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Abstract

The effects on the intestinal microbiota of a short period of marginal over-eating, characteristic of holiday or

festival periods, were investigated in a pilot study. Fourteen healthy male subjects consumed a diet rich in

animal protein and fat for seven days. During this period, the subjects significantly increased their dietary

energy, protein, carbohydrate and fat intakes by 56, 59, 53 and 58%, respectively (all P < 0.05). The mean

weight gain of 0.27 kg was less than the expected 1 kg, but this was consistent with a degree of under-report-

ing on the baseline diet. Fluorescence in situ hybridisation analysis confirmed the relative stability of each

individual’s faecal microbiota but showed considerable variations between them. The diet was associated with

a significant increase in numbers of total faecal bacteria and the bacteroides group, as detected by the univer-

sal bacterial probe (DAPI) and Bacteroides probe (Bac 303), respectively. Overall, there was a decrease in

numbers of the Lactobacillus/Enterococcus group (Lab 158 probe; 2.8 � 3.0% to 1.8 � 1.8%) and the Bifido-

bacterium group (Bif 164 probe; 3.0 � 3.7% to 1.7 � 1.2%), although there was considerable inter-individual

variation. Analysis of the relative proportions of each bacterial group as a percentage of the subject’s total

bacteria showed a trend for a change in the intestinal microbiota that might be considered potentially

unhealthy.
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1. Introduction

1.1 The association between diet, the intestinal
microbiota and health

As many as 1000 species of bacteria (Suau et al. 1999;

Hughes et al. 2001; Xu and Gordon 2003; Nicholson

et al. 2005) colonise the human gastrointestinal tract. This

complex ecosystem has a significant effect on the pro-

cesses of the body and its overall health, with its influence

reaching beyond the gut.

Epidemiological and other studies have shown that diet

is another important influence on health. For example,

high rates of colorectal cancer are found for populations

consuming diets high in meat and fat and low in starch,

non-starch polysaccharides, fibre and vegetables (Yoon

et al. 2000; Hughes et al. 2001; Sandhu et al. 2001; Norat

et al. 2002; World Cancer Research Fund/American Insti-

tute for Cancer Research 2007).

Early ecological studies showed that the faecal micro-

biota could be influenced by different diets associated with

certain health risks. These studies confirmed that protein
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and fat, as well as type of carbohydrate (simple sugars vs.

complex carbohydrates) were dietary factors that particu-

larly affected the composition and activity of this micro-

biota (Hill et al. 1971; Finegold et al. 1974; Goldin et al.
1978; Hill 1981, 1998).

1.2 The impact on health of the metabolic activities
of the intestinal microbiota

The nature and extent of this fermentation depends upon

the characteristics of the bacterial microbiota, colonic tran-

sit time and the availability of nutrients. The products of

carbohydrate metabolism are thought to benefit the host,

particularly when compared with the toxic and potentially

carcinogenic end products of protein metabolism (Clinton

et al. 1988; Allison and MacFarlane 1989; MacFarlane

and Cummings 1991; Roberfroid et al. 1995; Smith and

MacFarlane 1996; Tricker 1997). Both bifidobacteria and

lactobacilli belong to saccharolytic microbiota and have a

role in controlling the pH of the large intestine through

the production of lactic and/or acetic acids. A low pH is

thought to help inhibit the growth of certain potential

pathogens and putrefactive bacteria (Modler et al. 1990;

Gibson and Wang 1994), and also depress the formation

of secondary bile acids from primary ones, enhancing the

precipitation of bile acids (Rafter et al. 1986; Nagengast

et al. 1988; Hofman and Mysels 1992; Van Munster et al.
1994). Higher numbers of bifidobacteria have also been

related to increased butyrate levels, which is an important

energy source for the colonocytes and have possible can-

cer protective effects (MacFarlane and Cummings 1991;

Smith et al. 1998).

The large intestine is also a site of intense protein turn-

over, with the amount of dietary protein rather than its

source determining how much reaches the colon (Macfar-

lane et al. 1986; Silvester and Cummings 1995; Macfar-

lane and Macfarlane 2003). Numerically important proteo-

lytic species identified in the colon include species of

Bacteroides, Propionibacterium, Clostridium, Fusobacter-
ium and Streptococcus (MacFarlane and Cummings 1991).

Animal studies have implicated cooked meat containing

high levels of heterocyclic amines in the development of

colorectal cancer (Layton et al. 1995; Skog et al. 1995;

Pence et al. 1998).

