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Abstract. This study is concerned with computer vision technologies
applied in C. elegans (diminutive nematodes) mating behaviour analy-
sis, more specifically object detection and tracking to find contacts of
male and female worms in worm mating videos. Advanced deep learning
algorithms, such as YOLOv8 and DeepSORT, are adapted in the auto-
mated worm identification and tracking system. A modified DeepSORT
algorithm is developed to cope with appearance similarity of C. elegans
for improving the tracking accuracy. In addition, a male worm detection
and tracking algorithm, utilising the male worm’s mobility characteristic,
assists the modified DeepSORT in accurate male worm tracking. Finally,
worm contact detection is implemented by calculating the Euclidean dis-
tance between the male and female worms. The developed system, named
as M1 and M2, is trained and evaluated under two sets of data, bounding
boxes and segmented worms, respectively. Furthermore, we compared the
effectiveness of including SAM segmentation optional module in exper-
iments. The evaluation results have shown that YOLOv8 has excellent
performance in worm detection to cope with deformable worm shape,
and the modified DeepSORT significantly outperforms the default Deep-
SORT in worm tracking.

Keywords: Object detection and tracking · C. elegan mating behaviour
analysis · deep learning.

1 Introduction

Background This study is concerned with applying computer vision technolo-
gies to discover mating behaviours of Caenorhabditis elegans (C. elegans) worms.
C. elegans are diminutive and free-living nematodes that have emerged as vi-
tal model organisms across diverse scientific disciplines, including neurobiology,
developmental biology, and genetics [19]. In the short developmental life cycle,
typically three days, C. elegans undergo complete development from an embryo
to a sexually mature adult [1]. This significant characteristic of C. elegans has
made it popular in investigations to unveil correlations between C. elegans be-
haviour and the presence of environmental toxins in the soil [8]. By analysing
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C. elegans mating behaviours, scientists intend to reveal soil conditions with re-
gard to pollution [4]. Carefully setting experiments with a camera to capture C.
elegans mating behaviours made the analysis possible purely based on videos.
However, manual methods to observe the whole process are time-consuming,
which restrict the scope and efficiency of comprehensive studies. An automated
analysis tool based on computer vision technologies, such as object detection
and tracking is sought after to discover the mating behaviours.

In recent years, with the development of computer vision technologies, deep
neural networks are adapted in object detection and tracking. The emergence
of YOLO [23], from the original YOLO to YOLOv8, enables accurate real-time
object detection for robotics, autonomous vehicles, and video monitoring appli-
cations [27]. DeepSORT [28] has further advanced multiple object tracking with a
focus on simple and effective algorithms, which integrate appearance information
to improve the performance of the original simple online and real-time tracking
(SORT) algorithm [3]. Alternatively, the Segment Anything Model (SAM) is an
attempt to lift image segmentation into the era of foundation models [17].

Problem statement The videos taken in the C. elegans reproductive experi-
ments contain six worms, ideally, in each frame, five females and one male. The
duration of each video is about 18 minutes. The male worm is active and moving
around to approach females, whilst female worms are relatively inactive but with
motions. Fig. 1(a) shows six worms in a frame and Fig. 1(d) demonstrates the
male worm has contacted a female worm after a few minutes in the video. From
Fig. 1, it can be seen that positions and shapes of these worms are changing in
the course of the process. This leads to a problem of deformable object detection
and tracking. The active male worm may move out of the scene (see Fig. 1(b)),
and imprints may appear in the scene (see Fig.1(b), (c), and (d)). These chal-
lenge the traditional approaches, e.g. appearance based object detection, motion
based tracking, etc. [21, 5–7].

(a) (b) (c) (d)

Fig. 1: Examples of C. elegans positions in experiments (a) Initial positions, (b)
Male left the scene, (c) Male back to the scene, (d) Male touching female 5

With the final aim of automated analysis of C. elegans mating behaviours,
the initial objective of this study is to detect and record the contacting points
between the male and a female worm in the 18 minute videos so that researchers
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can skip to these points to observe the mating behaviours. Deep learning meth-
ods, based on both YOLOv8 and DeepSORT, are considered in object detecting
and tracking to investigate how the aforementioned challenges can be dealt with
by advanced technologies.

