gao et al. [3] proposed a Siamese adaptive
fusion network for SAR image change detection to extract
high-level semantic features from multi-temporal SAR im-
ages and suppress speckle noise. Meng et al. [45] proposed a
robust loss function and a layer attention-based noise-tolerant
network (LANTNet) that benefits from feature correlations
among multi-convolutional layers and suppresses the impact
of noisy labels.

Although these state-of-the-art deep learning-based ap-
proaches provide some robustness against different noise
types, they still fail to fully suppress speckle noise, which
hinders their effective change detection ability. Moreover, the
amount of speckle noise varies between single-look or multi-
look SAR imaging processes [6]. This is considered at differ-
ent times (e.g., single-look at time instance t1 and multi-look
at time instance t2) and consequently further degrades the
performance of various change detection algorithms. To this
end, in this paper, we propose a robust despeckling architec-
ture that is not only resilient to multi-temporal SAR acquired
from one SAR imaging process (i.e., the same number of SAR
images looks before and after the change) but also deals with
any combination of single ormulti-look images acquired prior
and after the change. To achieve this, the following are the
significant contributions of this study:

• We propose a deep convolutional neural network-based
Despeckling Model (DM) that can suppress speckle
noise and improve the performance of state-of-the-art
SAR CD methods.
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• We develop a new speckle noise tolerant loss function,
inspired by the works of [45], that is more resistant to
speckle noise and significantly improves the baseline
change detection accuracy.

• Both the despeckling model and the proposed tolerant
noise loss function are evaluated on three public real
SAR datasets and achieved superior performance com-
pared with existing state-of-the-art SAR CD methods.

II. RELATED WORK
SAR change detection has been widely used in many ap-
plications such as urban extension [46], agricultural mon-
itoring [47], target detection [48] disaster monitoring [49]
and assessment [50]. Typically owing to the lack of anno-
tated SAR datasets, most researchers rely on unsupervised
methods [3] [51] [52] [53] to address SAR CD. However,
the problem is highly challenging owing to the presence of
speckle noise, which negatively impacts SAR images and
reduces the change detection accuracy [31] [32] [54]. For
this purpose, many researchers have formulated SAR CD
in three sequential steps image pre-processing, difference
image generation, and classification [55]. The image pre-
processing stage includes despeckling (denoising) and image
registration. Image despeckling aims to reduce the impact
of speckle noise and enhance SAR image quality. However,
oversmoothing usually occurs in doing so, which may result
in the loss of geometric details. After despeckling, the latter
image registration aids in aligning multi-temporal images
in the same reference coordinate system, enabling accurate
change detection [12] [13]. To generate difference image,
various methods have been proposed in the literature, in-
cluding image differencing (also known as subtracting) [2],
log ratio [56], neighbourhood-based ratio [57], Gauss-ratio
operator [58] andmean- and log-ratio difference [59]. Finally,
the classification of DI typically includes thresholding and
clustering [60].

Some approaches use the clustered DI image (preclassi-
fication result) to subsequently train a classifier model and
then combine the information from the preclassification and
classifier results to generate a change map. For instance, Gao
et al. [61] computed the preclassification result by computing
a DI via log-ratio and fuzzy c-means clustering and later
trained the PCANet model (classifier) to obtain the initial
classification, which was fused with the preclassification re-
sults to obtain the final change map. Similarly, Gao et al.
[62] proposed an approach that employs a neighbourhood-
based ratio to generate the difference image and then adopts
an extreme learning machine (ELM) to model the high proba-
bility pixel based on the difference image, which is later used
with the initial change map to yield the final change map.
Wang et al. [63] employed a semi-supervised Laplacian sup-
port vector machine (SVM) to differentiate between changed
and unchanged regions. To initialise the SVM, a pseudo-
training set is generated using saliency similarity detection.
This pseudo-training set consists of labelled changed and
unchanged pixels. The Laplacian SVM effectively utilises

the prior information from the available labelled samples and
incorporates unlabelled samples to improve its discriminatory
capabilities. Lv et al. [64] presented feature learning utilising
a stacked contractive autoencoder to extract temporal change
features from superpixels while effectively suppressing noise.
Li et al. [65] proposed a Gamma correction and fuzzy local
information c-means clustering model to reduce the impact
of speckle noise and improve the performance. Liu et al. [43]
introduced a locally restricted CNN for SAR change detec-
tion. They enhanced the original CNN architecture by in-
corporating a local spatial constraint, thereby improving CD
performance.

