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Abstract

Background: Snake bite is a major neglected public health issue within poor communities living in the rural areas of several
countries throughout the world. An estimated 2.5 million people are bitten by snakes each year and the cost and lack of
efficacy of current anti-venom therapy, together with the lack of detailed knowledge about toxic components of venom and
their modes of action, and the unavailability of treatments in rural areas mean that annually there are around 125,000
deaths worldwide. In order to develop cheaper and more effective therapeutics, the toxic components of snake venom and
their modes of action need to be clearly understood. One particularly poorly understood component of snake venom is
aminopeptidases. These are exo-metalloproteases, which, in mammals, are involved in important physiological functions
such as the maintenance of blood pressure and brain function. Although aminopeptidase activities have been reported in
some snake venoms, no detailed analysis of any individual snake venom aminopeptidases has been performed so far. As is
the case for mammals, snake venom aminopeptidases may also play important roles in altering the physiological functions
of victims during envenomation. In order to further understand this important group of snake venom enzymes we have
isolated, functionally characterised and analysed the sequence-structure relationships of an aminopeptidase from the
venom of the large, highly venomous West African gaboon viper, Bitis gabonica rhinoceros.

Methodology and Principal Findings: The venom of B. g. rhinoceros was fractionated by size exclusion chromatography
and fractions with aminopeptidase activities were isolated. Fractions with aminopeptidase activities showed a pure protein
with a molecular weight of 150 kDa on SDS-PAGE. In the absence of calcium, this purified protein had broad
aminopeptidase activities against acidic, basic and neutral amino acids but in the presence of calcium, it had only acidic
aminopeptidase activity (APA). Together with the functional data, mass spectrometry analysis of the purified protein
confirmed this as an aminopeptidase A and thus this has been named as rhiminopeptidase A. The complete gene sequence
of rhiminopeptidase A was obtained by sequencing the PCR amplified aminopeptidase A gene from the venom gland cDNA
of B. g. rhinoceros. The gene codes for a predicted protein of 955 amino acids (110 kDa), which contains the key amino acids
necessary for functioning as an aminopeptidase A. A structural model of rhiminopeptidase A shows the structure to consist
of 4 domains: an N-terminal saddle-shaped b domain, a mixed a and b catalytic domain, a b-sandwich domain and a C-
terminal a helical domain.

Conclusions: This study describes the discovery and characterisation of a novel aminopeptidase A from the venom of B. g.
rhinoceros and highlights its potential biological importance. Similar to mammalian aminopeptidases, rhiminopeptidase A
might be capable of playing roles in altering the blood pressure and brain function of victims. Furthermore, it could have
additional effects on the biological functions of other host proteins by cleaving their N-terminal amino acids. This study
points towards the importance of complete analysis of individual components of snake venom in order to develop effective
therapies for snake bites.

Citation: Vaiyapuri S, Wagstaff SC, Watson KA, Harrison RA, Gibbins JM, et al. (2010) Purification and Functional Characterisation of Rhiminopeptidase A, a Novel
Aminopeptidase from the Venom of Bitis gabonica rhinoceros. PLoS Negl Trop Dis 4(8): e796. doi:10.1371/journal.pntd.0000796

Editor: John Pius Dalton, McGill University, Canada

Received April 29, 2010; Accepted July 14, 2010; Published August 10, 2010

Copyright: � 2010 Vaiyapuri et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was funded by the Felix Trust, London. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: e.g.hutchinson@reading.ac.uk

Introduction

A detailed understanding of the components of snake venom is

important both for acquiring a more complete understanding of

the pathology of envenoming and to aid in the development of

improved treatments for snake bites, which are the cause of many

deaths throughout the world each year. Snake venoms are

complex mixtures of enzymatic and non enzymatic proteins,

together with other components such as carbohydrates, lipids,

nucleosides and metals. These function together to immobilize, kill
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and digest prey [1]. Some proteins such as hyaluronidase and L-

amino acid oxidase are present in all 4 snake families (Viperidae,

Atractaspididae, Elapidae and Colubridae), while other proteins

are restricted to certain families. For example viper venom has

predominantly hemorrhagic, hypotensive and inflammatory

effects, caused by the metalloproteases, serine proteases and C-

type lectins present, while neurotoxins, which affect the central

nervous system, are major constituents of elapid snake venoms.

Despite extensive studies on individual proteins and many recent

proteomic and transcriptomic analyses of snake venoms [2] there

remains much to be learned about the components of snake

venom and their functions.

One of the least understood enzyme constituents of snake

venoms is aminopeptidases. These enzymes remove one or more

specific N-terminal residues from target proteins or peptides. For

example aminopeptidase L (APL) removes an N-terminal leucine

residue, aminopeptidase A (APA) removes an acidic N-terminal

residue, aminopeptidase B (APB) removes a basic N-terminal

residue, and aminopeptidase N (APN) removes a neutral N-

terminal residue, typically alanine. There have been several

reports of aminopeptidase activities present in venoms from

elapids and vipers [3,4,5,6,7,8], and a fraction exhibiting

aminopeptidase A activity has been separated from the venom

of Gloydius blomhoffi brevicaudus, a member of the Crotalinae (pit

viper) subfamily of vipers [7]. A cDNA sequence from this snake

represents the only determined sequence to date of a reptile venom

aminopeptidase A. Interestingly, none of the complete snake

venom proteomic studies done thus far has identified aminopep-

tidases [9]. Further study of such enzymes is important in order to

understand their role within snake venom, and to help in the

development of improved treatments for snake bite. Knowledge

about this enzyme may also contribute to our knowledge of related

mammalian enzymes such as mammalian APA, which is a

candidate target for the treatment of hypertension.