Related work Using a computer to monitor nematodes movement was at-
tempted in the 80’s of the last century [9] with a 6809 microprocessor pro-
grammed in assembly language under a lighting condition of high contrast. In the
area of C. elegans behavioural research, an array of innovative tracking systems
and methodologies have emerged, each with distinct attributes and capabilities.
Ramot, et al. [22] developed the Parallel Worm Tracker, a platform for quantita-
tive analysis of C. elegans locomotion. This system is capable of tracking multiple
worms in sequential video frames and recording their centroid positions. It is also
adept at calculating the worm’s speed and angular velocity. Simonetta, et al. [26]
proposed an automated system that tracks the locomotor activity of C. elegans
which is also suitable for circadian locomotion recording and research on aging
mechanisms. The system utilizes light microbeams to detect worm movement
and convert the frequency of the signal, allowing for a sophisticated analysis of
locomotion patterns. Jaensch, et al. [13] presented an automated tracking and
analysis system that offers exceptional accuracy in quantifying and tracking the
size of Green Fluorescent Protein (GFP)-labelled centrosomes in early C. ele-
gans embryos. It proves its efficiency by effectively processing large datasets with
only minor manual corrections required. Dzyubackyk, et al. [10] introduced an
algorithm designed for tracking C. elegans embryogenesis utilizing fluorescence
microscopy images. The algorithm demonstrated successful segmentation and
tracking of nuclei in the image sequence, surpassing the performance of existing
methods. It was found to be efficient and user-friendly, employing graph-cut-
based energy minimization for improved results. Restif, et al. [24] introduced
CeleST, a sophisticated computer vision software tailored for automated track-
ing and in-depth analysis of C. elegans swimming behaviour. This innovative ap-
proach employs adaptive background subtraction to effectively discern and track
individual nematodes within video frames, surmounting the challenges posed by
intricate and diverse background environments. Despite its impressive capabil-
ities, it is noteworthy that CeleST is designed to exclude worms that are in
contact during the tracking process. This unique exclusion, while advantageous
in some contexts, may present limitations when applied to specific studies that
aim to explore the nuances of worm interactions and contact behaviour.

Javer, et al. [14], introduced the Tierpsy Tracker, a Python-based multi-
worm tracker that extracts postural information from worm behaviour videos.
By offering enhanced head-tail detection and locally calculated thresholds, the
system provides an improved tracking accuracy. Lorimer, et al. [20] developed an
approach that excels in detecting changes in worm locomotion behaviour through
prediction error analysis. The algorithm localizes changes in worm locomotion
behaviour and offers flexibility and sensitivity. Leonard and Vidal-Gadea [20]
proposed a cost-efficient and user-friendly C. elegans tracking system. Although
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designed for classroom usage, the system delivers results almost rivalling more
expensive professional systems, making it a cost-effective option for basic worm
behaviour studies. Deep learning methods were employed by Banerjee, et al.
[2] in their deep-worm-tracker for accurate detection and tracking C. elegans in
worm behavioural studies.

Contributions Different from the existing tracking systems, the uniqueness
of this study lies in detecting and monitoring C. elegan pairs engaged in mat-
ing interactions. This requires identifying individual worms and tracking them
throughout their movements with position and appearance changes until the
male worm touches one of the female worms. Limitations of robustness and re-
liability are still issues in dealing with occlusion and object lost/back in the
scene by using traditional approaches. Curiously, this study investigates how
an integrated deep learning approach copes with the limitations. In this paper,
we introduce an automated system that aids the study of C. elegans mating
behaviours analysis. The developed system, adapting YOLOv8 and modified
DeepSORT, addresses the challenging task of detecting and tracking individual
deformable worms, monitoring the trajectory of the male worm, and identify-
ing mating occurrences in recorded videos. A contact detection mechanism is
implemented efficiently reporting instances where worms overlap or make con-
tact. The system’s overall performance achieves a substantial level of accuracy in
worm tracking and contact detection. The technical innovation of the integrated
system is demonstrated in developing algorithms to modify DeepSORT, which
significantly improves the performance in worm tracking and contact detection.

The rest of the paper is organised as below. Section 2 briefly describes
YOLOv8 and DeepSORT. Section 3 introduces our technical approaches, in-
cluding the system framework, data annotation, and details of implementation.
Relevant experiments and testing results are demonstrated in Section 4. Section
5 concludes the study and lays the future work.

