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High prediction skill of decadal tropical
cyclone variability in the North Atlantic
and East Pacific in the met office decadal
prediction system DePreSys4

Check for updates

Paul-Arthur Monerie 1 , Xiangbo Feng 1,2, Kevin Hodges 1 & Ralf Toumi 2

The UK Met Office decadal prediction system DePreSys4 shows skill in predicting the number of
tropical cyclones (TCs) andTC track density over the easternPacificand tropical AtlanticOceanon the
decadal timescale (up to ACC = 0.93 and ACC = 0.83, respectively, as measured by the anomaly
correlation coefficient—ACC). The high skill in predicting the number of TCs is related to the simulation
of the externally forced response, with internal climate variability also allowing the improvement in
prediction skill. The Skill is due to the model’s ability to predict the temporal evolution of surface
temperature and vertical wind shear over the eastern Pacific and tropical Atlantic Ocean. We apply a
signal-to-noise calibration framework and show that DePreSys4 predicts an increase in the number of
TCs over the eastern Pacific and the tropical Atlantic Ocean in the next decade (2023–2030),
potentially leading to high economic losses.

Tropical cyclones (TCs) are strong atmospheric weather systems that
travel long distances over land and the oceans. TCs are associated with
high winds, storm surges, large waves1 and heavy rainfall, causing
casualties and economic losses2. TCs mostly affect many regions,
including the tropical Atlantic and Caribbean Sea, the tropical Pacific,
and the Indian Ocean3,4.

Predicting the future evolution in the number and intensity of TCs is of
high importance for populations and decision-makers, especially in vul-
nerable areas. Many studies have focused on understanding and improving
TC prediction at sub-seasonal to annual timescales, i.e. sub-seasonal and
seasonal predictions4–7. Some dynamical prediction systems have demon-
strated an ability to predict the year-to-year evolution of the number of TCs
over the North Atlantic Ocean and the western North Pacific Ocean4,5. One
source of such prediction is the El Niño Southern Oscillation4,8, with El-
Niño events associated with an increased prediction skill for TCs relative to
neutral years.

Evidence shows that anthropogenic activities can modulate the TC
activity on multi-decadal to longer timescales. For example, one study
has found that changes in anthropogenic aerosol emissions have affected
TC activity over the North Atlantic and western North Pacific over the
past 40 years through their effects on sea surface temperature and
atmospheric circulation9. The externally forced response may lead to a
future increase in the intensity of TCs10, leading to a higher risk of TC-

related damage over the tropics11. Several models project a future
decrease in the number of TCs globally but with an increase in the
proportion of the strong TCs12. However, the future change in TC
activity at regional scales remains uncertain12,13.

While decadal predictionprovides useful pre-planning information for
stakeholders and policy-makers14, the performance of decadal prediction
systems remains largely unexploited. The decadal timescale bridges the gap
between seasonal prediction and climate projection. Studies have shown
that dynamical prediction systems have skill for proxied TCs on a decadal
timescale in the North Atlantic Ocean14–16. They link skill for TC activity to
skill in predicting the Atlantic Multidecadal Variability (AMV). Skill has
also been reported in predicting TC activity over the western North
Pacific17,18. However, these aforementioned studies are based on a simplified
approach, using proxies of TC (e.g., using the daily minimum of mean sea
level pressure15), andhave relied on statistical (TCpredictions basedonSSTs
only17,18) or hybrid statistical-dynamic prediction frameworks19. These
studies have severe limitations because non-stationarities in the TC-
environment proxy relationship can strongly impact the statistical
approach. The ability of dynamical prediction systems to explicitly predict
TCsondecadal timescales is unknown.Here,weassess theprediction skill of
TCs globally, using an explicit tracking algorithm to identify TCs, in the
newly developed decadal prediction system of the UK Met Office, DePre-
Sys4 (see Methods).
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We address the following questions:
• Can DePreSys4 predict the evolution of the TC activity up to 10

years ahead?
• Can we define sources of predictive skill for TC activity?
• Canwe increase the predictive skill of TCs by addressing the signal-to-

noise paradox in climate models?

