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A simple self-contained theory is proposed for describing the life cycles of convective
systems as a discharge–recharge process.

A closed description is derived for the dynamics of an ensemble of convective
plumes based on an energy cycle. The system consists of prognostic equations for
the cloud work function and the convective kinetic energy. The system can be closed
by introducing a functional relationship between the convective kinetic energy and
the cloud-base mass flux.

The behaviour of this system is considered under a bulk simplification. Previous
cloud-resolving models as well as bulk statistical theories for ensemble convective
systems suggest that a plausible relationship would be to assume that the convective
kinetic energy is linearly proportional to the cloud-base mass flux.

As a result, the system reduces to a nonlinear dynamical system with two
dependent variables, the cloud-base mass flux and the cloud work function. The
fully nonlinear solution of this system always represents a periodic cycle regardless
of the initial condition under constant large-scale forcing. Importantly, the inclusion
of energy dissipation in this model does not in itself lead the system into equilibrium.
Copyright c© 2011 Royal Meteorological Society
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1. Introduction

Convective cloud systems in the atmosphere undergo
life cycles and it is physically intuitive to consider that
a convective system follows a cycle of discharge and
recharge. Once a convective event is over (‘discharge’),
the atmosphere has been stabilized against further moist
convection and a break period follows (‘recharge’). This
break period continues until sufficient potential energy
is ‘recharged’. Once the potential energy has reached a
threshold, convection is triggered and the accumulated
potential energy is again ‘discharged’ as a result. To the
best of our knowledge, the terminology ‘discharge–recharge’

was originally introduced by Bladé and Hartmann (1993) in
order to interpret their experiments of tropical instraseaonal
variability with a simple nonlinear model. The present
article, in turn, interprets this concept more generally for
describing the life cycle of any convective system of any scale.

Although this discharge–recharge mechanism has been
invoked in the consideration of various tropical convection
problems, especially for the Madden–Julian oscillation
(MJO: Benedict and Randall, 2007; Thayer–Calder and
Randall, 2009), no self-contained theory has been proposed.
The purpose of the present article is to present a simple
self-contained theory suitable for describing convective
discharge–recharge processes.

Copyright c© 2011 Royal Meteorological Society
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Our findings stem from our investigations of the time
evolution of ensemble convective systems as described
by a mass-flux convection parametrization. The mass-
flux convection parametrization problem, as originally
formulated by Arakawa and Schubert (1974), is followed
by the majority of current operational parametrizations
(e.g., Tietdke, 1989; Emanuel, 1991; Bechtold et al., 2001).
In spite of the theoretical nature of the present study,
it therefore contains serious implications for improving
mass-flux convection parametrization.

The Arakawa and Schubert (1974) system is well defined in
its formulation in so far as dependent physical variables (e.g.,
moist static energy, total water) are conserved along a parcel
movement. Unfortunately, once explicit microphysical
processes become an issue the conservation law breaks
down and the problem is no longer well-formulated. Extra
complications arise due to the need to introduce an explicit
description of the convective vertical velocity, as emphasized
by Donner (1993).

However, in so far as only conserved variables are
considered, there are only two problems to be resolved in
order to make the formulation complete. The first problem
is the determination of a rule for specifying entrainment
and detrainment rates. There have been extensive debates
on this issue (Raymond and Blyth, 1986; Blyth, 1993) which
persist to this day (cf., Yano and Bechtold, 2009). The
second problem, called ‘closure’, is to define the mass flux at
cloud base. As emphasized by Arakawa and Schubert (1974),
‘The real conceptual difficulty in parameterizing cumulus
convection starts from this point’. Although extensive
progress has been made since that time (Arakawa and
Chen, 1987; Xu, 1994), the statement is still valid even today
(Arakawa, 2004; Yano et al., 2005a).

In order to address the closure problem, Arakawa and
Schubert (1974) pursued the idea of constructing an energy
cycle for a convective system. In Arakawa and Schubert’s
point of view, this cycle is chiefly described by two equations.
The first is the budget equation for convective kinetic energy,
as given by their eq. (132). This equation shows that the rate
of generation of convective kinetic energy is proportional
to a quantity named the ‘cloud work function’ by Arakawa
and Schubert. Thus, they proposed also to use the tendency
equation for the cloud work function as the second equation
of this pair, as given by their eq. (142). The latter equation
shows that the cloud work function is consumed at a rate
proportional to the cloud-base mass flux.

Arakawa and Schubert closed the problem by seeking
a steady solution to the cloud work-function equation,
assuming a balance between cloud work-function generation
by large-scale forcing and consumption by convection.
Such a condition is called convective quasi-equilibrium.
Mathematically speaking, the problem reduces to that of
matrix inversion to find a solution of the cloud-base mass
flux. It turns out that this matrix inversion problem is not
straightforward in practice, and various approaches have
been proposed (Lord, 1982; Lord et al., 1982; Hack et al.,
1984; Moorthi and Suarez, 1992).

Randall and Pan (1993) and Pan and Randall (1998)
recognized that the problem can more easily be closed in
a prognostic manner. Note that the pair equation system
considered by Arakawa and Schubert (1974: their eqs (132)
and (142)) contains three dependent variables: convective
kinetic energy, cloud work function and cloud-base mass
flux. It seems reasonable to expect that there is a certain

functional relationship between the convective kinetic
energy and the cloud-base mass flux. More specifically,
those authors assumed the convective kinetic energy to
be proportional to the square of the cloud-base mass
flux.

In the present article, we note that this functional
relationship can be generalized by assuming a power-
law dependence of convective kinetic energy on cloud-
base mass flux. After reviewing cloud-resolving modelling
(CRM) as well as statistical theories, we propose an
alternative assumption that the convective kinetic energy
is proportional to the cloud-base mass flux. The goal of
the present article is to investigate the basic behaviour of
the resulting energy-cycle description of convective systems
under a bulk simplification (cf., Yanai et al., 1973; Plant,
2010), i.e., in the case in which only one convective mode
is assumed. Recall that a continuous spectrum of convective
plumes is considered in Arakawa and Schubert (1974). As it
turns out, this nonlinear system produces a periodic cycle
with a process of discharge and recharge.

The article is organized as follows: the formulation of
the problem is presented in the next section, which also
includes a review of relevant CRM and theoretical studies.
The derived system is investigated in section 3, implications
are discussed in section 4 and the article is concluded in
section 5.