2 Preliminary: YOLOv8 and DeepSORT

YOLOv8: YOLO was introduced by Redmon, et. al. [23], representing a sig-
nificant leap forward in object detection efficiency and effectiveness. The key
innovation of YOLO lies in its ability to perform object detection in a single
forward pass of various deep neural networks as backbones for different versions,
from the original YOLO to recent YOLOv8, thereby achieving real-time process-
ing speed. The network divides the input image into a grid, and each grid cell is
responsible for predicting bounding boxes (objects). This grid-based approach
significantly reduces the computational overhead, making YOLO highly efficient
and suitable for real-time applications.

Essentially, the object detection task is framed as a regression problem, where
the neural network predicts bounding boxes and class probabilities directly from
the input image. Non-Maximum Suppression (NMS) is then used, which is a post-
processing technique [12] to reduce the number of overlapping bounding boxes
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and improve the overall detection quality. From the original YOLO to recent
YOLOv8, the algorithm also introduces anchor boxes to improve the accuracy
of object detection. Anchor boxes are predetermined shapes of different aspect
ratios that are used to refine the predicted bounding boxes. By introducing
anchor boxes, recent versions, such as YOLOv8, are better equipped to handle
objects of various shapes and sizes leading to improved localization accuracy.

As a state-of-the-art model, YOLOv8 [15] by Ultralytics was used in this
study. Object detection algorithms of YOLOv8 generate multiple bounding boxes
around the same object with different confidence scores, followed by NMS which
filters out redundant and irrelevant bounding boxes, keeping only the most accu-
rate ones. From input images, the YOLOv8 efficiently outputs a set of detected
bounding boxes together with their sufficiently high confidence scores of object
detection.

DeepSORT: DeepSort stands for Deep Learning-based SORT (Simple Online
and Realtime Tracking), is an advanced object tracking algorithm that combines
the principles of deep learning and traditional SORT to achieve highly accurate
and efficient tracking results in real-time video sequences. Extended from SORT,
a traditional online tracking method that uses Kalman filtering [16] and the Hun-
garian algorithm [18] for data associations, DeepSORT addresses the limitation
of the SORT algorithm by incorporating two pieces of information, motion and
appearance into its framework [28], named as d(1) and d(2), respectively.

The motion metric d(1) is implemented with the Mahalanobis distance be-
tween predicted Kalman states vector dj of jth bounding boxes (consisting of its
center position (u, v), aspect ratio r, height h as well as their respective velocities
in image coordinates) and newly arrived measurements yi of ith track.

d(1)(i, j) = (dj − yi)
TS−1

i (dj − yi) (1)

where the i-th track distribution is projected into the measurement space by
(yi,Si).

For each bounding box detection dj , an appearance descriptor aj with ∥aj∥ =
1, is calculated based on a pre-trained convolution neural network(CNN) [28].
This approach trains appearance features offline with a large number of training
samples on a convolution neural network. The appearance metric d(2) measures
the smallest cosine distance between the i-track and j-th detection in the image
space.

d(2)(i, j) = min{1− aT
j a(i)

k |a(i)
k ∈ ℜi} (2)

where aj denotes an appearance descriptor in j-th detection, and a(i)
k represents

appearance descriptors in the i-th image space ℜi, which is maintained as the
recent 100 associated appearance descriptors for each track.

Finally, the two metrics are combined as:

Ci,j = λ d(1)(i, j) + (1− λ)d(2)(i, j) (3)
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where 0 ≤ λ ≤ 1 is a hyperparameter. Ci,j are used to determine if the de-
tected bounding boxes are assigned to each track. For the details of DeepSORT
implementation, refer to [28].