Here we demonstrate aminopeptidase activity in the venom of

B. g. rhinoceros, a member of the Viperinae (true viper) subfamily of

vipers and report for the first time the complete purification of a

snake venom aminopeptidase which we have named rhiminopep-

tidase A. We have functionally characterised this enzyme and

obtained cDNA and amino acid sequences. Since structural

information is lacking both for snake venom aminopeptidases and

for their mammalian homologues, we have created a structural

model for rhiminopeptidase A. This, together with the sequence, is

consistent with the ability of this enzyme to function as a calcium-

modulated aminopeptidase A and could inform efforts in the

future to develop improved treatments both for snake bites and for

hypertension.

Materials and Methods

Materials
Lyophilized venom of B. g. rhinoceros was obtained from an

existing collection of pooled venom labelled ‘Bitis gabonica Nigeria

Box 13/Bot 10’ which was stored at the Liverpool School of

Tropical Medicine, Liverpool, UK (LSTM). Protein molecular

weight markers and polyvinylidene fluoride (PVDF) membranes

were from Bio-Rad. The low molecular weight column calibration

kit, enhanced chemiluminescence (ECL) reagents and ECL

glycoprotein detection module were from GE Healthcare. N

Glycosidase F enzyme was from Roche Diagnostics Limited, and

trypsin, thrombin and the GoTaq PCR Core System were from

Promega. L-Glutamyl-7-amido-4-methylcoumarin (Glu-AMC)

and L-aspartyl-7-amido-4-methylcoumarin (Asp-AMC) were ob-

tained from Bachem. Macrosol and Stura crystallisation screening

kits were from Molecular Dimensions Ltd and Wizard screening

kits were obtained from Emerald BioSystems. L-Leucine-7-amido-

4-methylcoumarin hydrochloride (Leu-AMC), L-Arginine-7-ami-

do-4-methylcoumarin hydrochloride (Arg-AMC) and L-Alanine 7-

amido-4-methylcoumarin trifluoroacetate salt (Ala-AMC) were

obtained from Sigma-Aldrich. All other chemicals used were

analytical grade from Sigma Aldrich.

SDS-PAGE and immuno blotting
Reducing SDS-PAGE, gel staining and immunoblotting on to

PVDF membrane were all performed using standard techniques

[10].

Protein purification
50 mg of B. g. rhinoceros venom were dissolved in 2 ml of 0.02 M

Tris-HCl pH 7.4 and loaded on to a Sephacryl HR 200 gel

filtration column. 31ml fractions were collected using 0.02 M Tris-

HCl pH 7.4 at a speed of 1 ml/minute after 40 ml of pre-elution.

100 ml of selected fractions were analysed by 10% reducing SDS-

PAGE. The purified protein was quantified using the Bradford

method [11].

Q-TOF analysis
This analysis was carried out at M-Scan Limited, Wokingham,

UK. A band containing purified protein from a colloidal

Coomassie stained 10% SDS-PAGE gel was sliced, reduced,

alkylated and subjected to tryptic digestion. The resulting peptides

were extracted and analysed by nano LC-ES-MS/MS using a

Dionex Ultimate 3000 HPLC system coupled to a Q-TOF mass

spectrometer. Data-dependent acquisition was utilised and

peptides eluting from the nano LC column were automatically

fragmented in the Q-TOF by recognition of their doubly or triply

charged ion states. Preset charge and mass dependent collision

voltages were applied by the software, which also allowed

simultaneous MS/MS of up to 3 peptides. Processed spectral

data were used to interrogate the mass spectrometry sequence

database (MSDB) housed locally, using MASCOT software [12].

Several spectra were also checked manually in order to confirm

automated peptide assignments. Glu-fibrinopeptide fragment ions

Author Summary

Snake bite is a major neglected public health issue causing
an estimated 125,000 deaths each year, predominantly
within poor communities living in rural areas of countries
in South East Asia and Africa. Current treatments for snake
bites are costly and have limited effectiveness, thus there
is a need to develop novel therapeutics. In order to do this
the toxic components of snake venom need to be clearly
understood. Enzymes called aminopeptidases have been
noticed in several snake venoms, but their functions have
not been characterised. Related enzymes are also present
in mammals, where they are involved in the maintenance
of blood pressure and brain function. To further under-
stand this important group of enzymes within snake
venom we have purified and analysed the function and
structure of an aminopeptidase from the venom of the
West African gaboon viper. Our results suggest that this
enzyme could also affect the maintenance of blood
pressure and brain function in victims of snake bites.
Along with other snake venom components, aminopepti-
dases might be a potential therapeutic target for
developing novel treatments for snake bites.
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in MS/MS mode were used to calibrate the instrument over the

appropriate mass range.

Functional characterisation
Aminopeptidase activities of venom and purified protein were

measured using fluorescent substrates (Leu-AMC to measure APL

activity, Arg-AMC to measure APB activity, Ala-AMC to measure

APN activity and Glu-AMC and Asp-AMC for APA activity) as

previously described [7,10,13]. Ten micrograms of venom or

purified protein were mixed with various concentrations of

substrate solutions and incubated at 37uC. Experiments were

performed with and without 1.2 mM calcium chloride present.

The amount of 7-amido-4-methylcoumarin (AMC) released was

measured at different time intervals by spectrofluorimetry

(FLUOstar OPTIMA, Offenburg, Germany) at an excitation

wavelength of 366 nm and an emission wavelength of 460 nm.

The kinetic parameters were calculated from Lineweaver-Burk

plots. The results are represented by Km, kcat and kcat/Km values.

All measurements were obtained from three separate experiments.

To test the effect of various metal ions and protease inhibitors on

aminopeptidase activity, the purified protein (10 mg) was pre-

incubated with various concentrations of metal ions or inhibitors

at 37uC for 5 minutes. Then, 50 nM of Glu-AMC was added to

each sample and incubated for 10 minutes at 37uC. The amount

of AMC liberated was measured as mentioned above.

