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Vekua theory for the Helmholtz operator

A. Moiola, R. Hiptmair and I. Perugia

Abstract. Vekua1 operators map harmonic functions defined on domain in R
2 to solutions of elliptic

partial differential equations on the same domain and vice versa. In this paper, following the original
work of I. Vekua, we define Vekua operators in the case of the Helmholtz equation in a completely
explicit fashion, in any space dimension N ≥ 2. We prove i) that they actually transform harmonic
functions and Helmholtz solutions into each other; ii) that they are inverse to each other; iii) that
they are continuous in any Sobolev norm in star-shaped Lipschitz domains.

Finally, we define and compute the generalized harmonic polynomials as the Vekua transforms
of harmonic polynomials. These results are instrumental in proving approximation estimates for
solutions of the Helmholtz equation in spaces of circular, spherical and plane waves.

Mathematics Subject Classification (2010). 35C15, 35J05.

Keywords. Vekua transform, Helmholtz equation, generalized harmonic polynomials, Sobolev con-
tinuity.

1. Introduction and Motivation

Vekua’s theory (see [20, 36]) is a tool for linking properties of harmonic functions (solutions of the
Laplace equation ∆u = 0) to solutions of general second-order elliptic PDEs Lu = 0: the so-called
Vekua operators (inverses of each other) map harmonic functions to solutions of Lu = 0 and vice
versa.

The original formulation targets elliptic PDEs with analytic coefficients in two space dimensions.
Some generalizations to higher space dimensions have been attempted, see [10–12, 18, 23, 24] and the
references therein, but the Vekua operators in these general cases are not completely explicit.

Here, the PDE we are interested in is the homogeneous Helmholtz equation Lu := ∆u+ω2u = 0.
In this particular case, simple explicit integral operators have been defined in the original work of Vekua
in any space dimension N ≥ 2 (see [34, 35], [36, p. 59], and Fig. 1), but no proofs of their properties
are provided and, to the best of our knowledge, these results have been used later on only in very few
cases [9, 25].

Vekua’s theory has surprising relevance for numerical analysis. Several finite element methods
used in the numerical discretization of the Helmholtz equation ∆u+ω2u = 0 are based on incorporating
a priori knowledge about the differential equation into the local approximation spaces by using Trefftz-
type basis functions, namely functions which belong to the kernel of the Helmholtz operator.

Examples of methods using local approximating spaces spanned by plane wave functions x 7→
eiωx·d, d ∈ SN−1, are the Plane Wave Partition of Unit Method (see, [4]), the Ultra Weak Variational
Formulation (see [8]), the Plane Wave Least Squares Method (see [32]), the Discontinuous Enrichment
Method (see [16]), and the Plane Wave Discontinuous Galerkin Method (see [19, 22]). Other methods
are based on generalized harmonic polynomials (Fourier-Bessel functions), like the Partition of Unit

1Ilja Vekua (1907-1977), Soviet-Georgian mathematician
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. . .

Figure 1. Two paragraphs of Vekua’s book [36] addressing the theory for the Helm-
holtz equation

Method of [29], the version of the Least Squares Method presented again in [32] and the method of [6],
or on Hankel functions, like the Method of Fundamental Solutions of [5].

The convergence analysis of each of these techniques requires best approximation estimates : the
finite element space must contain a function which approximates the analytic solution of the problem
with an error that tends to zero when the mesh size h is reduced (h-convergence), or when the
dimension p of the local approximating space is raised (p-convergence). This error is usually measured
in Sobolev norms and an explicit estimation of the convergence rate with respect to the parameters h
and p is very desirable.

In the case of plane waves, only few approximation estimates are available in the literature. A
first one is contained in Theorem 3.7 of [8]: the proof was based on Taylor expansion and only h–
convergence for two-dimensional domains was proved; moreover, the obtained order of convergence
is not sharp. A more sophisticated result is Proposition 8.4.14 of [27]: in this case, p–estimates were
obtained in the two-dimensional case by using complex analysis techniques and Vekua’s theory. A
similar approach was used in [30] to prove sharp estimates in h for the PWDG method in 2D; there,
the dependence on the wave number was made explicit. In order to generalize and make precise the
results of [27] and [30], it is necessary to study in more details the basic tool used: Vekua’s theory. This
paper is devoted to this purpose: the results developed here will be the main ingredients in the proof
of best approximation estimates by circular, spherical and plane waves. This has been done in [21]
and greately improved in [31].

We proceed as follows: in Section 2, we will start by defining the Vekua operators for the Helm-
holtz equation with N ≥ 2 and prove their basic properties, namely, that they are inverse to each
other and map harmonic functions to solutions of the homogeneous Helmholtz equation and vice versa
(see Theorem 2.5). Next, in Section 3, we establish their continuity properties in (weighted) Sobolev
norms, like in [27], but with continuity constants explicit in the domain shape parameter, in the
Sobolev regularity exponent and in the product of the wavenumber times the diameter of the domain
(see Theorem 3.1). The main difficulty in proving these continuity estimates consists in establishing
precise interior estimates. Finally, in Section 4, we introduce the generalized harmonic polynomials,
which are the mapping through the direct Vekua operator of the harmonic polynomials, and derive
their explicit expression. They correspond to circular and spherical waves in two and three dimensions,
respectively.

All the proofs are self-contained and do not need the use of other results connected with Vekua’s
theory. Theorem 2.5 was already stated in [36], but the proof given in this paper is new; all the
other results presented in this paper are new, although many ideas come from the work of M. Melenk
(see [27, 28]).
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We conclude this introduction by fixing some notation used throughout this paper.

1.1. Notation

In order to prove inequalities with constants that are explicit and sharp with respect to the indices,
we need precise definitions of Sobolev norms and seminorms, because equivalent norms give different
bounds.

We denote by N the set of natural numbers, including 0. We set

Br(x0) = {x ∈ R
N , |x− x0| < r} , Br = Br(0) , SN−1 = ∂B1 ⊂ R

N .

We introduce the standard multi-index notation

Dαφ =
∂|α|

∂xα1

1 · · ·∂xαN

N

, |α| =
N
∑

j=1

αj ∀ α = (α1, . . . , αN ) ∈ N
N , (1)

and define the Sobolev seminorms and norms

|u|Wk,p(Ω) =





∑

α∈NN ,|α|=k

∫

Ω

|Dαu(x)|p dx





1
p

,

‖u‖Wk,p(Ω) =





k
∑

j=1

|u|pW j,p(Ω)





1
p

=





∑

α∈NN ,|α|≤k

∫

Ω

|Dαu(x)|p dx





1
p

,

|u|k,Ω = |u|Wk,2(Ω) , ‖u‖k,Ω = ‖u‖Wk,2(Ω) ,

|u|Wk,∞(Ω) = sup
α∈NN ,|α|=k

ess sup
x∈Ω

|Dαu(x)|,

‖u‖Wk,∞(Ω) = sup
j=0,...,k

|u|W j,∞(Ω) ,

and the ω–weighted Sobolev norms

‖u‖k,ω,Ω =





k
∑

j=0

ω2(k−j) |u|2j,Ω





1
2

∀ ω > 0 . (2)

We denote the space of harmonic functions and of solutions to the homogeneous Helmholtz equation,
respectively, by

Hj(D) : =
{

φ ∈ Hj(D) : ∆φ = 0
}

∀ j ∈ N ,

Hj
ω(D) : =

{

u ∈ Hj(D) : ∆u+ ω2u = 0
}

∀ j ∈ N, ω ∈ C .

Finally, we denote the number of the independent spherical harmonics of degree l in RN (see [33,
eq. (11)] and [3, Prop. 5.8]) by

n(N, l) : =







1 if l = 0,
(2l+N − 2)(l +N − 3)!

l! (N − 2)!
if l ≥ 1 .

(3)

2. N-Dimensional Vekua Theory for the Helmholtz Operator

Throughout domains satisfy the following assumption.

Assumption 2.1. The domain D ⊂ RN , N ≥ 2, is a bounded open set such that

• D is star-shaped with respect to the origin,
• and there exists ρ ∈ (0, 1/2] such that Bρh ⊆ D, where h := diamD.

Not all these assumptions are necessary in order to establish the results of this section (see
Remark 2.7 below).
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Remark 2.2. If D is a domain as in Assumption 2.1, then

Bρh ⊆ D ⊆ B(1−ρ)h.

The maximum 1/2 for the parameter ρ is achieved when the domain is a sphere: D = Bh
2
.

Figure 2. A domain D that satisfies Assumption 2.1

h

rh

0

Definition 2.3. Given a positive number ω, we define two continuous functionsM1,M2 : D× [0, 1) → R

as follows

M1(x, t) := −ω|x|
2

√
t
N−2

√
1− t

J1(ω|x|
√
1− t),

M2(x, t) := − iω|x|
2

√
t
N−3

√
1− t

J1(iω|x|
√

t(1− t)),

(4)

where J1 is the 1-st order Bessel function of the first kind, see Appendix A.

Using the expression (60), we can write

M1(x, t) = −tN
2
−1
∑

k≥0

(−1)k
(

ω|x|
2

)2k+2

(1− t)k

k! (k + 1)!
,

M2(x, t) =
∑

k≥0

(

ω|x|
2

)2k+2

(1− t)k tk+
N
2
−1

k! (k + 1)!
.

Note that M1 and M2 are radially symmetric in x and belong to C∞(D × (0, 1]); if N is even, they
have a C∞-extension to RN × R.

Definition 2.4. We define the Vekua operator V1 : C(D) → C(D) and the inverse Vekua operator
V2 : C(D) → C(D) for the Helmholtz equation according to

Vj [φ](x) = φ(x) +

∫ 1

0

Mj(x, t)φ(tx) dt ∀ x ∈ D, j = 1, 2, (5)

where C(D) is the space of the complex-valued continuous functions on D. V1[φ] is called the Vekua
transform of φ.