Results
Representation of the climatology of TC activity
We first assess the ability of DePreSys4 to simulate the TC track density
over the 1961–2021 period, focusing on interannual variability to use
the largest number of start dates possible. Simulated TCs are validated
against TCs tracked in ERA5 using the same TC tracking method.
Climatologically, the TC track density is highest over the eastern and
western North Pacific Ocean in ERA5 (Fig.1a), as shown in other
studies3. DePreSys4 simulates the geographical distribution of track
density well, with the highest values seen over the Pacific Ocean
(Fig. 1b) and resembling the track density pattern in ERA5. However,
DePreSys4 underestimates the track density over the North Atlantic
Ocean and overestimates it over the Pacific and Indian Oceans
(Fig. 1c). These biases in the representation of the track density are
consistent with other prediction systems from the Met Office8,20,21.
Consistent with the track density, DePreSys4 underestimates TC
genesis over the North Atlantic Ocean and overestimates it over the
Pacific and Indian Oceans (Fig. S1).

We estimate the ability of DePreSys4 to simulate the temporal varia-
bility in the TC track density. The DePreSys4 ensemble mean strongly
underestimates the interannual variability of TC track density (Fig. 1e, f).
We resample the ensemble members to assess the interannual variability of
the track density, using a single realisation for each start date7. We confirm
that theunderestimationof the inter-annual variability of the trackdensity is
not solely in the ensemblemean but also inherent to individual members of
DePreSys4.

Prediction skill
In this subsection, we focus the analysis on the decadal prediction of TCs
and show the ability of DePreSys4 to simulate the TC track density on the
2–9-year forecast lead time (Fig. 2a). The 2–9-year forecast lead time is
defined as an 8-year average, between the 2nd and 9th year of the hindcasts,
and is used to assess the decadal variability of the TCs. DePreSys4 shows a
significant prediction skill in simulating TC track density over the North
Atlantic Ocean and the eastern North Pacific Ocean (Fig. 2a). At the 2–9-
year forecast lead time, no significant prediction skill is found over the
southern hemisphere and the western PacificOcean. The following analysis
then focuses on the Atlantic and eastern Pacific Oceans.

We show that themodel has skill in simulatingTC genesis density over
the eastern and central Atlantic and the northern and central Pacific Ocean
(Fig. 2b). We hypothesize that the better skill in track density than in TC
genesis is due to the skilful simulation of TC tracks, which are largely
controlled by the large-scale steering flow. To better understand the high
prediction skill in TC tracks in these two regions, we confine the TC genesis
to the eastern Pacific (grey area in Fig. 2e) and the eastern Atlantic (yellow
area in Fig. 2e). We show that DePreSys4 has a high and significant skill
(ACC > 0.4) in predicting the frequency of TC genesis over both the eastern
Pacific and the tropical Atlantic Ocean on themulti-annual to decadal time
scales (2–4, 2–5, 3–6, 6–9 and 2–9-year forecast lead time) (Fig. 2c, d).
However, the model has low skill in the interannual variability (1-year
forecast lead time; Fig. 2c, d). On multi-annual to decadal timescales, the
significant skill in simulating track density over the East Pacific and the
tropical AtlanticOcean is related to the significant skill in simulating the TC
genesis. DePreSys4 simulates both the frequency of genesis and the trajec-
tory of TCs well in these two regions.

We assess the effect of the externally forced response by removing a
trend (quadratic) from the time series of the regional number of TCs. We
show that the skill in the eastern Pacific is thenmuch lower and statistically
insignificant for most of the lead times (Fig. 2c), demonstrating the
dependence of the prediction skill on the long-term evolution of TCs.