Recently, a few approaches have aimed to explicitly sup-
press the inherent speckle noise to improve the SAR CD
performance. For example, Qu et al. [44] proposed DDNet, a
method that leverages features extracted from both the spatial
and frequency domains to mitigate the impact of speckle
noise. Gao et al. [3] also presented a Siamese adaptive fusion
network for SAR image change detection, which focused on
extracting high-level semantic features from multi-temporal
SAR images while effectively suppressing speckle noise.
Meng et al. [45] introduced a layer attention module that
leverages the correlation amongmultiple convolutional layers
and designed a loss function that minimises the influence of
speckle noise, thereby enhancing the change detection per-
formance. A limitation of these approaches is their inability
to effectively tackle different speckle noises in images prior
and after the change, for example, single-look prior image and
multi-look post-change image, which makes it difficult for
SAR CD methods to perform well due to varying speckle-
noise characteristics [6]. In the following, we present a de-
noising framework that enables us to effectively tackle the
SAR CD problem for both the same or different numbers of
looks in the pre- and post-change images.

III. METHODOLOGY

The proposed methodology consists of two modules where
the first despeckling modules where the first despeckling
module passes the input SAR image through a series of
convolutional layers to suppress speckle noise and later feeds
the resulting noise-reduced image to the subsequent change
detection module. For change detection, we adapt [45], which
first performs a preclassification step and then employs a
layer attention module that exploits the correlations among
the multi-layer convolutions and produces robust cascaded
feature representations learned by the network. Furthermore,
we propose a noise-tolerant loss function that is resilient to
speckle noise and significantly improves baseline change de-
tection accuracy. In the following, we discuss them in detail,
where we first present the proposed despeckling architecture,
despeckling loss function, and adaptations that we have made
to the baseline change detection approach by proposing a
noise-resilient loss function.
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FIGURE 1: Proposed method for despeckling of SAR images for improved change detection task.

A. PROPOSED DESPECKLING ARCHITECTURE

The proposed despeckling architecture aims to learn a map-
ping from the input SAR image through a series of convo-
lutional layers to yield a residual image [66] that contains
speckle noise only. The learned residual (i.e., speckle-only
in our case) image can then be passed along with the original
image through either a subtraction [67] or division [68] op-
eration to produce the resulting despeckled image. However,
the division operation is preferable [68] because it avoids an
additional logarithmic transformation step and enables end-
to-end learning.

Practically, training such a network design requires ground
truth or reference despeckled images, which is usually not the
case for SAR images. To cope with this, several researchers
synthetically generate reference noise-free SAR images using
multiplicative noise models [69]. For our purpose, we also
rely on synthetically generated SAR reference images and use
them to train our proposed despeckling network architecture
as depicted in Figure 1. It consists of ten convolutional layers,
each incorporating batch normalisation and ReLU activation
functions. Each layer has 64 filters with a stride of one, and
zero padding is used to ensure that the output of each layer
has the same dimensions as the input image, except for the
last one, which has only one filter. At the end of the network,
a hyperbolic tangent is employed as a nonlinear function [68].
For clarity, we also provide the architecture details of the
proposed model along with the hyperparameter details in
Table 1.

TABLE 1: Proposed Despeckling Model Configuration. where L1 and L10 refer to a
series of Conv-ReLU layers, while the layers between L2 and L9 consist Conv-BN and
ReLU layers as illustrated in Figure 1.

- layer Filter Size Filters Output size
L1 Conv + ReLU 3*3*1 64 256*256*64

L2-L9 Conv + BN + ReLU 3*3*64 64 256 *256* 64
L10 Conv + ReLU 3*3*64 1 256 *256*1

B. DESPECKLING LOSS FUNCTION
Let us assume that F ∈ RW×H denotes the observed SAR
image intensity with speckle, X ∈ RW×H represent the noise-
free SAR image, andN ∈ RW×H represents themultiplicative
speckle noise. Then we can describe the relation between the
observed and noise-free SAR images as

F = N ⊙ X (1)

Where⊙ denotes the Hadamard product (i.e., the element-
wise multiplication) between N and X. As mentioned earlier,
X is synthetically generated by multiplicative noise using the
procedure explained in [69] [70] [71].
One straightforward approach to train the despeckling net-

work with learning parameters θ is to simply use the predicted
despeckled image and noise-free SAR image to compute the
per-pixel Euclidean loss function LE as follows:

LE(θ) =
1

W · H
W∑

w=1

H∑

h=1

∥X (w,h) − X̂ (w,h)∥2 (2)