Notice that t 7→ Mj(x, t)φ(tx), j = 1, 2, belong to L1([0, 1]) for every x ∈ D; consequently, V1
and V2 are well defined. The operators V1 and V2 can also be defined with the same formulas from the
space of the essentially bounded functions L∞(D) to itself, or from Lp(D) to L2(D), with p sufficiently
large, depending on the spatial dimension N . In the following theorem, we summarize general results
about the Vekua operators, while their continuity will be proved in Theorem 3.1 below.
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Theorem 2.5. Let D be a domain as in Assumption 2.1; the Vekua operators satisfy:

(i) V2 is the inverse of V1:

V1
[

V2[φ]
]

= V2
[

V1[φ]
]

= φ ∀ φ ∈ C(D) . (6)

(ii) If φ is harmonic in D, i.e.,

∆φ = 0 in D , (7)

then

∆V1[φ] + ω2V1[φ] = 0 in D .

(iii) If u is a solution of the homogeneous Helmholtz equation with wavenumber ω > 0 in D, i.e.,

∆u+ ω2u = 0 in D , (8)

then

∆V2[u] = 0 in D .

Theorem 2.5 states that the operators V1 and V2 are inverse to each other and map harmonic
functions to solutions of the homogeneous Helmholtz equation and vice versa.

The results of this theorem were stated in [36, Chapter 1, § 13.2-3]. In two space dimensions, the
operator V1 followed from the general Vekua theory for elliptic PDEs; this implies that V1 is a bijection
between the space of complex harmonic function and the space of solutions of the homogeneous
Helmholtz equation 1. The fact that the inverse of V1 can be written as the operator V2 (part (i) of
Theorem 2.5) was stated in [35], and the proof was skipped as an “easy calculation”, after reducing
the problem to a one-dimensional Volterra integral equation. Here, we give a completely self-contained
and general proof of Theorem 2.5 merely using elementary calculus.

As in Theorem 2.5, in the following we will usually denote the solutions of the homogeneous
Helmholtz equation with the letter u, and harmonic functions, as well as generic functions defined on
D, with the letter φ.

Remark 2.6. Theorem 2.5 holds with the same proof also for every ω ∈ C, i.e., for the Helmholtz
equation in lossy materials.

Remark 2.7. Theorem 2.5 holds also for an unbounded or irregular domain: the only necessary hypothe-
ses are that D has to be open and star-shaped with respect to the origin. In fact the proof only relies
on the local properties of the functions on the segment [0, x]. For the same reason, the singularities of
φ and u on the boundary of D do not affect the results of the theorem.

Theorem 2.5 can be proved by using elementary mathematical analysis results. We proceed by
proving the parts (i) and (ii) separately.

Proof of Theorem 2.5, part (i). We define a function

g : [0,∞)× [0,∞) → R,

g(r, t) =
ω
√
r t

2
√
r − t

J1(ω
√
r
√
r − t).

Note that if r < t the argument of the Bessel function J1 is imaginary on the standard branch cut
but the function g is always real-valued.

Using the change of variable s = t|x|, for every φ ∈ C(D) and for every x ∈ D, we can compute

V1[φ](x) = φ(x) +

∫ |x|

0

M1

(

x,
s

|x|
)

φ
(

s
x

|x|
) 1

|x| ds

= φ(x) −
∫ |x|

0

ω|x|
2

√

s

|x|
N−2

√

|x|
√

|x| − s

1

|x| J1
(

ω
√

|x|
√

|x| − s
)

φ
(

s
x

|x|
)

ds

1The proof in higher space dimensions might be contained in the Georgian language article [34] that is hard to obtain.
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= φ(x) −
∫ |x|

0

s
N−4

2

|x|N−2

2

g(|x|, s) φ
(

s
x

|x|
)

ds,

V2[φ](x) = φ(x) +

∫ |x|

0

M2

(

x,
s

|x|
)

φ
(

s
x

|x|
) 1

|x| ds

= φ(x) −
∫ |x|

0

iω|x|
2

√

s

|x|
N−3

√

|x|
√

|x| − s

1

|x| J1
(

iω
√
s
√

|x| − s
)

φ
(

s
x

|x|
)

ds

= φ(x) +

∫ |x|

0

s
N−4

2

|x|N−2

2

g(s, |x|) φ
(

s
x

|x|
)

ds

because s ≤ |x| and we have fixed the sign
√

s− |x| = i
√

|x| − s. Note that in the expressions for the
two operators the arguments of the functions g are swapped. Now we apply the first operator after
the second one, switch the order of the integration in the resulting double integral and get

V1
[

V2[φ]
]

(x) =

[

φ(x) +

∫ |x|

0

s
N−4

2

|x|N−2

2

g(s, |x|) φ
(

s
x

|x|
)

ds

]

−
∫ |x|

0

s
N−4

2

|x|N−2

2

g(|x|, s)
[

φ
(

s
x

|x|
)

+

∫ s

0

z
N−4

2

s
N−2

2

g(z, s)φ
(

z
x

|x|
)

dz

]

ds

=φ(x) +

∫ |x|

0

s
N−4

2

|x|N−2

2

(

g(s, |x|)− g(|x|, s)
)

φ
(

s
x

|x|
)

ds

−
∫ |x|

0

z
N−4

2

|x|N−2

2

φ
(

z
x

|x|
)

∫ |x|

z

1

s
g(z, s) g(|x|, s) ds dz.

The exchange of the order of integration is possible because φ is continuous and in the domain of

integration |s−1z−1g(|x|, s)g(z, s)| ≤ ω4

16 s |x| eω|x| thanks to (63), so Fubini theorem can be applied.

Notice that V1
[

V2[φ]
]

= V2
[

V1[φ]
]

, so we only have to show that V2 is right inverse of V1. In

order to prove that V1
[

V2[φ]
]

= φ it is enough to show that

g(t, r)− g(r, t) =

∫ r

t

g(t, s) g(r, s)

s
ds ∀ r ≥ t ≥ 0, (9)

so that all the integrals in the previous expression vanish, and we are done. Using (60), we expand g
in power series (recall that, for k ≥ 0 integer, Γ(k + 1) = k!):

g(r, t) =
ω2 r t

4

∑

l≥0

(−1)l ω2l rl (r − t)l

22l l! (l + 1)!
, (10)

from which we get

g(t, r)− g(r, t) =
ω2 r t

4

∑

l≥0

(−1)l ω2l (r − t)l
(

(−t)l − rl
)

22l l! (l + 1)!
. (11)

We compute the following integral using the change of variables z = s−t
r−t and the expression of the

beta integral
∫ 1

0 (1− z)pzq dz = B(p+ 1, q + 1) =
p! q!

(p+ q + 1)!
:

∫ r

t

s(r−s)j(t−s)k ds = (−1)k(r−t)j+k+1

∫ 1

0

(1−z)jzk
(

zr + (1−z)t
)

dz

= (−1)k(r−t)j+k+1 j! k!

(j + k + 2)!

(

r(k+1) + t(j+1)
)

.

(12)
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Thus, expanding the product of g(t, s) g(r, s) in a double power series, integrating term by term and
using the previous identity give

∫ r

t

g(t, s) g(r, s)

s
ds

(10)
=

ω2 r t

4

∑

j,k≥0

(−1)j+k ω2(j+k+1) rj tk

22(j+k+1) j! (j + 1)! k! (k + 1)!

∫ r

t

s2(r − s)j(t− s)k

s
ds

(12)
=

ω2 r t

4

∑

j,k≥0

(−1)j ω2(j+k+1) rj tk (r − t)j+k+1

22(j+k+1) (j + 1)! (k + 1)! (j + k + 2)!

(

r(k + 1) + t(j + 1)
)

(l=j+k+1)
=

ω2 r t

4

∑

l≥1

ω2l (r − t)l

22l (l + 1)!

1

l!

l−1
∑

j=0

l!
(−1)j rj tl−j−1

(j + 1)! (l − j)!

(

r(l−j) + t(j+1)
)

=
ω2 r t

4

∑

l≥1

ω2l (r − t)l

22l (l + 1)! l!

l−1
∑

j=0

[

−
(

l

j + 1

)

(−r)j+1 tl−j−1 +

(

l

j

)

(−r)j tl−j
]

=
ω2 r t

4

∑

l≥1

ω2l (r − t)l

22l (l + 1)! l!

[

−(t− r)l + tl + (t− r)l − (−r)l
]

(11)
= g(t, r)− g(r, t),

thanks to the binomial theorem and (11), where the term corresponding to l = 0 is zero. This proves
(9), and the proof is complete. �

Proof of Theorem 2.5, part (ii). Let φ be a harmonic function, then φ ∈ C∞(D), thanks to the regu-
larity theorem for harmonic functions (see, e.g., [17, Corollary 8.11]). We prove that (∆+ω2)V1[φ](x) =
0. In order to do that, we establish some useful identities.

We set r := |x| and compute

∂

∂|x|M1(x, t) = ω
√
1− t

∂

∂(ωr
√
1− t)

[

−
√
t
N−2

2(1− t)
ωr

√
1− t J1(ωr

√
1− t)

]

(65)
= −ω

2r
√
t
N−2

2
J0(ωr

√
1− t),

∆M1(x, t) =
N − 1

r

∂

∂|x|M1(x, t) +
∂2

∂|x|2M1(x, t)

=− ω2
√
t
N−2

2

(

N J0(ωr
√
1− t)− ωr

√
1− t J1(ωr

√
1− t)

)

,

(13)

where the Laplacian acts on the x variable.
Since M1 depends on x only through r, we can compute

∆
(

M1(x, t)φ(tx)
)

= ∆M1(x, t) φ(tx) + 2∇M1(x, t) · ∇φ(tx) +M1(x, t)∆φ(tx)

= ∆M1(x, t) φ(tx) + 2
∂

∂|x|M1(x, t)
x

r
· t∇φ

∣

∣

∣

tx
+ 0

= ∆M1(x, t) φ(tx) + 2
t

r

∂

∂|x|M1(x, t)
∂

∂t
φ(tx),

because ∂
∂tφ(tx) = x · ∇φ

∣

∣

∣

tx
.

