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Effect of ENSO Phase on Large-Scale Snow Water Equivalent Distribution in a GCM
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ABSTRACT

Understanding links between the El Niño–Southern Oscillation (ENSO) and snow would be useful for

seasonal forecasting, as well as for understanding natural variability and interpreting climate change pre-

dictions. Here, a 545-yr run of the third climate configuration of the Met Office Unified Model (HadCM3),

with prescribed external forcings and fixed greenhouse gas concentrations, is used to explore the impact of

ENSO on snow water equivalent (SWE) anomalies. In North America, positive ENSO events reduce the

mean SWE and skew the distribution toward lower values, and vice versa during negative ENSO events. This

is associated with a dipole SWE anomaly structure, with anomalies of opposite sign centered in western

Canada and the central United States. In Eurasia, warm episodes lead to a more positively skewed distri-

bution and the mean SWE is raised. Again, the opposite effect is seen during cold episodes. In Eurasia the

largest anomalies are concentrated in the Himalayas. These correlations with February SWE distribution are

seen to exist from the previous June–July–August (JJA) ENSO index onward, and are weakly detected in

50-yr subsections of the control run, but only a shifted North American response can be detected in the

analysis of the 40-yr ECMWF Re-Analysis (ERA-40). The ENSO signal in SWE from the long run could still

contribute to regional predictions, although it would only be a weak indicator.

1. Introduction

Forecasts of possible changes in land surface condi-

tions are important both economically and politically,

especially when examining impacts from climate change

scenarios. It has been demonstrated that at midlatitudes,

it is the land surface that dominates the uncertainty in

general circulation model (GCM) responses (Crossley

et al. 2000). However, the land surface has been given

little attention in the context of GCMs, and observations

are generally sparse. These issues were noted in the

Intergovernmental Panel on Climate Change (IPCC)

Fourth Assessment Report (AR4; Covey et al. 2003).

Snow plays a key role in the energy balance at the

land–atmosphere boundary. Knowledge of the state of

the snowpack over winter is also vital in forecasting

water resources and wildfire risk in many parts of the

world. Snow distribution is controlled by both tempera-

ture and precipitation fields, and as such makes a chal-

lenging diagnostic for climate models (Foster et al. 1996).

As an accumulated property, it also provides an in-

tegrated measurement of recent seasonal variability.

Seasonal predictions of snow anomalies might be possi-

ble by exploiting knowledge of the slower-varying com-

ponents of the climate system, such as the ocean. The

best-documented link between ocean variability and

weather is the El Niño–Southern Oscillation (ENSO).

ENSO events have impacts on weather patterns across

the globe, which may extend far enough to modulate the

characteristics of Northern Hemisphere snow distribu-

tion. The IPCC AR4 describes how the representation

of ENSO within the AR4 GCMs has improved in recent

years and despite remaining biases, many of these

models have been used for ENSO prediction, in partic-

ular the third climate configuration of the Met Office

Unified Model (HadCM3) GCM (Covey et al. 2003).

Many studies relating snow to climate indices such

as ENSO have been performed from an atmospheric

dynamics perspective: exploiting snow information in

order to predict the behavior of the atmosphere some

weeks ahead (Leathers and Robinson 1993; Cohen and

Entekhabi 1999; Cohen et al. 2007; Gong et al. 2007).

These feedback processes, while important in repre-

senting climate and impacts in models properly, are not
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the subject of this study. Here, the objective is reversed:

can knowledge of ENSO phase be used to predict the

state of the snowpack later in the season, or the fol-

lowing season? This would represent an important ad-

vance in improving the lead times for both hydrological

and climate applications.

Work presented here shows the effect of ENSO phase

on large-scale snow distribution [in this case snow water

equivalent (SWE)] in a multicentury run of the HadCM3

general circulation model. By not confining studies to

a small geographic area, and instead considering the

whole Northern Hemisphere, the approach also tests the

strength of remote connections in the model. By using

a long model run, the robustness of the statistical re-

lationship is not limited by a small number of ENSO

events. While the mechanisms involved in these remote

connections are important for both forecast interpre-

tation and model diagnosis, a full investigation of these

mechanisms is outside the scope of this paper. Here we

are concerned with the response of a GCM to an ENSO

event, as measured using SWE. This represents the first

step in identifying relationships that could be exploited

for forecasting in the future.