Fig. 1 | Representation of the track density.Track density climatology [1961–2021;
TC year−1] for a ERA5, b DePreSys4, and c track density bias (DePreSys4−ERA5).
Interannual variability (variance; TC2 year−2) of TC track density (1961–2021) for
dERA5, eDePreSys4 ensemblemean, and f for the bias (DePreSys4−ERA5). Results
are given for JASO in the Northern Hemisphere and DJFM in the Southern
Hemisphere. e, f the contours show the mean value of variance obtained with

individual ensemble members, obtained by randomly selecting individual ensemble
members for each start date before computing the variance over the period
1961–2021 and with 5000 permutations. f Shows positive (negative) anomalies with
continuous (dotted) black lines; the grey line shows zero anomalies. The track
density climatology and interannual variability are computed from 1-year forecast
lead time.
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However, over the tropical Atlantic Ocean, the prediction skill of the
number of TCs remains high after removing the trend, showing that the
long-term evolution and the multi-annual and decadal variability are well
predicted in DePreSys4. The residual remains significantly correlated,
showing that DePreSys4 can simulate the effect of internal climate varia-
bility on the number of TCs (Fig. 2c, d).

Persistence (see Methods) allows for high skill in predicting the
number of TCs over both the eastern Pacific and the tropical AtlanticOcean
(Fig. 2c, d). Still, we show that DePreSys4 outperforms the persistence at the
2–9-year forecast lead time, showing added values of the dynamical pre-
diction relative to the persistence.

Prediction skill of a large-scale environment
The development of TCs is, in general, controlled by large-scale environ-
mental factors4,18,22–29. We assessed various environmental factors related to
TC development. DePreSys4 is not skilful in the decadal variability of the
850 hPa relative vorticity and near-surface relative humidity (not shown).
Instead, we find that DePreSys4 has significant skill in surface air tem-
perature and vertical wind shear.

Sea surface temperature and vertical wind shear are important thermal
and dynamical drivers for TC generation and development, with anom-
alously high temperature and low wind shear favouring TC activity18,28. We
link the high skill in predicting the number of TCs in the above two regions
to the high skill in simulating surface air temperature (Fig. 3a) and the
vertical wind shear (Fig. 3b) over the Atlantic and the Pacific Ocean at the
2–9-year forecast lead time.

After excluding the long-term trend, the prediction skill in surface
air temperature remains high over the North Atlantic, with a pattern of
prediction skill reminiscent of the AMV (i.e., a horseshoe pattern)
(Fig. 3c). The skill in predicting the vertical wind shear also remains
particularly high over the tropical Atlantic Ocean (Fig. 3d). The

significant skill in surface air temperature and vertical wind shear agrees
with the high skill in predicting the number of TCs over the Atlantic Ocean
after removing a quadratic trend (Fig. 2d). We also show that, in the North
Atlantic Ocean, the surface air temperature of the North Atlantic Ocean is
negatively correlated with the vertical wind shear in both the reanalysis and
DePreSys4 (Fig. S2) on the decadal timescale. This is consistent with
previous studies showing that the multidecadal variability of North
Atlantic SSTs (AMV) can (i) modulate tropical Atlantic surface air
temperature30, (ii) lead to an increase in the number of TCs regionally31,
and (iii) is generally well predicted by climate models32,33. The model can
predict TCs over the North Atlantic and the eastern Pacific Ocean on the
decadal timescale even without skill for low-level relative vorticity and
near-surface relative humidity. Therefore, we conclude that a high pre-
diction skill in the North Atlantic air temperature and vertical wind shear
contributes to the high skill in the number of the TCs over the tropical
Atlantic in DePreSys4 regarding trend and decadal variability.

The skill in predicting the temperature and vertical wind shear is
low over the East Pacific Ocean after removing a quadratic trend
(Fig. 3c, d). This is consistent with an apparent decrease in the skill in
predicting the number of TCs over the East Pacific, when not accounting
for the long-term trend in TCs (Fig. 2c). However, the skill remains
statistically significant (ACC > 0.3) over the East Pacific. This may be
related to the remote effect of the skilfully simulated AMV on the East
Pacific atmospheric circulation34,35, which canmodulate TC activity over
the Pacific Ocean36,37.