Finally, we define an auxiliary function f1 : [0, h]× [0, 1] → R by

f1(r, t) =
√
t
N
J0(ωr

√
1− t).
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This function verifies

∂

∂t
f1(r, t) =

N
√
t
N−2

2
J0(ωr

√
1− t) +

√
t
N
ωr

2
√
1− t

J1(ωr
√
1− t),

f1(r, 0) = 0, f1(r, 1) = 1.

At this point, we can use all these identities to prove that V1[φ] is a solution of the homogeneous
Helmholtz equation:

(∆ + ω2)V1[φ](x) = ∆φ(x) + ω2φ(x) +

∫ 1

0

∆
(

M1(x, t)φ(tx)
)

dt+

∫ 1

0

ω2M1(x, t)φ(tx) dt

= ω2φ(x) − ω2

∫ 1

0

√
t
N
J0(ωr

√
1− t)

∂

∂t
φ(tx) dt

− ω2

∫ 1

0

(

N
√
t
N−2

2
J0(ωr

√
1− t)− ωr

√
t
N−2

2

1− t√
1− t

J1(ωr
√
1− t)

+
ωr

√
t
N−2

2
√
1− t

J1(ωr
√
1− t)

)

φ(tx) dt

= ω2φ(x) − ω2

∫ 1

0

(

f1(r, t)
∂

∂t
φ(tx) +

∂

∂t
f1(r, t)φ(tx)

)

dt

= ω2

(

φ(x) −
[

f1(r, t)φ(tx)
]t=1

t=0

)

= 0.

We have used the values assumed by φ only in the segment [0, x] that lies inside D, because D is star-
shaped with respect to 0. Thus, the values of the function φ and of its derivative are well defined and
the fundamental theorem of calculus applies, thanks to the regularity theorem for harmonic functions.

Now, let u be a solution of the homogeneous Helmholtz equation. Since interior regularity results
also hold for solutions of the homogeneous Helmholtz equation, we infer u ∈ C∞(D). In order to prove
that ∆V2[u] = 0, we proceed as before and compute

∂

∂|x|M2(x, t) =
ω2r

√
t
N−2

2
J0(iωr

√

t(1 − t)),

∆M2(x, t) =
ω2

√
t
N−2

2

(

N J0(iωr
√

t(1 − t))− iωr
√

t(1− t) J1(iωr
√

t(1− t))
)

,

∆(M2(x, t)u(tx)) = ∆M2(x, t)u(tx) + 2
t

r

∂

∂r
M2(x, t)

∂

∂t
u(tx)− ω2t2M2(x, t)u(tx),

and we define the function

f2(r, t) =
√
t
N
J0(iωr

√

t(1− t)),

which verifies

∂

∂t
f2(r, t) =

N
√
t
N−2

2
J0(iωr

√

t(1− t))−
√
t
N
iωr(1− 2t)

2
√

t(1− t)
J1(iωr

√

t(1− t)),

f2(r, 0) = 0, f2(r, 1) = 1.

We conclude by computing the Laplacian of V2[u]:

∆V2[u](x) = ∆u(x) +

∫ 1

0

∆
(

M2(x, t)u(tx)
)

dt

= −ω2u(x) + ω2

∫ 1

0

√
t
N
J0(iωr

√

t(1− t))
∂

∂t
u(tx) dt
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+ ω2

∫ 1

0

√
t
N−2

2

(

N J0(iωr
√

t(1− t))

−iωr
√
t
1− t√
1− t

J1(iωr
√

t(1 − t)) +
iωrt

√
t√

1− t
J1(iωr

√

t(1 − t))

)

u(tx) dt

= −ω2u(x) + ω2

∫ 1

0

(

f2(r, t)
∂

∂t
u(tx) +

∂

∂t
f2(r, t)u(tx)

)

dt = 0. �

Remark 2.8. With a slight modification in the proof, it is possible to show that V1 transforms the
solutions of the homogeneous Helmholtz equation

∆φ+ ω2
0φ = 0

into solutions of

∆φ+ (ω2
0 + ω2)φ = 0

for every ω and ω0 ∈ C, and V2 does the converse.

3. Continuity of the Vekua Operators

In the following theorem, we establish the continuity of V1 and V2 in Sobolev norms with continuity
constants as explicit as possible.

Theorem 3.1. Let D be a domain as in the Assumption 2.1; the Vekua operators

V1 : Hj(D) → Hj
ω(D) , V2 : Hj

ω(D) → Hj(D) ,

with Hj(D) and Hj
ω(D) both endowed with the norm ‖·‖j,ω,D defined in (2), are continuous. More

precisely, for all space dimensions N ≥ 2, for all φ and u in Hj(D), j ≥ 0, solutions to (7) and (8),
respectively, the following continuity estimates hold:

‖V1[φ]‖j,ω,D ≤ C1(N) ρ
1−N

2 (1 + j)
3
2
N+ 1

2 ej
(

1 + (ωh)2
)

‖φ‖j,ω,D , (14)

‖V2[u]‖j,ω,D ≤ C2(N,ωh, ρ) (1 + j)
3
2
N− 1

2 ej ‖u‖j,ω,D , (15)

where the constant C1 > 0 depends only on the space dimension N , and C2 > 0 also depends on the
product ωh and the shape parameter ρ. Moreover, we can establish the following continuity estimates
for V2 with constants depending only on N :

‖V2[u]‖0,D ≤ CN ρ
1−N

2

(

1 + (ωh)4
)

e
1
2
(1−ρ)ωh

(

‖u‖0,D + h |u|1,D
)

(16)

if N = 2, . . . , 5, u ∈ H1(D),

‖V2[u]‖j,ω,D ≤ CN ρ
1−N

2 (1 + j)2N−1 ej
(

1 + (ωh)4
)

e
3
4
(1−ρ)ωh ‖u‖j,ω,D (17)

if N = 2, 3, j ≥ 1, u ∈ Hj(D),

and the following continuity estimates in L∞–norm:

‖V1[φ]‖L∞(D) ≤
(

1 +

(

(1 − ρ)ωh
)2

4

)

‖φ‖L∞(D) (18)

‖V2[u]‖L∞(D) ≤
(

1 +

(

(1 − ρ)ωh
)2

4
e

1
2
(1−ρ)ωh

)

‖u‖L∞(D) (19)

if N ≥ 2, φ, u ∈ L∞(D).
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Theorem 3.1 states that the operators V1 and V2 preserve the Sobolev regularity when applied
to harmonic functions and solutions of the homogeneous Helmholtz equation (see Theorem 2.5). For
such functions, these operators are continuous from Hj(D) to itself with continuity constants that
depend on the wavenumber ω only through the product ωh. In two and three space dimensions, we
can make explicit the dependence of the bounds on ωh. The only exception is the L2-continuity of V2
(see (16)), where a weighted H1-norm appears on the right-hand side; this is due to the poor explicit
interior estimates available for the solutions of the homogeneous Helmholtz equation.

All the continuity constants are explicit with respect to the order of the Sobolev norm and depend
on D only through its shape parameter ρ and its diameter h, the latter only appearing within the
product ωh.

In the literature, there exist many proofs of the continuity of V1 and V2 in L∞-norm (in two
space dimensions); see, for example, [7, 15]. To our knowledge, the only continuity result in Sobolev
norms is the one given in [27, Section 4.2]: this holds for general PDEs and for norms with non-integer
indices, but is restricted to the two-dimensional case, and the constants in the bounds are not explicit
in the various parameters.

Since the proof of Theorem 3.1 is quite lengthy and requires several preliminary results, we give
here a short outline. In Lemma 3.2, a direct attempt to compute the Sobolev norms of Vξ[φ] shows
that two types of intermediate estimates are required. The first ones consist in bounds of the kernel
functions M1 and M2 in W j,∞–norms; these are proved in Lemma 3.3. The second ones are interior
estimates for harmonic functions and for Helmholtz solutions: the former are well-known and recalled
in Lemma 3.8, while the latter are proved in Lemma 3.11. Since we want explicit dependence of the
bounding constants on the wave number, this step turns out to be the hardest one. Finally, we combine
all these ingredients and prove Theorem 3.1.

From here on, if β is a multi-index in NN , we will denote by Dβ the corresponding differential
operator with respect to the space variable x ∈ RN ; see (1).

Lemma 3.2. For ξ = 1, 2, j ≥ 0 and φ ∈ Hj(D), we have

|Vξ[φ]|2j,D ≤ 2 |φ|2j,D + 2(j + 1)3N−2e2j
j
∑

k=0

sup
t∈[0,1]

|Mξ(·, t)|2W j−k,∞(D) ·

∑

|β|=k

∫ 1

0

∫

D

∣

∣Dβφ(tx)
∣

∣

2
dxdt. (20)

Proof. From Definition 2.4, we have

∣

∣Vξ[φ]
∣

∣

2

j,D
≤ 2 |φ|2j,D + 2

∑

|α|=j

∫

D

∣

∣

∣

∣

∫ 1

0

Dα (Mξ(x, t)φ(tx)) dt

∣

∣

∣

∣

2

dx

≤ 2 |φ|2j,D + 2
∑

|α|=j

∫

D

∫ 1

0

∣

∣

∣

∣

∣

∣

∑

β≤α

(

α

β

)

Dα−βMξ(x, t)D
βφ(tx)

∣

∣

∣

∣

∣

∣

2

dt dx

≤ 2 |φ|2j,D + 2

∫

D

∫ 1

0

∣

∣

∣

∣

∣

j
∑

k=0

∑

|β|=k

∣

∣Dβφ(tx)
∣

∣

∑

|α|=j
α≥β

(

α

β

)

∣

∣Dα−βMξ(x, t)
∣

∣

∣

∣

∣

∣

∣

2

dt dx,

where in the second inequality we have applied the Jensen inequality and the product (Leibniz) rule

for multi-indices (see [1, Sec. 1.1]); here, the binomial coefficient for multi-indices is
(

α
β

)

=
∏N
i=1

(

αi

βi

)

.