2. Formulation of the problem

2.1. Energy cycle of the convective system

By following the idea of a bulk mass-flux convection
parametrization, we consider a system consisting of only
a single type of convection. In Arakawa and Schubert’s
original formulation, this corresponds to the case of a single
type of entraining convective plume with a given fractional
entrainment rate. However, the problem can be generalized
to encompass any other description of a convective plume.
In more general cases, the computation of the cloud work-
function consumption rate γ , to be introduced later, is more
involved than the one given in appendix B of Arakawa and
Schubert (1974). Only the order of magnitude of γ is of
concern in the present study. A more explicit formulation
for general cases is left for future study.

An important aspect of Arakawa and Schubert’s mass-
flux parametrization is the fact that convection is always
considered in terms of an ensemble of plumes, in which
there are always a number of convective elements present
belonging to each type. What is considered is the evolution
of each subensemble, and the evolution of a single convective
plume is never a concern. As a result, the triggering of a
single convective event, for example, cannot be described
under the present formulation: cf., section 3.8.

Here we consider the evolution of an ensemble of
convective elements, to be called plumes, under a bulk
simplification which assumes that every convective plume
in the system can be treated as having the same vertical
convective mass-flux profile. We designate the normalized
vertical profile as η(z), which is a function of height z only.
The normalization factor is mB,j, the mass flux at cloud base
for the given plume, such that the mass flux of a given plume
j is

mj = mB,jη(z).

Copyright c© 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 626–637 (2012)



628 J.-I. Yano and R. Plant

The total convective mass flux is given by

Mc = MBη(z), (1)

with the total cloud-base mass flux being given by

MB =
∑

j

mB,j,

with the summation extending over all plumes within the
area of interest (e.g., grid box).

In the same manner, the other dependent variables of
the problem, the convective kinetic energy K and the cloud
work function A, are considered in the present study in
terms of the total for all convective plumes. In other words,
only the evolution of an ensemble of plumes of a single
type is considered, and no attention is paid to the evolution
of individual plumes. Note that, by definition, the total
cloud-base mass flux MB is a function of time only.

The evolution of convective kinetic energy consists of
a competition between the generation rate G from the
buoyancy force and the dissipation D:

dK

dt
= G − D. (2)

Here,

G =
∫ zT

zB

Mcb dz, (3)

with the integral extending from cloud base zB to cloud top
zT and b being the buoyancy, defined in the case of Arakawa
and Schubert (1974) by

b = g

CpT̄
(svc − s̄v)

in terms of the acceleration due to gravity g, the heat
capacity at constant pressure Cp, the temperature T and the
virtual static energy sv = CpTv + gz, which is defined from
the virtual temperature Tv. The overbar and the subscript
c designate the area mean and convective components,
respectively.

By substituting Eq. (1) into Eq. (3), the kinetic-energy
generation rate becomes

G = AMB (4)

with the cloud work function defined by

A =
∫ zT

zB

ηb dz. (5)

Substitution of Eq. (4) into Eq. (2) then leads to

dK

dt
= AMB − D, (6)

which is equivalent to eq. (132) of Arakawa and Schubert
(1974) under the bulk simplification.

The prognostic equation for the cloud work function is
obtained directly, by taking a time derivative of its defining
equation, Eq. (5). After lengthy calculations, as outlined in

appendix B of Arakawa and Schubert (1974), one can obtain
an equation of the form

dA

dt
= −γ MB + F, (7)

which is equivalent to eq. (142) of Arakawa and Schubert
(1974), again under the bulk simplification. Note that the
factor γ corresponds to a diagonal element of the integral
kernel K(λ, λ′) defined in Arakawa and Schubert. We have
changed the notation in order to avoid any confusion with
the convective kinetic energy K and have also flipped the
sign, expecting the first term on the right-hand side of Eq. (7)
to be negative in general due to convective damping (see
below). A time-independent large-scale forcing F will be
assumed in the present study.

Eqs (6) and (7) provide a qualitative description of the
evolution of a bulk convective ensemble: large-scale forcing
generates the cloud work function with time by Eq. (7). The
cloud work function, in turn, generates more convective
activity through Eq. (6). This enhancement of convection is
associated with an increase of cloud-base mass flux, which
in turn damps the cloud work function with time through
the first term on the right-hand side of Eq. (7). By physical
intuition, therefore, γ should be positive because convection
grows by consuming the cloud work function. This notion
is called ‘convective damping’ by Emanuel et al. (1994).

A further intuition invoked by Arakawa and Schubert
(1974) is that within a relatively short time the rate of
consumption of the cloud work function comes into balance
with the generation rate by large-scale forcing, and thus we
obtain

−γ MB + F = 0, (8)

which is the state of convective quasi-equilibrium.
The main goal of the present study is to examine

the behaviour of the system under finite departure from
convective quasi-equilibrium by explicitly integrating the
pair system, Eqs (6) and (7). According to the original
argument by Arakawa and Schubert (1974), summarized
above, we would expect that the system approaches
equilibrium with time. In order to close this system, a
certain functional relationship must be introduced between
the convective kinetic energy and the cloud-base mass flux.
This issue is considered next.

2.2. Functional relationship assumption

We will assume a functional relationship of the form

K ∝ M
p
B (9)

between the convective kinetic energy K and the cloud-base
mass flux MB. Here, p is an unspecified positive constant.
In the present article, we will use Eq. (9) with p = 1 in
order to close the problem. This choice is made based
on the following discussions. However, note that various
assumptions introduced in course of these discussions
should not be considered as crucial for the present model
formulation. The choice of any value for p must be regarded
as somewhat arbitrary given our current state of knowledge
and ultimately the extent of the support for any functional
relationship between K and MB can only be fully established
from extensive CRM analyses.

Copyright c© 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 626–637 (2012)
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First of all, we must recognize that dimensional analysis
between K and MB does not give a unique answer to the
power p. In other words, we cannot make the proportionality
constant dimensionless, regardless of the way we choose
the power p. In this respect, p remains an arbitrary
constant of the problem. Eq. (9) may be considered as a
generalized similarity theory between K and MB, which may
be determined by observations or modelling, as we attempt
in the subsequent subsections. Nonetheless, the following
considerations suggest that p = 1 and p = 2 are choices of
particular physical interest.

