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Abstract-A near real-time flood detection algorithm giving 

a synoptic overview of the extent of flooding in both urban and 

rural areas, and capable of working during night-time and 

day-time even if cloud was present, could be a useful tool for 

operational flood relief management and flood forecasting. 

The paper describes an automatic algorithm using high reso-

lution Synthetic Aperture Radar (SAR) satellite data that as-

sumes that high resolution topographic height data are availa-

ble for at least the urban areas of the scene, in order that a 

SAR simulator may be used to estimate areas of radar shadow 

and layover. The algorithm proved capable of detecting flood-

ing in rural areas using TerraSAR-X with good accuracy, and 

in urban areas with reasonable accuracy.   

I. INTRODUCTION 

LOODING is a major hazard in both rural and urban areas 

worldwide, and has occurred regularly in the U.K. in re-

cent times. In particular, there was extensive flooding due to 

extreme rainfall in the north and west of England in the sum-

mer of 2007 that caused a number of deaths and damage of 

over £3Billion. The impact of global warming means that the 

probability of such extreme rainfall events happening in the 

future is increasing. 

       The U.K. Government set up the Pitt Commission to con-

sider what lessons could be learned from the 2007 floods [1]. 

Among its many recommendations, the Commission high-

lighted the need to have real-time or near real-time flood 

visualisation tools available to enable emergency responders 

to react to and manage fast-moving events, and to target their 

limited resources at the highest-priority areas. It was felt that 

a simple GIS that could be effectively updated with timings, 

level and extent of flooding during a flood event would be a 

useful system to keep the emergency services informed.  

        In addition, a near real-time flood extent could be used 

in conjunction with a hydraulic model of river flood flow to 

help predict future flood extent. The flood waterline from the 

image could be intersected with a LiDAR DEM to obtain 

water surface elevations along the waterline, and these could 

be assimilated into the model run, correcting the water surface 

elevations predicted by the model where necessary [2]. This 

would help to keep the model „on track‟, so that its prediction 

of future flood extent could be viewed with more confidence. 

 

       A near real-time flood detection algorithm giving a syn-

optic overview of the extent of flooding in both urban and 

rural areas, and capable of working during night-time and 

day-time even if cloud was present, could thus be a useful 

tool for operational flood relief management and flood fore-

casting.  

  The vast majority of a flooded area may be rural rather 

than urban, but it is very important to detect the urban flood-

ing because of the increased risks and costs associated with it. 

Flood extent can be detected in rural floods using SARs such 

as ERS and ASAR, but these have too low a resolution (25m) 

to detect flooded streets in urban areas. However, a number of 

SARs with spatial resolutions as high as 3m or better have 

recently been launched that are capable of detecting urban 

flooding. They include TerraSAR-X, RADARSAT-2, and the 

four COSMO-SkyMed satellites. 

       In the absence of significant wind or rain, river flood-

water generally appears dark in a SAR image because the 

water acts as a specular reflector. An automatic near real-time 

flood detection algorithm using single-polarisation Terra-

SAR-X data has been implemented in [3] (see also [4]). This 

searches for water as regions of low SAR backscatter using a 

region-growing iterated segmentation/classification approach, 

and is very effective at detecting rural floods, but would re-

quire modification to work in urban areas containing radar 

shadow and layover.  

       A semi-automatic algorithm for the detection of floodwa-

ter in urban areas using TerraSAR-X has also been developed 

previously [5]. It uses a SAR simulator SETES [6] in con-

junction with LiDAR data to estimate regions of the image in 

which water would not be visible due to shadow or layover 

caused by buildings and taller vegetation. Ground will be in 

radar shadow if it is hidden from the radar by an adjacent 

intervening building. The shadowed area will appear dark, 

and may be misclassified as water even if it is dry. In contrast, 

an area of flooded ground in front of the wall of a building 

viewed in the range direction may be allocated to the same 

range bin as the wall, causing layover which generally results 

in a strong return, and a possible misclassification of flooded 

ground as un-flooded. The algorithm is aimed at detecting 

flood extents for validating an urban flood inundation model 
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in an offline situation, and requires user interaction at a num-

ber of stages.  