We multiply by the number
(

N+k−1
N−1

)

of the multi-indices β of length k in NN , in order to move the
square inside the sum, and we obtain

∣

∣Vξ[φ]
∣

∣

2

j,D
≤ 2 |φ|2j,D + 2

∫

D

∫ 1

0

(j + 1)

j
∑

k=0

(

N+k−1
N−1

)
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·
∑

|β|=k

∣

∣Dβφ(tx)
∣

∣

2

∣

∣

∣

∣

∣

∑

|α|=j
α≥β

(

α

β

)

∣

∣Dα−βMξ(x, t)
∣

∣

∣

∣

∣

∣

∣

2

dt dx

≤ 2 |φ|2j,D + 2(j + 1)
(

N+j−1
N−1

)

j
∑

k=0

∑

|β|=k

∫

D

∫ 1

0

∣

∣Dβφ(tx)
∣

∣

2
dt dx

· sup
t∈[0,1]

|Mξ(·, t)|2W j−k,∞(D) sup
|β|=k

[

∑

|α|=j
α≥β

(

α

β

)

]2

;

the last factor can be bounded as

sup
|β|=k

∑

|α|=j
α≥β

N
∏

i=1

(

αi
βi

)

≤ sup
|β|=k

∑

|α|=j
α≥β

N
∏

i=1

αβi

i

βi!
≤
∑

|α|=j
e

PN
i=1

αi

≤ ej · #{α ∈ N
N , |α| = j} = ej

(

N+k−1
N−1

)

.

Finally, we note that, for every j ∈ N, N ≥ 2, we have
(

N + j − 1

N − 1

)

=
N + j − 1

N − 1

N + j − 2

N − 2
· · · 1 + j

1
≤ (1 + j)N−1 , (21)

from which the assertion follows. �

Now we need to bound the terms present in (20). The next lemma provides W j,∞(D)–estimates
for M1 and M2 uniformly in t. The proof relies on some properties of Bessel functions.

Lemma 3.3. The functions M1 and M2 satisfy the following bounds:

‖M1‖L∞(D×[0,1]) ≤
(

(1− ρ) ω h
)2

4
, (22)

sup
t∈[0,1]

|M1(·, t)|W 1,∞(D) ≤
(1− ρ) ω2 h

2
, (23)

sup
t∈[0,1]

|M1(·, t)|W j,∞(D) ≤
ωj

2
(j + (1− ρ) ω h) ∀j ≥ 2, (24)

‖M2‖L∞(D×[0,1]) ≤
(

(1− ρ) ω h
)2

4
e

1
2
(1−ρ)ωh , (25)

sup
t∈[0,1]

|M2(·, t)|W 1,∞(D) ≤
(1− ρ) ω2 h

2
e

1
2
(1−ρ)ωh, (26)

sup
t∈[0,1]

|M2(·, t)|W j,∞(D) ≤
ωj

2j−1

(

j +
(1− ρ) ω h

2

)

e
3
4
(1−ρ)ωh ∀j ≥ 2. (27)

Proof. Thanks to Remark 2.2, we have that supx∈D |x| ≤ (1 − ρ) h. Now, the L∞–inequalities (22)
and (25) follow directly from (63).

Since M1 and M2 depend on x only through |x|, we obtain the W 1,∞ bounds (23) and (26):

sup
t∈[0,1]

|M1(·, t)|W 1,∞(D) = sup
t∈[0,1], x∈D

∣

∣

∣

∣

∂

∂|x|M1(x, t)

∣

∣

∣

∣

(65)

≤ sup
t∈[0,1],

|x|∈[0,(1−ρ)h]

∣

∣

∣

∣

∣

ω2|x|
√
t
N−2

2
J0(ω|x|

√
1− t)

∣

∣

∣

∣

∣

(62)

≤ (1− ρ) ω2 h

2
,



12 A. Moiola, R. Hiptmair and I. Perugia

sup
t∈[0,1]

|M2(·, t)|W 1,∞(D)

(65)

≤ sup
t∈[0,1],

|x|∈[0,(1−ρ)h]

∣

∣

∣

∣

∣

ω2|x|
√
t
N−2

2
J0(iω|x|

√

t(1− t))

∣

∣

∣

∣

∣

(63)

≤ (1− ρ) ω2 h

2
e

1
2
(1−ρ)ωh.

In order to prove (24) and (27), we define the auxiliary complex-valued function f(s) = s J1(s).
It is easy to verify by induction that its derivative of order k is

∂k

∂sk
f(s) = k

∂k−1

∂sk−1
J1(s) + s

∂k

∂sk
J1(s).

We can bound this derivative using (66) and the binomial theorem:
∣

∣

∣

∣

∂k

∂sk
f(s)

∣

∣

∣

∣

=
∣

∣

∣k
1

2k−1

k−1
∑

m=0

(−1)m
(

k − 1

m

)

J2m−k+2(s) + s
1

2k

k
∑

m=0

(−1)m
(

k

m

)

J2m−k+1(s)
∣

∣

∣ (28)

≤ (k + |s|) max
l=1−k,...,1+k

|Jl(s)| .

The functions M1 and M2 are related to f by

M1(x, t) = −
√
t
N−2

2(1− t)
f(ω|x|

√
1− t),

M2(x, t) = −
√
t
N−4

2(1− t)
f(iω|x|

√

t(1− t)),

so we can bound their derivatives of order j ≥ 2:

sup
t∈[0,1]

|M1|W j,∞(D) ≤ sup
t∈[0,1], x∈D

∣

∣

∣

∣

∂j

∂|x|jM1(x, t)

∣

∣

∣

∣

≤ sup
t∈[0,1], x∈D

∣

∣

∣

∣

∣

√
t
N−2

2(1− t)

(

ω
√
1− t

)j ∂j

∂(ω|x|
√
1− t)j

f(ω|x|
√
1− t)

∣

∣

∣

∣

∣

(28), (62)

≤ ωj

2
(j + (1 − ρ)ωh),

sup
t∈[0,1]

|M2|W j,∞(D) ≤ sup
t∈[0,1], x∈D

∣

∣

∣

∣

∣

√
t
N−4

2(1− t)

(

iω
√

t(1− t)
)j ∂j

∂(iω|x|
√

t(1 − t))j
f(iω|x|

√

t(1− t))

∣

∣

∣

∣

∣

(28), (63)

≤ ωj

2j−1

(

j +
(1− ρ)ωh

2

)

e
3
4
(1−ρ)ωh. �

Remark 3.4. With less detail the bounds of Lemma 3.3 for every j ≥ 0 can be summarized as:

sup
t∈[0,1]

|M1(·, t)|W j,∞(D) ≤ ωj
(

j + (ωh)2
)

, (29)

sup
t∈[0,1]

|M2(·, t)|W j,∞(D) ≤ ωj (1 + ωh) e
3
4
(1−ρ)ωh. (30)

We ignore the algebraic dependence on ρ because it will be absorbed in a generic bounding constant.
In a shape regular domain, a precise lower bound for ρ ∈ (0, 12 ] can be used to reduce the exponential
dependence on ωh.

Remark 3.5. By performing some small changes in the proof of Lemma 3.3, we can extend Theorem 3.1
to every ω ∈ C, similarly to Theorem 2.5 (see Remark 2.6). In fact, the case ω = 0 is trivial, since
V1 and V2 reduce to the identity, while in general, Theorem 3.1 holds by substituting ω with |ω| in the
estimates and in the definition of the weighted norm (2), and multiplying the right-hand side of (14)

by e
3
2
|ω|h (see Remark 1.2.5 in [21]).
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Lemma 3.6. Let φ ∈ Hk(D), β ∈ NN be a multi-index of length |β| = k and Dβ be the corresponding
differential operator in the variable x. Then

∫ 1

0

∫

D

∣

∣Dβφ(tx)
∣

∣

2
dxdt ≤















1

2k −N + 1

∥

∥Dβφ
∥

∥

2

0,D
if 2k −N ≥ 0,

K
∥

∥Dβφ
∥

∥

2

0,D
+
(ρ

2

)2k+1 |D|
2k + 1

∥

∥Dβφ
∥

∥

2

L∞(B ρh
2

)
if 2k −N < 0,

where K = log 2
ρ if 2k−N = −1, K =

(

2
ρ

)N−1

if 2k−N < −1, |D| denotes the measure of D and ρ

is given in Assumption 2.1.

Proof. In the first case, we can simply compute the integral with respect to t with the change of
variables y = tx:

∫ 1

0

∫

D

∣

∣Dβφ(tx)
∣

∣

2
dxdt =

∫ 1

0

∫

tD

t2|β|
∣

∣Dβφ(y)
∣

∣

2 dy

tN
dt

≤ 1

2k −N + 1

∥

∥Dβφ
∥

∥

2

0,D
;

the set tD is included in D because D is star-shaped with respect to 0.
In the case 2k − N < 0, the integral in t is not bounded so we need to split it in two parts,

treating the second part as before:
∫ 1

0

∫

D

∣

∣Dβφ(tx)
∣

∣

2
dxdt =

∫
ρ
2

0

∫

D

∣

∣Dβφ(tx)
∣

∣

2
dxdt+

∫ 1

ρ
2

∫

D

∣

∣Dβφ(tx)
∣

∣

2
dxdt

≤
∫

ρ
2

0

t2|β| dt|D|
∥

∥Dβφ
∥

∥

2

L∞(B ρh
2

)
+

∫ 1

ρ
2

t2k−N
∥

∥Dβφ
∥

∥

2

0,tD
dt

=
1

2k + 1

(ρ

2

)2k+1

|D|
∥

∥Dβφ
∥

∥

2

L∞(B ρh
2

)
+

∫ 1

ρ
2

t2k−N
∥

∥Dβφ
∥

∥

2

0,tD
dt,

and the assertion comes from the expression

1
∫

ρ
2

t2k−N dt =



















log
2

ρ
if 2k −N = −1,

1−
(

ρ
2

)2k−N+1

2k −N + 1
≤
(

2

ρ

)N−1

if 2k −N < −1. �

Remark 3.7. We can improve the bounds of Lemma 3.6 for every value of the multi-index length k
with the estimate

∫ 1

0

∫

D

∣

∣Dβφ(tx)
∣

∣

2
dxdt ≤

(

2

ρ

)N−1
∥

∥Dβφ
∥

∥

2

0,D
+
(ρ

2

)2k+1 |D|
2k + 1

∥

∥Dβφ
∥

∥

2

L∞(B ρh
2

)
. (31)

From Lemma 3.6, it is clear that, in order to prove the continuity of V1 and V2 in the L2-norm
and in high-order Sobolev norms, we need interior estimates that bound the L∞-norm of φ and its
derivatives in a small ball contained in D with its L2-norm and Hj-norms in D. It is easy to find such
estimates for harmonic functions, thanks to the mean value theorem (see, e.g., Theorem 2.1 of [17]).

