
Accessing extremes of mid-latitudinal 
wave activity: methodology and application
Article 

Published Version 

Vitolo, R., Ruti, P. M., Dell'Aquila, A., Felici, M., Lucarini, V. 
ORCID: https://orcid.org/0000-0001-9392-1471 and Speranza,
A. (2009) Accessing extremes of mid-latitudinal wave activity: 
methodology and application. Tellus Series A: Dynamic 
Meteorology and Oceanography, 61 (1). pp. 35-49. ISSN 0280-
6495 Available at https://centaur.reading.ac.uk/27133/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://www.tellusa.net/ index.php/tellusa/article/view/15539 

Publisher: Wiley-Blackwell 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Reading’s research outputs online



Tellus (2009), 61A, 35–49 C© 2008 The Authors
Journal compilation C© 2008 Blackwell Munksgaard

Printed in Singapore. All rights reserved

T E L L U S

Accessing extremes of mid-latitudinal wave activity:
methodology and application

By R . V ITO LO 1∗, P. M . RU TI2, A . D ELL’AQ U ILA 2, M . FELIC I1,3, V. LU C A R IN I4

and A . SPER A N ZA 1, 1PASEF – Physics and Applied Statistics of Earth Fluids, Dipartimento di Matematica ed
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A B S T R A C T
A statistical methodology is proposed and tested for the analysis of extreme values of atmospheric wave activity at
mid-latitudes. The adopted methods are the classical block-maximum and peak over threshold, respectively based on
the generalized extreme value (GEV) distribution and the generalized Pareto distribution (GPD). Time-series of the
‘Wave Activity Index’ (WAI) and the ‘Baroclinic Activity Index’ (BAI) are computed from simulations of the General
Circulation Model ECHAM4.6, which is run under perpetual January conditions. Both the GEV and the GPD analyses
indicate that the extremes of WAI and BAI are Weibull distributed, this corresponds to distributions with an upper bound.
However, a remarkably large variability is found in the tails of such distributions; distinct simulations carried out under
the same experimental setup provide sensibly different estimates of the 200-yr WAI return level. The consequences
of this phenomenon in applications of the methodology to climate change studies are discussed. The atmospheric
configurations characteristic of the maxima and minima of WAI and BAI are also examined.

1. Introduction

Recently, different aspects of the general circulation of the at-
mosphere have been investigated within the framework of either
very simplified models or state-of-the-art GCMs, namely:

(1) the statistical properties, specifically extreme value statis-
tics, of time-series of total energy generated by a baroclinic
model of intermediate complexity for the atmospheric mid-
latitudes (Felici et al., 2007a,b; Lucarini et al., 2007a,b);

(2) the description of wave propagation in the mid-latitude
atmosphere as simulated by a state-of-the-art coupled GCMs
(simulations for the IPCC report) and associated products such
as reanalyses (Dell’Aquila et al., 2005; Ruti et al., 2006; Lucarini
et al., 2007c).

While in the papers cited in (1) the procedures concerning ex-
treme statistics and their parametric inference have been defined,
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in the papers quoted in (2), dynamically oriented climate met-
rics aimed at capturing the basic statistical properties of the
fundamental features of the mid-latitude atmospheric variability
– for example, synoptic baroclinic waves and planetary waves
– have been introduced with the purpose of auditing GCMs and
reanalyses. In this paper our purpose is to join the two research
streams described above. Namely, we aim at developing a sound
methodology to attack the meteo-climatic problem of determin-
ing the sensitivity of the (extreme) statistics of mid-latitudinal
disturbances to CO2 increase. The change in the statistics of
mid-latitude disturbances is considered a complex issue, as it
is not obvious to determine which mechanisms are involved in
the change of the meridional temperature gradient at the various
pressure levels. The method of investigation we propose is based
on performing rigorous statistical analysis of extreme values of
‘dynamically oriented metrics’.

The Northern Hemisphere mid-latitude variability is mainly
driven by large-scale (specifically: planetary scale) processes
which affect, at different spatial and temporal scales, the variabil-
ity of surface parameters (i.e. precipitation, wind, temperature).
The latter parameters are those typically observed in the me-
teorological networks and stored in the records. Nevertheless,
time-series of sufficient length, suitable for reliable statistical
analysis of extreme values, are not always available. This has
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36 R. VITOLO ET AL.

sometimes led the researchers to adopt weaker criteria for the
selection of events to be used for analysis of extreme value statis-
tics. In parametric inference this may introduce a substantial bias
(Felici et al., 2007a); in practice, different studies based on the
same data may obtain different quantitative results.

With respect to observations, the usage of model-generated
data has the advantage that it makes it possible to satisfy the
necessary requirements of length and quality of the record, dis-
cussed in, for example, Felici et al. (2007a). Indeed, statisti-
cal analysis of extreme events has been successfully applied to
time-series of surface parameters produced by climate models.
Beniston et al. (2007) consider heat waves, heavy precipitation,
drought, wind storms and storm surges changes between present
and future climate on the basis of regional climate model sim-
ulations produced by the PRUDENCE project. Potential future
changes in temperature and precipitation extremes have been ex-
amined in an ensemble of global coupled climate models used for
the preparation of the Fourth IPCC Assessment Report (Kharin
et al., 2007). Temperature and precipitation extremes were al-
ready considered in Zwiers and Kharin (1998), Kharin and
Zwiers (2000). For evident reasons, most of the research on
extremes in climate models focuses on surface parameters such
as temperature, precipitation and wind. Here, we wish to explore
a different aspect: extremes of planetary and baroclinic atmo-
spheric waves. Obviously, surface fields are strongly influenced
by planetary-scale driving processes, but the characterization on
sound theoretical grounds of a well-defined relation between the
two is an open (and very hard) problem. One way of tackling this
is through statistical downscaling, see, for example, Friederichs
and Hense (2007).