Glycosylation detection and deglycosylation
Twenty micrograms of native protein were subjected to (i) 10%

reducing SDS-PAGE followed by transfer to a PVDF membrane

and (ii) glycosylation detection using the ECL glycoprotein

detection module according to the manufacturer’s protocol.

Deglycosylation was achieved by mixing 100 mg of purified

protein in 0.02 M Tris-HCl pH 7.4 with 5 units of N Glycosidase

F in a total volume of 50 ml and incubating for 10 hours at 37uC.

cDNA amplification and sequencing
The cDNA of the B. g. rhinoceros venom gland was obtained from

the cDNA library of B. g. rhinoceros (LZ7) which had been created

for another study and was maintained at LSTM, Liverpool.

Specific primers were designed based on the untranslated regions

of the aminopeptidase A gene sequence from G. b. brevicaudus

(NCBI accession number: AB262071) and synthesized by Sigma

Aldrich, Poole, UK. The sequences of the primers are: forward

primer - 59CAAGCAAAAGCAGATGAGAAGGAA39 and re-

verse primer - 59TCAGAGTGGCGAATA TGTGGTTA39.

These were used to amplify the aminopeptidase A gene by PCR

(25 cycles) using denaturation at 94uC for 30 seconds, annealing at

54uC for 30 seconds, extension at 72uC for 3.5 minutes and a final

extension at 72uC for 10 minutes. The amplified product was

analysed by 1% agarose gel electrophoresis and sequenced by

Cogenics Limited, Essex, UK.

Sequence analysis
The nucleotide sequence was translated and the molecular

weight and estimated pI of the predicted protein were analysed

using DNASTAR Lasergene software version 7 [14]. Similar

sequences in the NCBI database were identified using BLAST.

Multiple sequence alignments were performed with ClustalW2

[15] using default parameters of KTUP and gap opening and gap

extension penalties. Transmembrane helices were predicted using

PolyPhobius [16]. Interproscan [17] was used to identify

functional domains within the sequence. Predicted N-Glycosyla-

tion sites were identified using the NetNGlyc 1.0 server (http://

www.cbs.dtu.dk/services/NetNGlyc/ R. Gupta, E. Jung, S. Brunak

manuscript in preparation).

Crystallisation and data collection
Purified rhiminopeptidase A from B. g. rhinoceros venom (in

0.02 M Tris-HCl pH17.4) was concentrated to 9 mg/ml using

centrifugal membrane concentrators. Initial crystallisation screen-

ing was performed manually in 2 plus 2 ml drops using the hanging

drop vapour-diffusion method in 24-well Linbro plates against the

following commercial screens at 18uC: Macrosol I and II, Stura

Footprint Screen I and II and Wizard I and II. From the 288

conditions screened, three hits (one from each screen) were found

showing small rod-like crystals. Crystals typically appeared

between 7 and 14 days. The most promising condition was

Macrosol I No. 9 [8% (w/v) PEG-3500, 0.1 M sodium acetate

pH 4.5, 0.2 M ammonium acetate], which gave crystals with

dimensions 50620610 mm. Micro-seeding was performed to

increase the size and quality of the crystals obtained in screening.

X-ray diffraction data were collected on an ADSC Q315 CCD

detector at 100K on the macromolecular crystallography Beam-

line ID14-EH1 (ESRF, France). Integration and scaling of the

diffraction data were performed using MOSFLM and SCALA,

respectively [18,19].

Structural modelling of rhiminopeptidase A
Secondary structure prediction was performed using PSI-PRED

[20]. BLAST, genTHREADER [21] and Phyre [22] were used to

identify the best template structure to use for creating a structural

model. The template selected was the X-ray crystallographic

structure of tricorn interacting factor F3 from the archaeon

Thermoplasma acidophilum (PDB code 1z5h) [23]. The alignment of

rhiminopeptidase A with tricorn interacting factor F3 was

determined using alignments obtained from mgenTHREADER

and Phyre. Three-dimensional structural models were constructed

using the MODELLER comparative protein structure modelling

program [24]; these were evaluated using Procheck [25] and

ModFOLD [26] and the best quality model selected. Models were

visualised using PyMOL (DeLano Scientific).

Results

Purification of a 150 kDa protein from the venom of B. g.
rhinoceros

SDS-PAGE of whole B. g. rhinoceros venom (Fig. 1A) shows a

number of bands including a prominent well-resolved band at an

approximate molecular mass of 150 kDa, which is approximately

what one might expect for an aminopeptidase, consistent with

previously characterised aminopeptidases (120–185 kDa [27]).

This venom was fractionated using a 1.6 cm695 cm Sephacryl

HR 200 gel filtration column (Fig. 1B) and 14 fractions were

analysed by SDS-PAGE (Fig. 1C). A protein with molecular

weight 150 kDa was found purified to apparent homogeneity on

SDS-PAGE in fraction 1 (Fig. 1C) and partially purified in fraction

2. Two sub-fractions between fractions 1 and 2 also contained

pure 150 kDa protein (data not shown). These 2 sub-fractions,

together with fraction 1, were pooled and concentrated by

ultrafiltration in order to obtain the maximum amount of pure

150 kDa protein (Fig. 1D). Using the Bradford assay [11] the

estimated amount of protein obtained from 50 mg of whole venom

was 1.3 mg.

Identification of a 150 kDa protein by mass spectrometry
Sequence information was obtained by nano LC-ES-MS/MS of

peptides derived by tryptic digestion of the 150 kDa gel band.