Notice that it is not possible to avoid the use of interior estimates for the continuity in Hj(D)
when j ≥ N

2 , as the assertion of Lemma 3.6 might suggest: in fact, Lemma 3.2 requires to estimate
∫ 1

0

∫

D

∣

∣Dβφ(tx)
∣

∣

2
dxdt for all the multi-index lengths |β| = k ≤ j, so we inevitably confront the cases

2k −N = −1 and 2k −N < −1.

Lemma 3.8 (Interior estimates for harmonic functions). Let φ be a harmonic function in BR(x),
R > 0, then

|φ(x)|2 ≤ 1

RN |B1|
‖φ‖20,BR(x) , (32)
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where |B1| = π
N
2

Γ(N
2
+1)

is the volume of the unit ball in R
N . If φ ∈ Hk(D) and β ∈ N

N , |β| ≤ k, then

∥

∥Dβφ
∥

∥

2

L∞(B ρh
2

)
≤ 1

|B1|

(

2

ρh

)N
∥

∥Dβφ
∥

∥

2

0,D
, (33)

Proof. By the mean value property of harmonic functions (see Theorem 2.1 of [17]) and the Jensen
inequality, we get the first estimate:

|φ(x)|2 =

∣

∣

∣

∣

∣

1

|BR(x)|

∫

BR(x)

φ(y) dy

∣

∣

∣

∣

∣

2

≤ 1

|BR|

∫

BR(x)

|φ(y)|2 dy =
1

RN |B1|
‖φ‖20,BR(x) .

The second bound follows by applying the first one to the derivatives of φ, which are harmonic in the
ball B ρh

2

(x) ⊂ Bρh ⊂ D. �

Remark 3.9. The interior estimates for harmonic functions are related to Cauchy’s estimates for
their derivatives. Theorem 2.10 in [17] states that, given two domains Ω1 ⊂ Ω2 ⊂ RN such that
d(Ω1, ∂Ω2) = d, if φ is harmonic in Ω2, then for every multi-index α it holds

‖Dαφ‖L∞(Ω1)
≤
(

N |α|
d

)|α|
‖φ‖L∞(Ω2)

. (34)

In order to find analogous estimates for the Sobolev norms, we can combine (34) and (32) using
the intermediate domain {x ∈ RN : d(x,Ω1) <

d
2} and obtain

‖Dαφ‖0,Ω1
≤ CN,α|Ω1|N/2 d−|α|−N/2 ‖φ‖20,Ω2

,

but the order of the power of d is not satisfactory. In order to improve it, we represent the derivatives
of a harmonic function ψ in B1 ⊂ RN using the Poisson kernel P :

Dαψ(y) =

∫

SN−1

ψ(z) Dα
1P (y, z) dσ(z) y ∈ B1, ∀ α ∈ N

N ,

where the derivatives of P are taken with respect to the first variable (see (1.22) in [3]). Rewriting this
formula in y = 0 and then translating in a point x, if ψ is harmonic in B1(x), we have

Dαψ(x) =

∫

SN−1

ψ(x+ z) Dα
1P (0, z) dσ(z) ∀ α ∈ N

N .

Given two domains Ω̂1 ⊂ Ω̂2 such that d(Ω̂1, ∂Ω̂2) = 1, if φ̂ is harmonic in Ω̂2, it holds

∥

∥

∥Dαφ̂
∥

∥

∥

0,Ω̂1

=

∫

Ω̂1

|Dαφ̂(x)|2 dx =

∫

Ω̂1

∣

∣

∣

∣

∫

SN−1

φ̂(x+ z) Dα
1P (0, z) dσ(z)

∣

∣

∣

∣

2

dx

y=x+z

≤ |SN−1|
∫

SN−1

(∫

Ω̂2

|φ̂(y)|2 dy

)

|Dα
1P (0, z)|2 dσ(z) ≤ CN,α

∥

∥

∥φ̂
∥

∥

∥

0,Ω̂2

,

where we have used the Jensen inequality and the Fubini theorem. By summing over all the multi-
indices of the same length and scaling the domains such that Ω1 ⊂ Ω2 ⊂ RN and d(Ω1, ∂Ω2) = d, we
finally obtain

|φ|j+k,Ω1
≤ CN,j,k d

−k |φ|j,Ω2
, j, k ∈ N. (35)

We can use the bicontinuity of the Vekua operator to prove an analogous result for the solutions
of the Helmholtz equations; see Lemma 3.2.1 of [21].

The main tool used to prove the interior estimates for harmonic functions is the mean value
theorem. For the solutions of the homogeneous Helmholtz equation, we have an analogous mean value
formula [14, page 289] but it does not provide good estimates.
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Another way to prove interior estimates for the solutions of the homogeneous Helmholtz equation
is to use the Green formula for the Laplacian in a ball, but this gives estimates that either involve the
H1-norm of u on the right-hand side of the bound or give bad order in the domain diameter R.

A third way is to use the technique presented in Lemma 4.2.7 of [27] for the two-dimensional case.
This method can be generalized only to three space dimensions, and does not provide estimates with
only the L2-norm of u on the right-hand side. On the other hand, it is possible to make the dependence
of the bounding constants on ωR explicit. We will prove these interior estimates in Lemma 3.11.

A more general way is to use Theorem 8.17 of [17]. This holds in every space dimension with the
desired norms and the desired order in R. The only shortcoming of this result is that the bounding
constant still depends on the product ωR but this dependence is not explicit. We report this result in
Theorem 3.10.

Summarizing: we are able to prove interior estimates for homogeneous Helmholtz solutions with
sharp order in R in two fashions. Theorem 3.10 works in any space dimension and with only the
L2–norm on the right-hand side. Lemma 3.11 works only in low space dimensions and with different
norms but the constant in front of the estimates is explicit in ωR. Both techniques, however, allow
to prove the final best approximation results we are looking for with the same order and in the same
norms.

Theorem 3.10 (Interior estimates for Helmholtz solutions, version 12). For
every N ≥ 2, let u ∈ H1(BR(x0)) be a solution of the homogeneous Helmholtz equation. Then there
exists a constant C > 0 depending only on the product ωR and the dimension N , such that

‖u‖L∞(BR
2

(x0))
≤ C(ωR,N) R−N

2 ‖u‖0,BR(x0)
. (36)

Lemma 3.11 (Interior estimates for Helmholtz solutions, version 2). Let u ∈ H1(BR(x0)) be a solution
of the inhomogeneous Helmholtz equation

−∆u− ω2u = f,

with f ∈ H1(BR(x0)). Then there exists a constant C > 0 depending only on the space dimension N
such that

‖u‖L∞(BR
2

(x0))
≤ C R−1

(

(

1 + ω2R2
)

‖u‖0,BR(x0)
+R ‖∇u‖0,BR(x0)

+R2 ‖f‖0,BR(x0)

)

for N = 2,

(37)

‖u‖L∞(BR
2

(x0))
≤ C R−N

2

(

(1 + ω2R2) (‖u‖0,BR(x0)
+R ‖∇u‖0,BR(x0)

)

+R2 ‖f‖0,BR(x0)
+R3 ‖∇f‖0,BR(x0)

)

for N = 3, 4, 5,

(38)

‖∇u‖L∞(BR
2

(x0))
≤ C R−N

2

(

ω2R ‖u‖0,BR(x0)
+ (1 + ω2R2) ‖∇u‖0,BR(x0)

+R ‖f‖0,BR(x0)
+R2 ‖∇f‖0,BR(x0)

)

for N = 2, 3.

(39)

Remark 3.12. In the homogeneous case, Lemma 3.11 reads as follows. Let u ∈ H1(BR(x0)) be a
solution of the homogeneous Helmholtz equation. Then there exists a constant C > 0 depending only
on the space dimension N such that for

N = 2, 3, 4, 5 :

‖u‖L∞(BR
2

(x0))
≤ C R−N

2 (1 + ω2R2) (‖u‖0,BR(x0)
+ R ‖∇u‖0,BR(x0)

), (40)

N = 2, 3 :

2 This is exactly Theorem 8.17 of [17]; with that notation, for the homogeneous Helmholtz equation we have k(R) = 0,

λ = 1, Λ =
√

N ν = ω and p = 2 (q is not relevant for the homogeneous problem); see also [17], p. 178.
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‖∇u‖L∞(BR
2

(x0))
≤ C R−N

2

(

ω2R ‖u‖0,BR(x0)
+ (1 + ω2R2) ‖∇u‖0,BR(x0)

)

. (41)

Proof of Lemma 3.11. It is enough to bound |u(x0)| and |∇u(x0)|, because for all x ∈ BR
2
(x0) we can

repeat the proof using BR
2
(x) instead of BR(x0) with the same constants. We can also fix x0 = 0.

Let ϕ : R+ → [0, 1] be a smooth cut-off function such that

ϕ(r) =

{

1 |r| ≤ 1
4 ,

0 |r| ≥ 3
4 ,

and ϕR : RN → [0, 1], ϕR(x) := ϕ
( |x|
R

)

. Then

∇ϕR(x) = ϕ′
( |x|
R

)

x

R|x| , ∆ϕR(x) =
1

R2
ϕ′′
( |x|
R

)

+
N − 1

R|x| ϕ
′
( |x|
R

)

.