Calibrating prediction skills and predicting future changes
The number of TCs increases in ERA5 and DePreSys4 over the eastern
Pacific and the tropical Atlantic over the hindcast period (Fig. 4a, b). The
DePreSys4 ensemble mean underestimates the variability in the number of
TCs (in agreement with Fig. 1f) (Fig. 4a, b). The underestimation of the

Fig. 2 | Skill in predicting TC activity. Skill (ACC) of DePreSys4 at the a 2–9-year
forecast lead time (i.e., a decadal time window) for the track density. b as in a but for
the TC genesis density. Stippling indicates that ACC is significantly different from
zero according to a Monte–Carlo procedure with 5000 permutations and a 95%
confidence level. Skill (ACC) in simulating the number of TC genesis in c the eastern
Pacific and d tropical east Atlantic Ocean for the 1-year, 2–4, 2–5, 3–6, 6–9, and 2–9-
year forecast lead times (i.e., in annual-to-decadal time windows). c, d The

continuous (dotted) line shows the skill before (after) removing a quadratic trend,
and circles indicate that ACC values are significant according to a Monte-Carlo
procedure with 5000 permutations and a 95% confidence level. Black lines and
circles show the prediction skill of DePreSys4, while the blue lines and circles show
the prediction skill based on persistence only. The domains used to count the
number of TC genesis in the East Pacific and tropical East Atlantic Ocean are shown
within e.
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decadal variability is related to the large ensemble spread and drastically
reduced variability in the ensemblemean. The existence of a large ensemble
spread in a prediction system has been studied in a signal-to-noise paradox
framework38. The ratio of the predictable component (RPC) of TC fre-
quency is greater than unity in both the East Pacific (RPC = 1.65) and
tropical Atlantic (RPC= 1.83), indicating that DePreSys4 is better at pre-
dicting a version of the ‘real world’ than predicting itself 38. The high RPC
ratio in DePreSys4 also indicates that the model’s skill in predicting the
coherent variability of TCs is underestimated. We note that a different
evolutionof thenumberofTCs couldbeobtained inobservations (IBTrACS
and Best Track), showing a disparity from ERA526. This is further shown in
Figs. S3 and S4 and discussed in the supplementary material. Nevertheless,
our evidence points out that the calibrationmethod can further improve the
prediction skill (Fig. 4). Moreover, we replicate the analysis using a second
reanalysis (JRA-3Q39) and show a similar skill (ACC = 0.69 in the East
Pacific and ACC = 0.63 in the tropical Atlantic) as for ERA5 (Fig. S5).

We apply the lagged ensemble technique40, to increase the degree of
freedom for each start date and combine the ensemble members from four
consecutive start dates to 40 ensemble members to reduce the ensemble
spread41. We also scaled the variance of DePreSys4 back to the variance of
ERA5 to capture better the simulated temporal variability in the number of
TCs. This post-processing procedure increases the skill for the East Pacific
(ACC= 0.93) and the tropical Atlantic (ACC= 0.84). Therefore, we show
that a higher skill is achievable after simply calibrating the forecast data.We
predict the number of TCs in the recent and following decades using the
forecasts initialised in and after November 2013 (red lines in Fig. 4). The
lagged ensemble shows that the number of TCs is predicted to be much
higher in the next decade (e.g., the value in the year 2026 is for the average of
theperiod 2023–2030) over both the easternPacific and the tropicalAtlantic
(Fig. 4c, d). We note here that one should be cautious when analysing the
prediction. We show high skill in predicting TCs over the East Pacific and

Atlantic Ocean but acknowledge that the model’s skill could be time-
dependent and lower for the forecast period.

In addition to the number of TCs, we assess the ability of DePreSys4
to simulate the accumulated cyclone energy (ACE), the energy associated
with TC activity. An increase in ACE can lead to strong impacts on the
ocean and land. Prediction skill of the lagged ensemble in the decadal
variability ofACE is highover the easternPacific (ACC = 0.72; Fig. 5a) and
over the tropical Atlantic (ACC = 0.81; Fig. 5b). In addition to the tropical
Atlantic, we show that DePreSys4 can predict ACE over a larger area, the
NorthAtlantic (from0°N to 60°N;ACC = 0.63; Fig. 5c), with cyclones and
high wind speeds that can reach the Caribbean, Central America, and the
eastern US. We show that DePreSys4 generally predicts a future increase
inACE (Fig. 5a–c), indicating that cyclone-related losses could increase in
the near future.