Where X is the reference image, and X̂ is the despeckled
image. W and H represent the width and height of an image.
Although this simple Euclidean loss LE has been effective
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in solving numerous image restoration problems such as
super-resolution [72], semantic segmentation [73], change
detection [74], and style transfer [75], it usually produces
several artifacts (e.g., unwanted distortions such as irregular
patterns, pixelation, blurring, or other visual abnormalities) in
the resulting estimated image [76]. To address this problem,
Wang et al. [68] integrated a supplementary total variation
(TV) loss into LE , which somewhat removes the artifacts
but oversmoothes the images, causing loss of information
and consequently degrading the performance of change de-
tection [41]. To overcome these issues, we utilised a struc-
tural similarity index (SSIM), originally proposed for image
quality assessment [77], as an auxiliary to LE to achieve
a better trade-off performance by removing artifacts while
maintaining the necessary information, which improves the
change detection performance.

SSIM(X , X̂) =
(2µXµX̂ + C1) · (2σXX̂ + C2)

(µ2
X + µ2

X̂
+ C1) · (σ2

X + σ2
X̂
+ C2)

(3)

Where X and X̂ are the reference (noise-free) and despeck-
led images, respectively, µX and µX̂ are the mean values of X
and X̂ respectively. Similarly, σX and σX̂ are the standard de-
viations of X and X̂ respectively. While σXX̂ is the covariance
between X and X̂ . Finally, C1 and C2 are constants set to be
0.01 and 0.03 respectively [77].

The total loss is thus calculated as follows:

LT = LE(θ) + λSSIM · SSIM (4)

Where LT is the total loss and λSSIM represents the weight-
ing of the auxiliary SSIM in the loss.

C. PROPOSED CHANGE DETECTION LOSS FUNCTION
Existing unsupervised change detection methods utilise clus-
tering algorithms such as hierarchical Fuzzy C-Means [78]
and Fuzzy C-Means (FCM) [79] to generate pseudo-labels
with a high probability for network training. While this
method solves the need for label data, errors commonly af-
fect network performance. In addition to this, the attention
mechanism is utilised to emphasise the essential parts of the
input while disregarding irrelevant information, but it often
neglects the correlations among multiple convolution layers.
To address this limitation, Meng et al. [45] proposed a layer
attentionmodule toweigh features from different layers based
on the learned correlation matrix. This module effectively
combines spatial information from low-level layers with se-
mantic information from high-level layers, emphasising in-
formative layers and suppressing redundant ones. The process
involves matrix multiplication to assign adaptive weights to
the input feature groups, followed by calculating the atten-
tion matrix using a softmax operation. The weighted feature
matrix is then multiplied by the attention matrix, reshaped,
and combined with the original input to produce the final
output. The change map is generated through a series of
convolution and fully connected layers. The trained network

can classify all pixels from the multitemporal SAR images to
obtain the final change map. We adapt the training strategy
and propose a loss function that is more noise resistant to
speckle noise. However, this loss function does not provide
satisfactory performance. To this end, we designed a robust
loss function that is more resistant to speckle noise. The loss
function combines MSE and Kullback-Leibler Divergence
(KL). The loss function is expressed as follows:

LMSE(X , X̂) = ∥X − X̂∥2 (5)

LKL(X , X̂) = X̂ · (log X̂ − X) (6)

LT = αLMSE + βLKL (7)

where α and β are two weighting hyperparameters.
In our empirical study, α and β were set to 0.9 and 0.1

to trade-off noise robustness and convergence efficiency. The
KL acts similarly to CE with the difference that CE penalises
the network based on its predictions, whereas KL mainly
evaluates the disparity between the probability distribution
predicted by the network and the distribution of the reference
ground truth. Therefore, we argue that combining MSE and
KL can provide a better change detection performance and
suppress speckle noise (see Section IV-C2). In the following
section, we present the results of our proposed methodology
along with the training details.

IV. EXPERIMENTAL RESULTS & EVALUATION
In this section, we first introduced the datasets and employed
evaluation metrics. Subsequently, we investigated the effec-
tiveness of the proposed despeckling model coupled with the
CD loss function to improve the change detection accuracy.
Finally, the results were presented and evaluated by compar-
ing them with those of state-of-the-art methods.