3 Methodology

Relevant system frameworks and algorithms are developed to overcome chal-
lenges that arise when dealing with visually similar entities such as C. elegans
for their mating behaviours analysis based on videos. Fig. 2 depicts the system
framework. YOLOv8, fine-trained by annotated C. elegans data, is for C. elegans
detection. It automatically resizes and rescales the input image to match that of
the images used for training the detector. The locations of objects detected in
the input image are returned as a set of bounding boxes. A modified DeepSORT
algorithm is implemented for multiple worm tracking. In the framework, SAM
(Segment Anything Model) is optionally attempted to assist DeepSORT in ac-
curate tracking with binary images [17]. For the technical details of SAM, which
is beyond the scope of this paper, the readers are referred to [17]. In Section
4, we carried out an ablation study of SAM to obtain empirical results with or
without SAM module in Fig. 2. The male worm is identified and tracked in each
frame, even when it leaves and comes back to the scene. The system outputs
two text files with information on the contact times of the male worm and a
female worm, and coordinates of the male worm’s trajectory, as well as videos
with detected worms in each frame.

Fig. 2: Framework of the worm detection and tracking system.

3.1 Data annotation

To fine-train YOLOv8, annotated training samples are prepared from the C.
elegans mating videos. This endeavour is expedited through the utilization of
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(a) (b)

Fig. 3: Training samples for YOLO fine-train (a) Bounding box, (b) Segmented

the RoboFlow platform [25], which eased the annotation and data augmenta-
tion process. Two different versions of annotated training samples are collected,
bounding boxes (version 1: V1) and segmented encapsulations (version 2: V2),
as shown in Fig. 3 (a) and (b), respectively. The initial step involves the conver-
sion of videos into images. This task was achieved through the utilization of the
ffmpeg library [11], where images or frames are meticulously extracted from the
videos at intervals, typically spanning every 5 to 10 seconds.

In the selection of training samples, diversity is the key element to ensure
the robustness of a trained model. V1 contains 846 training samples, whilst V2
only has 208 training samples due to the process being highly time-consuming.

3.2 Modification of DeepSORT

A modified DeepSORT algorithm was proposed in this study to enhance the
tracking accuracy. Due to high visual similarities between the worms, identity
switching often occurs when these worms come in contact with each other or
occlude themselves. This, in turn, affects tracking accuracy. In other instances,
it would create a new ID for an existing worm. Knowing that videos in this study
consist of 6 worms at maximum, we modified DeepSORT to limit the frequency
in which new worm IDs are created after all 6 worms in the video have been
identified and are being tracked.

To mitigate identity switches during worm interactions, where visual similar-
ities can lead to confusion, we introduced dynamism to the number of frames for
new track identification. The DeepSORT algorithm initiates a new track hypoth-
esis for each detection that cannot be associated with an existing track. These
nascent tracks are initially classified as tentative with the algorithm anticipating
their consecutive appearance in a specified number of frames before their inclu-
sion in the track set. Failure to meet this criterion results in discarding these
tentative tracks. This predefined number for track identification can be adjusted
prior to the program’s execution. In modifying DeepSORT, we made the prede-
fined number for track identification adjustable during program execution. At
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the program’s onset, this number is set to a relatively low value (e.g., 10 frames)
and once all six worms in the video are integrated into DeepSORT’s track set,
we dynamically increase the number of frames for new track identification to
a substantial value (e.g., 400 frames). This means that after all 6 worms are
identified if the YOLO model detects a 7th object (maybe a worm imprint as
shown in Fig. 1), this 7th object (wrongly detected) will not be easily included in
our modified DeepSORT’s track set as opposed to the default DeepSORT. This
dynamic adjustment significantly enhances tracking accuracy by minimizing the
occurrence of identity switches.

SAM (Segment Anything Model) [17] is explored aiming to improve Deep-
SORT tracking accuracy. Although experiments with SAM had better track-
ing performance, the time taken to run such experiments is double that of the
experiments without SAM (see Table 2). For this reason, we left SAM to be
an optional process, for instances where speed is prioritized. YOLOv8 outputs
bounding boxes after C. elegans detection. SAM is applied to each bounding
box to segment C. elegan within it. Using this way, the segmented image and
the bounding boxes are passed into the DeepSORT tracker. Fig. 4 depicts the
outputs of YOLO and SAM in the system.