Among the dominant physical processes featured in the mid-
latitude atmospheric dynamics, the synoptic waves and the in-
teraction between ultra-long waves having zonal wavenumber
smaller than five (Bordi et al., 2004) and topography are main
ingredients. The synoptic travelling perturbations can be repre-
sented as high-frequency high-wavenumber eastward propagat-
ing spectral features, characterized by periods of order 2–7 d
and by spatial scales of a few thousand kilometres. These per-
turbations can be associated with the release of available energy
driven by conventional baroclinic conversion (Blackmon, 1976;
Speranza, 1983; Wallace et al., 1988), so that they are often
referred to as baroclinic waves. On the other hand, so-called
planetary waves, which interact with orography (Charney and
DeVore, 1979; Charney and Straus, 1980; Buzzi et al., 1984;
Benzi et al., 1986) and are catalysed by the subtropical jet
(Benzi and Speranza, 1989; Ruti et al., 2006), play a dom-
inant role in the low-frequency low-wavenumber spectral re-
gion of so-called stationary waves, whose characteristic time
and space scales belong to the interval 10–45 d and 7000–
15 000 km, respectively (Hansen and Sutera, 1986).

The methodology of the present work consists in analysing the
statistics of extreme values (in the parametric setting) for indexes
large-scale atmospheric activity. A state-of-the-art GCM is run

in perpetual winter conditions for present-day atmospheric CO2

concentrations. We generate time-series of the Wave Activity
Index (WAI) and of the Baroclinic Activity Index (BAI), which
may be considered as proxies of the activity of the planetary and
synoptic waves, respectively (Benzi et al., 1986; Hansen and
Sutera, 1986; Dell’Aquila et al., 2007). Extreme value analysis
is then performed by fitting generalized extreme value (GEV)
distributions and generalized Pareto distributions (GPD) (Coles,
2001; Felici et al., 2007a,b) on subsequences of ‘extreme values’
extracted from the generated time-series. For the GEV, the ex-
treme values are defined as maxima (or minima) computed over
blocks of sufficiently large size, whereas for the GPD the ex-
tremes are values exceeding a sufficiently high threshold (for this
reason, the latter is also called the peaks over threshold method
– POT for shortness). The aim of studying the extremes of the
WAI and BAI is to identify dynamically meaningful features of
the general atmospheric circulation whose response under CO2

increase can be accurately assessed. The latter issue is subject of
current research by some of the authors. We emphasize that the
above methods provide a common ground which can simplify
the comparison of results from different studies, compare with,
for example, Beniston et al. (2007).

We now give an outline of the paper. A short description of
the model, metrics and statistical methodology can be found in
Section 2. The general statistical properties of the time-series
are analysed in Section 3, whereas the extreme value analysis is
reported in Section 4. Conclusions and lines of future research
are summarized in Section 6.

2. Data and methods

2.1. Description of the model and experimental setup

The atmospheric model used in this study is ECHAM4.6, an
evolution of the model used by Roeckner and Arpe (1995),
belonging to the fourth generation of GCM developed at the
Max Planck Institute for Meteorology in Hamburg. It is an evo-
lution of the spectral weather prediction model of the Euro-
pean Centre for Medium Range Weather Forecasts (Simmons
et al., 1989). ECHAM4 uses the spectral transform method
for ‘dry dynamics’ while water vapour, cloud water and trace
constituents are advected by using a shape-preserving semi-
Lagrangian scheme (Williamson and Rasch, 1994). The model
atmosphere is vertically resolved in 19 layers, from the surface
up to 10 hPa. The model contains a set of parametrization for
unresolved or not explicitly represented dynamical and physi-
cal processes, including radiation (Fouquart and Bonnel, 1980;
Morcrette, 1991), cumulus convection (Tiedke, 1989; Nordeng,
1994) stratiform clouds (Roeckner, 1995), gravity wave drag
(Miller et al., 1989), vertical diffusion and surface fluxes, land
surface processes and horizontal diffusion. A summary of the de-
sign and performance of ECHAM4 can be found in Roeckner and
Arpe (1995).
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The simulations analysed in this paper have been performed
at T30 spectral horizontal resolution, corresponding approxi-
mately to a grid of 3.75◦ × 3.75◦. The GCM has been run for
600 model months (30 d each), under perpetual January condi-
tions, with present-day value of CO2 concentration (360 ppmv).
The sea surface temperature (SST) and sea ice cover are kept
constant in time and fixed to the climatological mean of the
month of January. The choice of using simulations without sea-
sonal cycle has a two-fold motivation, first of all, mid-latitude
atmospheric processes which might be affected by the climate
change, specifically the baroclinic activities, ‘take place under
winter conditions’ (Blackmon, 1976). Moreover, stationarity im-
plies that there is no need to detrend the data; for inference of
extreme values this is an important advantage, since it allows
to reduce the number of parameters which are necessary in the
statistical model. This, in turn, allows to more clearly understand
the nature of variability in the time-series, see the discussion in
Felici et al. (2007b).

2.2. Wave indexes used for the computation
of time-series

Our study focuses on the Northern Hemisphere mid-latitude
atmospheric winter variability, therefore, we consider the lat-
itudinal belt 30◦N–60◦N, where both the baroclinic and the
low-frequency planetary wave activities are present in the
ECHAM4.6 model. The 500 hPa geopotential height field is
latitudinally averaged over this belt, to define a one-dimensional
longitudinal field representative of the atmospheric variability at
mid-latitudes. We have verified that the results presented below
are not sensitive with respect to small variations in the latitudinal
band, this is compatible with the fact that they mainly refer to
planetary-scale coherent atmospheric features. We choose the
500 hPa geopotential height because it is one of the typical vari-
ables used for the study of the planetary and synoptic scale at-
mospheric circulation (Blackmon, 1976) and for the comparison
of different atmospheric data sets of climatological relevance.
The indexes of dynamical activity for large-scale features of the
mid-latitude troposphere are computed according to the follow-
ing procedure:

(1) the 500 hPa geopotential height field Z(λ, φ) is averaged
with respect to latitude φ over the latitudinal band bounded
between 30◦N and 60◦N;

(2) for each day, the 500 hPa geopotential height is Fourier
decomposed in the longitudinal direction λ;

(3) an index is finally computed from the variance associated
to the Fourier coefficients Zk for k ranging from k1 up to kn:

Zk1,kn
(t) =

(
kn∑

k=k1

2|Zk(t)|2
) 1

2

. (1)

The Wave Activity Index (Benzi et al., 1986; Hansen and
Sutera, 1986), or WAI, is then computed as the root mean square

of the zonal wavenumbers 2–4 of the winter 500 hPa geopotential
height variance over the channel 30◦N–60◦N, that is, formula (1)
with n = 3, k1 = 2 and k3 = 4. Furthermore, an index of synoptic
disturbances has been computed using n = 3, k1 = 6 and k3 = 8;
we refer to this as the BAI. The physical meaning of the above
introduced WAI and BAI is further discussed in Section 3.

2.3. Statistical inference of extreme values

We assume that the time-series generated by the ECHAM model
(see Sections 2.1 and 2.2) are realizations of an unknown
stochastic process and we use these time-series to perform two
kinds of ‘parametric inferences’: point and interval estimations.
Two parametric models are chosen for the statistical analysis
of extremes: the GEV distribution and the GPD. Different in-
ferential procedures are associated to the GEV and GPD: for
the former one typically adopts the ‘annual maximum’ method,
whereas the latter is used in conjunction with the POT method
(Coles, 2001; Smith, 2004). The GEV distribution function is

G(x) = exp

[
−

(
1 + ξ

x − μ

σ

)−1/ξ

+

]
, (2)

where the notation F(x)+ means the following: F(x)+ = F(x)
for all x such that F(x) > 0 and F(x)+ = 0 otherwise. For ξ = 0,
the GEV reduces to the Gumbel distribution (see Coles, 2001).
Given a time-series, the distributional parameters (μ, σ , ξ ) are
inferred by maximum likelihood procedures from sequences of
block maxima extracted from the time-series.1 The methodol-
ogy has been described in detail in Felici et al. (2007a,b), also
see Coles (2001), Smith (2004) for basic theory and more ex-
amples. It should be emphasized that the GEV model is valid
only ‘asymptotically’. More precisely, one has to assume that the
observed time-series is the realization of a stationary stochastic
process Xi belonging to the so-called maximum domain of at-
traction (Resnick, 1987; Malevergne et al., 2006); denoting the
maximum of the first n observations by M∗

n , one must assume
that there exist constants an and bn such that the normalized
maximum Mn = (M∗

n − bn)/an converges to a non-degenerate
distribution G. Under these assumptions, G is of the form (2). In
the applications, the parent process Xi is a priori unknown and
it is, therefore, not possible to determine whether the constants
an and bn exist or not; one tacitly assumes that they do exist.
At any rate, the constants an and bn can be ‘absorbed’ in the
point estimates of the parameters μ and σ , assuming that one
is in the asymptotic range of the validity of the GEV, that is,

1 In environmental studies, a typical length for the blocks is 1 yr. For
example, this overcomes the problem of seasonal trend in the data. From
this derives the name of ‘annual maximum’ method.
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Pr (Mn ≤ x) ≈ G(x), then

Pr(M∗
n ≤ x) = Pr(Mn ≤ (x − bn)/an) =

= exp

{
−

[
1 + ξ

(
x − μ∗

σ ∗

)]−1/ξ∗}
, (3)

where μ∗ = anμ + bn, σ ∗ = anσ and ξ ∗ = ξ . This implies that
the point estimates of GEV parameters μ∗ and σ ∗, as inferred
by the block-maximum method, depend on the block length,
whereas ξ ∗ is independent (asymptotically). Therefore, the as-
sessment of the stability of the point estimates of ξ ∗ as block
length is varied gives an indication of goodness-of-fit.

The distribution function of the GPD is

H (x) = 1 −
(

1 + ξy

σ̃

)−1/ξ

+
. (4)

Under rather general conditions, the GPD is the limit of the
distribution of a random variable X conditionally on exceeding
a (high) threshold u. More precisely, by defining, for y > 0,

Fu(y) = P [X > u + y|X > u], (5)

then for large u the conditional distribution Fu tends to (4). It
turns out that the GEV and the GPD are very closely related;
Pickands’ theorem (Pickands, 1975) states that for any sequence
X1, X2, . . . with a given common term X, a GPD arises from
the large threshold limit of Fu in (5) if and only if there exist
normalizing constants an, bn and a non-degenerate distribution
function G such that

P [(Mn − bn)/an ≤ x] → G(x). (6)

In this case, writing G(x) as in (2), the shape parameter ξ is
the same as in the GPD (4), whereas the scale parameters are
related by

σ̃ = σ + ξ (u − μ). (7)

Given a sequence of independent and identically distributed
data x1, . . . , xn, extreme value modelling with the GPD is
achieved by first selecting all exceedances over a sufficiently
high threshold u. Suppose that there are nexc ordered exceedances
x(1) ≥ x(2) ≥ . . . ≥ x(nexc) > u and denote the threshold excesses
by yj = x(j ) − u for j = 1, . . . , nexc. Then, the yj are considered
as independent realizations of a random variable whose distri-
bution can be approximated by a member of the GPD family.
A suitable choice for the threshold u can be obtained by exam-
ining the ‘mean excess’ plot (also known as mean residual life
plot). This is based on the following idea: suppose that the ex-
ceedances above a threshold u0 are ‘exactly’ GPD-distributed.
Then the same holds for all thresholds u larger than u0 and, by
(7), the mean of the excesses above threshold u is given by

E[X − u|X > u] = σu

1 − ξ
= σu0 + ξ (u − u0)

1 − ξ
. (8)