The present preliminary study was conducted with

human volunteers to investigate the effects of short-term

dietary overindulgence with consumption of high levels of

animal protein and fat. Molecular methods were used to

analyse relevant bacterial groups in the faecal microbiota,

as has been done in other studies (Harmsen et al. 2002;

Lay et al. 2005). Recent work has indicated that there are

no significant differences in the microbiota from colonic

biopsies and faeces, as revealed by fluorescence in situ

hybridisation (FISH) microscopy using 16S rRNA-targeted

probes (Van der Waaij et al. 2005).

2. Materials and methods

2.1 Aim of the study

Diets consumed during holiday and festive periods are

often high in energy, protein and fat. Overeating, often

common at these times, is consistent with a behavioural

tendency to follow positive social signals to eat, rather

than internal signals to stop. However, the gut has a lim-

ited capacity of digestive and absorptive function; if over-

loaded, more protein, fat and carbohydrate may pass

through the small intestine to the colon. Such short peri-

ods of dietary indulgence can also be associated with

small rises of body weight in the population (no more than

about 0.4 kg) and short-term rises of blood cholesterol

(Andersson and Rössner 1992). In all published reports,

these changes revert to ‘normal’ quickly after the holiday

period. Minor digestive health problems (indigestion,

heartburn, diarrhoea, bloating and constipation), however,

may also be common at these times. One survey, for

instance, found that 30% of patients consulted their gen-

eral practitioner during the Christmas-New Year season

with a range of problems attributed to seasonal over-eating

and drinking (Medix Intelligent Information 2005). Such

problems may be linked to fermentation of food residues

in the colon.

There are no published studies on the effect of such a

holiday diet on the intestinal microbiota. The present

small, pilot study was designed to investigate this by

mimicking an ‘overload’ of the digestive system, and to

assess whether this might have any potential health

impacts relating to changes in the intestinal microbiota.

2.2 Study design

Observations were made for 14 days: seven days ‘run-in’

followed by a seven day holiday diet period.

During the ‘run-in’, subjects were asked to make a

weighed diet record and to keep a ‘bowel-function’ diary.

At the beginning of the ‘run-in’, body weight and height

were measured and these were repeated at the end of the

holiday diet period.

On day one of the seven day diet period, subjects

attended the metabolic unit and were asked to eat their

usual breakfast. Body weight was again measured. The

first faecal sample passed after this meal was sampled and

processed for microbiological analysis. Throughout the

seven day diet period, subjects consumed their main and

evening meal in the metabolic unit (pre-packed breakfasts

were provided for consumption at home). The food con-

sumed was a rotating menu of holiday and festive season
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food dishes, each of which was weighed so that a full

weighed dietary intake could be recorded.

On the day after the seventh day of the diet, faecal sam-

ples were collected for microbiological studies. Subjects

were asked to consume their usual alcohol quantities and

types but to record the consumption in the diary.

2.2.1 Subjects

Potential subjects were screened by questioning, to

exclude any who had medical conditions, were using med-

ication, or were unable to eat all meats. Fourteen healthy

male subjects aged 22–65 were recruited from among staff

and students of King’s College London. They had no his-

tory of gastrointestinal disorders or of eating or weight

problems, nor were they taking any regular medication.

The study was approved by the College Research Ethics

Committee of King’s College London.

2.2.2 Diet characteristics

The menu included main meals based on traditional Christ-

mas foods with a rotating menu of chicken, turkey, ham,

lamb, beef and pork, with traditional vegetables (potatoes,

carrots, peas, parsnips, etc.) followed by dessert courses

ranging from Christmas pudding with cream, trifle, a vari-

ety of fruit pies, followed by mince pies. The diet was con-

sumed ad libitum though a convivial ambience was created

to enhance social cues to consume as if in holiday mood,

which would encourage marginal overeating.