Fig. 4: Outputs of YOLO and SAM in the system

3.3 Male worm detection and contact detection

An integral objective of this worm detection and tracking system is to provide
scientists with valuable insights into the moments when contact occurs between
male and female worms. The visual similarity between male and female worms
may cause problems for the appearance metric used in DeepSORT. A male worm
detection algorithm is developed and implemented. As aforementioned, the male
worm tends to have higher mobility and move more rapidly compared to those fe-
male worms in the videos taken from C. elegans mating events. This behavioural
disparity presents a unique opportunity to leverage mobility as a discriminating
factor for distinguishing between male and female worms. The approach for male
worm detection is presented in Algorithm 1.
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Algorithm 1 Male Worm Identification by Mobility
Require: Coordinates of bounding boxes in each frame. Total number of bounding

boxes m. A specified frame number n.
Ensure: The male worm coordinates are identified.

1. For bounding boxes k = 1, ...,m in a frame of the video

(a) Obtain the centre coordinates u
(i)
k and v

(i)
k in the initial frame.

(b) At a specified frame number (n):

i. Obtain the current centre coordinates u
(c)
k and v

(c)
k .

ii. Compute the Euclidean distance Dk between the current and initial
coordinates.

Dk =

√
(u

(c)
k − u

(i)
k )2 + (v

(c)
k − v

(i)
k )2 (4)

2. At frame (n+1), identify the worm with the highest Euclidean distance
max{Dk} as the male worm.

3. Return

For contact detection, the initial way involves calculating the Euclidean dis-
tance between the centre points of two bounding boxes of worm pairs (one is the
male worm). If this distance falls below a specified threshold, it unequivocally
signals contact between the worms. The time of contact in the video was deter-
mined by multiplying the frame number and the frames per second of the video.
While this method provides a quick, straightforward, and intuitive way for con-
tact detection, it also demonstrates certain limitations. In scenarios where two
worms are positioned in parallel, their bounding box centre points may exhibit
proximity, leading to potential false positives in the contact detection process. To
address the limitations, worm segments as connected components are attempted
in contact detection. If any segmentation point from the male worm overlaps
or is in proximity to any female segmentation point, it is indicative of contact
between the two worms, and the time is recorded for the occurrence. The second
method highly depends on the accurate segmentation of each worm in the frame.
Otherwise, it may introduce contact detection errors.

4 Evaluation and results

Evaluation takes place in three folders, i.e. worm detection, tracking, and con-
tact detection. A set of metrics is adopted. Mean Average Precision (mAP) and
mAP(50-95 ) are for worm detection, whilst the Multiple Object Tracking Accu-
racy (MOTA) is used for evaluating worm tracking accuracy. The contact detec-
tion is done by comparing the system output with the ground truth manually
obtained, and contact accuracy and contact F1 score are used as metrics.
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4.1 Evaluation metrics

Mean Average Precision (mAP ) is a commonly used evaluation metric in
object detection tasks. It is defined in Equation 5

mAP =
1

N

N∑
i=1

APi (5)

where APi is the precision for detection class i, defined as APi =
TPi

TPi+FPi
. N is

the number of detection classes, in this case, six classes represent six worms in
a scene. A higher mAP score indicates better performance in object detection,
implying that the detection model excels in both precision and recall, where
recalli = TPi

TPi+FNi
. TP , FP , and FN stands for true positive, false positive,

and false negative, respectively.

mAP(50-95) is an extension of the mAP metric, taking Intersection over
Union (IoU ) in the calculation. IoU is defined as:

IoU =
Area of Overlap

Area of Union
(6)

mAP(50-95) measures the mean Average Precision over a range of IoU thresh-
olds, typically from 0.5 to 0.95, in increments of 0.05. The following steps are
involved in the calculation.

1. For each detection class and for each IoU threshold (beginning from 0.5,
incrementing by 0.05 up to 0.95), we compute the AP.

2. The mAP (50 − 95) score is then obtained by averaging these AP values
across all detection classes and across all IoU thresholds (from 0.5 to 0.95).

A high mAP (50−95) score indicates that the model performs well in object de-
tection across various IoU thresholds. This metric is more reliable than the mAP
which only uses an IoU value of 0.5, thus indicating that a higher mAP (50−95)
score will result in more accurate bounding box predictions.

Multiple Object Tracking Accuracy (MOTA) is an evaluation metric
in the field of object tracking that provides a holistic assessment of a tracking
system’s ability to accurately track multiple objects over time. It is defined as:

MOTA = 1− (FN + FP +Msw)/GT (7)

where

– False Negatives (FN): quantifies the number of worms present in the frame
which the tracking system fails to detect.