An empirical estimate for the mean excess is provided by the
sample mean of the threshold excesses; by (8), the latter is ex-

pected to vary linearly with u, at least for sufficiently high values
of u, for which the GPD approximation is valid. Therefore, suit-
able threshold values are identified by looking for linearity in
the plot of points

(
u,

1

nexc

nexc∑
i=1

(x(i) − u)

)
, u ∈ [umin, umax]. (9)

Once a value for u has been selected, parameter estimation is
carried out by the maximum likelihood method, which also pro-
vides confidence intervals. Model checking is performed by a
variety of methods: among them, probability, quantile, density
and return level plots. Also, the stability of the estimated model
can be assessed by examining several fits obtained by vary-
ing the threshold. We refer to Coles (2001), Smith (2004) for
details. A standard chi-squared test is used to assess goodness-
of-fit (Perrin et al., 2006). The number of degrees of freedom of
the chi-squared distribution is computed here as the number of
classes minus four for the GEV (three for the GPD), to account
for the parameters which are estimated from the data by the
maximum likelihood. The number of classes may vary between
a maximum of 20 and a minimum of 9, to have at least five
residual degrees of freedom.

An important feature of the time-series analysed in the present
paper is that they possess a non-negligible amount of autocorre-
lation. In the GEV modelling framework, this typically does not
cause serious problems; taking blocks of sufficiently large size
yields uncorrelated sequences of block maxima. Therefore, one
can apply the GEV method as though the maxima were inde-
pendent. However, this is not possible in the GPD approach: for
time-series with autocorrelation, threshold exceedances tend to
occur in ‘clusters’ and there is no general theory which specifies
the joint distribution of neighbouring excesses (and, therefore,
the likelihood function). A simple and widely used technique
to counter this problem is the usage of so-called ‘decluster-
ing’ and is based on the idea that clusters of exceedances are
asymptotically independent (Hsing, 1987). ‘Runs declustering’
(Leadbetter et al., 1989) consists in marking exceedances as be-
longing to the same cluster if they are separated by fewer than a
fixed number r (the ‘run length’) of consecutive values below the
threshold. Once clusters are identified, the GPD is fitted to the
cluster maxima. We emphasize that the selection of the declus-
tering parameter r is largely arbitrary. A more sophisticated
declustering scheme, based on the estimation of the extremal
index, is proposed by Ferro and Segers (2003). However, for
simplicity runs declustering is used in the present paper.

A convenient way to summarize the statistical properties of
extreme values is the ‘return level’. Given a number p with 0 <

p < 1, the return level associated with the ‘return period’ 1/p is
defined as the value zp that has a probability p to be exceeded
by the block maxima of the time-series. In the GEV modelling
framework, a maximum likelihood estimator for zp is obtained
by plugging the estimates for (μ, σ , ξ ) into the formulae for the
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quantiles of G(x), obtained by inverting (2):

z∗
p =

{
μ∗ − σ∗

ξ∗ {1 − [− log(1 − p)]−ξ∗ } forξ ∗ 
= 0,

μ∗ − σ ∗ log[− log(1 − p)] forξ ∗ = 0.
(10)

Confidence intervals for zp may be obtained from those of (μ∗,
σ ∗, ξ ∗) by the ‘delta method’ (Coles, 2001; Felici et al., 2007a).
Notice that the delta method makes explicit use of the form
of the likelihood. When referring to the estimates of the GEV
parameters or of the return levels, for simplicity we will omit the
star, taking for granted the notion that the inferred values may
depend on the selected block length.

Similarly, in the GPD modelling approach, the m-observation
return level is defined as the level xm which is exceeded on
average every m observations (in this case, p = 1/m). Again, the
estimated values of (σ , ξ ) are plugged into the quantile formula
for the GPD, yielding the maximum likelihood estimator for xm:

x̂m = u + σ̂

ξ̂

[
(mζ̂u)ξ̂ − 1

]
, ζ̂u = nexc

n
, (11)

where nexc is the number of exceedances and n is the total number
of observations. If declustering is applied, however, one needs
to use the rate at which clusters occur, rather than the rate of all
exceedances: this leads to the formula

x̂m = u + σ̂

ξ̂

[
(mζ̂uθ̂ )ξ̂ − 1

]
, ζ̂u = nexc

n
, θ̂ = nclu

nexc
, (12)

where θ̂ is an estimate for the extremal index and nclu is the
number of observed clusters (Coles, 2001). It is the latter formula
that we will use for computation of return levels in the GPD
framework.

All computations in this paper have been carried out with
the statistical software R (R Development Core Team, 2008),
available at www.r-project.org under the GPL license. The
libraries ismev, which is an R-port of the routines written by
Stuart Coles as a complement to Coles (2001), and fExtremes

(both downloadable at www.cran.r-project.org) have been
used, as well as self-programmed routines.

3. Statistics of wave activity: a general overview

In this section, we first discuss the physical meaning of the WAI
and BAI introduced in Section 2.2, by giving a brief historical
account. After this, the statistical properties of the time-series
generated by the ECHAM model are discussed.

One of the classical problems in understanding the general
atmospheric circulation is to characterize the recurrent atmo-
spheric patterns of flow which are observed at mid-latitudes in
the Northern Hemisphere winters (Rex, 1950; Baur, 1951; Dole,
1983). The practical need motivating this research effort is two-
fold: the feasibility of extended range weather forecasts and the
detection of climate change (Corti et al., 1999). As a matter
of fact, it still is a subject of debate whether the large-scale
atmospheric circulation undergoes fluctuations around a sin-

gle equilibrium (Nitsche et al., 1994; Stephenson et al., 2004)
or multiple equilibria (Charney and DeVore, 1979; Benzi and
Speranza, 1989; Hansen and Sutera, 1995a; Mo and Ghil, 1988;
Ruti et al., 2006). Hansen and Sutera (1986) find bimodality in
the statistical distribution of time-series of the WAI computed
from observed data and orographic resonance theories provide
theoretical support to the hypothesis of a multimodal distribu-
tion for the activity of planetary waves. Specifically, Charney
and DeVore (1979) propose that the interaction between zonal
flow and wavefield (via form-drag) explains the occurrence of
multiple equilibria for the amplitude of planetary waves. How-
ever, in their barotropic theory, the transitions between the two
quasi-stable equilibria involve variations of the mean westerlies
which are much too large (�u ≈ 40 ms−1) with respect to ob-
servations (Malguzzi and Speranza, 1981; Benzi et al., 1986).
In Ruti et al. (2006), it has been shown that the bimodality of
statistics of the planetary waves is modulated by the intensity
of the subtropical jet, in accordance with the theoretical findings
of Benzi et al. (1986).