2.2.3 Bacterial enumeration by FISH

Differences in bacterial populations were assessed by FISH

with oligonucleotide probes designed to target specific

regions of 16S rRNA. These were commercially synthe-

sized and labelled with the fluorescent dye cyanine 3 (Cy3;

excitation l 514 nm; emission l 566 nm; fluorescent col-

our, orange-red, Sigma Genosys, Cambridge, UK). The

probes used were Bif 164 (Langendijk et al. 1995), Bac

303 (Manz et al. 1996), Lab 158 (Harmsen et al. 1999),

His 150 (Franks et al. 1998) and Erec 482 (Franks et al.
1998), specific for Bifidobacterium spp., Bacteroides/Pre-
votella group, Lactobacillus/Enterococcus group, Clostri-
dium clusters I and II which encompass more than 60 spe-

cies (including Clostridium perfringens/Clostridium
histolyticum) and Clostridium coccoides/Eubacterium rec-
tale group (Clostridium cluster XIVa), respectively. For

total bacterial counts the nucleic acid stain 4,6-diamidino-

2-phenylindole (DAPI; Sigma-Aldrich, Cambridge, UK)

was used. Faecal samples were weighed and phosphate buf-

fered saline (PBS; 0.1M, pH 7.0) was added to make 10%

(wt/vol) solution. Samples were homogenised in a stoma-

cher for 2 min. Five millilitres were pipetted into a plastic

centrifuge tube and vortexed with the help of glass beads.

Samples were then centrifuged for 2 min at 13 000 rpm to

remove particulate matter. Three hundred and seventy-five

microlitres of supernatant were removed and added to

1125 mL of filtered 4% (wt/vol) paraformaldehyde solution

in a 1.5 mL microcentrifuge tube (paraformaldehyde was

added first, then supernatant). Samples were mixed and

stored overnight at 48C. The 1.5 mL of fixed cells were

then centrifuged at 13 000 rpm for 5 min, the supernatant

was removed and the pellet was washed twice with 1 mL

of filtered PBS, resuspended in a mixture of 300 mL PBS/

99% ethanol (1:1 wt/vol) and stored at �208C for at least

1 h. Samples for Lactobacillus/Enterococcus probe after

overnight fixation with 4% (wt/vol) paraformaldehyde solu-

tion were centrifuged at 13 000 rpm for 5 min, after which

the supernatant was removed and the pellet was washed

twice with 1 mL of filtered PBS and remaining pellet was

treated with 145 mL Lactobacillus enzyme buffer at 378C
for 2 h. (Lactobacillus enzyme buffer: 25mM Tris-HCl,

585mM sucrose, 5mM CaCl2, 10mM EDTA, 30 mg tauro-

cholic acid, pH at 7.6, filtered through 0.2 mm filter and then

added fresh 2 mg/mL lysozyme (50 000 Units) and 1 mg/mL

lipase (100–400 Units, porcine pancreas type II)). After

enzymatic treatment, 5 mL of 4% (wt/vol) paraformaldehyde

were added and samples were left at 48C for 10 min. The

150 mL of fixed and enzymatically treated cells were then

centrifuged at 13 000 rpm for 5 min, the supernatant was

removed and the pellet was washed twice with 1 mL of fil-

tered PBS, resuspended in a mixture of 300 mL PBS/99%

ethanol (1:1 wt/vol) and stored at �208C for at least 1 h.

Samples were removed from the freezer and allowed to

warm to room temperature before 16 mL of the cell suspen-

sion were added to 264 mL of pre-warmed (508C) hybridi-

sation buffer (30mM Tris-HCl, 1.36M NaCl, 1.5 mL of 10%

SDS, pH at 7.2 and filtered through 0.2 mm filter). Ninety

microlitres of this mixture was added to 10 mL of the

appropriate probe and left overnight for hybridisation at

the appropriate temperature. The samples were then

washed at their respective hybridisation temperatures, in

approximately 5 mL of washing buffer (20mM Tris-HCl,

0.9M NaCl, pH at 7.2 and filtered through 0.2 mm filter) for

30 min before 20 mL of DAPI were added to enable enu-

meration of total cell counts. The amount of sample added

to the Sterilin tubes were as follows: 100 mL of lactoba-

cilli/enterococci probe (Lab 158) and fixed cells; 20 mL of

bifidobacteria probe (Bif 164) and fixed cells; 20 mL

of Bacteroides probe (Bac 303) and fixed cells; 100 mL of

clostridia subgroup C. histolyticum/perfringens (His 150

probe) and fixed cells; 20 mL C. coccoides/E. rectale group

probe (Erec 482) and fixed cells; and 5 mL DAPI. The cells

were counted visually with a fluorescence microscope

(Nikon Eclipse, E400). The DAPI-stained cells were exam-

ined under UV light and hybridised cells viewed using a

DM510 filter. For each slide, at least 15 different fields of

view were counted.
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2.2.4 Statistical analysis

The statistical significance of the effects of the differences

in the dietary intakes and the effects of the holiday diet on

the composition of the subject’s faecal microbiota was

based on two-sided paired t-statistics.