A. DATASETS
Two types of datasets were used in this paper. The first is
the Berkeley Segmentation Dataset 500, widely employed
to generate synthetic SAR images. In addition, real SAR
images (for the purpose of change detection purpose) were
employed to assess the model’s performance. Both datasets
are described in detail In the following subsections:

1) Synthetic SAR Images
The Berkeley Segmentation Dataset 500 (BSD-500) was
originally developed to evaluate the segmentation of natural
edges, including object contours, object interior and back-
ground boundaries [80]. It included 500 natural images with
carefully manually annotated boundaries and edges of natural
objects collected from multiple users. This dataset has been
widely used to generate synthetic SAR images for the purpose
of despeckling [69] [70] [71]. Inspired by these studies, we
have used it to train our despeckling model.
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2) Real SAR Images
For the purpose of change detection, we employed three real
SAR image datasets that are multi-temporal and have been
co-registered and corrected geometrically.

• Farmland and Yellow River Datasets: The images for
both datasets were captured by RADARSAT-2 in the
region of the YellowRiver Estuary in China on 18th June
2008 (pre-change) and 19th June 2009 (post-change).
The pre-change images are single-look, whereas the
post-change images have been acquired via a multi-
looks (four) imaging process. The single-look pre-
change image is significantly influenced by speckle
noise compared to the four-look post-change image [3].
The disparity between the single and four looks in
these two SAR datasets poses a significant challenge for
change detection methods.

• Ottawa Dataset: The images for this dataset were also
captured by RADARSAT-2 in May 1997 (pre-change)
and August 1997 (post-change) in the areas affected by
floods [44] [53] [81]. Because of the single imaging
process, both the pre- and post-change images are less
affected by noise in this dataset.

As mentioned above, synthetic SAR images were utilised
to train the proposed DM, as depicted in Figure 1. While the
real SAR images were despeckled for the purpose of change
detection.

B. EVALUATION METRICS
Quantitative evaluation indices, including precision (P), recall
(R), overall accuracy (OA) and F1 score (F1) [82] [83] [84]
were used in this study to evaluate the change detection
process. These metrics were computed as follows:

R =
TP

(TP+ FN )
(8)

P =
TP

(TP+ FP)
(9)

OA =
(TP+ TN )

(TP+ FP+ FN + TN )
(10)

F1 =
(2 · P · R)
(P+ R)

(11)

Here TP, FP, TN , and FN represent the true positives, false
positives, true negatives, and false negatives, respectively.

A higher P value indicates a decrease in the occurrence
of false alarms, while a greater R value indicates a reduced
rate of incorrect detections. OA measures the proportion of
accurately detected pixels in the image. However, relying
solely on these three metrics can lead to overestimating the
outcomewhen the number of altered pixels is only a small part
of the entire image. The F1 score is used to address this, which
considers the limitations of P and R, providing a more com-
prehensive evaluation of performance. It is important to note
that larger F1 values indicate better overall performance [85].

C. ABLATION STUDY

In this section, we initially investigate the performance of
the proposed DM on F1 score using three real SAR CD
datasets that are discussed in Section IV-A2. We then feed
the despeckled SAR images by the proposed DM to five
change detection methods PCA-k-means (PCAK) [28], NR-
ELM [62], DDNet [44], LANTNet [45] and the proposed
CD method where the DDNet and LANTNet are the current
state-of-the-art CD methods. Furthermore, we investigate the
performance of the proposed CD loss function on F1 score
by comparing it with different loss functions.

1) Performance Investigation of Despeckling Model

To validate the effectiveness of the despeckling model, we
compared the results of change detection methods with and
without the despeckling model using three real SAR datasets.
Figure 2, 3 and 4 demonstrates that the proposed despeck-
ling model considerably enhanced the F1 score for exist-
ing (including state-of-the-art) change detection methods. In
all these experiments, we empirically set the λSSIM to be
5 in the loss objective (4) as a tradeoff between despeck-
ling and change detection performance. It is evident that the
performance of the CD methods improves once we passed
them through the proposed despeckling model in three SAR
datasets. However, in Figure 4, the NR-ELM algorithm with
DM obtained a lower F1 because Ottawa dataset is less af-
fected by the speckle noise. This is why we see a higher F1
score even with all other methods without DM. Secondly,
Compared to other methods, the NR-ELM is more resistant
to speckle noise because of the inherent despeckling process
encoded within its architecture. Therefore, the decline in the
F1 score when we include the DM module, is due to the fact
that an additional despeckling process oversmooths the input
image, which subsequently decreases the F1 score. These
results will be explained in more detail in section IV-D.