2. Previous work and background

Several studies have examined snow variability in the

context of ENSO activity, but these have been concen-

trated on the North American continent. Jin et al. (2006)

showed that 18% of the variability in measured SWE

data in the western United States is ENSO driven, mainly

due to changes in precipitation rather than temperature

patterns. Clark et al. (2001) used station data to examine

the influence of ENSO events on snowpack evolution in

two North American river basins. Composites of mean

anomalous snow in warm and cold phases are compared,

and then used to predict runoff. This approach showed

that, with the inclusion of ENSO information, there was

skill in predicting spring runoff even before the snow

begins to accumulate in the autumn. Sobolowski and

Frei (2007) detected strong negative correlations be-

tween SWE in the Great Lakes region and October–

November–December (OND) ENSO phase in the North

American SWE reanalysis data of Brown et al. (2003).

Shaman and Tziperman (2005) find correlations be-

tween January–February–March (JFM) Pacific SSTs

and coincident spring and summer snow depth anoma-

lies from satellite data on the Tibetan Plateau (although

there are concerns about the behavior of the satellite

snow depth retrieval over this region; Armstrong et al.

2004).

Further studies have investigated ENSO impacts on

precipitation. Ropelewski and Bell (2008) examined the

shift in the statistics of daily rainfall at stations in South

America, with the ENSO phase. They find that useful

information about the character of the rainfall season

can be extracted, and they repeat the analysis using the

station data in gridded form, and finally with rainfall

statistics from the National Centers for Environmental

Prediction–National Center for Atmospheric Research

(NCEP–NCAR) reanalysis product. The gridded data

reproduces many results from the station data, but not

all the connections are seen when using reanalysis data.

The authors attribute this discrepancy to biases in the

reanalysis product. Ye (2001) shows a link between

ENSO activity and Eurasian winter precipitation. Ye

uses a principal components approach to detect tele-

connections between variations in SSTs in the eastern

Pacific and precipitation in southern-central Siberia.

Global precipitation was analyzed by Dai et al. (1997)

using gridded station data for the years 1900–88. The

first EOF of the dataset is a pattern related to ENSO,

centered over the tropics, and ENSO is also shown to be

the single largest cause of global extreme precipitation

events. The authors also find trends in the global data

(which are consistent with model-derived responses

to increasing CO2 levels) together with an increase in

the elapsed time between dry events over the United

States. The trends in the observed data, together with

the difficulty of making accurate precipitation mea-

surements with good spatial coverage, makes the pat-

terns and mechanisms of interannual variability difficult

to discern.

Although a climate model will always be an incomplete

representation of reality, a GCM becomes an important

tool for generating very long datasets that can be used for

investigating mechanisms of variability. Understanding

the interannual and decadal variability of climate models

is essential in assessing the impact of external forcing on

climate, and detecting and attributing trends (Collins

et al. 2001). Observations will naturally contain the ef-

fects of both this internal variability and any externally

driven trend; estimation of the effect of internal vari-

ability alone can only be performed within the controlled

environment of a model. Investigation of connections

within the internal variability of the model should also be

a good test of the model, particularly for SWE distribu-

tion which is the result of subtle interactions between

different atmospheric fields.

Observations of SWE at continental to hemispheric

scales are only obtainable through remote sensing, and

there remain many concerns about the reliability of the

retrieval method (Andreadis and Lettenmaier 2006;

Derksen 2008; Putt 2008). Passive microwave data was

used by Yang et al. (1999) in a study of NCAR’s Cou-

pled Climate Model, version 3 (CCM3), and the authors
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concluded that the GCM distribution was more reliable.

For verification Yang et al. used a global snow dataset

from the U.S. Air Force Environmental Technical Ap-

plications Center (Foster and Davy 1988), which used

synoptic stations, literature searches, and climatological

records to manually reconstruct a gridded hemispheric

snow depth product. While this constitutes an inde-

pendent, observation-based data source, Foster and

Davy themselves acknowledge low confidence in data at

high latitudes, and systematic biases have been identi-

fied by Brown and Frei (2007), which are particularly

problematic over Eurasia. For this study of the whole

Northern Hemisphere, a reanalysis product is used to

provide an observational check on model results. While

land surface data from reanalysis are generally consid-

ered less reliable than atmospheric data, there is no al-

ternative source of global snow data with a long enough

time series to cover a reasonable number of ENSO

events. In this paper it is the result of atmospheric ac-

tivity on snow distribution that is being tested, and while

the land surface reanalysis in particular may have de-

ficiencies, it is hoped that the atmospheric component

would be driving anomalies of temperature and pre-

cipitation and hence the SWE anomalies.