3. Results

3.1 Subjects

Fourteen subjects, of European and Middle-Eastern ances-

try, completed the study. There were no changes of bowel

habit other than an episode of transient constipation in one

subject. Median weight change was zero (range: �0.9 to

þ2.2 kg), the mean change was þ0.27 � 0.90 kg (mean

� SD) for 13 subjects (one subject failed to return for

measurement).

3.2 Dietary intake

Most subjects achieved an increase of dietary energy, pro-

tein and fat intake during the holiday diet period. The

volunteers’ overall total dietary energy intake rose by

56%, whereas protein, fat and carbohydrate increased by

59, 53 and 58%, respectively (Table 1). Alcohol was con-

sumed by only one subject during the baseline period and

by two in the holiday diet period. Two subjects failed to

deliver their baseline dietary records despite repeated

requests; thus, baseline data shown in Table 1 are for 12

subjects only. A subgroup analysis of complete and reli-

able data (n ¼ 11) showed that the volunteers’ overall

total dietary energy intake rose by 39%, whereas protein,

fat and carbohydrate increased by 49, 41 and 42%, respec-

tively. The differences between baseline and holiday diet

intake of energy, protein, carbohydrate and fat intakes

were significantly different (P < 0.05).

3.3 FISH analysis

A large degree of inter- and intra-individual variability

was revealed in the bacterial profile of samples measured

using specific probes directed against regions of the 16S

rRNA (Table 2). Numbers of total bacteria (DAPI) among

the individuals ranged from 10.17 to 10.73 log10 cells/g of

wet faeces before the holiday diet feeding period, and

from 10.32 to 10.85 log10 cells/g of wet faeces after the

holiday diet feeding period (Table 2). The highest increase

in numbers of total bacteria after the feeding period was

0.40 log10 cells/g of wet faeces (subject K), whereas the

highest decrease was 0.08 log10 cells/g of wet faeces (sub-

ject B). Mean numbers of total bacteria in the faecal

microbiota showed a statistically significant increase after

the holiday diet feeding period of 1.28 � 1010 cells/g of

wet faeces (Table 3, P ¼ 0.003). Interestingly, after the

feeding period, numbers of total bacteria decreased only

in one case (subject B) and remained the same in just one

case (subject C), whereas an increase was observed in 12

of the total of 14 subjects.

After the holiday diet period, numbers of lactobacilli/

enterococci decreased in 8 of 14 subjects, clostridia (clus-

ters I and II) increased in 8 of 14 subjects, bifidobacteria

decreased in 8 of 14 subjects and eubacteria (Clostridium
cluster XIVa) decreased in 8 of 14 subjects. Bifidobacteria

was below the detection limit (106 cells/g of wet faeces)

in one subject (subject D) during the whole study.

Mean numbers of Bacteroides/Prevotella group in the

faecal microbiota showed a statistically significant increase

of 0.43 � 1010 cells/g of wet faeces (Table 3, P ¼
0.0003). Numbers of Bacteroides/Prevotella group among

the individuals ranged from 9.07 to 10.22 log10 cells/g of

wet faeces before the holiday diet feeding period, and

from 9.30 to 10.40 log10 cells/g of wet faeces after the

holiday diet feeding period (Table 2). Remarkably, num-

bers of Bacteroides/Prevotella group increased in all four-

teen subjects of this pilot study after the end of the holi-

day diet (Table 2). The highest increase in numbers of

Bacteroides after the feeding period was 0.46 log10 cells/g

of wet faeces (subject L) followed by subject N (increase

of 0.44 log10 cells/g of wet faeces). Clostridium clusters I

and II mean numbers also increased after the holiday diet

feeding period, although not statistically significant (3.64

� 107 cells/g of wet faeces, P ¼ 0.31). In contrast, bifido-

bacteria and lactobacilli/enterococci mean numbers were

lowered at the end of the holiday diet feeding period when

Table 1. Dietary intake before and during the holiday diet

Baseline After the period of holiday diet % change

Energy, kcal/day 1799 � 434 (886–2310) 2812 � 849* (1870–4067) þ56
Protein, g/day 71.1 � 17.2 (30.2–99.4) 112.7 � 26.7* (75.6–178.6) þ59
Carbohydrate, g/day 227.3 � 72.7 (98–341.8) 348.1 � 125.4* (175.2–595.1) þ53
Fat, g/day 69.3 � 23.1 (37.9–121.9) 109.5 � 28.9* (74.1–154.5) þ58
Alcohol, g/day 2.7 � 9.7 (0–35.0) 3.3 � 11.3 (0–41) —

Values are mean � SD and ranges within parentheses.

n ¼ 12 for baseline, n ¼ 14 for holiday diet.