Recall that the cloud-base mass flux is more precisely
defined by

MB = ρBσBwB, (10)

where ρ is the density, σ the fractional area occupied by
convective plumes and w the convective vertical velocity.
The subscript B indicates cloud-base values. Similarly, the
convective kinetic energy may be defined by

K =
∫ zT

zB

σ
ρ

2
w2 dz. (11)

A precise assumption of the form of the convective kinetic
energy is not given in Arakawa and Schubert (1974), but
for now let us assume, solely for the sake of convenience,
that the convective kinetic energy only includes the vertical
velocity. A restriction of K to the vertical component makes
its link with the cloud-base mass flux more direct, and all the
discussions in section 2.3 (together with the evidence from
Emanuel and Bister (1996) in section 2.4) are valid with or
without this restriction.

We should stress that the restriction of our definition
of convective kinetic energy to the vertical component is
fully self-consistent regardless of whether the horizontal
component of kinetic energy is negligible or not. For
example, the simulations of Xu et al. (1992) and Xu (1993)
suggest that the horizontal component of eddy kinetic energy
is an order of magnitude larger than the vertical component.
However, this does not necessarily oblige us to include the
horizontal component in the definition of K.

A simple energy integral analysis shows that the term
proportional to the cloud work function generates the
vertical component of convective kinetic energy more
directly, as is carefully discussed in Yano et al. (2005b).
The horizontal component is generated only indirectly by
conversion from the vertical component via pressure forcing
(Khairoutdinov and Randall, 2002). When the horizontal
component is neglected, we can choose to include the
conversion rate of the vertical component into the horizontal
component as a part of an energy dissipation rate, D. This
interpretation is legitimate because vertical kinetic energy is
lost in lieu of horizontal kinetic energy.

Alternatively, when the horizontal component is included
in the definition of convective kinetic energy, the following
analysis can still be reproduced simply by assuming that the
horizontal component is always proportional to the vertical
component.∗ It should also be emphasized that the following
short analysis is merely for the sake of obtaining a feeling
about a possible choice for the exponent p. The functional

∗Table 3 of Khairoutdinov and Randall (2002) would provide some
support for such an assumption, at least in a time-mean sense.

relationship of Eq. (9) can be introduced without requiring
an explicit definition for K. That will be the point of view
adopted throughout the remainder of the article. However,
let us now proceed to consider the implications of taking
the definition of Eq. (11).

By taking an anelastic approximation, we may assume
that the density ρ is a function of height only. On the other
hand, both σ and w will depend on both time and height. We
may separate the dependences by writing these two variables
as

σ = σB(t)σ̂ (z), (12a)

w = wB(t)ŵ(z). (12b)

Substitution of Eqs (12a) and (12b) into Eq. (11) leads to

K = σBw2
BK̂, (13)

where K̂ is a constant, independent of time.
Further substitution of Eqs (10) and (13) into Eq. (9)

leads to a relation

σ
p−1
B w

p−2
B ∼ const.

This relationship indicates that the actual power p is
dependent on the relative ‘strength’ of the time dependence
of σB and wB.

Cases of particular interest arise from assuming either σB

or wB alone to control the time dependence. Arguably the
more intuitive case is to assume that only wB is time-
dependent and σB is totally time-independent, so that
p = 2. This is the case considered by Randall and Pan
(1993) and Pan and Randall (1998). For constant large-scale
forcing, that system leads to a damped harmonic oscillator,
although we note that Davies et al. (2009) found more
complex behaviour for a rapidly varying on/off forcing. An
alternative possibility is to assume that only σB depends on
time and that the cloud-base convective vertical velocity wB

is independent of time. In this case we have p = 1, the choice
that we investigate in the present article.

2.3. Equilibrium solution

In section 2.4 we will review the extent of support for the two
possibilities p = 1 or 2 from both CRM results and statistical
theories. As a prerequisite, we first derive the equilibrium
solution under the general similarity relation of Eq. (9) and
then examine the expected consequences when p = 1 and
2. Note that the discussion of this subject is solely based on
seeking a steady solution for the system of Eqs (6) and (7),
without invoking any of the further assumptions introduced
in the latter part of the previous subsection.

The equilibrium solution M0 for cloud-base mass flux
is obtained directly by solving Eq. (8) under stationary
conditions:

M0 = F

γ
. (14)

Thus, the equilibrium cloud-base mass flux should increase
linearly with increasing large-scale forcing, regardless of the
value of p.

Copyright c© 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 626–637 (2012)



630 J.-I. Yano and R. Plant

The equilibrium solution for the cloud work function is
obtained by solving the steady problem for Eq. (6):

A0 = D

M0
.

In order to arrive at a closed expression, we need a
specific form for the energy dissipation rate, for which we
follow Lord and Arakawa (1980) and others by assuming a
relaxation

D = K

τD
, (15)

where τD is a constant dissipation time-scale. It may be
emphasized that this is hardly a unique choice for the energy
dissipation rate but is introduced merely as the simplest
case. An alternative form for the convective kinetic energy
dissipation would be D ∼ K2/3, as is typically assumed in
boundary-layer turbulence theories (cf., Grant and Brown,
1999). Another alternative would be D ∼ MB as suggested†

by Arakawa (1993) and Arakawa and Cheng (1993).
Substitution of Eqs (9) and (15) into the equilibrium

solution for A above leads to

A0 ∝ M
p−1
0 . (16)

Thus, if p = 2, A0 ∝ M0 ∝ F and the cloud work function
increases linearly with increasing large-scale forcing. On the
other hand, if p = 1, we see that the cloud work function at
equilibrium becomes independent of the cloud-base mass
flux and hence also independent of large-scale forcing.

These contrasting results are tested against CRM results
given in the literature. In the comparison, we focus our
attention on idealized CRM experiments under constant
large-scale forcing and especially on studies in which the
strength of the forcing is varied across otherwise similar
experiments. By restricting our attention to a particular
class of experiments, the equilibrium solution obtained in
the present subsection can be unambiguously compared
with ‘true’ CRM equilibrium solutions. In order to consider
a finite departure from quasi-equilibrium in the subsequent
analysis, agreement with the dependences at equilibrium is
deemed to be a necessary pre-condition. Our focus is further
restricted to simulations without background shear flow in
order to avoid the influence of mesoscale organization,
which the present model does not take into account.