Section 3 details the GCM and reanalysis products to

be used, and outlines the method of detecting connec-

tions between SWE distribution and ENSO. Results are

presented in section 4, and further discussion and con-

clusions are in sections 5 and 6.

3. Data and methodology

a. GCM: HadCM3

The model used in this study is the general circulation

model HadCM3 from the Hadley Centre (Gordon et al.

2000), chosen because of its good ENSO representation.

It is a fully coupled atmosphere–ocean model, which

does not require flux adjustments. The land surface

physics are described in Cox et al. (1999). The atmo-

spheric component of HadCM3 has a resolution of 3.758

longitude by 2.58 latitude, and 19 vertical levels. The

ocean component has a horizontal resolution of 1.258 by

1.258 with 20 vertical levels. While this resolution is

relatively low, it is large-scale patterns that are to be

investigated rather than local detail.

The representation of ENSO in HadCM3 is discussed

in Slingo et al. (2003) and Guilyardi (2006). The latter

showed that HadCM3 has an ENSO amplitude within

620% of observations, and a good Pacific SST clima-

tology. The response of the Indian Ocean to an ENSO

event is well modeled, but an exaggerated response ex-

ists in the tropical Atlantic. The dominant ENSO fre-

quency is also broadly correct, though there is some

evidence that the model does not generate enough of

a lower-frequency response (Guilyardi et al. 2004).

HadCM3 is also capable of generating both modes that

give rise to ENSO events as seen in observations (local

SST–winds interactions in the central-east Pacific, and

remote winds–thermocline feedbacks; Guilyardi 2006).

The SWE climatology of HadCM3 is consistent with

that of the other GCMs that took part in the third

round of the Coupled Model Intercomparison Project

(CMIP; Brown and Mote 2009). The authors note the

difficulty in validating large-scale SWE patterns because

of a lack of a reliable global SWE climatology, and

choose as their reference dataset the daily snow depth

analyses produced by the Canadian Meteorological

Center (Brasnett 1999) over the period 2001–06, con-

verting to SWE using a density climatology. Compared

to this hemispheric product, the CMIP GCMs (all of

which had similar snow climatologies) showed some-

what higher SWE values at mid- to high latitudes, and

higher SWE in the Himalayas. For the CMIP GCMs,

such as HadCM3, the surface temperature was shown to

be modeled with some confidence, while precipitation

fields were less reliable (Covey et al. 2003).

To examine the internal variability of HadCM3, a

multicentury ‘‘control run’’ has been studied. This 545-yr

run includes solar and prescribed volcanic forcings, but

fixed greenhouse gas forcings. This run was completed

on a computing cluster, and was initialized from a

spunup state from a much longer control run, to ensure

the model components had reached equilibrium and

there was no climatology drift.

The ENSO index used in this study is the seasonal SST

anomaly in the Niño-3.4 box (58N–58S, 1708–1208W;

Trenberth 1997), with an anomaly of greater than 0.58C

denoting a positive ENSO index, and less than 20.58C

being negative. While Trenberth proposes an ENSO

definition based on a 0.48C anomaly threshold, the

standard deviation of SSTs in the Niño-3.4 box in this

control run is somewhat higher than the observations

quoted in the Trenberth paper (1.058 as opposed to

0.778C) and the higher threshold of 0.58C produces

roughly the same proportion of positive and negative

events over the 545-yr period as in the observations.

b. Reanalysis: ERA-40

The reanalysis product used to provide observational

data is the 40-yr European Centre for Medium-Range

Weather Forecasts (ECMWF) Re-Analysis (ERA-40).