*Significantly different from baseline P < 0.05.
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compared with the numbers at the end of the ‘run in’

period, although not significantly (1.65 � 108 cells/g of

wet faeces, P ¼ 0.48 and 0.67 � 108 cells/g of wet faeces,

P ¼ 0.75, respectively). Numbers of C. coccoides/
E. rectale group increased after the holiday diet feeding

period although not significantly (1.91 � 109 cells/g of

wet faeces, P ¼ 0.11).

The proportions of cells that hybridised with the phylo-

genetic probes relative to the total bacteria are presented

in Table 4. The five probes used in this study accounted

for an average 50% of the total bacteria both before and

after the holiday diet feeding period. Bacteroides/Prevo-
tella probe (Bac 303) represented the highest proportion

of the faecal bacteria before and after the holiday diet

Table 2. Enumeration of bacteria with DAPI and five FISH probes in the pilot study for each individual before

and after the holiday-type diet

Total cells
DAPI

Lactobacilli/Enterococci
Lab 158

Clostridium
clusters I and II

Bifidobacteria
Bif 164

Bacteroides/
Prevotella Bac 303

Clostridium
cluster XIVa

A1 10.53 8.66 7.19 8.46 9.60 9.68
A2 10.63 8.28 6.97 8.28 9.68 9.09
B1 10.67 9.37 7.49 7.92 10.22 10.34
B2 10.59 9.10 7.98 7.56 10.34 9.70
C1 10.32 8.51 7.64 9.56 9.82 10.01
C2 10.32 8.43 7.77 9.04 10.01 9.28
D1 10.47 9.29 6.79 6.00* 9.85 10.09
D2 10.61 9.01 7.33 6.00* 10.09 9.56
E1 10.47 8.82 6.97 7.94 9.83 10.02
E2 10.85 9.45 7.53 8.74 10.02 9.84
F1 10.17 8.84 7.27 8.27 9.98 10.32
F2 10.55 8.93 7.09 9.03 10.32 9.80
G1 10.38 9.35 6.79 8.88 9.77 9.83
G2 10.33 9.05 6.79 8.84 9.83 9.73
H1 10.37 8.03 8.11 9.00 9.77 9.62
H2 10.52 8.44 8.45 8.90 9.80 9.87
I1 10.43 8.86 8.18 8.64 9.59 10.04
I2 10.72 8.91 8.69 8.72 9.96 10.35
J1 10.28 8.49 8.38 8.68 9.52 9.93
J2 10.53 8.29 7.92 8.85 9.91 10.04
K1 10.24 8.27 7.39 8.73 9.19 9.62
K2 10.64 8.38 7.77 8.92 9.30 10.10
L1 10.73 8.67 8.24 8.92 9.07 9.93
L2 10.75 8.56 8.21 9.15 9.53 9.91
M1 10.58 8.53 8.39 9.22 10.19 9.93
M2 10.66 8.72 7.95 8.68 10.40 10.09
N1 10.23 8.30 8.21 9.28 9.56 9.91
N2 10.59 8.19 8.55 9.07 10.00 10.01

Bacterial counts (log10 cells/g of wet faeces) for subjects A-N at sampling points 1–2.

Sampling point 1, at day 1 of the holiday diet feeding period; sampling point 2, at day 10 of the holiday diet feeding period.

*Detection limit of the method: 106 cells/g of wet faeces.