2.4. Evidence from cloud-resolving modelling

Various results from CRM studies support the choice p = 1
rather than p = 2. The first piece of evidence is from figure 2
of Emanuel and Bister (1996). This result from a CRM
simulation (dashed curve) shows that CAPE (convective
available potential energy: the non-entraining limit of the
cloud work function) is approximately invariant with the
large-scale forcing, being consistent with the scaling p = 1.

Another item of evidence is from figure 8 of Parodi
and Emanuel (2009). That figure shows the dependence
of the convective updraught velocity on the prescribed

†Apparently on the basis that it leads to an equilibrium value of the
cloud work function that is independent of forcing strength, a property
that would hold regardless of the value of p.

precipitating terminal velocity. This dependence itself is
not our interest here. However, an important point is that
the curve for the convective updraught velocity does not
change much by changing the prescribed radiative cooling
rate (large-scale forcing) from 2 K day−1 to 6 K day−1.

Table 1 of Shutts and Gray (1999), obtained from their
CRM experiments, also shows that the convective vertical
velocity is approximately invariant with large-scale forcing.
The statistical theories of both Emanuel and Bister (1996)
and Shutts and Gray (1999) also make this prediction.
These results suggest therefore that the convective vertical
velocity is rather invariant and so it is the fractional area of
convection that increases with increasing large-scale forcing,
being consistent with the choice p = 1 if either the convective
kinetic energy is restricted to the vertical component or the
horizontal component can be assumed to be proportional
to the vertical component.

A major exception in the literature pointing to p = 2 is
Xu (1993). However, the evidence shown by his figure 22.15
supports this Ansatz only for an active phase of convection.
A more serious problem with quoting the result is that, as
is clearly emphasized in the original article, the mesoscale
convective organization dominates the eddy ‘convective’
kinetic energy defined therein, whereas here we consider the
situation without mesoscale organization.

Another piece of unfavourable evidence is found in
figure 4 of Jones and Randall (2011). This shows that the
cloud fraction is rather invariant with a change of large-scale
forcing in their constant-forcing experiments. This clearly
favours p = 2 rather than p = 1 according to the analysis of
the equation immediately after Eq. (13). However, caution
is required in interpreting that result for the present context,
as Jones and Randall (2011) were concerned with the total
cloud fraction as defined through a condensate threshold
rather than the convective cloud fraction directly associated
with updraught cores, which is the concern here.

Taken as a whole, we consider that the evidence
supporting p = 1 is strongly suggestive but hardly
overwhelming. Perhaps surprisingly, the number of CRM
studies comparing the convection produced by different
strengths of constant large-scale forcing is rather limited.
Further investigation is clearly required. Moreover, any
investigation into the equilibrium state of potential energy
convertibility (PEC), a CRM equivalent to the cloud work
function (Yano et al., 2005b), instead of CAPE is yet to
be performed to the best of our knowledge. Nevertheless,
the use of a simple proportionality hypothesis p = 1 in
the functional relationship of Eq. (9) appears to be a very
reasonable possibility to consider, and no analysis published
so far excludes this possibility in any clear sense.

3. Analysis

3.1. Governing equation system

Based on the review of CRM results in the previous
subsection, we now set p = 1 in Eq. (9):

K = βMB, (17)

where the time-independent constant β is defined by

β = wB

∫ zT

zB

(
ρB

ρ

)
η2

2σ̂
dz. (18)

Copyright c© 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 626–637 (2012)
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By substituting Eqs (15) and (17) into Eqs (6) and (7), we
finally obtain a closed governing equation system:

dMB

dt
= MB

τD

(
A − A0

A0

)
, (19a)

dA

dt
= −γ MB + F, (19b)

where

A0 = β

τD
(20)

is the equilibrium solution for the cloud work function. We
also recall that the equilibrium solution for the cloud-base
mass flux is as given in Eq. (14).

The obtained equation system is nonlinear due to
the product of A and MB appearing on the right-hand
side of Eq. (19a), i.e., the generation rate of cloud-
base mass flux increases nonlinearly with increasing
strength of convection. This nonlinearity leads to the
discharge–recharge mechanism shown below.

3.2. Non-dimensionalization

In order to analyze the system (19) it is convenient first to
non-dimensionalize it by setting

MB = M0(1 + x), (21a)

A = A0(1 + y), (21b)

and also to non-dimensionalize the time t by τD. We also
designate the time derivative by a dot in the following for
economy of presentation.

As a result, the non-dimensionalized governing equations
read

ẋ = (1 + x)y, (22a)

ẏ = −f̃ x. (22b)

Here,

f̃ = F

β
τ 2

D (23a)

is the non-dimensionalized large-scale forcing and the sole
non-dimensional parameter of the problem.

Indeed, with a slightly more subtle rescaling we can
further absorb this non-dimensional parameter, and so
write down universal equations independent of f̃ . Thus, we
non-dimensionalize the cloud work function by setting

A = A0(1 + f̃ 1/2y) (23b)

in place of Eq. (21b) and taking f̃ −1/2τD as a time-scale for
non-dimensionalization in place of τD. As result, Eqs (22a)
and (22b) are transformed into the universal form:

ẋ = (1 + x)y, (24a)

ẏ = −x. (24b)

The renormalization of Eq. (23b) reveals that relative
fluctuations, (A − A0)/A0, of the cloud work function scale
with f̃ 1/2, i.e., they increase with increasing non-dimensional
forcing.

3.3. Estimate of parameters

After the rescaling of the previous subsection, the solution
becomes universal independent of the physical parameters of
the problem. Nonetheless, in order to establish the context,
before we proceed with the rescaled system, we provide some
estimates of typical values of the physical parameters.

A typical value for β, defined by Eq. (18), is estimated as

β ∼ HwB ∼ 104 m × 1 m s−1 ∼ 104 m2 s−1,

with H ∼ 104 m the tropospheric depth and wB ∼ 1 m s−1.
Here we have assumed the integrand to be of order unity.
In practice, explicit evaluation of the integral using a simple
entraining plume model for deep convection in a typical
tropical sounding produced

∫ zT
zB

(ρB/ρ)2η dz � 6H and we
may set σ̂ � 1. Thus, the above estimate seems likely to be
an underestimate by a factor of a few.