This is a widely used second-generation reanalysis

product from ECMWF (Uppala et al. 2005). ERA-40

provides global climatologies of a range of surface and

atmospheric variables for 44 yr over the time period

from mid-1957 to mid-2002.
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The land surface scheme designed for the ERA-40

project is described in van den Hurk et al. (2000) and

uses an explicit snowpack layer with prognostic equations

for the snow albedo and density. The scheme also as-

similates observed snow data from many stations world-

wide, with the greatest coverage over North America.

Evaluation of the land surface scheme in snow conditions

showed that the new scheme improved snow depth,

snowmelt timing, and turbulent fluxes above boreal for-

ests, with beneficial impacts on the surface Bowen ratio

and the atmospheric boundary layer.

Uppala et al. (2005) note that there is an error in the

ERA-40 snow analysis between 1992 and 1994. Figure 1

shows the time series of anomaly SWE values in North

America and Eurasia (referenced to the 1958–87 monthly

climatology), which suggests that this error is actually

present from 1989 onward, so all ERA-40 SWE data

between 1989 and 1994 are omitted, leaving 38 yr of data

for analysis.

c. Method

Composite February SWE anomalies are created to

test whether there are lagged relationships between

ENSO index and SWE distribution. February monthly

averages have been chosen to be representative of the

peak of the snow season, but before any melt occurs.

Four separate February SWE composites are created,

based on the phase of the ENSO in the four seasons

leading up to, and coincident with, the February SWE

anomaly, specifically whether ENSO was positive in the

March–April–May (MAM), June–July–August (JJA),

September–October–November (SON), or December–

January–February (DJF) prior to February. As an ENSO

event will last for consecutive seasons, any given February

SWE anomaly can occur in several groups. Similarly,

composites are formed for negative phases of ENSO. The

analysis was also performed with DJF and DJFM com-

posites of monthly anomalies and results were qualita-

tively the same.

The precipitation study of Ropelewski and Bell (2008)

used the Kolmogorov–Smirnov (K–S) test to determine

whether the frequency distributions of precipitation

data in positive and negative phases of ENSO were

significantly different, and this approach is repeated

here. The K–S test uses the maximum separation dis-

tance between the two cumulative frequency curves to

determine whether the two distributions are statistically

different (Smirnov 1948). The test is simple and non-

parametric, though it will be applied to the anomaly

difference between positive and negative ENSO phases

for each grid box independently, so if positive and neg-

ative ENSO events have an impact in different regions,

then an individual grid box may be less likely to pass the

K–S test for significance.

The aim is to show whether the distribution of snow

in February can be predicted from the ENSO phase in

the preceding seasons. The approach is first applied to

HadCM3, where the length of the control run allows the

statistics to be robust. The ERA-40 reanalysis dataset

however is less than 40 yr long, so to ascertain whether

any connections found between SWE and ENSO phase

should be detectable in the reanalysis data, the K–S test

is also used on 5 consecutive 100-yr sections and ten

50-yr sections of the GCM control run to see whether

the same connections are detected in the GCM over

these shorter periods.

4. Analysis

a. HadCM3: 545-yr control run

Table 1 shows the effect of ENSO episodes on the

frequency distribution of continental mean February

SWE during the control run. The mean, standard de-

viation, and skewness for each of the distributions are

listed. Significant differences between the distributions

following positive and negative events are highlighted

in bold (significance assessed using the K–S test with a

threshold of 95%). The frequency distributions them-

selves for the DJF case are plotted in Fig. 2.

The February anomalies over North America that

occur when ENSO is positive in DJF have the lowest

mean, a high standard deviation, and the most positive

skew, while those that occur when ENSO is negative in

DJF have the highest mean, lowest standard deviation,

and a negative skew (though a very low value at 20.07).

Hence, the generally warmer climate in ENSO positive

phases is leading to less snow over North America, but

FIG. 1. Mean SWE anomaly time series (mm) from ERA-40 for

North America (dashed) and Eurasia (solid). Anomalies are ref-

erenced to a 1958–87 ERA-40 SWE climatology.
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the high standard deviation and long positive tail of

the distribution (as shown by the positive skew, and in

Fig. 2) show that there are not consistently low snow

values in every positive ENSO event: there are still

many ENSO positive years with positive snow anoma-

lies. A similar pattern is true for ENSO negative years,

so while the climate is cooler and snow anomalies are

generally positive, the negative skew means there are

still low snow years among them.