We define the average of u and two auxiliary functions on BR:

u :=
1

|BR|

∫

BR

u(y) dy,

g(x) := u(x) ϕR(x), g(x) := (u(x)− u) ϕR(x);

their Laplacians are:

f̃(x) : = f̃1(x) + f̃2(x) + f̃3(x) := −∆g(x)

= −
[

1

R2
ϕ′′( |x|

R

)

+
N − 1

R|x| ϕ
′( |x|
R

)

]

u(x)− 2ϕ′( |x|
R

) x

R|x| · ∇u(x) + ϕ
( |x|
R

)

(ω2u(x) + f(x)),

f(x) : = f1(x) + f2(x) + f3(x) := −∆g(x)

= −
[

1

R2
ϕ′′( |x|

R

)

+
N − 1

R|x| ϕ
′( |x|
R

)

]

(u(x)− u)− 2ϕ′( |x|
R

) x

R|x| · ∇u(x) + ϕ
( |x|
R

)

(ω2u(x) + f(x)).

The fundamental solution formula for Poisson equation states that, if −∆a = b in RN , then

a(x) =

∫

RN

Φ(x− y) b(y) dy, with Φ(x) =















− 1

2π
log |x| N = 2,

|x|2−N
N(N − 2)|B1|

N ≥ 3.
(42)

The identity (42) holds for all b ∈ L2(BR), thanks to Theorem 9.9 of [17]. We notice that

|∇Φ(x)| =
∣

∣

∣

∣

− 1

N |B1|
x

|x|N
∣

∣

∣

∣

=
1

N |B1|
|x|1−N ∀ N ≥ 2.

We start by bounding |u(0)| for N = 2. In this case, it is easy to see that, for all R > 0, we have
∫

BR

(

log |x| − logR
)2

dx =
π

2
R2. (43)

We note that from the divergence theorem
∫

BR

f̃(y) dy = −
∫

BR

∆g(y) dy = −
∫

∂BR

∇g(s) · n ds = 0,

because g ≡ 0 in R2 \B 3
4
R and, since f̃ = 0 outside B 3

4
R then f̃ has zero mean value in the whole R2.
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We apply (42) with a = g and b = f̃ ; using the Cauchy–Schwarz inequality, the identity (43) and

the fact that f̃ has zero mean value in R2, we obtain:

|u(0)| = |g(0)| =
∣

∣

∣

∣

− 1

2π

∫

R2

(

log |y| − logR
)

f̃(y) dy

∣

∣

∣

∣

≤ 1

2π

√

π

2
R ‖f̃‖0,B 3

4
R

≤ CN,ϕR

(

1

R2
‖u‖0,BR

+
1

R
‖∇u‖0,BR

+ ω2 ‖u‖0,BR
+ ‖f‖0,BR

)

,

where the constant CN,ϕ depends only on N and ϕ; in the last step we have used the definition of f̃

and the fact that ϕ′( |x|R ) = 0 in BR
4
. The estimate (37) easily follows.

Proving all the other bounds (on |u(0)| for N ≥ 2 and on |∇u(0)| for N ≥ 2) is more involved.
We fix p, p′ > 1 such that 1

p +
1
p′ = 1. For α > 0, we calculate

‖|y|α‖Lp′(BR) =

(

∫

SN−1

∫ R

0

rαp
′

rN−1 dr dS

)
1

p′

=

( |SN−1|
αp′ +N

)

1

p′

R
α+N

p′ = CN,p′,αR
α+N−N

p ,

(44)

that holds if αp′ +N 6= 0, that is equivalent to (α+N)p 6= N , for every N ≥ 2. We compute also

‖Φ‖Lp(B 3
4
R
\B 1

4
R
) = CN,p

(

|SN−1|
∫ 3

4
R

1
4
R

r(2−N)p rN−1 dr

)
1
p

= CN,p |SN−1| 1p
(

(

3

4
R

)(2−N)p+N

−
(

1

4
R

)(2−N)p+N
)

1
p

= CN,p R
2−N+N

p ,

(45)

for every p 6= N
N−2 , N ≥ 3, and the analogue

‖∇Φ‖Lp(B 3
4
R
\B 1

4
R
) = CN,p

(

|SN−1|
∫ 3

4
R

1
4
R

r(1−N)p rN−1 dr

)
1
p

= CN,p R
1−N+N

p ,

(46)

that holds for every p 6= N
N−1 , N ≥ 2.

Then, for all ψ ∈ H1
0 (BR), using scaling arguments, the continuity of the Sobolev embeddings

H1
0 (B1) →֒ Lp(B1) which hold provided that 2 ≤ p ≤ 2N

N−2 , if N ≥ 3, and 2 ≤ p < ∞, if N = 2

(see [1, Th. 5.4,I,A-B]), and the Poincaré inequality, we obtain

‖ψ‖Lp(BR) = R
N
p ‖ψ̂‖Lp(B1) ≤ CN,p R

N
p ‖ψ̂‖1,B1

≤ CN,p R
N
p ‖∇ψ̂‖0,B1

≤ CN,p R
N
p
+1−N

2 ‖∇ψ‖0,BR
.

(47)

Now we can estimate u in the case N ≥ 3. From the Hölder inequality for the pair of spaces
Lp

′

, Lp, p > 2 (thus, p′ < 2), and the fact that f̃1 ≡ f̃2 ≡ 0 in B 1
4
R (see the definition of f̃), we can

write

|u(0)| = |g(0)| =
∣

∣

∣

∣

∫

RN

Φ(x)f̃(x) dx

∣

∣

∣

∣

≤ ‖Φ‖Lp(B 3
4
R
\B 1

4
R
) ‖f̃1 + f̃2‖Lp′(B 3

4
R
\B 1

4
R
) + ‖Φ‖Lp′(BR) ‖f̃3‖Lp(BR).
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Using (45) to bound the Lp-norm of Φ, the continuity of the embedding of Lp
′

(B 3
4
R \ B 1

4
R) into

L2(B 3
4
R \ B 1

4
R) (recall that 1 < p′ < 2) with constant |B 3

4
R \B 1

4
R|

1

p′
− 1

2 for the norm of f̃1 + f̃2, the

definition (42) of Φ and (44) with α = 2−N , which requires p > N
2 , to bound the Lp

′

-norm of Φ, and

finally (47)which requires 2 ≤ p ≤ 2N
N−2 , to bound the norm of f̃3 (recall that f̃3 ∈ H1

0 (BR)), we have

|u(0)| ≤ CN,pR
2−N+N

p |B 3
4
R|

1

p′
− 1

2

∥

∥

∥f̃1 + f̃2

∥

∥

∥

0,B 3
4
R
\B 1

4
R

+ CN,pR
2−N

p R
N
p
+1−N

2

∥

∥

∥∇f̃3
∥

∥

∥

0,BR

Finally, using the definitions of the f̃i’s, |∇ϕR| ≤ 1
RCϕ and 1

p + 1
p′ = 1 we obtain

|u(0)| ≤CN,p,ϕR2−N+N
p R

N
p′

−N
2

(

1

R2
‖u‖0,BR

+
1

R
‖∇u‖0,BR

)

+ CN,p,ϕR
3−N

2

(

ω2 ‖∇u‖0,BR
+ ‖∇f‖0,BR

+
1

R
ω2 ‖u‖0,BR

+
1

R
‖f‖0,BR

)

≤CN,p,ϕ R−N
2

(

(1 + ω2R2) ‖u‖0,BR
+R (1 + ω2R2) ‖∇u‖0,BR

+R2 ‖f‖0,BR
+R3 ‖∇f‖0,BR

)

.

The previous argument for bounding |u(0)| requires that there exists p such that N
2 < p ≤ 2N

N−2 ,
which is possible only if N < 6; this is the reason of the upper bound on the space dimension in the
statement.

In order to conclude this proof, we have to estimate |∇u(0)|. We use the same technique as

before, after differentiating the relation (42) with a = g and b = f . For every N ≥ 2, thanks to (46),

the embedding of Lp
′

(B 3
4
R \ B 1

4
R) into L

2(B 3
4
R \ B 1

4
R), (44) with α = 1 −N and (47), that require

N < p ≤ 2N
N−2 , we have

|∇u(0)| = |∇g(0)| =
∣

∣

∣

∣

∫

RN

∇Φ(x)f (x) dx

∣

∣

∣

∣

≤ ‖∇Φ‖Lp(B 3
4
R
\B 1

4
R
) ‖f1 + f2‖Lp′(B 3

4
R
\B 1

4
R
) + ‖∇Φ‖Lp′(BR) ‖f3‖Lp(BR)

≤ CN,pR
1−N+N

p |B 3
4
R|

1

p′
− 1

2 ‖f1 + f2‖0,B 3
4
R
\B 1

4
R
+ CN,pR

1−N
p R

N
p
+1−N

2 ‖∇f̃3‖0,BR
.

By using the Poincaré-Wirtinger inequality, whose constant scales with R, to bound ‖u− u‖0,BR
, we

obtain

|∇u(0)| ≤ CN,p,ϕ R
−1−N

2

(

R−2 ‖u− u‖0,BR
+R−1 ‖∇u‖0,BR

)

+ CN,p,ϕ R
2−N

2

(

R−1
∥

∥ω2u+ f
∥

∥

0,BR
+
∥

∥∇(ω2u+ f)
∥

∥

0,BR

)

≤ CN,p,ϕ R
−N

2

(

ω2R ‖u‖0,BR
+ (1 + ω2R2) ‖∇u‖0,BR

+R ‖f‖0,BR
+R2 ‖∇f‖0,BR

)

,

The requirement that there exists p such that N < p ≤ 2N
N−2 can be satisfied only if N < 4. �

Lemma 3.11 is the only result in this section which we are not able to generalize to all the space
dimensions N ≥ 2. This is because in its proof we make use of a pair of conjugate exponents p and
p′ such that the fundamental solution Φ of the Laplace equation (together with its gradient) belongs

to Lp
′

(BR) and, at the same time, H1(BR) is continuously embedded in Lp(BR). This requirement
yields the upper bounds on the space dimension we have required in the statement of Lemma 3.11.