Rhiminopeptidase A - A Venom Enzyme
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Interrogation of the mass spectrometry database (MSDB) with the

MS and MS/MS peak lists using MASCOT software identified a

hypothetical protein from Pongo pygmaeus (Bornean orang-utan;

MSDB accession number Q5R7D5_PONPY) (P-value =

5610218) as the only non-contaminant protein. The sequence of

this protein was 100% identical to that of a glutamyl aminopep-

tidase from Pongo abelii (Sumatran orang-utan) found in the NCBI

sequence database (accession number NP_001126365.1). Manual

sequencing of an individual MS/MS spectrum yielded the following

sequence: GFI/LDDAFAI/LAR. Protein-Protein BLAST using

the sequence GFIDDAFALAR showed that it was 100% identical

to a fragment of aminopeptidase A from G. b. brevicaudus [7]. These

results, together with the estimated molecular mass, suggest that the

150 kDa protein might be an aminopeptidase.

Functional characterisation of the 150 kDa protein
To further investigate the function of the 150 kDa protein,

functional assays for the main aminopeptidase activities (APA,

APB, APL and APN) were performed on the whole B. g. rhinoceros

venom and on the purified protein using fluorescent substrates as

previously described [7,13] (Fig. 2A). The venom showed

significant levels of all the aminopeptidase activities tested, with

APN.APA (Glu-AMC).APL.APB.APA (Asp-AMC), while

the 150 kDa protein displayed relatively high APA (Glu-AMC)

and APN activities, moderate APA activity towards Asp-AMC,

very low APB and negligible APL activities. In the presence of

calcium chloride the APA activities of both the venom and the

pure protein towards both Glu-AMC and Asp-AMC increased

substantially (by at least 90% for Glu-AMC and more than 160%

for Asp-AMC activity), while all other aminopeptidase activities of

the protein were negligible, suggesting that in the presence of

calcium the enzyme shows increased specificity towards acidic

amino acids. A calcium titration showed that the highest

aminopeptidase activity towards Glu-AMC was obtained using

1.2 mM calcium chloride (data not shown). In the presence of

calcium the APN activity of the venom was also negligible, but the

APL activity was reduced by 25% and some APB activity

remained. The observed activities of the protein were consistent

with the partial sequence identification and provide further

evidence that the 150 kDa protein is an aminopeptidase A. Thus

we have named this protein ‘rhiminopeptidase A’. The detection

of APL and APB activities in the whole venom both with and

without calcium present suggests the presence of one or more

further aminopeptidases in the venom of B. g. rhinoceros.

Figure 1. Purification of a 150 kDa protein from Bitis gabonica rhinoceros venom. A, SDS-PAGE of B. g. rhinoceros venom. 50 mg of venom
were run on 10% SDS-PAGE and stained with Coomassie brilliant blue. A number of bands are present, including a prominent band with an
approximate molecular mass of 150 kDa. B, Purification profile of B. g. rhinoceros venom using gel filtration. 50 mg of venom dissolved in 2 ml of
0.02 M Tris-HCl pH 7.4 were loaded on to a Sephacryl HR 200 gel filtration column. 3 ml fractions were collected using 0.02 M Tris-HCl pH 7.4 at a
speed of 1 ml/minute after 40 ml of pre-elution. 14 fractions from the profile (labelled 1 to 14) were chosen for SDS-PAGE analysis. C, SDS-PAGE of the
selected gel filtration fractions. 100 ml of each of fractions 1 to 14 were run on a 10% SDS-PAGE gel. Lane 1 (fraction 1) contains only a protein of
molecular mass 150 kDa and lane 2 (fraction 2) contains this protein along with several others. D, SDS-PAGE of the purified 150 kDa protein. Fractions
containing pure 150 kDa protein were pooled and concentrated using vivaspin filters and 100 ml were run on a 10% SDS-PAGE gel.
doi:10.1371/journal.pntd.0000796.g001
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Table 1 shows the enzymatic parameters of rhiminopeptidase A

measured in the presence and absence of 1.2 mM CaCl2. In the

presence of Ca2+ ions, the hydrolytic activity of rhiminopeptidase

A was enhanced by increasing the kcat value and decreasing the

Km value. However, these data confirm that the enzyme is more

active against Glu-AMC than Asp-AMC. Fig. 2B shows the effects

of various divalent cations on the activity of rhiminopeptidase A.

When rhiminopeptidase A was incubated with Glu-AMC in the

presence of Ca2+ ions, the hydrolytic activity increased. However,

in the presence of Zn2+ ions the hydrolytic activity was strongly

reduced, and eliminated completely at 0.5 mM. Co2+ and Cu2+

ions showed inhibition at higher concentrations and Mn2+ and

Mg2+ ions showed no inhibitory effects on rhiminopeptidase A

activity against Glu-AMC. These data suggest that Ca2+ is the only

divalent cation to enhance the hydrolytic activity of rhiminopepti-

dase A towards Glu-AMC and that Zn2+ is the strongest inhibitor.

To analyse the effects of various protease inhibitors, rhimino-

peptidase A was treated with amastatin (APL and APA inhibitor),

bestatin (APL inhibitor), leupeptin (serine/cysteine protease

inhibitor), pepstatin A (aspartic acid protease inhibitor) and PMSF

(serine protease inhibitor) followed by incubating with Glu-AMC.

As for known mammalian aminopeptidases, amastatin inhibited

the Glu-AMC activity of rhiminopeptidase at a concentration of

50 mM (Fig. 2C), however, the other inhibitors had negligible

effect on this activity. This confirms that the Glu-AMC activity of

the purified rhiminopeptidase A is due to the activity of an

aminopeptidase A and is not caused by any other enzyme.

Furthermore, 10 mM amastatin inhibited completely the Glu-

AMC activity of 10 mg of venom, confirming that the Glu-AMC

activity observed in the snake venom comes exclusively from

aminopeptidase A.