For Eurasia, the statistics are mainly the opposite to

the North American case: the positive ENSO phase in

DJF brings a higher mean SWE and lower standard

deviation, and vice versa for the negative phase. The

changes in skewness however are similar to North

America: the positive phase displays a more positive

skew, while the negative phase shows a negative skew. It

is interesting to note this difference between the conti-

nents: the warmer climate of ENSO positive events

leads to deeper snow in Eurasia. The analysis was also

performed with DJF and DJFM composites of monthly

anomalies and results were qualitatively the same, but

less significance was seen. It also appears that the re-

sponse of Eurasian snow to ENSO may be more pre-

dictable than for North America, because the skewness

is in the same direction as the change in mean values: for

example, with both a higher mean and more positive

skew in ENSO positive years, it is likely that a year with

positive ENSO index also has a positive SWE anomaly.

Figure 3 shows the February SWE anomaly compos-

ites according to the ENSO index of a particular season

(preceding MAM, JJA, SON, and coincident DJF, re-

spectively). Examining first the SWE anomalies when

the coincident DJF is positive (Fig. 3d), large positive

anomalies are seen over the Himalayas. In North

America a dipole pattern is seen, with large negative

anomalies along the west coast and positive anomalies in

the southern-central United States. This pattern is re-

produced when considering DJF anomalies following

a positive ENSO phase in SON and JJA (Figs. 3b,c,

respectively), but not for positive ENSO phase in MAM

(Fig. 3a).

Figure 4 shows the anomaly composites for February

SWE following negative ENSO phases. The spatial

pattern is very similar to that for the positive ENSO

phase in Fig. 3, but with the sign of the anomalies re-

versed. Large negative anomalies occur over the Hi-

malayas, and there are also negative anomalies farther

east in China. The dipole pattern is seen once more in

North America, with opposite-signed anomalies on the

west coast and central United States. The same pattern

is seen whether considering ENSO phase in the co-

incident DJF or preceding JJA and SON (Figs. 4b–d). In

this case, the pattern is still seen when ENSO was neg-

ative in the preceding MAM (Fig. 4a).

To determine the significant differences in these

anomaly patterns, the cumulative frequency distribu-

tion of SWE at each grid box is calculated for both

positive and negative ENSO phases. These gridbox

distributions are compared using the K–S test, again

using a significance threshold of 95%. Figure 5 shows

the K–S plot for February SWE anomalies, composited

by ENSO phase in the preceding seasons (MAM, JJA,

TABLE 1. Statistics of continental mean February SWE with ENSO index in preceding MAM, JJA, SON, and coincident DJF. Seasons

with statistically significant differences between positive and negative ENSO phases are in bold. Significance was assessed using a t test

with a threshold of 95%.

No. of years Mean (mm) Std dev (mm) Skewness

North America Whole run 545 83.4 5.15 0.16

MAM Positive 143 84.0 5.03 0.02

Negative 152 82.8 5.52 0.27

JJA Positive 128 83.9 4.94 0.50

Negative 132 83.3 5.54 0.32

SON Positive 155 83.5 4.97 0.41

Negative 164 83.5 5.37 0.10
DJF Positive 154 81.9 5.45 0.54

Negative 179 84.9 4.90 20.07

Eurasia Whole run 545 57.7 2.62 0.08

MAM Positive 143 57.1 2.36 0.34

Negative 152 57.7 2.84 20.13

JJA Positive 128 57.3 2.51 0.18
Negative 132 57.7 2.58 20.29

SON Positive 155 57.1 2.70 0.30

Negative 164 57.6 2.61 20.28

DJF Positive 154 58.2 2.39 0.16
Negative 179 56.7 2.75 0.06
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SON, and coincident DJF). The grid boxes, which have

significantly different frequency distributions during

opposite ENSO phases, are shaded. Figure 5d shows

results for February anomalies that occur during DJF

ENSO events. In North America, significant differences

are found along the west coast and the southern United

States, corresponding to the dipole pattern described

earlier. In Eurasia, differences are seen across the Hima-

layas, China, and Japan.

Figure 5c for SON and Fig. 5b for JJA, both show

patterns very similar to DJF in Fig. 5d, with some ad-

ditional significance seen in Europe. Significance is

much less widespread following MAM ENSO events

(Fig. 5a).