       The objective of this work was to build on a number of 

aspects of the existing algorithms to develop a near real-time 

algorithm for flood detection in urban and rural areas that is 

almost completely automatic [7]. 

II. DESIGN CONSIDERATIONS 

     The algorithm design assumes that high resolution (~1m) 

LiDAR data are available for at least the urban regions in the 

scene, in order that the SAR simulator may be run in conjunc-

tion with the LiDAR data to generate maps of radar shadow 

and layover in urban areas. The algorithm is therefore limited 

to urban regions of the globe that have been mapped using 

airborne LiDAR. However, in the UK most major urban areas 

in flood-plains have now been mapped, and the same is true 

for many urban areas in other developed countries. 

      The approach adopted involves first detecting the flood 

extent in the rural areas, and then detecting it in the urban 

areas using a secondary algorithm guided by the rural flood 

extent [5]. It is well-known in image processing that an im-

proved classification can be achieved by segmenting an image 

into regions of homogeneity and then classifying them, rather 

than by classifying each pixel independently using a per-pixel 

classifier. The use of segmentation techniques provides a 

number of advantages compared to per-pixel classification. 

Because of the high resolution of these SARs (up to 1m), in-

dividual regions on the ground may have high backscatter 

variances, reducing the accuracy of per-pixel classifiers. In 

addition, because the segments created correlate well with 

real regions of the earth‟s surface, further object-related fea-

tures such as object size, shape, texture and context may be 

used to improve the classification accuracy. The approach 

used for rural flood detection in [2] and [3] is adopted, which 

involves segmentation and classification using the eCognition 

Developer software [8].  

      In [2] and [3], classification is performed by assigning all 

segmented homogeneous regions (objects) of the SAR image 

with mean backscatter less than a given threshold to the class 

„flood‟. Here the threshold is chosen by using the fact that 

LiDAR data of the urban area must be available. The LiDAR 

data will invariably contain water regions giving no LiDAR 

return because they have acted as specular reflectors that have 

generated no backscatter at the sensor. These regions can be 

used as training areas for water (after filtering out high SAR 

backscatter from small objects such as boats). Similarly, it is 

possible to select non-water training pixels by searching in 

un-shadowed areas above the level of the flooding. A simple 

two-class Bayes classifier using the Probability Distribution 

Functions (PDFs) for water and non-water can then be used to 

select the threshold, assuming equal prior probabilities for 

both classes. 

III. STUDY AREA AND DATA SET 

    The data set used for this study is based upon the 1-in-150 

year flood that took place around Tewkesbury, U.K., in July 

2007. This resulted in substantial flooding of urban and rural 

areas, about 1500 homes in Tewkesbury being flooded. 

Tewkesbury lies at the confluence of the Severn, flowing in 

from the northwest, and the Avon, flowing in from the north-

east. The peak of the flood occurred on July 22, and the river 

did not return to bank-full until July 31. 

      On July 25, TerraSAR-X acquired a 3m-resolution Strip-

Map image of the region showing incredible detail of the 

flooded urban areas (Fig. 1). The TerraSAR-X incidence an-

gle was 24°, and the image was multi-look ground range spa-

tially enhanced. The HH polarisation mode chosen provided 

good discrimination between flooded and non-flooded re-

gions. At the time of overpass, there was low wind speed and 

no rain. 

     Aerial photos of the flooding were acquired on July 24 and 

27 [5], and these were used to validate the flood extent ex-

tracted from the TerraSAR-X image. The data set also in-

cluded LiDAR data (2m resolution, 0.1m height accuracy) of 

the un-flooded Tewkesbury urban area acquired prior to the 

flood [5]. In the rural areas, an O.S. Landform Profile DEM 

generated from 1:10000 map contours and having 10m spatial 

resolution and 2.5m height accuracy was used as an example 

of a lower resolution, less accurate DEM that might be em-

ployed in areas not having LiDAR coverage. Finally, the data 

set included O.S. Mastermap data of roads, railways and em-

bankments in the area, which would invariably be present in 

any simple GIS used by the emergency services. 