Table 3. Bacterial numbers (cells/g of wet faeces) for total bacteria and five specific key groups expressed

as the average of fourteen healthy adults, before and after the feeding period

Bacterial group
Before holiday

diet feeding period
After the holiday

diet feeding period

Mean difference
(cells/g of wet
weight faeces) SEM P

Total cells (DAPI) 2.82 � 1010 4.10 � 1010 1.28 � 1010 3.51 � 1009 0.003*
Lactobacilli/Enterococci (Lab 158) 7.87 � 108 7.20 � 108 �0.67 � 108 4.65 � 1008 0.75
Clostridium clusters I and II (His 150) 8.95 � 107 1.26 � 108 3.64 � 107 3.42 � 1007 0.31
Bifidobacteria (Bif 164) 8.48 � 108 6.83 � 108 �1.65 � 108 2.27 � 1008 0.48
Bacteroides/Prevotella (Bac 303) 6.52 � 109 1.08 � 1010 0.43 � 1010 8.89 � 1008 0.0003*
Clostridium cluster XIVa (Erec 482) 6.25 � 109 8.17 � 109 1.91 � 109 1.11 � 1009 0.11

*Level of significance: P < 0.05 for each bacterial group during the feeding period.
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feeding period (23.1 and 26.3%, respectively). This was

followed by C. coccoides/E. rectale (Erec 482) probe

(22.2 and 19.9%, respectively). Lactobacillus/Enterococcus
(Lab 158), C. histolyticum/perfringens (His 150) and Bifi-
dobacterium (Bif 164) groups added together accounted

for an average 6.1% of the total bacteria before and 3.8%

after the holiday diet feeding period.

4. Discussion

Our results confirm earlier observations of large inter- and

intra-individual variations for the human faecal microbiota

and a high degree of variability in the intestinal micro-

biota composition (Suau et al. 1999; Barcenilla et al.
2000; Zoetendal et al. 2001; Mai et al. 2004). Moreover,

no significant changes could be seen in most bacterial

groups tested (Table 3) confirming the underlying stability

of each individual’s microbiota (Hill 1981; Fuller and

Rowland 1989; Zoetendal et al. 1998, 2001). Bacteroides
(Bacteroides/Prevotella group) and eubacteria (Clostridium
cluster XIVa) groups were the bacterial groups present in

the greatest numbers in all 14 subjects both before and

after the holiday diet feeding period. This is in agreement

with previous studies which showed that these bacterial

groups are two of the most predominant groups in the

human faecal microbiota (Gibson and Roberfroid 1995;

Suau et al. 1999; Sghir et al. 2000; Mai et al. 2004; Lay

et al. 2005). In the present study, numbers of total bacteria

increased significantly after the short period of a diet rich

in fat and animal protein. The health significance of this is

not known.

A further finding from the current study was a signifi-

cant increase in numbers of the Bacteroides group after

the dietary period. Bacteroides (and Clostridium) contain

numerically important proteolytic species in the colon

(MacFarlane and Cummings 1991). An increase in the

numbers of Bacteroides species has previously been asso-

ciated not only with diets rich in fat and animal protein

(Hill et al. 1971; Finegold et al. 1974) but also with

pathological disorders such as severity of ulcerative colitis

(Ishikawa et al. 2005). With the present study, in terms of

proportional change, there was a 20 and 11% reduction of

bifidobacteria and lactobacilli/enterococci respectively and

a 60, 40 and 30% increase of Bacteroides/Prevotella,

Clostridium clusters I and II and Clostridium cluster XIVa.

These results appear to indicate that a short period of diet-

ary overindulgence may promote the growth of potential

harmful bacteria and inhibit those usually considered as

being beneficial (Rafter et al. 1986; Nagengast et al.
1988; Modler et al. 1990; Hofman and Mysels 1992; Gib-

son and Wang 1994; Van Munster et al. 1994). However

the study only lasted one week, and it is not known

whether the observed changes were short-term or long-

term. In addition, it is not known whether the statistically

significant changes and trends seen here have any physio-

logical significance. It is also important to note that label-

ling non-pathogenic commensal bacteria as either benefi-

cial or detrimental remains speculative, and considerably

more scientific investigation at the species level is needed.

However, probiotic and prebiotic research has shown

that modulation of the intestinal microbiota can result in

benefits for people with different states of health. The

increase of toxic and carcinogenic breakdown products in

the colon resulting from a high protein diet, has led to

suggestions that beneficial modulation of the intestinal

microbiota may reduce risk. There is some evidence for

this. A double-blind, placebo-controlled human volunteer

studies conducted by a group in Belgium (De Preter et al.
2004, 2007) found that consumption of the probiotic strain

L. casei Shirota resulted in significant reduction of levels

of ammonia and para-cresol in the urine, indicating a sup-

pression of the generation and accumulation of toxic meta-

bolites in the colon. This strain has also been linked to

reduction of faecal b-glucosidase and b-glucuronidase:

enzymes mainly produced by Enterobacteriaceae and

clostridia, associated with carcinogen formation in the

intestines (Spanhaak et al. 1998; De Preter et al. 2008).