The main Eurasian areas that are highlighted in Fig. 5,

such as the Himalayas and parts of China, are areas of

low latitude but high elevation, which could see in-

creased snow even in a warmer ENSO positive climate

if this were driving anomalously large precipitation.

The shaded areas of significance generally correspond

to regions that are known to be influenced by ENSO,

such as western North America (Ropelewski and

Halpert 1987), but also have large amounts of seasonal

snow.

These results suggest that if a developing ENSO event

can be detected or predicted in JJA or SON, the char-

acteristics of the snowpack in the model the following

February can also be forecast, providing a lead time of

several months. But are these links only apparent in

a very long model run, and, if real, could they be

detected in the much shorter observational datasets

available?

b. HadCM3: Shorter periods

Results for the K–S tests for consecutive 100-yr sec-

tions of the control run are shown in Fig. 6. The scale

shows the number of 100-yr sections (0–5) in which that

grid box displayed significant differences in SWE dis-

tribution in positive and negative ENSO phases. In the

coincident DJF (Fig. 6d), significance is seen in the Hi-

malayas, China, the west coast of North America, and

the southern United States. Several of the grid boxes in

the Himalayas and China are significant in at least four

100-yr sections.

In SON (Fig. 6c), significance is more limited across

North America but grid boxes in the Himalayas and

China still show significance. Figure 6b for JJA shows

that significance in North America is now limited to the

FIG. 2. Frequency distributions (in black) of continental mean SWE for (left) Eurasia and

(right) North America when ENSO is (top) positive or (bottom) negative in DJF. White bars

show the frequency distribution of mean February SWE from all years.
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west coast, and in Eurasia to the Himalayas. No grid

boxes show significance in more than 3 of the 100-yr

sections. Little significance is seen anywhere following

MAM ENSO events (Fig. 6a).

Considering now the 50-yr sections (10 in total), Fig. 7d

for DJF is similar to Fig. 6d, with significance in the

Himalayas, China, and the southern-central United

States. Few grid boxes show significance in more than

eight 50-yr sections. Figure 7c for SON is similar, al-

though more significance is seen on the west coast of

North America. Following JJA ENSO events, Fig. 7b,

significance is very limited over North America, but still

present in the Himalayas, and farther east into China.

Following MAM ENSO events Fig. 7a, significance is

only seen in scattered grid boxes (which could represent

the 5 grid boxes out of every 100 that are expected to

pass the test by chance), and rarely for more than three

50-yr sections out of a possible 10.

In conclusion, for HadCM3, the only area of the

Northern Hemisphere showing a significant relationship

between ENSO and SWE anomalies over any 50-yr pe-

riod is the Himalayas. However, over the longer 545-yr

period significant links are also present between ENSO

and SWE in western and southern North America.

c. ERA-40

For ERA-40 only 38 yr of data are available after

removing the 1989–94 period of poor SWE values. Fig-

ures 8 and 9 show the SWE anomaly distributions in

ERA-40 following positive and negative ENSO phases,

FIG. 3. February SWE anomaly distribution (mm) from years with positive ENSO index in the previous (a) MAM, (b) JJA, (c) SON, and

(d) coincident DJF.
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respectively. While the strong response seen in the

GCM results in the Himalayan region is absent in these

reanalysis plots, there are some broader features that

are common between the two. Comparing Figs. 8 and 9

with Figs. 3 and 4, positive (negative) ENSO leads to

a band of low (high) SWE values at midlatitudes, with

high (low) SWE to the north and south. The pattern is

clearer across North America than Eurasia. The higher-

resolution ERA-40 fields show many more localized

features than the low-resolution GCM fields; the pat-

terns across North America are generally more coherent

in ERA-40 than those across Eurasia, which could re-

flect the greater volume of assimilated SWE data in the

former. An exception is the large positive anomaly seen

toward the west of the continent following negative

ENSO (Fig. 9).

Figure 10 shows the results of the K–S test on ERA-40

SWE anomaly composites. Overall, significance is much

more scattered than for HadCM3, and significance

is shifted to higher-latitude areas in both continents.