FIGURE 2: Relationship between DM and F1 score for Farmland
dataset
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FIGURE 3: Relationship betweenDM and F1 score for YellowRiver
dataset

FIGURE 4: Relationship between DM and F1 score for Ottawa
dataset

2) Performance Investigation of Proposed CD Loss Function
Furthermore, we compared various loss functions and anal-
ysed their performance over the baseline change detection
methods. Table 2 shows that the loss function combiningMSE
and KL delivers the best performance, indicating its greater
resilience to speckle noise.

TABLE 2: Relationship between loss functions and F1-Score.

Loss
function

F1-Score

Farmland Yellow River Ottawa
MAE 89.1 87.24 94.24
MAE+CE [45] 88.69 87.16 94.46
MSE 86.91 86.22 94.75
MSE+CE(our) 89.60 88.23 94.54
MSE+KL(our) 89.91 88.44 95.35

D. EXPERIMENTAL RESULTS & DISCUSSION
To evaluate the impact of the proposed despeckling model
on change detection purpose, we compare the effectiveness
of the proposed DM with other existing despeckling methods
such as Lee [34], Enhanced Lee [38], SAR2SAR [86] and ID-
CNN [68] on three real SAR datasets. Subsequently, we feed
the despeckled SAR images to four aforementioned change
detection methods, namely PCA-k-means (PCAK) [28], NR-
ELM [62], DDNet [44] and LANTNet [45]. PCAK em-
ploys principle component analysis for feature extraction and
utilises the k-means clustering algorithm for classification.

NR-ELM incorporates the neighbourhood ratio for feature ex-
traction using the difference image, followed by classification
using an extreme learning machine. DDNet is a dual-domain
network that exploits spatial and frequency domain features
to mitigate speckle noise. LANTNet is a layer attention-
based noise-tolerant network that leverages the correlation
between convolutional layers. Both DDNet and LANTNet are
currently state-of-the-art change detection methods.
Figures 5, 6 and 7 present the visual results of the change

maps obtained from the aforementioned change detection
methods using various despeckling filters on Farmland, Yel-
low River and Ottawa datasets respectively. The correspond-
ing quantitative evaluations are provided in Tables 3, 4, and 5.
In the tables, the w/o means it is the original method without
despeckling. The DM is our proposed despeckling model,
while the Proposed in Methods column refers to the baseline
CD with the proposed objective loss function. Figures 5, 6
and 7 are organised as following; the first two columns repre-
sent Farmland dataset at time T1 and time T2, while column
three represents the reference change detection images used
as ground truth (GT). Columns four to eight display the results
of PCAK, NR-ELM, DDNet, LANTNet and the proposed
method, respectively. The row one presents the results of the
above-mentioned methods without despeckling, while rows
two to six represent the despeckling method results with
Lee [34], Enhanced Lee [38], SAR2SAR [86], IDCNN [68]
and DM (our) respectively. In the following section, we dis-
cuss the details of the achieved results for individual datasets.

1) Results of Farmland dataset
From Figure 5, it can be observed that the change map gen-
erated by PCAK misclassifies many unchanged pixels com-
pared to GT. The Enhanced Lee filter significantly improves
the results for PCAK, increasing the accuracy from 47.44%
to 79.44%, while the proposed DM achieves 65.90%. It is
worthmentioning that, Farmland dataset is heavily influenced
by speckle noise, and change detection algorithms usually
perform poorly compared to Ottawa dataset, which is less
affected by speckle noise. Simply applying PCAK, which is
a simple CD method, without despeckling, results in poor
performance, as shown in Table 3. Another reason for this
poor performance, in addition to the speckle noise, is be-
cause the pre- and post-change images in Farmland dataset
are different looks, i.e., single and multi-looks before and
after the change with varying noise levels. Using despeck-
ling process somewhat takes this into account and improves
the performance, as seen in Table 3, where all despeckling
methods consistently improve the results with PCAK. Specif-
ically, the Enhanced Lee performs the best here because it
is well suited for stronger speckle noise and helps PCAK
to significantly smooth the image, while DM is designed to
support and generically enhance the overall CD performance.
NR-ELM produces better results with less noise but misses
some changed pixels. The DM filter improves NR-ELM’s
performance from 78.28% to 84.96%.
Furthermore, DDNet performed better than PCAK and

VOLUME 11, 2023 7

159



M. Ihmeida et al.: Enhanced Change Detection Performance Based on Deep Despeckling of Synthetic Aperture Radar Images

(a) Farm T1 (b) Farm T2 (c) GT (d) PCAK (e) NR-ELM (f) DDNet (g) LANTNet (h) Proposed