The large-scale forcing F is defined by eq. (B33) in
Arakawa and Schubert (1974). A simple scale analysis
suggests that the dominant contribution to the large-
scale forcing comes from the large-scale (LS) tendency
(∂ s̄v/∂t)LS of the virtual static energy. This contribution can
furthermore be approximated from the large-scale tendency
of potential temperature θ , which mainly consists of the
large-scale ascent −w̄(∂θ̄/∂z) and the radiative heating QR.
Both of these terms have a comparable magnitude and are
of order 3 K day−1 in total. Thus, the large-scale forcing is
approximately given by

F �−
∫ zT

zB

g
η

CpT̄

(
∂ s̄v

∂t

)
LS

dz �
∫ zT

zB

g
η

T̄

(
w̄

∂θ̄

∂z
− QR

)
dz.

This then leads to the estimate

F ∼ Hg

T0
|QR|

∼ 104 m × 10 m s−2 × (300 K)−1 × 3 × 10−5 K s−1

∼ 10−2 J kg−1 s−1.

Here T0 ∼ 300 K is the surface temperature and 1 day
∼ 105 s.

Note that the above estimate of the large-scale forcing can
be considered a median value for the wide range of values
possible. The large-scale forcing may be much larger under
strong large-scale ascent or much weaker (even negative)
under large-scale descent.

An estimation of the convective damping rate γ can be
obtained from eqs (B36) and (B37) of Arakawa and Schubert
(1974). It can be shown that so long as the precipitation
efficiency of convection is close to unity the dominant
damping term is adiabatic warming due to the environmen-
tal compensating descent (cf., figure 11 of Arakawa and
Schubert, 1974), which is approximately given by

γ �
∫ zT

zB

g
η2

ρCpT̄

∂ s̄v

∂z
dz

�
∫ zT

zB

g
η2

ρT̄

∂θ̄

∂z
dz ∼ g

H

ρBT0

∂θ̄

∂z

∼ 10 m s−2 × 104 m

1 kg m−3 × 300 K
× 3 × 10−3 K m−1

∼ 1 J m2 kg−2.
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An explicit evaluation of the actual integral produced∫ zT
zB

η2/ρ dz � 2H. The factor of 2 was neglected in the
above estimate.

As a consequence of the above estimates, a typical
equilibrium mass flux is estimated to be

M0 = F

γ
∼ 10−2 kg m−2 s−1.

A suitable estimate for the kinetic energy dissipation time-
scale τD is less clear. The suggestion of Randall and Pan
(1993) and Pan and Randall (1998) was that τD ∼ 103 s,
while Khairoutdinov and Randall (2002) computed values
in the range 4–8 h for the dissipation of a kinetic energy
measure that included contributions from the horizontal
components of velocity and mesoscale eddies. On the other
hand, if we suppose that the dissipation rate is primarily
controlled by the convective entrainment rate, as suggested
by de Roode et al. (2000), then we obtain

τD ∼ σρB

λM0
∼ 105 s ∼ 1 day

for σ ∼ 10−1, ρB ∼ 1 kg m−3, a fractional entrainment rate
λ ∼ 10−4 m−1 and M0 ∼ 10−2 kg m−2 s−1. This is rather a
long time-scale.

As a result, the equilibrium cloud work function is
estimated to be in the range

A0 = β

τD
∼ 10−1–10 J kg−1.

Such values are smaller than typically observed values
for CAPE (∼ 103 J kg−1) but are not too dissimilar to
observational estimates of the cloud work function for
relatively low clouds (with cloud-top heights of less than
∼ 300 hPa), as given by figures 9–11 of Lord and Arakawa
(1980). Broadly similar values, much smaller than CAPE,
have typically been quoted for generalized CAPE (Wang and
Randall, 1994; Xu and Randall, 1998). Recall also that β is
rather underestimated here.

Finally, by putting all of these estimates together, the
non-dimensional forcing parameter is estimated to be in the
range

f̃ = Fτ 2
D

β
∼ 1–104.

Note that this is an upper-bound estimate, because β could
be larger and the large-scale forcing could be weaker under
a descending environment.

3.4. Perturbation analysis

The governing system of Eqs (24a) and (24b) is nonlinear.
However a perturbation analysis around the equilibrium
solution (x, y) = (0, 0) provides some hints about its general
behaviour. Linearization of Eqs (24a) and (24b) leads to

ẋ = y,

ẏ = −x,

which furthermore reduces to a single equation for x:

ẍ + x = 0.

The solution is a sinusoidal oscillation with unit
frequency. The corresponding dimensional period is given
by 2πτD f̃ −1/2 = 2π(β/F)1/2. By substituting the parameter
estimates from the last subsection, a typical period is
estimated to be ∼ 6 × 103 s∼2 h. Note that the period is
longer for weaker forcing F and stronger convection β.
We expect that the actual period may vary by an order of
magnitude around this estimate, depending on the specific
case. Most importantly, though, the period is independent
of the kinetic-energy dissipation time-scale τD.

3.5. Nonlinear periodic orbit

Even in the fully nonlinear regime, it is straightforward to
define the orbits of the present system. Eqs (24a) and (24b)
can be rewritten as

dx

(1 + x)y
= −dy

x
= dt.

From the first equality, we obtain

x dx

(1 + x)
+ y dy = 0.

Since the two terms depend only on x and y respectively, the
above equation is integrable and we obtain the solution

x − ln(1 + x) + y2

2
= C, (25)

where C is a constant.
It is straightforward to prove that X(x) ≡ x − ln(1 + x) is

always positive and thus the above solution (25) constitutes
a closed orbit. It also follows that, even in the fully nonlinear
regime, the system presents a periodic cycle.

Examination of the form of the function X(x) provides
some insight into the shape of the solution orbit. Its Taylor
expansion is

X(x) =
∞∑

n=2

(−1)n xn

n
= x2

2
− x3

3
+ · · ·

The most obvious conclusion is that in the small-amplitude
limit of |x| 	 1 the orbit is asymptotic to a circle in the
(x, y) plane, in agreement with the previous subsection.
More importantly, due to the contribution from the cubic
term in the expansion, the orbit exhibits an asymmetry
between positive and negative x, with X(x) increasing more
rapidly for negative x when x moves away from the origin.
Consequently, the system must respond to changes in the
renormalized cloud work function y by producing weaker
changes in x on the negative side (when convective is
subdued) than on the positive side (when convection is
active).