 

 
 
Fig. 1. TerraSAR-X image of Tewkesbury flooding on 25th July 2007 show-

ing urban areas (3m resolution, 2.6 x 2km, dark areas are water,  

© DLR 2007) (after [5]). 

IV. METHOD 

     The algorithm involves a number of pre-processing opera-

tions that can be performed before the geo-registered SAR 

image has been obtained. The most important of these is the 

calculation of radar shadow and layover in the urban area. 

SETES is used in conjunction with the LiDAR data to esti-

mate regions of the SAR image in which water will not be 

visible due to shadow and layover. Fig. 2 is a binary image 

produced by SETES showing shadow/layover regions. Ter-

raSAR-X was travelling from north to south and looking 

west. It can be seen that most shadow/layover occurs in 



 

 

streets parallel to the flight direction, whereas streets perpen-

dicular to this have less. 

        When the SAR image becomes available, the near real-

time operations first try to detect the flood extent in the rural 

area, then use a secondary algorithm to detect it in the urban 

 

 
 

Fig.2. Regions (black) unseen by TerraSAR-X in the LiDAR DSM due to 

combined shadow and layover (after [5]). 

 

area, guided by the rural flood extent. Rural flood detection is 

achieved by segmenting the SAR image into homogeneous 

regions (objects) and then classifying them. Segmentation is 

performed using the multi-resolution segmentation algorithm 

of eCognition Developer [8]. Classification is performed by 

assigning all segmented objects with mean backscatter less 

than a threshold to the flood class. To determine the thresh-

old, training objects for water and non-water classes are se-

lected automatically. Objects of unassigned height in the Li-

DAR data that are of relatively large area and low backscatter 

are used as training areas for water, while un-shadowed ob-

jects above the level of the flooding are used as non-water 

training areas. For the water objects, a histogram of object 

mean intensities is constructed by weighting the mean inten-

sity of each object by its area. A similar histogram is con-

structed from the area-weighted mean intensities of the high 

land objects. Both histograms are normalised to assume equal 

prior probabilities for each class. The threshold giving the 

minimum misclassification of water and non-water objects is 

calculated from the measured histograms. This approach takes 

into account the fact that objects are being classified rather 

than the individual pixels making up the objects. This classi-

fies the majority of the rural flooded area correctly. This ini-

tial segmentation is then refined using a variety of rules e.g. 

objects classed as flooded having mean heights above the 

local flood height are reclassified as un-flooded. Also, differ-

ent parts of the flooded reach may have different exposures to 

wind, rain and emergent vegetation, leading to increased 

backscatter, so that it is unlikely that a single backscatter in-

tensity threshold will be appropriate for all flood objects 

along the reach. A further refinement involves reclassifying 

unclassified objects bordering the flood as flooded providing 

their mean backscatter is less than a slightly raised threshold. 

     To detect the flooding in the urban area, a simpler region-

growing algorithm is used, guided by knowledge of the local 

waterline heights in the adjacent rural area. The urban region-

growing necessarily differs from the rural segmentation 

method, because the PDF of flooded urban streets has a sub-

stantial tail towards higher backscatter values compared to the 

PDF of rural water pixels. This is probably due to high back-

scatter from street furniture such as cars, etc. A set of seed 

pixels is identified with backscatter less than a threshold. To 

estimate the threshold, the training areas for water and non-

water identified previously are used to construct histograms 

of pixel backscatter intensity for these classes. A Bayesian 

classification is performed, this time on pixels rather than 

objects, to obtain the threshold giving the minimum misclas-

sification. Seed pixels are also required to have heights less 

than or similar to the heights of the adjacent rural waterline 

heights. A local waterline height threshold map is calculated 

using the rural flood waterlines. It seems reasonable to as-

sume that water in the urban areas should not be at a substan-

tially higher level than in the nearby rural areas. However, 

unless a height threshold is imposed, there could be a substan-

tial false positive rate of water at higher levels [5]. The spatial 

variability of this threshold reflects the fact that different parts 

of the area can be flooded to different heights. Finally, seed 

pixels are clustered together provided that they are close to 

other seed pixels. Regions of shadow and layover are masked 

out in the processing. 