This may partly explain studies indicating possible cancer

benefit for this strain (Hayatsu and Hayatsu 1993; Aso

et al. 1995; Ishikawa et al. 2005).

Larger studies with the appropriate power to detect the

effects of dietary interventions on the faecal microbiota

composition are clearly needed to advance this field.

Molecular microbiota analysis methods such as metage-

nomics can facilitate the determination of dietary effects

Table 4. Proportions of the Lactobacillus/Enterococcus
(Lab 158), Histolyticum/Perfringens (His 150),

Bifidobacterium (Bif 164), Bacteroides/Prevotella
(Bac 303) and C. coccoides/E. rectale (Erec 482) groups

in 14 healthy adults before and after a holiday diet-

type feeding period, assessed with FISH microscopy

Probe

% of total bacteria that
hybridised with probe

Before After

Lactobacilli/Enterococci
(Lab 158)

2.8 � 3.0 1.8 � 1.8

Clostridium clusters I and II
(His 150)

0.3 � 0.3 0.3 � 0.4

Bifidobacteria (Bif 164) 3.0 � 3.7 1.7 � 1.2
Bacteroides/Prevotella

(Bac 303)
23.1 � 18.8 26.3 � 19.1

Clostridium cluster XIVa
(Erec 482)

22.2 � 13.3 19.9 � 14.6

Additivity 51.4 � 23.5 50.0 � 33.1

Results are presented as mean � SD.

Total number of bacteria counted after samples stained with DAPI.
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on the intestinal microbiota composition as indicated by

this preliminary study. A more comprehensive microbiota

analysis approach that includes more bacterial groups with

the use of the appropriate molecular probes and metabolic

activity assays will increase the likelihood of detecting

potentially important associations between diet and either

composition or activity of the gut microbiota. Establishment

of such associations will be fundamental for the future

design of specific dietary interventions aimed at improving

human health through changes in the microbiota.

In the present study, the dietary changes were not as

great as might have been achieved under more tightly con-

trolled metabolic unit conditions. Diaz et al. (1992)

achieved greater increases of dietary energy intake and

greater increases of body weight though over a longer per-

iod of time, and under conditions which did not replicate

a ‘holiday diet’ type of intervention. Our subjects were

free living but during the ‘holiday diet’ ate their main

meals in the metabolic unit at King’s College London.

Dietary data for the holiday diet period, which was mostly

collected in the metabolic unit under the observation of

the research team, was thought to be reliable, whereas the

dietary records made before the diet were believed to be

less reliable and showed evidence of under-reporting espe-

cially in one individual; moreover, two subjects failed to

deliver their diet records despite repeated requests. The

mean dietary energy intake on the baseline was 1799 kcal/

day, which is a low value for fully grown men, again sug-

gesting under-reporting. A sub-group analysis excluding

the subject suspected of under-reporting showed a revised

overall baseline energy intake of 1919 kcal/day. Any repe-

tition of this type of study should standardise conditions

by offering the baseline diet within a metabolic unit to

achieve greater control. The 56% increase in dietary

energy intake should have translated into a body weight

gain of about 1 kg during seven days, assuming no in-

crease of energy expenditure. The measured weight

changes were variable but the average weight gain of

0.27 kg suggested that in fact the true differences in

energy and macronutrient intakes were not as great as the

calculated figures and may have been nearer to a more

modest 25% increase rather than the 56% increase of

energy intake reported above. (Exclusion of the suspected

under-reporting subject reduced the increase of dietary

intake to 39%.) There was relatively little alcohol con-

sumption during this study, rendering it somewhat dissimi-

lar to the usual pattern of holiday food and drink con-

sumption in the United Kingdom.

In conclusion, seven days of marginal over-eating of a

holiday diet, characterised by a greater than usual quan-

tity and variety of meats and other ‘festive’ dishes,

resulted in a significant increase in numbers of total faecal

bacteria and the Bacteroides group, as detected by the uni-

versal bacterial probe (DAPI) and Bacteroides probe (Bac

303), respectively. Numbers of the lactobacilli/enterococci

group and bifidobacteria decreased, despite inter-individual

variation. The shift in the relative proportions of each

bacterial group suggested a change in the intestinal

microbiota that might be regarded as unhealthy.
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