Taking into account these features of the general circulation
of the atmosphere, the model simulations gathered by the IPCC
possess a reasonable skill in reproducing the high-frequency
component of the spectral decomposition, less so for the low-
frequency part (Calmanti et al., 2007; Lucarini et al., 2007c).
In fact, considering the planetary wave index (WAI), few mod-
els reproduce bimodality as in the two reanalyses data sets (Ruti
et al., 2006; Calmanti et al., 2007). This highlights a still existing
problem for the coupled simulations to reasonably reproduce the
low-frequency component of the atmospheric flow. In the case
of ECHAM, the AMIP-like experiments show a similar defi-
ciency. The ECHAM4.6 model we are using in this work shows
a unimodal probability density function of the planetary wave
index (WAI). The results of the IPCC simulation intercompari-
son (Calmanti et al., 2007; Lucarini et al., 2007c) suggest that
the low resolution adopted in the present setup is not the main
factor affecting the lack of bimodality.

Figure 1a displays the empirical cumulative distribution func-
tions of the WAI and BAI time-series generated by the ECHAM
model in the present setup (see Section 2.1). The corresponding
probability density functions, shown in the panel b, are esti-
mated using the kernel technique of Silverman (1986), where
the smoothing parameter has been chosen as a Gaussian best-
fit for each index. Regarding the first statistical moments of
the time-series (see Table 1), we first note that both the mean
value and the standard deviation of WAI are much larger than
those of BAI. This confirms that a large portion of the planetary-
scale activity is concentrated on the spatial scales pertaining
to the planetary waves (Dell’Aquila et al., 2005; Lucarini et al.,
2007c). Confidence intervals have been computed using a block-
bootstrap method which takes care of the time autocorrelation
of the time-series (Davison and Hinkley, 1997). Basically we
have that the variance of the mean varies as s/(L/τ ), where s
is the sample variance, L is the length of the time-series and
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Fig. 1. Empirical cumulative distribution function (a) and probability
density function (b) of the time-series of the WAI (thin lines) and BAI
(thick lines) indexes. The PDF has been estimated using the kernel
technique of Silverman (1986).

Table 1. 95% confidence interval of the mean and standard deviation
(both expressed in m) of the WAI and BAI time-series

Mean (95% confidence interval) SD

WAI, 1CO2 93.0 ± 0.9 21.0
BAI, 1CO2 35.0 ± 0.3 9.0

τ is its decorrelation time (the latter is estimated by requir-
ing that the linear autocorrelations drop below 1/e). We have
that in both cases τ ≈ 6 for the BAI and τ ≈ 12 for the WAI
time-series.

Our interest in characterizing the extreme value statistics of
the WAI and BAI falls in the context mentioned above; specifi-
cally we aim at understanding which properties may be relevant
to assess climate change and the physical processes involved in
it at the level of general atmospheric circulation. We empha-
size that the bimodality (or lack thereof) of the time-series does
not affect the applicability of the GEV/GPD methods: extreme
value analysis aims at characterizing the upper or lower tails
of a stochastic process, whereas bimodality takes place in the
central part of the probability distribution function. More specif-
ically, one can design a stochastic process having a pre-specified
tail behaviour, with any other kind of behaviour (unimodal, bi-
modal, multimodal, discontinuous) in the central part, so the two
are unrelated.

4. Extreme value analysis

In this section, the block-maximum and threshold-exceedance
methods described in Section 2.3 are applied to the time-series
of WAI and BAI indicators generated from the ECHAM model.

4.1. GEV analysis

In the block-maximum approach, the time-series are subdivided
into B data blocks, each containing D daily values, where B =
L/D and L is the total length (number of daily observations)
of the time-series. Maximum values over each data block are
computed, producing the sequences of values from which the
GEV parameters (μ, σ , ξ ) are estimated. The same procedure is
applied to sequences of block minima of the time-series. Since
the GEV is a limit distribution, obtained in the limit of L and D
going to infinity (see Section 2.3), to avoid bias in the estimates it
is not sufficient to take a block length, that is, slightly larger than
the decorrelation time scale τ (see Section 3). This implies that
D = 100 d is likely to be the minimum acceptable block length.
To assess the sensitivity and stability of the estimates, we have
tried a few values for D: all of them are such that L is exactly
divisible by D, to avoid bias due to a different length of the last
data block. In Fig. 2, we display the estimated values of ξ (with
the related uncertainty) against the value of D used for inference.
The estimates of ξ are rather stable after sampling uncertainty
is taken into account. Of course, uncertainties increase with D,
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0.1
wai, max

block length

xi
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50 100 150 200 250 300 350
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Fig. 2. Estimated values of the shape parameter ξ as a function of the
block length D over which maxima are computed, for the WAI (a) and
BAI (b) time-series. 95% confidence intervals (average plus and minus
two standard deviations) are added.
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Fig. 3. Diagnostic plots for the GEV fits of the WAI computed with sequences of maxima with block length D = 50 (a), 100 (b) 200 (c) and 300 (d).

since one is using less values for the inference. Accordingly, we
choose D in such a way that the inferences are reasonably stable
and that the associated uncertainties are not too large. There is a
good deal of subjectivity in this choice: as usual in GEV-based
analysis, one has to adopt a reasonable compromise between
long and short data blocks, which boils down to a trade-off
between variance and bias (Coles, 2001; Felici et al., 2007a,b).