FIGURE 5: Visualised results of Farmland dataset with different despeckling methods. Rows: (1st row) Farmland without despeckling (w/o), (2nd row) Farmland despeckled
with lee, (3rd row) Farmland despeckled with enhanced lee, (4th row) Farmland despeckled with SAR2SAR, (5th row) Farmland despeckled with IDCNN, (6th row) Farmland

despeckled with proposed DM. Columns: Farmland image captured at (a) t1 and (b) t2. (c) refers to the ground truth (GT) image. Results obtained by methods (d) PCAK [28], (e)
NR-ELM [62], (f) DDNet [44], (g) LANTNet [45], and (h) Proposed loss objective function.

NR-ELMdid. TheDMenhances the F1 score for DDNet from
86.67% to 89.70%, i.e., it demonstrates higher accuracy than
PCAK and NR-ELM, although slightly lower than DDNet,
while DM improves the accuracy of LANTNet from 88.69%
to 89.20%. The proposed method improved performance af-
ter incorporating the DM module, increasing accuracy from
89.91% to 91.28%. Notably, the despeckled data using the
SAR2SAR filter performed poorly and yielded lower results
than the original methods without the despeckling model. It is
evident that the DM outperforms other despeckling methods
in terms of the F1 score for the purpose of change detection.
Moreover, it consistently outperforms other change detection
methods without a DM. It is primarily due to the fact that the
proposed loss function is more resistant to speckle noise. In
other words, the DM suppresses speckle noise even when two
Farmland image pairs have different looks, such as single-
look (pre-change) and four-look (post-change). This type of
suppression is reflected positively in the performance of the
change detection methods as shown in Table 3.

2) Results of the Yellow River dataset

In Figure 6, it is noticeable that the change map generated by
PCAK misclassifies many unchanged pixels as changed ones
compared with the GT. The Lee filter reduces speckle noise
and improves the CM. The DM performs as the best filter,
effectively suppressing noise and significantly improving the
F1 score from 72.66% to 87.7% for the PCAK method. NR-
ELM produces better results with less noise but misses some
changed pixels, whereas the DM filter enhances NR-ELM’s
performance from 81.59% to 87.04%.

Furthermore, DDNet outperformed PCAK and NR-ELM
results. The DM considerably enhance the F1 score from
DDNet from 86.65% to 90.79%. LANTNet achieves higher
accuracy than PCAK and NR-ELM. DM has enhanced the
F1-score for LANTNet from 88.44% to 91.1%. After apply-
ing the proposed DM, the proposed method’s performance
has improved from 88.44% to 91.83%. Finally, the proposed
method consistently outperforms all other change detection
methods even without despeckling. With DM filtering, the
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TABLE 3: Quantitative evaluation on Farmland change detection based on different despeckling filters.
Here w/o means it is the original method without despeckling, DM is our proposed despeckling model while the Proposed in Methods column refers to the baseline CD with the

proposed objective loss function.

Methods Metrics w/o Lee [34] Enhanced Lee [38] SAR2SAR [86] ID-CNN [68] DM

Recall
x 90.04 90.87 67.32 95.69 85.45 90.76

PCAK [28] Precision
x 32.27 57.73 96.89 66.51 54.35 51.74

OA
x 88.22 95.53 97.94 96.89 94.89 94.44

F1-Score
x 47.52 70.60 79.44 78.48 66.44 65.90

Recall
x 65.20 68.82 66.52 97.50 66.64 75.39

NR-ELM [62] Precision
x 97.92 99.13 98.51 57.17 97.23 97.33

OA
x 97.86 98.12 97.96 95.52 97.91 98.42

F1-Score
x 78.28 81.24 79.42 72.08 79.08 84.96

Recall
x 82.26 86.58 78.25 99.26 81.52 82.81

DDNet [44] Precision
x 91.59 92.76 98.21 48.66 97.57 97.85

OA
x 98.50 98.81 98.63 93.76 98.79 98.87

F1-Score
x 86.67 89.57 87.11 65.30 88.82 89.70

Recall
x 81.35 80.51 81.76 98.46 79.87 81.18

LANTNet [45] Precision
x 97.50 96.14 96.27 52.74 96.98 98.98

OA
x 98.77 98.66 98.73 94.69 98.66 98.84

F1-Score
x 88.69 87.64 88.42 68.69 87.60 89.20

Recall
x 84.08 85.48 79.09 97.59 97.59 86.45

Proposed Precision
x 97.50 93.78 97.22 53.08 53.08 96.67

OA
x 98.89 98.81 98.63 94.75 94.75 99.02

F1-Score
x 89.91 89.44 87.22 68.76 68.76 91.28

results even further improve.
It is worth mentioning that the despeckled data using the