Rhiminopeptidase A is a glycosylated protein
As many snake venom enzymes are known to be glycosylated

[28] and the aminopeptidase A from G. b. brevicaudus venom was

predicted to be glycosylated [7], glycosylation detection was

performed on rhiminopeptidase A using an ECL glycosylation

detection module on a PVDF membrane. Rhiminopeptidase A

was found to be substantially glycosylated. Thus deglycosylation

was performed on the enzyme using N Glycosidase F and the

resulting samples were run in 10% SDS-PAGE along with native

rhiminopeptidase A. Fig. 3A shows that the estimated molecular

mass of the deglycosylated protein was approximately 102 kDa,

thus around 48 kDa (32%) of the molecular mass of the native

purified protein is due to glycosylation. Another replicate gel was

transferred to a PVDF membrane and subjected to glycosylation

detection using the ECL glycosylation detection module. The lack

of signal on the deglycosylated protein confirms the deglycosyla-

tion, while a signal was detected in the lane corresponding to the

native rhiminopeptidase A (Fig. 3B).

cDNA amplification and sequencing of rhiminopeptidase
A

In order to obtain the complete sequence of rhiminopeptidase A

cDNA was obtained from the stored venom gland cDNA library of

a single B. g. rhinoceros snake (LZ7). Primers were designed based on

the untranslated region of the G. b. brevicaudus aminopeptidase A

gene [7]. PCR with these primers resulted in a product of

approximately 3350 bp, which was consistent with the expected

size of the aminopeptidase A gene.

The nucleotide sequence of the amplified product contains 3232

nucleotides with an open reading frame between bases 66 and

2945 which encodes a polypeptide of 955 amino acids with an

estimated molecular mass of 110.5 kDa and a predicted isoelectric

point of 6.08. The latter coincides with the isoelectric point (6.2) of

the native protein in the venom as determined by liquid phase

isoelectric focussing (data not shown). Comparison of computer

generated tryptic digested peptides derived from this amino acid

sequence with the MS/MS data from the purified protein showed

matches which covered 45% of the amino acid sequence, strongly

suggesting that the sequence corresponds to the protein we have

purified (Figure S1). Further, the partial sequence obtained from

mass spectrometry is identical to the region of the sequence

between amino acids 653 and 663 (underlined in Fig. 4). The

absence of any other proteins with molecular weights around

Table 1. Kinetic parameters of rhiminopeptidase A towards
Glu-AMC and Asp-AMC.

Substrate
CaCl2

1.2 mM Km
a mM kcat

a s 21
kcat/Km6103a

mM 21s 21

Glu-AMC 2 2235689 25.261.9 11.360.8

+ 703625 63.162.7 89.761.2

Asp-AMC 2 41196135 5.360.8 1.360.5

+ 2478661 23.161.4 9.361.7

aThe values are mean 6 S.D. (n = 3).
Kinetic parameters were determined from Lineweaver-Burk plots. 10 mg of
rhiminopeptidase A were incubated with various concentrations of Glu-AMC
and Asp-AMC at 37uC for 7 minutes in the presence and absence of 1.2 mM
CaCl2. The liberated AMC was measured at different time intervals up to 7
minutes using spectrofluorimetry at an excitation wavelength of 366 nm and
an emission wavelength of 460 nm.
doi:10.1371/journal.pntd.0000796.t001

Figure 2. Functional characterisation of the 150 kDa protein. A, Functional assays for aminopeptidase activities [aminopeptidase A (APA),
aminopeptidase B (APB), leucine aminopeptidase (APL) and neutral aminopeptidase (APN)] were performed on the purified protein and on the whole
B. g. rhinoceros venom. 10 mg of venom or purified protein were mixed with 50 nM of fluorescent substrates (Leu-AMC to measure APL activity, Arg-
AMC to measure APB activity, Ala-AMC to measure APN activity and Glu-AMC and Asp-AMC to measure APA activity) and the final reaction volume
was made up to 100 ml with 0.02 M Tris.HCl pH 7.4, and the reaction mix was incubated for 10 minutes at 37uC. Experiments were performed in the
absence and presence of 1.2 mM calcium chloride. The amount of 7-amido-4-methylcoumarin (AMC) released was measured by spectrofluorimetry at
an excitation wavelength of 366 nm and emission wavelength of 460 nm. The data represent the mean 6 S.D. (n = 3 separate experiments). The
hydrolytic activity measured for the 150 kDa protein against Glu-AMC in the absence of 1.2 mM CaCl2 was taken as 100%. B, The effects of various
divalent cations on the enzymatic activity of rhiminopeptidase A. 10 mg of purified protein were pre-incubated with various concentrations of
divalent cations for 5 minutes before the addition of 50 nM Glu-AMC. The reaction was incubated for 10 minutes at 37uC and the liberated AMC was
measured. The hydrolytic activity in the absence of metal ions was taken as 100%. The data are representative of three separate experiments. C, The
effect of various protease inhibitors on the enzymatic activity of rhiminopeptidase A. 10 mg of purified protein were pre-incubated with various
concentrations of protease inhibitors for 5 minutes before the addition of 50 nM Glu-AMC. Similarly 10 mg of B. g. rhinoceros whole venom were pre-
incubated with various concentrations of amastatin for 5 minutes before the addition of 50 nM Glu-AMC. The reaction was incubated for 10 minutes
at 37uC and the liberated AMC was measured. The hydrolytic activity in the absence of metal ions was taken as 100%. The data are representative of
three separate experiments.
doi:10.1371/journal.pntd.0000796.g002
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150 kDa in the venom of B. g. rhinoceros or any other isoforms in

the PCR amplified products provides further evidence that the

gene we have sequenced corresponds to the rhiminopeptidase A

protein which we had purified. The nucleotide sequence for the

rhiminopeptidase A gene has been deposited in the EMBL

database under Accession Number FN666431.