For the time-series of WAI and BAI, block lengths of D = 100
or D = 200 seem reasonable: they are large enough to ensure
decorrelation of the extreme values and the point estimates of
the GEV parameters remain almost constant for D ≥ 100. The
diagnostic plots in Fig. 3 confirm that there is nothing wrong with
the inferences obtained for D = 100, 200, 300: for example, the
displacements of points from the diagonals are relatively small
in the probability and quantile plots. More graphical diagnostics
(not shown), analogous to those in Figs. 2 and 3, suggest that the

same conclusions also hold for the minima. The choice D = 50
is not appropriate for various reasons: first of all, a non-trivial
amount of linear autocorrelation persists in the relative sequence
of block maxima (figure not shown). Second, the quantile plot
reveals lack-of-fit at both ends of the empirical distribution and
the confidence intervals of the return level plot look too narrow,
indicating that the balance leans towards bias in the bias-versus-
variance trade-off discussed above.

Plots of the return levels zp as functions of the return period
(expressed in days) are given in Fig. 4 for the maxima and in
Fig. 5 for the minima, for D = 100 and 300. For the minima,
estimation is performed by first multiplying the time-series by
−1, then performing the inference on the maxima, then mul-
tiplying again by −1. We observe a very good agreement of
the return levels for sufficiently large return periods: this con-
firms the stability of the inferences with respect to block length.
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Fig. 4. Return level plots for maxima of the WAI (a) and BAI (b)
time-series, using blocks of length D = 100 d (solid lines) and D = 300
(dashed lines). Time is expressed in years (365 model days) and
WAI/BAI in metres.
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Fig. 5. Same as Fig. 4 for the minima of the same time-series.

However, the estimated uncertainties are in general fairly large:
from a ‘physical’ point of view, a word of caution must be spent
here, because a small (in relative terms) variation of absolute
value of WAI corresponds to a large variation in the correspond-
ing planetary-scale fields. For example, the upper and lower
bounds of the 95% confidence interval for the 200-yr return

level of the WAI maxima differ by roughly 15.5 m. The WAI
difference between amplified wave patterns and zonal flow of
about 20 m corresponds to local anomalies up to 200–300 m
(Hansen and Sutera, 1995b).

4.2. GPD analysis

We now compare the results of the GEV analysis reported in
the previous section to those obtained by the GPD approach.
Throughout this section, a run-declustering scheme is applied to
the data, with r = 10; we have verified that for larger values of
r (say, up to r = 20), the number of identified clusters does not
change much, whereas there are larger differences between the
cases r = 0 and r = 1, 2.

The first step is to identify a suitable threshold u for the
selection of exceedances. Mean excess plots for the WAI and
BAI series are given in Fig. 6 (Fig. 7) for exceedances beyond
high (below low) levels. This suggests the following intervals
of linearity: [135, 143] and [60, 65] for high levels of WAI and
BAI, respectively; [35, 60] and [15, 20] for low levels of WAI and
BAI, respectively. For each case, the GPD is fitted to the cluster
maxima of the exceedances for a range of thresholds within the
above ranges. The resulting estimates of ξ , displayed below the
respective mean excess plots, are consistent across the selected
range. We have also plotted the estimates obtained with run
lengths r = 3 and r = 20 (dashed and dotted lines, respectively).
This shows that there is little sensitivity with respect to run
length, particularly so for larger thresholds.

We fix thresholds u of 136 and 60 for high levels of WAI
and BAI, respectively. Return level curves computed by (12) are
shown in Fig. 8 and reveal an excellent agreement with the GEV
estimates obtained for D = 200, also see Tables 2 and 3. The
thresholds have been chosen within the ranges discussed above,
in such a way that the number of identified clusters is not too
different from the number of block maxima used for the GEV
inference. For u = 140, wider confidence intervals are obtained
for WAI (shown with dotted lines in Fig. 8a), but the chi-squared
test with 20 classes rejects the fit at the 95% level of confidence
(the test with 19 classes is passed, with a t-value of 0.07 Table 2).
All other tests do not indicate lack-of-fit and using a threshold
of 131 yield a plot (not shown) which is very similar to that for
u = 136.

We also emphasize that the estimated value of the parameter
ξ is always negative, corresponding to a Weibull distribution
(Coles, 2001), except for a few cases (not shown) where the
number of values used for inference is too low and the sampling
uncertainty is extremely large (indicating lack-of-fit). The sup-
port of Weibull probability density functions is bounded from
above, there exists a value z∞ = μ − σ/ξ which may be consid-
ered as a return level with unbounded return period, since values
larger than z∞ form a set having zero probability (the Weibull
probability density function is identically zero for those values).
The fact that ξ is negative with overwhelming confidence is
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Fig. 6. (a and b) Mean excess plots for high level exceedances of the
WAI (a) and BAI (b) time-series. (c and d) Shape parameter ξ of the
GPD distribution for the WAI (c) and BAI (d) time-series, estimated
from maxima of cluster exceedances for a range of values of the
threshold u. A run-declustering algorithm is used with r = 10 (solid line
and confidence bars), r = 3 (dashed lines) and r = 20 (dotted lines).

compatible with the existence of upper and lower bounds for
the considered indexes. In a much simpler model (Felici et al.,
2007a), it has been shown that such bounds do exist, providing
‘physical constraints’ of the system. For the ECHAM model,
we interpret this result as follows: in a system with a finite en-
ergy input, energy of the perturbations cannot grow indefinitely.
Therefore, the probability density function of the (extreme) per-
turbations is bounded and the shape parameter is negative. This
theory is fully compatible with all of the estimates which we have
obtained from the simulation data. For more common physical
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Fig. 7. Same as Fig. 6 for the exceedances below low levels.

variables, wind speeds in both extratropical latitudes (Perrin
et al., 2006) and in tropical storms and hurricanes (Neumann,
1987; Elsner et al., 2008) are often observed to be Weibull dis-
tributed, whereas hydrological variables such as precipitation
often display heavy tails (with a positive value of the shape pa-
rameter), see Coles (2001), Felici et al. (2007a), Smith (2004)
for more references.