SAR2SAR filter does not perform well and yields lower re-
sults compared to the original methods without despeckling,
such as DDNet and LANTNet. It is evident that DM achieves
a superior F1 score for change detection methods compared
to other despeckling methods due to the ability to efficiently
cope with the single-look pre-change and multi-look post-
change SAR images via robust loss function.

3) Results of the Ottawa dataset
Compared to previous datasets, the Ottawa dataset is less
affected by speckle noise. This is evident from the achieved
better change detection results of 91.93% using the PCAK
method without any despeckling process on Ottawa dataset
compared to the previous two datasets. Including the pro-
posed DM further improves the F1 score value from 91.93%
to 94.47%. NR-ELM provides better results compared to
PCAK, Lee slightly improves the F1 score from 94.15% to
94.77%, whereas DM reduces the performance to 84.84% as
shown in Figure 7 and Table 5. The proposed DM with the
NR-ELM degrades the performance because of oversmooth-
ing. This is because NR-ELM has an inherent despeckling
process encoded within its architecture. Moreover, this is
also the case for other despeckling methods except the Lee
method, which does not degrade (but slightly improve) the
performance. A possible reason for this could be because, in
comparison, Lee [34] is the least strong despeckling method
and therefore does not result in much oversmoothing, which
degrades the performance.

DDNet performed better than PCAK and NR-ELM, and
the proposed DM improves the F1 score for DDNet from
93.90% to 94.87%. LANTNet produces better accuracy than

PCAK, NR-ELM and DDNet. Its accuracy has further im-
proved by the proposedDM from 94.46% to 94.88%.With the
proposed loss objective, the performance slightly improves
from 94.46% to 94.50%, which is further enhanced from
94.50% to 95.79% when used in conjunction with the DM
as shown in Figure 7 and Table 3. It can be observed from the
Ottawa dataset results that the CD methods without despeck-
ling already perform well because the data is less affected by
noise. Nevertheless, with DM, the performance of these CD
methods was further improved.

E. TRAINING SETUP
All the experiments were conducted on three data sets detailed
in section IV-A where Python 3.7 with OpenCV version
3.4.2.17 was used. The hardware specifications include a
Tesla GPU P100-PCIE-16 GB RAM 147.15 GB Disk.

V. CONCLUSION & OUTLOOK
In recent years, many deep-learning architectures have been
employed for SAR change detection problems, leading to en-
hancements in the change detection performance. However,
speckle noise remains a major challenge for these methods.
To address this, we propose which are two-fold: 1) First,
we have proposed a despeckling model which effectively
suppresses the speckle noise and enhances the performance
of existing CD methods; 2) Secondly, we have proposed
a robust loss function that is able to take the performance
of CD methods even further. The proposed solutions have
been extensively examined and compared to the state-of-art
SAR change detection methods. The achieved results with
the proposed despeckling model and the noise tolerant loss
function demonstrate superior performance compared to the
current change detection methods. The proposed approach
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(a) Yellow T1 (b) Yellow T2 (c) GT (d) PCAK (e) NR-ELM (f) DDNet (g) LANTNet (h) Proposed

FIGURE 6: Visualised results of Yellow River dataset with different despeckling methods. Rows: (1st row) Farmland without despeckling (w/o), (2nd row) Farmland despeckled
with lee, (3rd row) Farmland despeckled with enhanced lee, (4th row) Farmland despeckled with SAR2SAR, (5th row) Farmland despeckled with IDCNN, (6th row) Farmland

despeckled with proposed DM. Columns: Farmland image captured at (a) t1 and (b) t2. (c) refers to the ground truth (GT) image. Results obtained by methods (d) PCAK [28], (e)
NR-ELM [62], (f) DDNet [44], (g) LANTNet [45], and (h) Proposed loss objective function.

TABLE 4: Quantitative evaluation on Yellow River change detection based on different despeckling filters.