– False Positives (FP ): encompasses objects erroneously identified as worms
by the tracker, quantifying instances of incorrect worm detection.
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– Male worm switches (Msw): indicates whether the male worm is detected or
switched with other worms in a given frame. This parameter carries a weight
of 0.25 greater (+25%) than that of identity switches occurring within female
worms.

– Ground Truth (GT ): represents the actual number of worms present in the
frame.

A high MOTA score suggests that the tracking system is performing well in
terms of accuracy in object tracking. This implies that it effectively tracks the
majority of objects while minimizing missed detections (FN), false alarms (FP ),
and failure in detecting a male worm (Msw) in a frame.

Contact accuracy in contact detection is defined as

Contact accuracy =
contacts detected

overall contacts
(8)

In Equation 8, contacts detected refers to the number of contacts (between male
and female worms) that were detected by the system in the testing video, and
overall contacts is derived from the ground truth showing the real contact num-
ber.

Contact F1 score is expressed in Equation 9.

Contact F1 score =
2TP

2TP + FP + FN
(9)

where TP refers to contacts detected as contacts, FP ; non-contacts detected as
contacts,and FN, contacts that were not detected by the system.

4.2 System evaluation

Evaluation experiments were conducted by using a system with a 7th-generation
Intel processor, 16GB RAM, and a 6GB Nvidia Rtx2060 GPU. A pre-trained
YOLOv8n (a nano-sized model) was adapted in the experiments. The fine-tuning
of the model utilised the two sets of training samples, V1 and V2, described in
Section 3.1. The learning rate was set as 0.01 and the default Adam optimizer is
used in training. Two YOLOv8 models, M1 and M2, are established with V1 and
V2, respectively. The training took less than an hour for M1 and over 4 hours for
M2. Fig. 5 shows the losses against epochs in their training. In M1, box losses
and class losses were involved in the training, whilst for M2, segmentation losses
were also taken into account. Testing was conducted on both M1 and M2.

Worm detection evaluation In the evaluation experiments, we had three sets
of testing data in each model. For Model M1, associated with the V1 dataset,
133 samples were derived along with the training samples from the three videos
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(a)

(b)

Fig. 5: Losses against epochs in training (a) Model M1, (b) Model M2

as described in Section 3.1; 167 samples were annotated from a new set of videos,
and then we applied data augmentation to increase the testing dataset to 298
samples. For Model M2, associated with dataset V2, 46 testing samples were
derived along with the training samples; 48 samples from a new set of videos,
and 71 samples from data augmentation. As demonstrated in Table 1, M2 shows
the consistency of mAP and mAP(50-95) scores for the three testing datasets.
Interestingly for M1, the testing dataset derived from the same videos as the
training samples produces a much better mAP(50-95) score than those from
the testing datasets extracted from different videos. This may be caused by
bounding boxes with larger percentage overlaps decreasing in these two testing
datasets. Meanwhile, M1 yields superior mAP scores. The performance diver-
gence can be attributed to several factors, mainly because of the dissimilarity in
training data. It is worth noting that both the V1 and V2 training datasets com-
prise images extracted from three distinct C. elegans mating videos. However, a
pivotal distinction emerges in the volume of training samples. The V1 dataset
boasts a larger training sample size, amounting to 846 samples, in contrast to
the V2 dataset, which comprises a modest 208 samples. On the one hand, it
may indeed imply an enhancement in model performance, as a larger training
dataset generally fosters better learning outcomes. Conversely, this scenario can
also potentially lead to overfitting, where the model becomes excessively tai-
lored to the idiosyncrasies of the three specific videos present in the V1 dataset.
It underscores the significance of dataset diversity in achieving robust model
generalization.
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Table 1: Worm detection performance
Model Training Epochs Batch Testing mAP mAP

sample in training size sample (50-95)

M1
133 0.992 0.858

846 300 16 167 0.981 0.591
298 0.980 0.587

M2
46 0.975 0.765

208 450 1 48 0.960 0.714
71 0.950 0.713

Worm tracking evaluation Building up on the YOLOv8 models is the Deep-
SORT for worm tracking with or without optional modular SAM. Ablation ex-
periments were conducted with three different scenarios in worm tracking eval-
uation.