It is this tendency that leads to the discharge–recharge
mechanism that will be shown graphically in the next
subsection. In the recovering (recharge) phase with negative
x, the convective mass flux x changes only weakly with
increasing cloud work function y. On the other hand, once
convection is triggered (discharge phase) the enhanced mass
flux (x > 0) makes a swing of growth and decay by following
the decreasing cloud work function y.
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Figure 1. Examples of the solutions in phase space for the simple model
(Eqs (24a) and (24b)) representing the convective discharge–recharge
process. The x and y axes are the non-dimensionalized mass flux and cloud
work function respectively. Five solutions are shown with different initial
conditions. All solutions evolve in a clockwise manner, following a cycle
of discharge with decreasing cloud work function y and recharge with
increasing cloud work function y.

3.6. Examples of nonlinear solutions

A full solution for the time evolution of the system of
Eqs (24a) and (24b) can be expressed in terms of an elliptic
function. However, we do not pursue that path here because
a closed expression for the elliptic function is not readily
available. Instead, the following results have been produced
from numerical time integrations, although, for example,
the orbits shown in Figure 1 could also have been plotted
directly from Eq. (25).

Example solutions are shown in Figure 1. Numerical time
integration is performed with the fourth-order Runge–Kutta
method. The figure shows the evolution of the system in
phase space, initialized with y = 0 and various values for
x(< 0). Note that all the solutions evolve in a clockwise
manner and recall that x = −1 corresponds to zero mass
flux (cf., Eq. (21a)), whilst y = 0 is the equilibrium value of
the cloud work function.

A process for discharge and recharge is noticeable for all
of the solutions shown. Initially the cloud work function y
simply increases with time by constant forcing with little
change in the convection (i.e., x ∼ constant). Once the cloud
work function reaches a threshold, convection suddenly
begins to increase in strength, rapidly consuming the cloud
work function. This marks the beginning of the discharge
process. Convective mass flux increases until the cloud
work function reduces to its equilibrium value (y = 0) and
thereafter the convective activity reduces towards the initial
minimum level while the cloud work function continues
to decrease. This marks the beginning of another recharge
process: the cloud work function gradually begins to recover
in order to prepare for another convectively active phase.

3.7. Mechanism of discharge–recharge process

The discharge–recharge of the system stems from the
nonlinearity in the generation rate of the cloud work
function found on the right-hand side of Eq. (19a). This
leads to an asymmetry in the orbit shape (Eq. (25)).

To consider this asymmetry further, it is instructive to
perform a perturbation analysis of the system initialized
with a state that has near-zero convective activity:

x = −1 + εζ ,

where ζ is a new variable representing the mass flux and
the small parameter ε measures the closeness of the initial
condition to the zero mass-flux state (we may set ζ = 1 as an
initial condition). Substitution of the above into Eqs (24a)
and (24b) leads to

ζ̇ = yζ , (26a)

ẏ = 1. (26b)

Eq. (26b) shows that the cloud work function increases
linearly with time, y = t, as a recharge process. Substitution
of this result into Eq. (26a) shows that the evolution of

mass flux is exponential, ζ = et2/2, with its enhancement
becoming noticeable only after a finite time, t = O(1). This
marks the beginning of the discharge process.

In order to demonstrate the recharge–discharge eluci-
dated by the perturbation analysis above, we plot a time
series of a solution in Figure 2, using the initial condition
x = −0.95, y = 0. In the initial recharge phase, the cloud
work function (long-dashed) increases linearly with time
while the mass flux (solid) grows exponentially and only
becomes substantial within the following discharge phase.
Note that the mass flux (convective activity) as a whole
has a pulse-like behaviour, with the clear dichotomy of a
quiescent phase (recharge) and an active phase (discharge).
The decrease of cloud work function in the discharge phase
is slightly faster than the increase in the recharge phase.

3.8. General features

As seen from the perturbation analysis in the previous
subsection, discharge–recharge is well manifested when the

Figure 2. An example time series representing the discharge–recharge
process. Enhanced convective activity, measured by the mass flux x (solid
line), is triggered only after the cloud work function y (long-dashed line)
has been fully recharged. A discharge of convective energy (sudden decrease
in both curves) then leads to the next phase of the recharge process. Note
that both variables as well as time are given in non-dimensional units. See
text for details.
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Figure 3. The period of the convective discharge–recharge system as a
function of the initial non-dimensional mass flux value x(t = 0). The initial
cloud work function is assumed to be at equilibrium (i.e., y = 0), and x is
defined such that x = 0 is the equilibrium state and x = −1 corresponds to
the state of no convection. Note that the period is normalized by 2π(β/F)1/2,
as predicted by a perturbation analysis for small x in section 3.4.

initial condition has a small value of mass flux. In this
subsection, we turn our attention to some more general
features of the system.

A first point to note is that the zero mass-flux state
is singular, in the sense that convective activity never
develops and so the cloud work function simply continues
to increase linearly with time. In other words, a small but
finite convective seed is required in order for convection to
grow. This reflects the fact that the system only describes the
evolution of an ensemble of convection and is incapable of
describing the initiation of individual convection, as already
emphasized at the beginning of section 2.1.

As the initial condition departs more from zero mass flux
(i.e., x = −1) and approaches the equilibrium state (i.e.,
x = 0), then discharge–recharge becomes less manifest, as
seen in Figure 1. The limit of small x is well described by
a linear perturbation around the equilibrium solution, as
presented in section 3.4.

The period of the discharge–recharge cycle can, in
principle, be evaluated by performing an elliptic integral.
Instead, here we prefer a simple numerical approach,
defining the period from the time at which y changes sign for
the second time (with the initial condition y = 0 being used
throughout). The result is shown in Figure 3 as a function
of the initial mass flux value x(t = 0). Here, the period is
scaled such that unity corresponds to the prediction from
the perturbation analysis in section 3.4. It is found that
the prediction from this linear analysis works quite well for
a wide range of initial conditions, except for a tendency
towards infinity as the initial condition approaches x = −1.

3.9. Modifications to the model

The model proposed here is extremely simplified, and thus
it is easy to point out various unphysical features and even
simply to condemn it as unphysical. At the same time, the
model is so simple that it is also extremely easy to try various
mathematical variations of the problem, but without firm
physical basis. With that general caveat in mind, in this

subsection we briefly consider some possible modifications
of the model in order to improve its physical relevance.