February SWE anomalies coincident with DJF ENSO

events show some significant response in central Asia

(Fig. 10d), but there is little significance elsewhere in

Eurasia or in North America. For the February SWE

following SON events (Fig. 10c), significance is still

present in central Asia along with the eastern Himalayas,

far eastern Siberia, and a large area around the Baltic

Sea. The Hudson Bay area also shows some significant

grid boxes, and along the western part of the U.S.–

Canada border. Scattered significant grid boxes are seen

in Februaries following JJA and MAM ENSO events

(Figs. 10b,a, respectively), and mainly at high latitudes.

FIG. 4. As in Fig. 3, but for years with a negative ENSO index.
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Not all the areas that show large anomalies in the

anomaly composites (Figs. 8 and 9) show significance in

the K–S plots (Fig. 10). This could well occur because

the K–S test is applied to the (positive event–negative

event) anomalies; if positive and negative ENSO events

have an impact in different grid boxes, as is more likely

for the high-resolution ERA-40 data compared to

HadCM3, then an individual grid box may not pass the

K–S test for significance.

5. Discussion

Understanding more about the effect of well-known

climate modes such as ENSO on other parts of the cli-

mate system is an important step in delivering longer-

term forecasts.

This study has presented a simple experiment demon-

strating the impact of ENSO phase on SWE distributions

in runs of the general circulation model HadCM3, with

additional comparisons made to ERA-40 reanalysis data.

The 545-yr control run shows an impact on SWE due

to ENSO, which can be broadly divided into continental-

scale and more local–regional-scale responses. In North

America the effect of a positive ENSO event is to reduce

the mean SWE and skew the distribution slightly toward

lower values, and to shift the mean higher and skew the

distribution toward higher values when ENSO is nega-

tive. This is associated with a continental-scale dipole

anomaly structure, with anomalies of opposite sign

centered in western Canada and the central United

States. This dipole structure reduces the net effect of

ENSO on continental mean values. This continental-

scale pattern is still detectable in the 50-yr subsections,

although the strongest response at longer lead times is

localized over the mountainous west coast.

Some significant correlations between the ENSO phase

and SWE anomalies in the Great Lakes region, as found

by Sobolowski and Frei (2007), are seen in the long

HadCM3 run (Figs. 5c,d), although the mean anomaly is

FIG. 5. HadCM3 grid boxes with significantly different frequency distribution of SWE during positive and negative ENSO phases in the

545-yr control run (threshold 5 95%). Significance assessed using the K–S test.

1 DECEMBER 2009 C L I F F O R D E T A L . 6161



low, and the link is not evident in the shorter sub-

sections. Figure 10 has some shaded grid boxes showing

significance in this region in the ERA-40 data. The

stronger North American responses in HadCM3 are

negative correlations between ENSO and SWE in west-

ern Canada, and positive correlations in the southern

United States; however, weak positive correlations are

seen in both these areas in the analysis of Sobolowski

and Frei (2007).

In Eurasia the effect of ENSO on the frequency dis-

tribution of SWE is somewhat reversed: while warm

episodes still lead to a more positively skewed distri-

bution, the mean value is raised. Again, the opposite

effect is seen during cold episodes. In Eurasia the largest

anomalies are found as a localized response in the

Himalayas, and it is this area that dominates the effect

on continental mean SWE values, shown in Table 1. The

areas showing response during both positive and nega-

tive ENSO events correspond to the regions with sig-

nificantly different SWE distributions found using the

K–S test. These connections are robust in the 100- and

50-yr subsections.

The positive correlation between Himalayan snow in

HadCM3 and ENSO was not seen in ERA-40. How-

ever, a recent study by Mariotti (2007) of a combination

of station data and reanalysis products finds a similar

FIG. 6. HadCM3 grid boxes with significantly different SWE during positive and negative ENSO phases in the previous (a) MAM,

(b) JJA, (c) SON, and (d) coincident DJF in consecutive 100-yr sections of the control run. Shading shows the number of 100-yr sections

that frequency distributions at that grid box passed the K–S test (threshold 5 95%).
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relationship between SON precipitation and ENSO in

this region, driven by anomalous moisture fluxes from

the Arabian Sea and tropical Africa. The strong con-

nection in the control run between ENSO and SWE in

the Himalayas is worth noting in the context of snow–

Indian monsoon teleconnections that have been pro-

posed over many decades (e.g., Blanford 1884; Hahn

and Shukla 1976; Robock et al. 2003). Relationships

between the Asian monsoon and ENSO variability were

investigated by Lau and Nath (2000). Their analysis of

GCM runs, driven by observed SSTs, show positive

ENSO–winter precipitation correlations much farther

east than seen in the SWE distribution in HadCM3

(Figs. 3 and 4). They compare this model output with

a composite of three warm events from an observation-

based precipitation product that shows anomalously wet

conditions over Indochina in winter, although they de-

tect no signals in snow depth data. If the ENSO–Asian

SWE connection remains undetectable in observational

datasets, care must be taken in interpreting results de-

rived from GCMs that extend these connections to

monsoon prediction.