1. A system that uses the default DeepSORT algorithm.
2. A system that uses the modified DeepSORT algorithm.
3. A system that incorporates the Segment Anything Model (SAM) in conjunc-

tion with the modified DeepSORT algorithm.

Overall, 113,400 frames were involved in the worm tracking and contact eval-
uation, about 10.5 fps (frame per second). The results presented in Tables 2 and 3
were from a test of an eighteen-minute video. With different algorithms applied,
the testing time was different. From Table 2, it is observed that with default
DeepSORT, the M2 model, trained on a dataset comprising 208 images has the
lowest MOTA. However, it attains the most commendable performance when
coupled with the modified DeepSORT tracker and SAM. Table 2 has clearly
shown that in both M1 and M2, the modified DeepSORT outperforms the de-
fault DeepSORT significantly. The modified DeepSORT with SAM incorporated
gives better MOTA scores, but the tracking operation took a longer time.

Table 2: Worm tracking performance
Model Tracker MOTA Msw Testing

time

M1
Default DeepSORT 61.5% 9 50:16
Modified DeepSORT 82.2% 4 51:06

Modified DeepSORT (SAM) 85.2% 3 2:12:45

M2
Default DeepSORT 21.4% 30 51:44
Modified DeepSORT 97.6% 4 56:23

Modified DeepSORT (SAM) 97.9% 4 2:23:45

Worm contact evaluation Detecting contact between male and female worms
was evaluated by implementing a manual recording process to establish the
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ground truth. It documents the time frames encompassing the male worm’s in-
teraction with a female worm, including the initiation and cessation of contact.
A video of C. elegans mating behaviours was involved in the testing. Contact
accuracy and F1 score defined in Equations 8 and 9 are demonstrated in Table
3. Due to the low performance in tracking, the default DeepSORT algorithm
was excluded from the tests for both M1 and M2, only modified variants are
evaluated for contact detection.

Table 3: Contact detection performance
Model Tracker Contact Contact F1

accuracy score

M1 Modified DeepSORT 91.7% 0.861
Modified DeepSORT (SAM) 93.7% 0.898

M2 Modified DeepSORT 85.3% 0.738
Modified DeepSORT (SAM) 73.4% 0.347

The M1 model uses bounding boxes for contact detection since it does not
have segmentation coordinates while the M2 model uses the segmentation-based
contact detection. Although the M2 model coupled with Modified DeepSORT
and SAM has shown the highest performance in worm tracking, it exhibits an
anomaly, which affects the contact detection accuracy. The reason for this mis-
classification is due to how image segmentation was implemented, which renders
the worms in stark white against a pitch-black background. Thus, when the
worms, displayed as white entities, converge, their contours are not clearly visi-
ble due to the overlapping white pixels, making it difficult to identify individual
worms in contact. Although worm segmentation has shown an advantage in
tracking isolated worms, it occasionally makes mistakes in detecting worms dur-
ing contact. We observe that the bounding-box-based contact detection (with
SAM) performs better than the segmentation-based methods. Interestingly, the
M1 model with modified DeepSORT tracker and SAM produced the best results
with respect to both contact accuracy and contact F1 score on the video used
in evaluation.

5 Conclusion and future work

In this study, we developed a computer vision system which works on worm mat-
ing videos to identify and track each worm involved, leading to worm contact
detection. By adapting YOLOv8 and DeepSORT algorithms in the system, the
modified tracker associated with the developed male worm detection and contact
detection algorithms has achieved commendable contact detection accuracy on
the evaluated video recording worm mating behaviours. The research problem
involves deformable object detection and tracking. It has proved that the inte-
grated deep learning approach can cope with the difficulty. The evaluation results
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have shown that YOLOv8 has excellent performance in worm detection to cope
with deformable worm shapes in both M1 and M2. By incorporating SAM in the
tracker, excellent tracking performance was achieved in M2 although substantial
time is required in the operation, and the contact detection accuracy is also im-
proved in M1. Future study includes two aspects, investigating a larger number
of small sequences to gain more comprehensive views on mating behaviours and
to investigate the role of segmented objects in contact detection. With the two
approaches, it is expected to make the system more robust and efficient in coping
with different scenarios.
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