The protein sequence is 93% identical to that of aminopeptidase

A from G. b. brevicaudus; 60–64% identical to aminopeptidase As

from pig, cow, human, rat, mouse and orang-utan (Fig. 4); and 63–

64% identical to predicted aminopeptidase As from horse,

chimpanzee, Rhesus macaque, dog, platypus, opossum, chicken

and Zebra finch. Consistent with our experimental identification

of glycosylated moieties attached to rhiminopeptidase A, ten

potential N-glycosylation sites were predicted in the protein

sequence. Nine of these are shared with the G. b. brevicaudus APA

sequence and three are conserved in all the sequences in the

alignment.

There are 10 cysteine residues in the rhiminopeptidase A

sequence, of which 8 are conserved in all the sequences compared.

PolyPhobius [16] predicts a single transmembrane segment close

to the start of the sequence, which is characteristic of a type II

integral membrane protein. The recently cloned sequences of G b.

brevicaudus APA and DPP IV were also predicted to be type II

integral membrane proteins [7,29] and exosome-like vesicles

containing these proteins were subsequently detected in the G. b.

brevicaudus venom [30].

Analysis using InterProScan [17] suggests that the protein is a

zinc metallopeptidase belonging to MEROPS peptidase clan

MA(E) (‘‘gluzincins’’) family M1. Gluzincin aminopeptidases are

characterised by a consensus zinc binding motif HEXXHX18E

[31], of which the two histidines and the final glutamic acid have

been shown to act as the zinc ligands [32,33], and a conserved

GAMEN motif [34]. These motifs are conserved in rhiminopepti-

dase A and its relatives (Fig. 4). The alignment also shows

conservation of several key functional residues: Glu352 within the

GAMEN motif and Glu215,which have been shown to interact

with the N-terminal amine of the substrate during catalysis

[35,36]; Thr348 which is involved in substrate specificity [37]; and

Tyr471,which is involved in the stabilizing tetrahedral intermediate

of the substrate during catalysis [38]. For consistency with other

literature, the sequence numbering used here is for the mouse APA

sequence (NCBI accession number NP_031960). Thus the

sequence of rhiminopeptidase A contains the key amino acids

required for it to function as a calcium-modulated aminopeptidase

A.

Structure determination by X-ray diffraction
Crystallisation trials have so far yielded only small crystals of

rhiminopeptidase A. However, the crystals obtained were

cryoprotected in mother liquor containing 25% (w/v) glycerol

by quick transfer directly from the hanging drop and X-ray

diffraction data were collected. Data analysis revealed a final

resolution of 7.5 Å (Table 2). The crystals were of sufficient quality

to show that the protein crystallised in the monoclinic space group

P21 with unit cell dimensions a = 97.6, b = 67.3, c = 186.6 Å, and

b= 101.9u under the following conditions; 8% (w/v) PEG-3500,

0.1 M sodium acetate pH 4.5, 0.2 M ammonium acetate. Solvent

content analysis using the programme MATTHEWS_COEF [39]

suggested a solvent content of 30% with two molecules in the

asymmetric unit.

Structure prediction
In the absence of an X-ray crystal structure we employed

structure prediction tools to obtain a structural model for the

rhiminopeptidase A protein. Secondary structure prediction using

PsiPred 2.6 [20] and the secondary structure prediction tools used

by Phyre [22] suggest that the protein has both a-helical and b-

sheet regions, with the N-terminal regions being predominantly b-

sheet and the C-terminal region being predominantly a-helical.

Using BLAST the most similar protein with a known structure is

tricorn interacting factor F3 from the archaeon Thermoplasma

acidophilum (PDB code 1z5h, [23]), which shares 31% sequence

identity with rhiminopeptidase A. Tricorn interacting factor F3 is

an 89 kDa zinc aminopeptidase with a strong preference for

glutamate at the P1 position of the substrate [40] and is involved in

the proteasomal degradation pathway of T. acidophilum. This

structure was also confidently and consistently selected as the best

template for modelling rhiminopeptidase A by several fold

recognition servers [Phyre [22] (e-value = 0.0), mgenTHREADER

[21] (p,0.0001)]. Structural models of rhiminopeptidase A were

created using MODELLER software [24] and the best model was

selected based on the scores obtained using ModFold [26] and

Procheck [25].

The model (Fig. 5A) includes residues 95 to 944 of the amino

acid sequence and the predicted structure is very similar to that of

tricorn interacting factor F3 (r.m.s.d. = 0.35 Å). Like F3 the

predicted structure consists of 4 domains which together form a

hook-like structure: an amino terminal saddle-shaped b-sheet

domain, a mixed a and b catalytic domain, a b-sandwich domain

and a large C-terminal a-helical domain. The sequences of the two

proteins are most similar (46% identity) in the catalytic domain.

Within the catalytic domain the three proposed zinc-binding

residues in rhiminopeptidase A align with identical residues in the

F3 sequence; these are in identical positions and orientations in the

modelled rhiminopeptidase A structure and that of F3 and thus

positioned appropriately to bind zinc (Fig. 5B). The residues

proposed to be involved in substrate binding, calcium binding and

substrate specificity are also in nearly identical positions in both

Figure 3. Rhiminopeptidase A is a glycosylated protein. The glycosylation of rhiminopeptidase A was detected using the ECL glycosylation
detection module and deglycosylation was performed by mixing 100 ml of rhiminopeptidase A with 5 units of N glycosidase F in 50 ml of 0.02 M Tris-
HCl pH 7.4. 20 ml of native (lane 1) and deglycosylated (lane 2) rhiminopeptidase A were run in two separate 10% SDS-PAGE gels and one of these
was transferred to a PVDF membrane. A, the SDS-PAGE gel was stained with Coomassie Brilliant blue. B, the PVDF membrane was used to detect
glycosylation using the ECL glycosylation detection module. Data are representative of three separate experiments.
doi:10.1371/journal.pntd.0000796.g003
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structures. The final domain of F3 was found to be very flexible,

and crystal structures were determined with the C-terminal

portion of this in three different conformations which may relate

to the structural changes which occur during substrate binding.