4.3. On the possibility of slow convergence of GEV
estimators

In this section, we analyse the sensitivity of the extreme
value statistical properties with respect to changes in model
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Fig. 8. Joint GEV–GPD return level plots for the maxima-high level
exceedances of WAI (a) and BAI (b). The GEV maximum likelihood
estimates and 95% confidence intervals are plotted with dashed lines,
whereas solid and dotted lines are used for GPD fits obtained with two
different threshold values. Empirical estimates (points) are added for
the GPD fit lower threshold. The estimated parameter values and other
information concerning the inferences are reported in Table 2 for WAI
and in Table 3 for BAI.

configuration. Two runs of the ECHAM model, with CO2 con-
centration equal to five times the present-day value (1800 ppmv)
are carried out. For simplicity, the SSTs are kept the same as
in the 1CO2 run examined in the rest of this paper. We empha-
size that this rules out any interpretation of the results of the
present section in terms of climatic change, based on the com-
parison with the 1CO2 run. For this reason, such a comparison
is not even attempted. The present experiments aim exclusively
at getting more information on the sensitivity of the statistical
estimates based on data generated by the ECHAM model, to
establish the experimental requirements for studies of climatic
change based on the present methodology.

The two 5CO2 runs only differ from each other in the initial
condition, the remaining parameters and settings being identical
to those described in Section 2.1. For this reason, time-series
extracted from the two runs should be considered as differ-
ent realizations of the same stochastic process and should pos-

Table 2. Summary of the GEV (top row) and GPD (bottom row) fits
corresponding to the inference in Fig. 8a (the GPD fits with r = 3 and
that with u = 131 are not shown in the plot). Standard errors for the
parameters are reported inside parentheses, whereas nd is the number
of degrees of freedom for the chi-squared goodness-of-fit test

μ σ ξ B D t-value, nd

136.7 (1.1) 9.8 (0.8) −0.20 (0.06) 90 200 0.75 (15)

u σ̃ ξ nclu r
136 8.3 (1.0) −0.14 (0.07) 121 3 0.15 (16)
136 9.0 (1.1) −0.16 (0.08) 105 10 0.18 (16)
140 7.7 (1.3) −0.12 (0.11) 68 10 0.1 (15)
131 9.1 (0.9) −0.13 (0.07) 187 10 0.39 (16)

Table 3. Same as Table 2 for the inference Fig. 8b. The GPD fit with r

= 3 is not shown in the plot

μ σ ξ B D t-value (nd)
60.1 (0.5) 4.8 (0.4) −0.19 (0.07) 90 200 0.33 (15)

u σ̃ ξ nclu r
60 5.1 (0.8) −0.22 (0.11) 82 3 0.84 (16)
60 5.1 (0.8) −0.21 (0.11) 81 10 0.85 (16)
63 5.3 (1.1) −0.33 (0.16) 41 10 0.47 (16)

sess the same statistical properties. GEV analysis is carried out
on time-series of WAI and BAI for these 5CO2 runs (to dis-
tinguish them we refer to the second one as 5CO2Bis). For the
maxima of the WAI, one obtains huge differences in the point
estimates of the return levels and even much larger variations
if confidence intervals are taken into account, see Fig. 9a. The
point estimates of the 1000-yr return levels of the WAI differ by
roughly 15 m (an idea of the physically relevance of such a value
is given in a remark at the end of Section 4.1). A similar discrep-
ancy is also found using the GPD method, although a smaller
uncertainty is obtained (Fig. 9b). This suggests the following
scenario: even under identical experimental setup, except for the
initial condition from which the model is started, one may ob-
tain quantitatively different point estimates for the return values.
Now in the experimental setting which we have considered, the
wide confidence interval helps us reject the hypothesis that the
two populations are different. However, if shorter data blocks
are used, then narrower confidence intervals might be obtained.
In this case, the different experiments would obtain different
results at the same level of confidence.

These discrepancies are largely accounted for by a few excep-
tionally large values of the WAI in the 5CO2Bis series: for exam-
ple, by taking away the two largest block maxima of 5CO2Bis,
the difference in the return level plots is much smaller (Fig. 9c).
Moreover, the remaining block maxima of 5CO2Bis are smaller
then the maximum of 5CO2. Similar considerations hold for the
GPD method, see Fig. 9d. This suggests that there exist states of
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Fig. 9. (a) Return level plot obtained by the GEV method from the maxima of two distinct 5CO2 runs of the ECHAM model, see text for the details.
(c) Same as (a), where the two largest block maxima of the 5CO2Bis series have been removed. (b and d) Same as (a and c), respectively, for a GPD
fit of the same time-series; threshold values for (b and d) are equal to those used for Figs. 8 (a) and (b), respectively.

remarkable WAI amplitude which are visited very rarely by the
ECHAM model; it appears that to include such states in the anal-
ysis, time-series of great length are necessary. This requirement
is likely to be even more stringent when simulations by fully
coupled AOGCMs with seasonal cycle are examined. This phe-
nomenon might bear relation to the slowness of convergence of
the GEV estimators which has been found in a quasi-geostrophic
model (Vannitsem, 2007) but also in a stochastic volatility pro-
cess with long-memory modelling stock returns (Malevergne
et al., 2006). We believe that assessing the speed of convergence
of the extreme value distribution estimators and its possible re-
lation to long-memory processes (Maraun et al., 2004; Eichner
et al., 2006) is of remarkable scientific and, in view of the en-
visaged applications, societal importance.