Discussion
We assess the ability of a decadal prediction system developed by the UK
Met Office, DePreSys4, to predict the number of TCs and TC track density.
DePreSys4 consists of a large number of hindcasts, initialised every year
from 1960 to 2021, with ten-year hindcasts and ten ensemble members for
each start date. We found that DePreSys4 can predict the number of TCs
and track density up to a decade ahead. While several studies have shown
that prediction systems can predict TC characteristics on a decadal time
scale, these studies have been based on proxies for TCs15,17–19, with some
studies based on a statistical approach that uses the decadal modes of SST
variability as proxies for the TC activity17,18. The downside of these statistical
approaches is that there may be no stationarity in the SST-TCs relationship
and that other drivers of TC variability are not considered. It is essential to
knowhowwell thedecadal prediction systems explicitly simulateTCs, as the
current model resolution is high enough to resolve the storm dynamically.
Here, we bridge this gap, using, for the first time, a TC tracking algorithm to

Fig. 3 | Environmental drivers of TC activity. Skill (ACC) of DePreSys4 in pre-
dicting a surface-air temperature andb vertical wind shear (U200−U850) at the 2–9-
year forecast lead time (i.e., a decadal time window) in JASO. c, d as in a, b, but after

removing a quadratic trend. Stippling indicates that ACC is significantly different
from zero according to a Monte–Carlo procedure (bootstrap permutations) with
5000 permutations and a 95% confidence level.
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identify TCs in the prediction system on a fine time scale (6 hours) to assess
the prediction skill for a decade ahead.

We show that DePreSys4 underestimates the amplitude of long-term
variability in the number of TCs and TC track density globally. Still,
DePreSys4 is skilful on the multi-annual and decadal lead times (i.e., 2–4,
6–9, 2–9 years forecast lead time) over the eastern Pacific and tropical
Atlantic Ocean. DePreSys4 is not skillful over the southern hemisphere and
western North Pacific Ocean. We show that the skill in predicting the
number of TCs is mainly due to a trend in the evolution of the number of
TCs. Still, the simulation of internal climate variability also significantly
contributes to the prediction skill. We suggest that the high skill in pre-
dicting the surface temperature and the vertical wind shear over the tropical

Atlantic and eastern Pacific contributes to the high prediction skill for TC
genesis in the Atlantic and the east Pacific.

We show that the calibration method40 allows a significant increase in
prediction skills. Predicting the evolution of the number of TCs on the
decadal timescale provides useful information for adaptation strategy and
planning management. We show that DePreSys4 predicts the number of
TCs, and the energy associatedwith the TCs to increase over the East Pacific
and the Atlantic in the near future. Thismay increase cyclone-related losses
over the Atlantic and the East Pacific Ocean in the near future.

Additional work could be done to better understand the sources of
prediction skill for the TCgenesis and track density at the decadal timescale,
focusing, for example, on specific case studies (decades) and highlighting

Fig. 4 | Prediction of the overall number of TC genesis in the eastern Pacific and
tropical Atlantic oceans.The overall number of TC genesis in ERA5 (black line) and
theDePreSys4 ensemblemean (blue and red lines) for the a easternPacificOcean and
b eastern tropical Atlantic Ocean in the 2–9-year forecast lead time. The blue and red
lines are used for the hindcast and forecast periods, respectively. All individual

ensemble members are shown with a dot. The ACC and RPC values are shown and
computed over the hindcast period. c,d as for a, b, but for the lagged ensembleswith a
scaling of the variance. c, d are shown in an anomaly relative to the whole time series.
For DePreSys4, the years represent the mid-point of the 2–9-year forecast period (a
decadal time window). The year 2026 represents the average period 2023–2030.
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mechanisms at play.Work could also be devoted to investigating the causes
of model biases in the simulation of TC genesis and track density8,21 and
understanding their impact on forecast skill, for example, through sensi-
tivity experiments42 inwhichkey variables are kept close to the reanalyses. In

addition, we expect prediction skills to bemodel-dependent and advocate a
multi-model analysis using hindcasts from a large ensemble of prediction
systems. Because evaluatingmulti-model hindcasts requires a large amount
of sub-daily (e.g., 6-hourly) field data to be analyzed and stored for TC
identification, we suggest modeling groups could provide TC track data as
an output forCMIP7. Thiswould require the climate centres to use the same
tracking scheme.