Our structure was modelled based on the most open of these

conformations but whether rhiminopeptidase A shares the

flexibility of F3 in this region remains to be determined. The

model co-ordinates have been deposited in the PMDB under

accession number PM0076268.

Attempts were made to use the derived model (in its entirety and

by individual domain) in a molecular replacement strategy to

obtain a crystallographic structure solution using the current

diffraction data. These have proved unsuccessful, likely owing to

the low resolution limits of the current data and possibly due to the

flexibility of the protein itself. Further efforts are underway to

produce better diffraction quality crystals.

Discussion

The data presented here demonstrate for the first time the

presence of aminopeptidase activity in the venom of B. g. rhinoceros.

We have purified an aminopeptidase A from this venom and

shown that it has a relatively broad specificity (APN, APB and

APA activities) in the absence of calcium, but a higher and very

specific APA activity in the presence of calcium. This is consistent

with the known calcium modulation of APAs [7,41,42,43,44]. As is

the case for human aminopeptidase A, zinc ions act as an effective

inhibitor of the APA activity of rhiminopeptidase A and copper

and cobalt ions have a moderate inhibitory effect [44]. The

aminopeptidase activity of the B. g. rhinoceros venom as a whole is

different from that of the purified protein; the detection of APL

and APB activity even in the presence of calcium suggests the

presence of further aminopeptidases in this venom. APL and APB

activities have been reported in the venoms of several other snakes

[4,6,7,8] but to date no-one has identified the specific enzymes

responsible.

It is noteworthy that neither this protein nor any proteins which

would have the APL or APB activities observed in the B. g.

rhinoceros venom have been identified by proteomic studies of this

venom [9]. There is also no reference to any aminopeptidases in

the catalogue of transcripts encoded by the B. gabonica venom

glands [45]. One possible reason for these discrepancies is that the

approaches used for large scale identification of proteins or genes

may make it difficult to detect low abundance, high molecular

mass glycosylated proteins such as rhiminopeptidase A. An

alternative reason for these differences could be variation of

venom composition between individual snakes. Although we

purified rhiminopeptidase A from pooled venom sourced from a

number of snakes, we also ran gels on venom from seven

individual snakes and showed that the protein profiles of the

venoms from individual snakes were indistinguishable in terms of

SDS-PAGE profiles both from each other and from the pooled

venom. Thus the protein is likely to be present in at least the seven

snakes which we analysed. It is clear that both large scale analyses

and studies such as ours which focus on individual proteins remain

important if we are to understand the complete spectrum of

proteins present in snake venoms.

The amino acid sequence of rhiminopeptidase A contains the

key amino acids which are known to be involved in aminopep-

tidase enzymatic function. APAs are the only M1 aminopeptidases

which are modulated by calcium [46], and rhiminopeptidase A

contains the two aspartic acid residues (Asp216 and Asp221;

corresponding to Asp213 and Asp218 in mouse APA) which are

thought to bind calcium. It also contains the amino acids which

are thought to be important for the substrate specificity of APAs

(Glu218, Glu355 and the recently established Thr351 [37],

corresponding to Glu215, Glu352 and Thr348 in mouse APA).

Interestingly, just prior to that study, the amino acid in that

position had been suggested to be involved in the substrate

specificity of aminopeptidases in general, and three subclasses of

exopeptidases had been proposed: containing MGAMEN, AGA-

MEN and F/YGAMEN motifs [47]. The methionine has been

proposed to exist in enzymes with broad specificities and to act as a

cushion to accept substrates with different N-terminal sizes [48],

LTA4H, which contains the F/YGAMEN motif prefers basic or

aromatic residues and AGAMEN is found in F3, which prefers

acidic residues. Rhiminopeptidase A and its homologues are also

specific for acidic residues, but contain a TGAMEN motif, which

may constitute an extension of the AGAMEN subclass. We have

also found proteins with SGAMEN and PGAMEN sequences in

the Uniprot database, although the correlation between the

Table 2. Data processing statistics for rhiminopeptidase A.

Synchrotron beamline,
wavelength (Å)

ESRF ID14-EH1,
0.934

Space group P21

Unit cell dimensions (Å) a = 97.6, b = 67.3, c = 186.6, b= 101.9u

Resolution range (Å) 67.27–7.50 (7.91–7.50)

Rmerge
{ 0.113 (0.325)

No. of observations 7507 (1122)

No. of unique reflections 3053 (434)

Mean I/s(I) { 8.5 (3.4)

Completeness (%) 96.0 (97.5)

Multiplicity 2.5 (2.6)

Solvent content (%) 29.0

Molecules per AU 2

{Rmerge =Sh Si | Ih,i 2,Ih. |/Sh Si | Ih,i |, where the outer summation is over all
unique reflections with multiple observations and the inner summation is over
all observations of each reflection.
{s(I) is the standard deviation of I.
Values in parentheses correspond to the highest resolution shell (7.91–7.50 Å).
doi:10.1371/journal.pntd.0000796.t002

Figure 4. Multiple sequence alignment of rhiminopeptidase A with other aminopeptidase A sequences. The amino acid sequence of
rhiminopeptidase A (Bg) was aligned with aminopeptidase A sequences from human (Hs, NP_001968), orang-utan (Pa, NP_001126365), pig (Ss,
NP_999182), cow (Bt, NP_001033116), mouse (Mm, NP_031960), rat (Rn, AAF66704) and G. b. brevicaudus (Gb, BAF63164) using ClustalW2. Sequence
conservation at each position is indicated by the letters underneath each section of the alignment: upper case letters indicate that the amino acid at
that position is completely conserved and lower case letters indicate partial conservation. Cysteine residues and predicted N-glycosylation sites
(predicted using NetNGlyc) are in white text with black background. Key functional residues based on similarity with the mouse sequence are
indicated in bold font: zinc and calcium binding residues are in black type with grey shading and indicated by Z and C at the top of the column
respectively; residues involved in substrate specificity and transition state stabilization are in white text with grey background and indicated by S and
T at the top of the column respectively.
doi:10.1371/journal.pntd.0000796.g004
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residue directly before the GAMEN motif and the sequence

specificity becomes less clear when a wider range of sequences is

considered.