5. Mapping the extremes

In this section, we examine the ensembles of 500 hPa geopoten-
tial height maps constructed by choosing the fields correspond-
ing to the dates of the maxima or minima extracted from the
time-series of the WAI and BAI. For each index, maxima and
minima are computed over blocks of length D = 100 d (see
Section 4). For each of the four cases, we analyse the ensemble
mean of the eddy field, obtained by removing the zonal average
in each map, and the map of the standard deviation, computed
gridpoint by gridpoint.

Figure 10 shows the ensemble eddy mean and standard de-
viation of the maxima and of the minima of WAI and BAI.
The composite average 500 hPa map constructed by selecting

the dates of extreme (block maxima) values of WAI (panel a)
shows, as expected, an enhanced eddy field, with stronger posi-
tive centre over the Rockies and deepening of the negative centre
over the Labrador with respect to the mean eddy field obtained
by averaging over the whole time-series (not shown). Such a
wavy pattern corresponds to a ridge over the Rockies and dif-
fluent flow over Europe. Hansen et al. (1993) observed that this
amplified planetary-wave regime corresponds to Pacific Block-
ing episodes. When considering the standard deviation of the
500 hPa map, we observe two main peaks over the north-central
Atlantic and over the north-western Pacific, which correspond
to the final part of the two oceanic storm-tracks, related to the
jet exit region. For the same model, Carillo et al. (2000) found
strong interaction between high frequency and low frequency
over these regions.

As opposed to the previous case, the mean eddy pattern ob-
tained by selecting the dates of maxima of BAI Fig. 10b shows
an eddy pattern relatively similar to the mean eddy pattern
(figure not shown), where an eastward shift over the Rockies
and a northward shift of the Euro-Atlantic positive anomaly are
detected. When considering the standard deviation map, large
values are observed in the storm-tracks regions (Dell’Aquila
et al., 2005).

The ensemble mean of the eddy field obtained by considering
the days of extremely low value of WAI (panel c) features the
prominence of wavenumber 1, which is connected to a relatively
widespread zonal flow. When considering the standard deviation
of the field, centres are present also in this case in the exit re-
gion of the Pacific jet and over the northern Atlantic, even if the
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Fig. 10. The eddy ensemble mean (contour) and the standard deviation (shaded) of the 100-d maxima of WAI (a) and BAI (b) and of the 100-d
minima of WAI (c) and BAI (d).

variability is much lower than what depicted in Fig. 10. As for
the maxima, the ensemble mean of the eddy field obtained by
selecting the extremely low BAI events Fig. 10d is similar to
the mean eddy pattern (figure not shown), while the two stan-
dard deviation maps feature larger variance in correspondence
with the Pacific and Atlantic jet exit regions, but with reduced
variability with respect to what shown in Fig. 10.

6. Summary and conclusions

In this paper, we have proposed a methodology for the analysis of
extreme atmospheric wave activity at mid-latitudes. The method-
ology has been applied to various simulations obtained by the
General Circulation Model ECHAM4.6. The wave indexes we
have examined can be considered as proxies of planetary-scale
activity at different spatial and temporal scales. The mid-latitude
dynamics features upper planetary and synoptic waves as typ-
ical ingredients. Since synoptic and planetary waves provide a
relevant contribution to the meridional transport of energy and
momentum in the mid-latitudes, the physical processes driving
such phenomena are sensible ingredients for the characterization
of the climate system (Speranza, 1983). The statistical behaviour
of extreme values of the various time-series is studied by the
block-maximum method (fitting GEV distributions) and by the

POT method (fitting GPDs). The statistical significance of these
results has been thoroughly assessed by a variety of diagnostic
tools. The analysis of extreme values is complemented by an
examination of composite maps of the extremes of the maxima,
to highlight the spatial patterns.

Rather large uncertainties are obtained here, both for the GEV
parameters and for the return levels. It might be questioned
whether there are problems of convergence for the GEV estima-
tor. In this sense, our results bear some resemblance with those
by Vannitsem (2007), who finds that extremely long time-series
are necessary to reach satisfactory convergence of the statistical
estimators in a quasi-geostrophic model. The fact that such a
large amount of uncertainty is obtained for the extreme value
statistics even in the present, idealized simulations (no seasonal
cycle) suggests the possibility that time-series of almost pro-
hibitive length might be necessary for accurate estimations in a
more realistic setup, such as an atmospheric GCM coupled with
a slab ocean or even a fully coupled AOGCM with seasonal
cycle. Of course, this problem is likely to be even more serious
when dealing with observed data or reanalyses, as sensitivity
studies with respect to length of the time-series cannot be car-
ried out. As expected, usage of the GPD-based approach may
yield a somewhat reduced uncertainty. However, in our study
of two stationary runs which only differ in the intial condition
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(and, therefore, may be considered as two realizations of the
same stochastic process), a marked difference in the two point
estimates is obtained.

The analysis of the composite maps allow us to feature the
spatial patterns associated with the extremes in low and high
wavy regimes. The maxima in the WAI shows enhanced eddy
field, with stronger positive centre over the Rockies and deepen-
ing of the negative centre over the Labrador. The corresponding
standard deviation features high amplitudes, where strong inter-
action between high frequency and low frequency is observed.
Considering the maxima of the BAI index, the standard devia-
tion pattern is quite similar to what observed for the WAI, but
stronger on the American east coast where the Atlantic storm-
tracks origin. The eddy pattern is not enhanced as in the WAI
maxima: this could suggest that the link between planetary and
baroclinic waves is not linear. The analysis of the relationship
between high and low frequencies will be further developed in a
study with AMIP-like simulations forced by SST from a global
scenario coupled simulation.

We conclude by remarking that, for the general strategy of
setting up model comparisons, the statistical nature of the se-
lected diagnostic indicators might be of essential importance.
We believe that the indicators of planetary-scale activity consid-
ered in the present paper and, particularly, the extreme statistics
of such indicators, can be used for model intercomparison as
a complement to the surface parameters (such as temperature,
precipitation, wind) typically examined in research on extremes
in climate models.
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