Methods
DePreSys4
We assess the ability of a decadal prediction system, DePreSys4, developed
by theUKMetOffice to predict TCactivityup to a decade ahead.DePreSys4
is based on HadGEM3-GC31-MM43, an ocean-atmosphere general circu-
lationmodelwith a resolution of ~0.5° longitude and~0.8° latitude andwith
36 vertical levels. We use 10-year simulations, initialised each November,
from 1960 to 2021. There are ten ensemble members that differ from their
initial conditions (initialised from different ocean analyses to sample
uncertainties in the initial conditions) for each start, for a total of 6200 years
of simulations.

ERA5
Weassess the ability ofDePreSys4 to predict TC activity by contrastingwith
the European Centre for Medium-Range Weather Forecasts (ECMWF)
5th-generation reanalysis (ERA544). ERA5 is used at a resolution of 0.25° of
latitudes and longitudes. We use data from ERA5 covering the period
1960–2022. The sameTC identification criteria are used for bothDePreSys4
and ERA5. We do not use the IBTrACS45 and Best Track (National Hur-
ricane Center)46 observations, for which different operational procedures
are used in different ocean basins, which does not allow a clean comparison
with DePreSys4. However, comparisons to observations are shown in the
Supplementary Material.

NCEP
Skill at predicting surface air temperature andwind speed is quantifiedusing
theNCEP reanalysis47, given on a 2.5° × 2.5° horizontal resolution and from
1948 to the present.

Tracking algorithm
Our identification of TCs follows previous studies8,48–51. The tracking
uses the 6-hourly 850 hPa relative vorticity. We reduce noise in the
vorticity field before performing the tracking. The data is spectrally
filtered using a fit to a spherical harmonic expansion truncated to total
wave numbers 42(T42), with the total wave numbers less than or equal to
5 removed. Initially, all systems tracked that exceed an intensity max-
imum greater than 5.0 × 0−6 s−1 in the NH or aminimum <−5.0 × 0−6 s−1

in the SH. The tracking first initialises a set of tracks using a nearest
neighbour method, which is then refined by minimising a cost function
for track smoothness subject to adaptive constraints on the displacement
distance and track smoothness. Following the tracking, the T63 vorticity
maxima/minima are recursively added to the tracks at the available levels
of 850, 500, and 200 hPa, as well as the 10 m wind maxima using a 6°
search radius, and the MSLP minima using a 5° search radius. The
genesis (first tracked point) must be within the tropics (30°S–30°N). The
difference in vorticity between the 850 and 200 hPa levels must be
>6 × 10−5 s−1; the intensity at 850 hPa must be greater than 6 × 10−5 s−1;
we must obtain a coherent vertical structure, as defined by the presence
of a vorticity center at each vertical level between 850 and 200hPa; these
last three criteria must be satisfied for at least 4 consecutive time steps
over the ocean.

Track density and genesis
We use a grid with a horizontal resolution of 5° × 5° to remap the track
density for DePreSys4 and ERA5. We count the number of TCs in each
grid point. We use a larger grid with a horizontal resolution of 15° × 15°
to show the TC genesis. TC genesis is defined as the location of a TC at its

Fig. 5 | Changes in accumulated cyclone energy.As for Fig. 4a but for accumulated
cyclone energy (ACE; 104 kt2) and a the East Pacific, b the tropical Atlantic, and c the
North Atlantic.
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first step, and the number of TCs is defined as the number of TCs
registered over a given domain. For the East Pacific, we register the
number of TCswhose genesis occurred over the East Pacific domain (See
Fig. 2e). For the Tropical Atlantic domain, we account for the number of
TCs that travel through the Atlantic domain (see Fig. 2e), to also account
for TCs whose genesis occurs inland, over West Africa. This allows
accounting for ~67% of the TCs as obtained over the full North Atlantic
domain in ERA5.