V. RESULTS 

      The flood extent estimated by TerraSAR-X in the urban 

and rural areas was validated using the flood extent estimated 

from the aerial photos. Details are given in [7]. In the urban 

area in Fig. 1, 75% of the urban water pixels visible to Ter-

raSAR-X were correctly detected. However, this percentage 

reduced somewhat if the urban flood extent visible in the ae-

rial photos and detected by TerraSAR-X was considered, be-

cause flooded pixels in the shadow/layover areas not visible 

to TerraSAR-X then had to be taken into account. The accu-

racy of flood detection in rural areas was assessed using data 

over a separate rural validation area, and almost 90% of water 

pixels in this area were correctly detected by TerraSAR-X. 

      Fig. 3 shows a possible multi-scale visualisation of the 

flood extents in the rural and urban areas, with flooding 

shown as blue in the rural area and yellow in the urban area. 

Regions coloured brown in the urban area are areas of 

shadow/layover that are below the waterline height threshold, 

and therefore may or may not be flooded, as effectively they 

cannot be imaged by TerraSAR-X. 

VI. OPERATIONAL CONSIDERATIONS 

      In order to obtain a high resolution satellite SAR image of 

a developing flood, it would be necessary immediately after a 

storm forecast had been issued to initiate operations similar to 

those involved in an invocation of the International Charter 

“Space and Major Disasters”. When the Charter is invoked, 

Space Agencies around the world direct their satellites to im-

age the flooding if possible. Current practice usually involves 



 

 

waiting until the disaster has developed somewhat before 

initiating the imaging, but this would need to be modified to 

invoke imaging immediately after the storm forecast had been 

issued. 

      In order to ensure that a SAR image was obtained in near 

real-time, it would be necessary to minimise the time delay 

between an overpass and the production of the resulting SAR 

flood extent. The pre-processing operations could be carried  

  

 
Fig. 3. Possible multi-scale visualisation of flood extents in (a) rural (blue = 

predicted flood), and (b) urban areas (yellow = predicted flood, brown = 

shadow/layover areas that may be flooded (after [7])). 

 

out in parallel with tasking the satellite to acquire the image 

of flooding. Considering TerraSAR-X as an example, Ter-

raSAR-X allows satellite tasking twice a day, so that the 

shadow/layover map could be generated prior to the image 

acquisition by running SETES on the LiDAR data given the 

SAR trajectory and proposed look angle. The DEM and vege-

tation height map could be generated off-line at an earlier 

date, and retrieved between satellite tasking and image acqui-

sition. Download of the image to the ground station, followed 

by near real-time processing of the raw SAR data to a multi-

look image, automatic geo-registration and delineation of the 

flood extent, could in theory be carried out within a few hours 

after overpass. For example, it is known that raw TerraSAR-

X images of the UK can be downloaded to the ground station, 

processed to multi-look images, and geo-registered to En-

hanced Ellipsoid Corrected (EEC) form ready for download 

to the user in about 4 hours after acquisition, though this facil-

ity would currently only appear to be available to scientific 

users of TerraSAR-X data. A blueprint of the operational sys-

tem required for near real-time supply of geo-located high 

resolution SAR data to users is provided by the FAIRE sys-

tem developed at ESA-ESRIN, which is able to provide users 

with processed  ENVISAT ASAR and  ERS-2 SAR images 

approximately 3 hours after acquisition [9]. As far as is 

known, such systems have still to be developed for high reso-

lution SAR images.  

      The time to run the various near real-time processing 

steps in the flood delineation on a 3GHz desktop PC was 

about 20 minutes for the sub-image of Fig. 3 (6750 x 6000 

pixels), and could be significantly reduced using additional 

eCognition processing nodes [8].  

VII. CONCLUSION 

      An automatic near real-time flood delineation algorithm 

has been developed that is capable of detecting flooding in 

rural areas with good accuracy, and in urban areas with rea-

sonable accuracy.  While good classification accuracy was 

obtained in rural areas, the accuracy was reduced in urban 

areas partly because of TerraSAR-X‟s restricted visibility of 

the ground surface due to shadow and layover. A limitation of 

this work is that it is based on data from a single flood event. 

Even though the scene involved contains a large area with 

many example situations, the algorithm needs to be tested 

further using other events. 
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