The links with February SWE distribution in the long

model run are seen to exist from the previous JJA ENSO

index onward. This suggests that if there is a positive

or negative ENSO event occurring in JJA, characteris-

tics of the following February SWE distribution in cer-

tain regions could be forecast, for HadCM3 at least. This

FIG. 7. As in Fig. 6, but for consecutive 50-yr sections.
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would represent a long lead time to the spring runoff

period (from SWE melting) for hydrological applica-

tions such as flood and wildfire forecasting. It also makes

sense in terms of an ENSO event lasting several seasons,

and impacting on precipitation throughout the Northern

Hemisphere snow accumulation period. However, the

utility of this link depends on whether the amount of

variance in SWE explained by ENSO phase is high

enough to be detectable in shorter time periods.

The short subsections of the HadCM3 runs show some

of the features seen in the long run, but the links are

weaker and the lead times much shorter. When the same

approach is applied to the 38 yr of the ERA-40 rean-

alysis product, the pattern is somewhat changed again.

The broad patterns of low SWE at midlatitudes with

higher SWE bands to the north and south were repro-

duced for positive ENSO events, and vice versa for

negative ENSO events. More scattered significance

was seen across both continents in ERA-40, due to

the higher-resolution (potentially more noisy) data of

ERA-40, and gridbox-to-gridbox method for signifi-

cance testing. Stronger correlations were seen between

MAM ENSO index and February SWE than in the

HadCM3 control run. This limitation on seasonal pre-

diction within model studies has been noted before for

ENSO forecasting, with the lowest predictability oc-

curring in spring (MAM; e.g., Latif et al. 1998). This

‘‘spring predictability barrier’’ is not well understood,

and it has been suggested that it is an artifact of model

simulations.

FIG. 8. February SWE anomaly distribution (mm) in ERA-40 from years with positive ENSO index in the previous (a) MAM, (b) JJA,

(c) SON, and (d) coincident DJF.
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The most robust responses seen in North America and

Eurasia are associated with mountainous regions: the

west coast and Himalayas, respectively. With a gridbox

size of a few hundred kilometers, the GCM is unlikely to

represent precipitation patterns faithfully in these re-

gions. Jin et al. (2006) showed that the changes in ob-

served SWE distribution with ENSO across the western

United States were driven by precipitation rather than

temperature. The significant positive anomalies seen in

this study in the western United States following negative

ENSO events are consistent with the patterns seen in Jin

et al. (2006); however, their results for warm events in-

dicate larger positive anomalies to the south, and smaller

anomalies in the mountainous regions, than are seen

here. Precipitation is less well constrained than temper-

ature in GCMs, which could explain this discrepancy.

6. Conclusions

The simple method used here has determined connec-

tions in the HadCM3 GCM between the ENSO phase and

SWE in both North America and the Himalayas. While a

multicentury run showed strong connections at lead times

of several seasons, only local-scale connections remained

over shorter time scales, and few were reproduced in the

reanalysis data. Confidence in these links in the real world

is limited because the signal at shorter time periods is

weak, and there is a lack of suitable large-scale observa-

tional data with which to validate the results, which are

predominantly in mountainous areas where GCMs are

often unreliable. Using land surface fields as predictors of

atmospheric variability, or vice versa as suggested here,

requires confidence in both the model’s representation of

FIG. 9. As in Fig. 8, but for years with a negative ENSO index.

1 DECEMBER 2009 C L I F F O R D E T A L . 6165



climate dynamics and its land surface component. The

lack of consistency between results from observation-,

reanalysis-, and model-based studies, as described above,

highlights the challenge of representing real-world vari-

ability and teleconnection patterns in a GCM.
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