Combining the results of the previous lemmas, we can now prove Theorem 3.1.
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Proof of Theorem 3.1. We start by proving the continuity bound (14) for V1. For every j ∈ N, N ≥ 2,
φ ∈ Hj(D), inserting (29) and (31) into (20) with ξ = 1, we have

|V1[φ]|j,D ≤
[

2 |φ|2j,D + 2(1 + j)3N−2e2j
j
∑

k=0

ω2(j−k)(j − k + (ωh)2
)2

·
(

(

2

ρ

)N−1

|φ|2k,D +
(ρ

2

)2k+1 |D|
2k + 1

∑

|β|=k

∥

∥Dβφ
∥

∥

2

L∞(B ρh
2

)

)]
1
2

.

Then, using the interior estimates (33), we get

|V1[φ]|j,D ≤ CN (1 + j)
3
2
N−1+1 ej

(

1 + (ωh)2
)

[

j
∑

k=0

ω2(j−k)
(

ρ1−N + ρ2k+1 |D|
(ρh)N

)

|φ|2k,D

]
1
2

≤ CN ρ
1−N

2 (1 + j)
3
2
N ej

(

1 + (ωh)2
)

‖φ‖j,ω,D ,

by the definition of weighted Sobolev norms (2), and because |D| ≤ hN and ρ < 1. The constant CN
depends only on the dimension N of the space. Passing from the seminorms to the complete Sobolev
norms gives an extra coefficient (1 + j)1/2 and the bound (14) follows.

In order to prove the continuity bound (15) for V2, we proceed similarly. For every j ∈ N, N ≥ 2,
u ∈ Hj

ω(D), inserting (30) and (31) into (20) with ξ = 2, we have

|V2[u]|j,D ≤
[

2 |u|2j,D + 2(1 + j)3N−2e2j
j
∑

k=0

ω2(j−k)(1 + ωh)2e
3
2
(1−ρ)ωh

·
(

(

2

ρ

)N−1

|u|2k,D +
(ρ

2

)2k+1 |D|
2k + 1

∑

|β|=k

∥

∥Dβu
∥

∥

2

L∞(B ρh
2

)

)]
1
2

(36)

≤ C(N,ωh, ωρh) (1 + j)
3
2
N−1 ej

[

j
∑

k=0

ω2(j−k)
(

ρ1−N + ρ2k+1 |D|
(ρh)N

)

|u|2k,D

]
1
2

≤ C(N,ωh, ρ) (1 + j)
3
2
N−1 ej ‖u‖j,ω,D .

Again, passing from the seminorms to the complete Sobolev norms gives an extra coefficient (1+ j)1/2

and the bound (15) follows.

Now we proceed by proving the bounds (16), (17) and (19) for V2 with constants depending only
on N .

For the continuity bound (16) for the V2 operator from H1(D) to L2(D), we repeat the same
reasoning as above. If u ∈ H1

ω(D), N = 2, . . . , 5, using the definition of V2, (25), (31) and (40), we
have

‖V2[u]‖0,D ≤
[

2 ‖u‖20,D + 2 ‖M2‖2L∞(D×[0,1])

∫ 1

0

∫

D

|u(tx)|2 dxdt

]
1
2

≤
[

2 ‖u‖20,D + 2

(

(ωh)2

4
e

1
2
(1−ρ)ωh

)2 [(
2

ρ

)N−1

‖u‖20,D

+
ρ

2
|D|
(

CN (ρh)−
N
2

(

1 + (ωρh)2
)(

‖u‖0,D + ρh ‖∇u‖0,D
)

)2]
]

1
2

≤CN ρ
1−N

2

(

1 + (ωh)4
)

e
1
2
(1−ρ)ωh( ‖u‖0,D + ρh ‖∇u‖0,D

)

,
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which immediately gives (16).
Let us now prove (17). To this end, given a multi-index β ∈ NN , we need to bound

∥

∥Dβu
∥

∥

L∞(B ρh
2

)
.

If |β| = 0, for N = 2, 3, 4, 5, we simply use (40) and get
∥

∥Dβu
∥

∥

L∞(B ρh
2

)
= ‖u‖L∞(B ρh

2

) (48)

≤ CN (ρh)−
N
2 (1 + ω2ρ2h2)

(

‖u‖0,D + ρh ‖∇u‖0,D
)

.

If |β| = j ≥ 1, we note that there exists another multi-index α ∈ NN of length |α| = j − 1, such that
for N = 2, 3 and u ∈ Hj

ω(D) it holds
∥

∥Dβu
∥

∥

L∞(B ρh
2

)
≤ ‖∇Dαu‖L∞(B ρh

2

) (49)

≤ CN (ρh)−
N
2

(

ω2ρh ‖Dαu‖0,D +
(

1 + (ωρh)2
)

‖∇Dαu‖0,D
)

,

thanks to (41). Notice that the restriction to N = 2, 3 in this proof is due to the use of (41). Again,
inserting (30) and (31) into (20) with ξ = 2 gives

|V2[u]|j,D ≤ CN

[

|u|2j,D + (1 + j)3N−2 e2j
j
∑

k=0

ω2(j−k)(1 + ωh)2e
3
2
(1−ρ)ωh

·
(

ρ1−N |u|2k,D + ρ2k+1|D|
∑

|β|=k

∥

∥Dβu
∥

∥

2

L∞(B ρh
2

)

)

]
1
2

≤ CN (1 + j)
3
2
N−1 ej (1 + ωh) e

3
4
(1−ρ)ωh

·
[

j
∑

k=0

ω2(j−k)
(

ρ1−N |u|2k,D + ρ2k+1|D|
∑

|β|=k

∥

∥Dβu
∥

∥

2

L∞(B ρh
2

)

)

]
1
2

,

and thus, as a consequence of (48) and (49), we obtain

|V2[u]|j,D ≤ CN (1 + j)
3
2
N−1 ej (1 + ωh) e

3
4
(1−ρ)ωh

·
[

ω2jρ1−N
(

‖u‖20,D +
|D|
hN

(1 + ω2ρ2h2)2
(

‖u‖0,D + ρh ‖∇u‖0,D
)2
)

+

j
∑

k=1

ω2(j−k)ρ1−N
(

|u|2k,D + ρ2k
(

N+k−1
N−1

) |D|
hN

·
(

ω2ρh |u|k−1,D + (1 + ω2ρ2h2) |u|k,D
)2
)

]
1
2

≤ CN (1 + j)
3
2
N−1 ρ

1−N
2 ej (1 + ωh) e

3
4
(1−ρ)ωh

·
[

ω2j(1 + ω2h2)2
(

‖u‖0,D + h ‖∇u‖0,D
)2

+

j
∑

k=1

ω2(j−k)(1 + k)N−1
(

ω2h |u|k−1,D + (1 + ω2h2) |u|k,D
)2
]

1
2

≤ CN (1 + j)2N− 3
2 ρ

1−N
2 ej (1 + ωh) e

3
4
(1−ρ)ωh

·
[

(

1 + (ωh)2
)2
ω2j ‖u‖20,D +

(

(ωh)2 + (ωh)6
)

ω2(j−1) |u|21,D
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+ (ωh)2
j
∑

k=1

ω2(j−k+1) |u|2k−1,D +
(

1 + (ωh)2
)2

j
∑

k=1

ω2(j−k) |u|2k,D

]
1
2

≤ CN (1 + j)2N− 3
2 ρ

1−N
2 ej

(

1 + (ωh)4
)

e
3
4
(1−ρ)ωh ‖u‖j,ω,D ,

where the binomial coefficient comes from the number of the multi-indices |β| = k and is bounded by
(21). As before, passing from the seminorms to the complete Sobolev norms gives an extra coefficient
(1 + j)1/2 and the bound (17) follows.

Finally, we prove the continuity of V1 and V2 in the L∞-norm stated in (18), (19). Thanks to the
definition of V1 and V2, the bounds (22) and (25), we have

‖V1[φ]‖L∞(D) ≤
(

1 + ‖M1‖L∞(D×[0,1])

)

‖φ‖L∞(D)

≤
(

1 +

(

(1− ρ)ωh
)2

4

)

‖φ‖L∞(D) ,

‖V2[u]‖L∞(D) ≤
(

1 +

(

(1− ρ)ωh
)2

4
e

1
2
(1−ρ)ωh

)

‖u‖L∞(D) ,

that holds for every φ, u ∈ L∞(D) and for every N ≥ 2. This proves (18) and (19), the proof of
Theorem 3.1 is complete. �

4. Generalized Harmonic Polynomials

Vekua’s theory can be used to derive approximation estimates for the solutions of the homogeneous
Helmholtz equation by using finite dimensional spaces of particular functions, the generalized harmonic
polynomials, for instance.

Definition 4.1. A function u ∈ C(D) is called a generalized harmonic polynomial of degree L if its
inverse Vekua transform V2[u] is a harmonic polynomial of degree L.

Thanks to the results of the previous sections, the generalized harmonic polynomials are solutions
of the homogeneous Helmholtz equation with wavenumber ω and belong to Hk(D) for every k ∈ N,
so they are also in C∞(D).

Let u be a solution to the homogeneous Helmholtz equation in D, and let PL be an approximation
of the harmonic function V2[u] in the space of harmonic polynomials of degree at most L in a suitable
Sobolev norm, for which an estimate of the approximation error is available. Then, using the continuity
of V1 and V2 given by (14) and (17), respectively, one can derive an approximation estimate for
u−V1[PL] (V1[PL] is a generalized harmonic polynomial) in a suitable ω–weighted Sobolev norm (see
Chapter 2 of [21]). This also implies that, if D is such that the harmonic polynomials are dense in
Hk(D) for some k, then the generalized harmonic polynomials are dense in Hk

ω(D).
In the next section, we show that the generalized harmonic polynomials in 2D and 3D are circular

and spherical waves, respectively.

4.1. Generalized Harmonic Polynomials in 2D and 3D

In order to explicitly write the generalized harmonic polynomials, we prove the following lemma.