The most noticeable defect of the present model is a
consequence of its prediction that the cloud work function
sustains larger variations for larger values of the non-
dimensional forcing f̃ and also for smaller values of the
initial mass flux (i.e., x → −1+). The model permits such
variations to be large enough that the cloud work function
can become overdamped, even producing negative values.‡

The reason for this defect is our basic premise that
the large-scale state is fixed with time. As a result, the
convective damping rate γ , which is a function of the en-
vironmental state in reality, is treated as a constant in the
present formulation. More mathematically, the cloud work
function is damped only linearly (Eq. (22b)) and thus there
is no possibility of controlling the overdamping tendency.
This is in contrast to the mass-flux equation, Eq. (22a),
which is controlled by a nonlinear damping that ensures the
mass flux always remains positive.

The overdamping of the cloud work function can be
prevented by introducing a similar nonlinear damping rate
to the cloud work-function equation, rewriting Eq. (22b) as

ẏ = −f̃ (1 + y)x. (27)

Physically, this reformulation is achieved by assuming that
both the convective damping rate γ and the large-scale
forcing F are proportional to the cloud work function. The
latter assumption could be justified by reasoning that large-
scale forcing is less effective as the atmosphere approaches
neutral stability (i.e., vanishing cloud work function). This
assumption leaves the equilibrium solution for the mass flux
independent of the cloud work function.

The results after this modification are shown in Figure 4
for the same set of initial conditions as in Figure 1 and for
the case with f̃ = 1. Note that due to the modification of
the system it is no longer possible to transform it into a
universal form as for the original system. The modification
leads to behaviour still closer to our expectations of
discharge–recharge: convective activity continues to increase
until the cloud work function is almost depleted and only
then does it begin to decay.

A similar modification would be to allow the large-scale
forcing to be maintained independently of the value of the
cloud work function, while making the convective damping
rate γ proportional to the cloud work function as above. In
that case, the solution turns into a damping oscillator.

In fact, examination of appendix B of Arakawa and
Schubert (1974) shows that the convective damping rate
γ is not constant even under a constant environment, but
rather it has some explicit dependence on the cloud work
function. This stems from the tendency of the mixed-layer
height zB to decrease under a given cloud-base mass flux, as
seen in their eq. (B23):

∂

∂t
zB ∼ −MB

ρB
.

‡In fact this is not totally unphysical, but it is clearly against our
observational knowledge that the tropical atmosphere is almost always
conditionally unstable. A state with a strongly negative CAPE is not
observationally known in the tropical atmosphere (cf., Roff and Yano,
2002).
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Figure 4. As Figure 1, but with a cloud work-function dependence having
been introduced to the cloud work-function tendency equation (cf.,
Eq. (27)). This additional nonlinearity prevents the cloud work function
from overdamping into a negative state (y < −1).

According to their eq. (B21), this tendency results in an
increasing cloud work function:

∂

∂t
A ∼ −λA

∂

∂t
zB ∼ λ

ρB
AMB.

In our notation, this term corresponds to a convective
damping rate that depends on the cloud work function as

γ = γ0 − λ

ρB
A,

with γ0 a constant. Qualitatively speaking, the additional
term can be considered as a destabilization tendency of the
system due to the boundary-layer forcing.

The same perturbation analysis as in section 3.4 shows
that this modification leads to an exponentially growing
oscillator. Numerical experiments support this tendency for
larger departures from the equilibrium state. However, the
growth rate is rather slow and substitution of standard values
gives an estimate λM0/ρB ∼ 10−6 s−1 as a growth rate.

Finally, we mention the effect of a modification of the
functional relationship of Eq. (9) by setting the power
p = 1 + µ. A small positive value for µ is suggested by
the CRM results discussed in section 2.4, in the sense that
variations in σB are not completely sufficient to explain the
CRM results described. The solution becomes a decaying
orbit, with a slow approach towards the equilibrium state
being governed by the value of µ. If µ is taken to be small
and negative, however, the solution spirals slowly away from
the equilibrium state.

4. Discussion

The present article shows that under an idealized, constant,
large-scale forcing a convective system under convective
damping does not necessarily approach an equilibrium state
over time, but rather could remain in a perpetual periodic
cycle. A typical period cycle, of the order of hours, identified
in the present model is arguably much shorter than the
characteristic time-scale, of the order of days, expected for
typical large-scale processes. For this reason, the finding

does not necessarily contradict the observational evidence
for convective quasi-equilibrium (most notably figure 13 of
Arakawa and Schubert, 1974, but see also Yano et al., 2000).

However, the persistent, finite departure from equilib-
rium is potentially relevant for various convective systems,
especially because the cycle is longer for weaker large-scale
forcing. A first possible application could be as a (partial)
explanation for the delay of convective onset in the diurnal
cycle (cf., Guichard et al., 2004). In the diurnal cycle, it is
commonly believed (ibid) that the pre-existence of shallow
convection is crucial in order to trigger deep convection.
However, a finite departure from quasi-equilibrium could
be more fundamental, as emphasized by Jones and Randall
(2011). The present model captures the basic behaviour
of a convective system under such a finite departure, even
though shallow convection is not explicitly considered.

The present model could even be considered as a very
crude prototype for the MJO under a discharge–recharge
mechanism (Bladé and Hartmann, 1993; Benedict and
Randall, 2007; Thayer–Calder and Randall, 2009) with very
weak large-scale forcing. The gap in scales that would have to
be breached in order to justify such an application is rather
large, but may not be totally unreasonable, given that the
large-scale forcing can vary from positive to negative over
the whole cycle of the MJO and thus the mean large-scale
forcing could be rather weak. This interpretation may even
not be inconsistent with the ‘observed’ convective quasi-
equilibrium, because the cloud work function (CAPE) is
expected to fluctuate only weakly and slowly in the limit of
weak forcing. Nevertheless, further study is clearly required
by explicitly coupling the present model with a simple
large-scale dynamical model.

Some subtle issues of the present model are also remarked
upon here.

1. The discharge–recharge process in the present study
is a consequence of the special choice p = 1 for the
similarity-relation parameter in Eq. (9). Note that the
case with p = 2 considered by Pan and Randall (1998)
leads to a damping solution under constant large-scale
forcing, with the damping time-scale being given by
τD as inspection of their eq. (30) suggests.