Given the importance of M1 peptidases in many organisms, it is

important to obtain an understanding of their structures.

Structural information is currently limited: to date only the

structures of human LTA4H [49], T. acidophilum F3 [23] and

aminopeptidase Ns from Neisseria meningitidis [50], Escherichia. coli

[47,48] and Plasmodium falciparum [51]are known. These proteins

have low sequence identities, although their structures are well

conserved, particularly in the catalytic region. Information about

the remaining domains is more variable. When the F3 structure

was determined, the b-sandwich domain was thought to be unique

to this protein, as it had not been found in the structure of

LTA4H. However the aminopeptidase structures from N.

meningitidis, E. coli and P. falciparum also have a b-sandwich domain,

so this is no longer a unique feature of F3. We have selected the F3

structure as the best template for creating a model of rhimino-

peptidase A and our model structure also has this domain. This is

consistent with the results of two secondary structure prediction

programs which confidently predict this region of the protein to be

exclusively b-sheet. This may have implications for the structures

of other M1 peptidases. For example a model of mouse

aminopeptidase [52] was created using the LTA4H structure as

a template prior to the availability of the F3 structure and lacks this

domain. The roles of the domains other than the catalytic domain

are unclear, though their interaction with the catalytic domain

clearly affects the substrates which can bind to the enzyme, and

one study has suggested the role of other regions of the protein in

interacting with other proteins [53]. The C-terminal region of

mouse aminopeptidase A (which corresponds to the final domain

and around one third of the b-sheet domain) has been shown to

act as an intramolecular chaperone, being required for the correct

folding of the enzyme but not for the enzymatic activity [54].

The potential roles of aminopeptidases in snake venom are far

from clear. Indeed, although aminopeptidases are expressed in

many mammalian tissues, even their roles are not completely

understood. Generally, mammalian aminopeptidases have been

found to cleave oligopeptides. For example mammalian APA

cleaves brain angiotensin II to yield angiotensin III, and is thus

implicated in the control of arterial blood pressure [55]. In vivo

APA has also been shown to cleave cholecystokinin (CCK-8) [56],

which is widely distributed in the mammalian central nervous

system and could be involved in pain perception, feeding, anxiety

and memory. Other possible natural substrates which have only

been tested in vitro include neurokinin B, chromogranin and

Figure 5. The modelled structure of rhiminopeptidase A. MODELLER was used to create a model of the structure of rhiminopeptidase A using
the determined structure of tricorn interacting factor F3 from T. acidophilum (PDB code 1z5h) as a template. A, image of the 4-domain structure of
rhiminopeptidase A with the domains coloured as follows: N-terminal saddle shaped b-sheet domain in red; catalytic domain in orange; b-sandwich
domain in yellow and C-terminal a-helical domain in green. Key functional residues are highlighted as follows: zinc ligands in blue, calcium binding
site in cyan, substrate binding residues in grey and the threonine involved in substrate specificity in magenta. B, detailed view of the key functional
residues coloured as in A. The images were generated using PyMOL.
doi:10.1371/journal.pntd.0000796.g005
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kallidin [44]. The latter lacks an acidic N-terminal amino acid,

and is converted to bradykinin only in the absence of calcium.

Together these results support the idea that mammalian APA is

important for regulation of brain function, and blood pressure in

particular, but further substrates may yet be found. Some studies

suggest a role for APA in blood vessel formation, and these could

reflect a more general effect of APA on angiogenic mechanisms

such as a role in degrading the extracellular matrix [57]. Ogawa et

al. [7] have shown that exosome-like vesicles isolated from G. b.

brevicaudus venom contain APA and, like mammalian APA,

degrade both angiotensin II and CCK-8. It is therefore possible

that a role of snake venom aminopeptidases is to cleave the N-

termini of such oligopeptides in the victim and thus affect the

corresponding physiological processes. Alternatively the amino-

peptidases may simply assist the general degradation of the host

tissue [3], perhaps increasing its permeability to other venom

components [8]. A further possible role for snake venom

aminopeptidases could be to process other toxins within the

venom [8] and it is entirely possible that the enzymes have more

than one of these suggested roles. The diversity and relatively high

levels of aminopeptidase in snake venoms offer a valuable source

of protein for characterisation of this complex family of enzymes.

As this is an important group of venom enzymes which may be

involved in critical envenomation effects in victims of snake bite,

these enzymes could be potential therapeutic targets for develop-

ing novel snake bite treatments. This study clearly points towards

the importance of complete analysis of individual components of

snake venom in order to develop effective therapies for snake bites.

Supporting Information

Figure S1 Comparison of computer generated tryptic digested

peptides derived from the rhiminopeptidase A amino acid

sequence with the MS/MS data from the purified protein. The

figure shows the rhiminopeptidase A sequence with peptides

matching the MS/MS data shown in bold red. The matched

peptides cover 45% of the amino acid sequence, strongly

suggesting that the sequence corresponds to the protein we have

purified.

Found at: doi:10.1371/journal.pntd.0000796.s001 (0.86 MB TIF)
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