Methods Metrics w/o Lee [34] Enhanced Lee [38] SAR2SAR [86] ID-CNN [68] DM

Recall
x 74.96 78.40 74.52 81.80 81.37 82.59

PCAK [28] Precision
x 70.50 87.80 82.75 83.31 92.79 93.53

OA
x 89.80 94.12 92.58 93.74 95.49 95.82

F1-Score
x 72.66 82.84 78.42 82.55 86.70 87.72

Recall
x 72.18 48.35 70.19 78.30 79.76 79.32

NR-ELM [62] Precision
x 93.83 99.72 92.22 85.53 95.08 96.42

OA
x 94.11 90.63 93.54 93.68 95.59 95.73

F1-Score
x 81.59 65.13 79.71 81.76 86.75 87.04

Recall
x 83.46 86.32 82.86 80.46 64.06 86.58

DDNet [44] Precision
x 90.09 91.41 81.89 85.00 90.40 95.44

OA
x 95.35 96.06 93.59 93.90 93.43 96.83

F1-Score
x 86.65 88.79 82.37 82.67 77.91 90.79

Recall
x 82.44 84.00 83.03 79.84 65.93 87.51

LANTNet [45] Precision
x 92.45 91.18 71.49 87.83 99.04 94.99

OA
x 95.61 95.64 90.94 94.35 93.72 96.91

F1-Score
x 87.16 87.44 76.83 83.64 79.16 91.1

Recall
x 84.08 85.93 81.51 79.08 61.89 89.53

Proposed Precision
x 93.28 87.05 82.01 86.44 97.75 94.25

OA
x 96.03 95.14 93.42 93.97 92.85 97.12

F1-Score
x 88.44 86.49 81.76 82.59 75.79 91.83
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(a) Ottawa T1 (b) Ottawa T2 (c) GT (d) PCAK (e) NR-ELM (f) DDNet (g) LANTNet (h) Proposed

FIGURE 7: Visualised results of Ottawa dataset with different despeckling methods. Rows: (1st row) Farmland without despeckling (w/o), (2nd row) Farmland despeckled with
lee, (3rd row) Farmland despeckled with enhanced lee, (4th row) Farmland despeckled with SAR2SAR, (5th row) Farmland despeckled with IDCNN, (6th row) Farmland

despeckled with proposed DM. Columns: Farmland image captured at (a) t1 and (b) t2. (c) refers to the ground truth (GT) image. Results obtained by methods (d) PCAK [28], (e)
NR-ELM [62], (f) DDNet [44], (g) LANTNet [45], and (h) Proposed loss objective function.

TABLE 5: Quantitative evaluation on Ottawa change detection based on different despeckling filters

Methods Metrics w/o Lee [34] Enhanced Lee [38] SAR2SAR [86] ID-CNN [68] DM

Recall
x 88.16 91.58 88.74 88.85 92.01 91.00

PCAK [28] Precision
x 96.05 96.28 97.74 82.14 96.85 98.20

OA
x 97.55 98.11 97.89 95.18 98.26 98.31

F1-Score
x 91.93 93.87 93.02 85.36 94.37 94.47

Recall
x 93.14 94.79 87.67 88.68 92.07 73.92

NR-ELM [62] Precision
x 95.19 94.74 94.59 80.56 92.65 99.53

OA
x 98.17 98.34 97.25 94.82 97.59 95.82

F1-Score
x 94.15 94.77 91.00 84.42 92.36 84.84

Recall
x 92.70 93.66 93.66 90.78 94.51 91.71

DDNet [44] Precision
x 95.12 96.06 96.06 82.91 94.73 98.26

OA
x 98.09 98.39 98.39 95.58 98.30 98.43

F1-Score
x 93.90 94.84 94.85 86.67 94.62 94.87

Recall
x 91.8 94.67 90.73 89.91 92.62 91.66

LANTNet [45] Precision
x 97.30 94.48 95.11 82.49 95.23 98.33

OA
x 98.3 98.28 97.80 95.39 98.1 98.44

F1-Score
x 94.46 94.57 92.87 86.04 93.90 94.88

Recall
x 91.70 92.74 88.80 91.88 93.11 93.73

Proposed Precision
x 97.47 97.47 95.96 87.06 95.35 97.96

OA
x 98.31 98.47 97.64 98.07 98.19 96.56

F1-Score
x 94.50 95.04 92.24 89.41 94.22 95.79
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so far only focuses on single-imaging modality. In future, an
extension of the work could be in the domain of multi-modal
(optical and SAR) change detection.
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Appendix B

Source code

The source code for the experiments is available at the link below, last updated on 31.1.2023.

https://github.com/Mohamed-DL/Experiments-code
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