Assessing skill
Prediction skill is estimated using the anomaly correlation coefficient
(ACC) metric, calculated between ERA5 and DePreSys4, and for several
forecast lead times. We focus on different timescales of variability by
using different forecast lead times and by comparing them. The 1 year
forecast lead time (here the first winter and the first summer), therefore,
allows us to determine the skill in predicting the interannual variability,
we also use the 2–4, 2–5, 3–6, and 6–9 year forecast lead times, where
4-year averages allow us to document the skill in predicting the multi-
year variability of TCs, and finally we use the 2–9 year forecast lead time
(an 8-year average) to document the skill in predicting the decadal
variability of TC activity.

We assess skill for the July–October season (JASO) in the Northern
Hemisphere from 1960 to 2021 and the December–March season (DJFM)
in the Southern Hemisphere from 1960 to 2020.

The significance of the ACC is estimated by randomly resampling the
time series of the ensemble means. We use a 5-year block bootstrap to
preserve low-frequency variability using 5000 permutations in a Monte
Carlo framework. The ACC values are judged significant at the 95% con-
fidence level using a two-sided test.

Persistence
We use persistence as a benchmark to assess the usefulness of DePreSys4.
Then-year persistence is calculated based on the ERA5 values in the n-years
before the start date. We calculated 1-year, 4-year, and 8-year persistence.

Drift correction
We remove the model’s drift following the recommendations of theWorld
Climate Research Programme52, which is defined as the lead-time bias
relative to ERA5. Note that removing the drift does not affect the
prediction’s skill.

The RPC and lagged ensemble
We assess confidence in prediction by using the signal-to-noise framework
of Scaife et al.38, which allows a quantification of the inconsistency between
the low strength of the predictable signals in a climate model and the
relatively high level of agreement it exhibits with the observed variability.
The RPC38, RPC2 ¼ r2om=r

2
mm is used, where rom is the correlation between

the DePreSys4 ensemble mean and ERA5, rmm is the correlation between
the ensemble mean and a single ensemble member (obtained here as the
average of an ensemble of synthetic time series obtained by randomly a
single ensemble for each start date andwith 5000 permutations). As rom and
rmm indicate the ability to reproduce the predictable component of a signal,
the RPC indicates a ratio between the RPC in ERA5 and the predictable
component in DePreSys453. An RPC equal to unity indicates a perfect
prediction system. RPC greater than unity denotes that the RPC is lower in
DePreSys4 than in ERA5.

We expect the prediction skill to increase when increasing the
ensemble size8. The lagged ensemble allows for increasing the ensemble size
by combining the four latest forecasts available at each start date (giving 40
ensemble members instead of 10 ensemble members)40.

We rescale the variance of the predicted ensemble mean by scaling

DePreSys4 by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðobsÞ
varðmodelÞ

q

, where var(obs) is the variance of ERA5 and

var(model) is the variance of DePresys454. The variance is computed from
the detrended time series on each considered forecast lead time.

Accumulated cyclone energy
Away to estimate the cyclone intensity is to use the ACE5,55,56. We estimate
ACE using the 10-m maximum wind speed for each region as

ACE ¼ 10�4
X

i

X

j

V2
max;

where Vmax is the 6-hourly maximum 10-m wind speed associated with
each cyclone and is given as the sum of the square of the wind speed over all
tracks i and track points j. ACE is in 104 kt2 (1 kt~0.5 m s−1).

Data availability
DePreSys4 contributes to CMIP6, and outputs are available from the CMIP6
public repositories, including https://esgf-index1.ceda.ac.uk/search/cmip6-
ceda/. The ERA5 data are generated by ECMWF and available on their
website (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
single-levels?tab=overview)/. NCEP data are provided by the NOAA/OAR/
ESRL PSL, Boulder, Colorado, USA, from their website at https://downloads.
psl.noaa.gov/Datasets/ncep.reanalysis/Monthlies/pressure/.

Code availability
Codes are available upon reasonable request to the corresponding author.
The tracking code can be downloaded from https://gitlab.act.reading.ac.uk/
track/track/-/releases.
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