2. No ‘triggering’ process can be considered under
the present formulation in the strict sense: rather,
the presence of pre-existing convection is an
important precondition in order to see the subsequent
enhancement of convection.

3. The present formulation provides a way of predicting
the convective-plume population with time under the
assumption of a fixed strength for the individual
convective plumes. In order to consider also the
possible time dependence of this strength, as measured
by the cloud-base convective vertical velocity wB, an
additional prognostic equation would be required, for
which additional assumptions would be needed (cf.,
Yano et al., 2010).

4. Although the present study makes a bulk simplifica-
tion, it is straightforward to generalize the formulation
to treat a spectrum of convective plumes.

5. Conclusions

We have proposed a simple equation set suitable for studying
the time evolution of a convective system. The equations
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used are those for the energy cycle of an ensemble of
convective plumes, as originally introduced by Arakawa
and Schubert (1974). The system is closed by introducing
an Ansatz for the functional relationship between the
convective kinetic energy and the cloud-base mass flux.
Thus, the derivation of our equation set is conceptually
similar to that of Randall and Pan (1993) and Pan and
Randall (1998). The key difference is in the Ansatz chosen.
The earlier authors posited K ∼ M2

B but we have argued that
this form is not favoured by the dependences expected from
equilibrium statistical theories and the results from various
equilibrium CRM studies (Emanuel and Bister, 1996; Shutts
and Gray, 1999; Parodi and Emanuel, 2009). In order better
to respect those CRM results, we investigate instead the
equation set resulting from K ∼ MB.

A linear analysis shows that the equilibrium state is
neutral, such that any perturbation from the equilibrium
state produces a periodic solution. The fully nonlinear
analysis shows further that any solution from any initial
condition takes the form of a periodic cycle. An exact
solution is available in terms of an elliptic function, while
the shape of the orbit in phase space can be determined by
a simple analytical method. The orbital period depends on
the distance of the initial state from the equilibrium state.

Qualitatively, the periodic orbit takes on an approximately
‘triangular’ form. With the system initialized from a state of
low convective kinetic energy and low cloud work function,
it gradually evolves towards a high cloud work-function state
but without noticeable change of kinetic energy (a recharge
process). Once the cloud work function reaches a threshold,
convective activity increases rapidly. The kinetic energy
increases by following a roughly linear trajectory and this
continues until the cloud work function has been reduced to
its equilibrium value. From there, the kinetic energy makes
a sudden turn and begins to decrease by following a roughly
linear trajectory until it reaches a minimum. The orbit has
then been closed, the discharge process is over and a new
cycle of recharge begins.

The recharge-discharge mechanism is often invoked in
the context of the MJO. Note that although the period
predicted for the recharge–discharge periodic cycle by
the present study is much shorter, a particular regime
with much weaker mean large-scale forcing and stronger
individual convective elements (i.e., larger β) could help to
explain the MJO cycle. The present study also suggests that a
consideration of finite departures from the equilibrium state
may be important in order to understand the time evolution
of various atmospheric convective systems, not only the
MJO but also the diurnal cycle of convection, for example.

Further investigations are clearly warranted. For an
application to the MJO, coupling of the model with large-
scale dynamics is crucial. For an application to the diurnal
cycle, the inclusion of shallow convection as a second
convective type in the energy-cycle description is the next
step to take. At the most fundamental level, more extensive
CRM analyses are required§ in order to define the most

§Some suitable diagnostics towards this end were very recently published
by Jones and Randall (2011), their figures 9 and 12 showing the evolution
of cloudy updraught mass flux and the vertical component of kinetic
energy, respectively. Unfortunately for our present purposes the figures
were constructed from different simulations and so cannot be used
as a direct test for a particular functional relationship between those
quantities.

plausible exponent value p in the proposed generalized
similarity theory of Eq. (9).

The energy cycle of the convective system considered in
the present work has much wider applicability. It opens
a possible route towards statistical cumulus dynamics, a
methodology proposed by Arakawa and Schubert (1974) as
a systematic approach to the closure problem. At present,
only semi-phenomenological descriptions of some aspects of
equilibrium statistical cumulus dynamics exist (e.g., Cohen
and Craig, 2004, 2006; Craig and Cohen, 2006; Plant and
Craig, 2008; Plant, 2009). In order to address time-varying
applications, such investigations should also be compared
with suitable CRM analyses of plume statistics, such as those
produced by Xu and Randall (2001).

Acknowledgements

Discussions with Till Wagner have helped to inspire the
present work. Thanks are also due to Cathy Hohenegger
for her careful reading of the manuscript. This work was
supported by a joint project award from the Royal Society
and CNRS. Discussions through the COST Action ES0905
are also acknowledged.

References

Arakawa A. 1993. Closure assumptions in the cumulus parametrization
problem. In The Representation of Cumulus Convection in Numerical
Models, Emanuel KA, Raymond DJ. (eds.) Meteorological Monographs
46: 1–15. Amer. Meteorol. Soc.: Boston, MA.

Arakawa A. 2004. The cumulus parametrization problem: Past, present,
and future. J. Climate 17: 2493–2525.

Arakawa A, Chen J-M. 1987. ‘Closure assumptions in the cumulus
parametrization problem’. In Short- and Medium-Range Numerical
Weather Prediction: Collection of Papers at the WMO/IUGG NWP
Symposium, Tokyo, 4–8 August 1986, pp 107–131.

Arakawa A, Cheng M-D. 1993. The Arakawa–Schubert cumulus
parametrization. In The Representation of Cumulus Convection in
Numerical Models, Emanuel KA, Raymond DJ. (eds.) Meteorological
Monographs 46: 123–136. Amer. Meteorol. Soc.: Boston, MA.

Arakawa A, Schubert WH. 1974. Interaction of a cumulus cloud ensemble
with the large-scale environment, Part I. J. Atmos. Sci. 31: 674–701.

Bechtold P, Bazile E, Guichard F, Mascart P, Richard E. 2001. A mass-flux
convection scheme for regional and global models. Q. J. R. Meteorol.
Soc. 127: 869–889.

Benedict JJ, Randall DA. 2007. Observed characteristics of the MJO
relative to maximum rainfall. J. Atmos. Sci. 64: 2332–2354.
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