Lemma 4.2. If φ ∈ C(D) is an l-homogeneous function with l ∈ R, l > −N
2 , i.e., there exists g ∈

L2(SN−1) such that

φ(x) = g
( x

|x|
)

|x|l ∀ x ∈ D,

then its Vekua transform is

V1[φ](x) = Γ
(

l +
N

2

)

(

2

ω

)l+N
2
−1

g
( x

|x|
)

|x|1−N
2 Jl+N

2
−1(ω|x|) ∀ x ∈ D. (50)
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Proof. Using the Beta integral
∫ 1

0 t
a(1− t)b dt = Γ(a+1) Γ(b+1)

Γ(a+b+2) , a, b > −1, we can directly compute the

Vekua transform from the definition of V1:

V1[φ](x) = g
( x

|x|
)

|x|l +
∫ 1

0

g
( x

|x|
)

(|x|t)l M1(x, t) dt

= g
( x

|x|
)

|x|l
(

1 +

∫ 1

0

tlM1(x, t) dt

)

= g
( x

|x|
)

|x|l






1−

∫ 1

0

tl+
N
2
−1
∑

j≥0

(−1)j
(

ω|x|
2

)2j+2

(1 − t)j

j! (j + 1)!
dt







= g
( x

|x|
)

|x|l






1−

∑

j≥0

(−1)j
(

ω|x|
2

)2j+2

j! (j + 1)!

Γ
(

l+ N
2

)

Γ(j + 1)

Γ
(

l+ N
2 + j + 1

)







k=j+1
= g

( x

|x|
)

|x|l






1 +

∑

k≥1

(−1)k
(

ω|x|
2

)2k

k! Γ
(

l+ N
2 + k

) Γ
(

l+
N

2

)







= g
( x

|x|
)

|x|l
∑

k≥0

(−1)k
(

ω|x|
2

)2k

k! Γ
(

l + N
2 + k

) Γ
(

l +
N

2

)

= Γ
(

l+
N

2

)

g
( x

|x|
)

|x|1−N
2

(

2

ω

)l+N
2
−1
∑

k≥0

(−1)k
(

ω|x|
2

)2k+l+N
2
−1

k! Γ
(

l+ N
2 + k

)

= Γ
(

l+
N

2

)

(

2

ω

)l+N
2
−1

g
( x

|x|
)

|x|1−N
2 Jl+N

2
−1(ω|x|).

The condition l > −N
2 is necessary to ensure a finite value of the integral

∫ 1

0 t
l+N

2
−1(1 − t)j dt. �

As a consequence, the general (non homogeneous) harmonic polynomial of degree L and its
Vekua transform can be written, in terms of spherical harmonics Yl,m (see [2,33]) and hyperspherical
Bessel functions jNl (see the Appendix), by

P (x) =
L
∑

l=0

n(N,l)
∑

m=1

al,m |x|l Yl,m
( x

|x|
)

, (51)

V1[P ](x) = |x|1−N
2

L
∑

l=0

n(N,l)
∑

m=1

al,m Γ
(

l+N
2

)

(

2

ω

)l+N
2
−1

Yl,m

( x

|x|
)

Jl+N
2
−1(ω|x|)

=







2
N
2
−1
∑L

l=0

∑n(N,l)
m=1 al,m Γ

(

l + N
2

) (

2
ω

)l
Yl,m

(

x
|x|
)

jNl (ω|x|), N even,

2
N−1

2√
π

∑L
l=0

∑n(N,l)
m=1 al,m Γ

(

l + N
2

) (

2
ω

)l
Yl,m

(

x
|x|
)

jNl (ω|x|), N odd.
(52)

If N = 2, identifying R2 = C and using the complex variable z = reiψ , using directly (50), we have

P (z) =

L
∑

l=−L
al r

|l| eilψ , (53)

V1[P ](z) =

L
∑

l=−L
al |l|!

(

2

ω

)|l|
eilψ J|l|(ωr). (54)
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If N = 3, we use the definition of spherical Bessel function (67) to get

P (x) =

L
∑

l=0

l
∑

m=−l
al,m |x|l Yl,m

( x

|x|
)

, (55)

V1[P ](x) =
2√
π

L
∑

l=0

l
∑

m=−l
al,m Γ

(

l +
3

2

)

(

2

ω

)l

Yl,m

( x

|x|
)

jl(ω|x|) (56)

=

L
∑

l=0

l
∑

m=−l
al,m

(2l + 1)!

l!

(

1

2ω

)l

Yl,m

( x

|x|
)

jl(ω|x|),

where {Yl,m}m=−l,...,l are a basis of spherical harmonics of order l, and we have used Γ(l + 3
2 ) =√

π (2l+1)!
22l+1 l! , which follows from Γ(s + 1) = sΓ(s) and Γ(12 ) =

√
π. This means that the generalized

harmonic polynomials in 2D and 3D are the well-known circular and spherical waves, respectively.

4.2. Generalized Harmonic Polynomials as Herglotz Functions

In this section, we define an important family of solutions of the homogeneous Helmholtz equation: the
Herglotz functions (see [13, Def. 3.14]), and prove that the generalized harmonic polynomials belong
to this class. This result can be used to prove approximation properties of homogeneous Helmholtz
solutions by plane waves, as in [27, Prop. 8.4.14].

Definition 4.3. Given a function g ∈ L2(SN−1) we define the Herglotz function wg with Herglotz
kernel g and wavenumber ω as the the function in C∞(RN ) defined by

wg(x) =

∫

SN−1

g(d) eiωx·d dσ(d) x ∈ R
N . (57)

The Herglotz functions are entire solutions of the homogeneous Helmholtz equation; it is known
that they are dense in Hk

ω(D) with respect to the Hk(D)-norm or the C∞(D) topology, whenever D
is a Ck−1,1 domain; the proof is given in Theorem 2 of [38]. As already mentioned, if D is such that
the harmonic polynomials are dense in Hk(D), then the generalized harmonic polynomials, which are
Herglotz functions, are dense in Hk

ω(D). This means that, for k ≥ 2, we generalize the result of [38]
to weaker assumptions on the domain D (see Section 1.3.1 and Theorem 2.2.1 of [21] for details).

Lemma 4.4. Let P be a harmonic polynomial of degree L ∈ N in R2 or RN , N ≥ 3, defined as in (53)
or in (51), respectively. Then the corresponding generalized harmonic polynomial V1[P ] is a Herglotz
function wg with Herglotz kernel

g(θ) =

L
∑

l=−L
al

|l|!
2π

(

2

iω

)|l|
eilθ N = 2,

g(d) =

L
∑

l=0

n(N,l)
∑

m=1

al,m
Γ
(

l + N
2

)

2 π
N
2

(

2

iω

)l

Yl,m(d) N ≥ 3.

Proof. We write the Jacobi-Anger expansions combined with the addition theorem for (orthonormal)
spherical harmonics, in two and N dimensions, see [2, 13, 33]:

eit cos θ =
∑

l∈Z

ilJl(t) e
ilθ ∀ θ, t ∈ R, (58)

eirξ·η = (N − 2)!! |SN−1|
∑

l≥0

il jNl (r)

n(N,l)
∑

m=1

Yl,m(ξ)Yl,m(η) (59)

∀ ξ, η ∈ SN−1, r ≥ 0, N ≥ 3.
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These series converge absolutely and uniformly on compact subsets of RN . Now we only have to use
these formulas to verify that the Herglotz functions with the kernels written above correspond to (54)
and (52), respectively.

In two space dimensions with the polar coordinates z = r eiψ we have

wg(z) =

∫ 2π

0

L
∑

l=−L
al

|l|!
2π

(

2

iω

)|l|
eilθ eiωr(cosψ,sinψ)·(cos θ,sin θ) dθ

=

L
∑

l=−L
al

|l|!
2π

(

2

iω

)|l| ∫ 2π

0

eilθ eiωr cos(ψ−θ) dθ

(58)
=

L
∑

l=−L
al

|l|!
2π

(

2

iω

)|l| ∫ 2π

0

eilθ
∑

l′∈Z

il
′

Jl′(ωr) e
il′(ψ−θ) dθ

=

L
∑

l=−L

∑

l′∈Z

al
|l|!
2π

(

2

iω

)|l|
il

′

Jl′(ωr) e
ilψ

∫ 2π

0

ei(l−l
′)θ dθ

(61)
=

L
∑

l=−L
al |l|!

(

2

ω

)|l|
J|l|(ωr) e

ilψ (54)
= V1[P ](z),

where in the second last step we have used the identity
∫ 2π

0
ei(l−l

′)θ dθ = 2π δl,l′ . In the previous
chain of equalities, we could exchange the order of summation and integration because the serie in l′

converges uniformly and absolutely in [0, 2π], thanks to (63).

In higher space dimensions, we use the orthonormality of the spherical harmonics
∫

SN−1 Yl,mYl′,m′

= δl,l′δm,m′ :

wg(x) =

∫

SN−1

L
∑

l=0

n(N,l)
∑

m=1

al,m
Γ
(

l+ N
2

)

2π
N
2

(

2

iω

)l

Yl,m(d) eiωx·d dσ(d)

(59)
=

∫

SN−1

L
∑

l=0

n(N,l)
∑

m=1

al,m
Γ
(

l+ N
2

)

2π
N
2

(

2

iω

)l

Yl,m(d)

·
∑

l′≥0

n(N,l′)
∑

m′=1

(N − 2)!! |SN−1| il′ jNl′ (ω|x|) Yl′,m′

( x

|x|
)

Yl′,m′(d) dσ(d)

=
(N − 2)!!

Γ
(

N
2

)

L
∑

l=0

n(N,l)
∑

m=1

al,m Γ
(

l +
N

2

)

(

2

ω

)l

Yl,m

( x

|x|
)

jNl (ω|x|)

(52), (68)
= V1[P ](x),

where in the second last step we have used the formula |SN−1| = 2π
N
2 /Γ

(

N
2

)

. �

Lemma 4.4 also gives an easy formula to compute the Vekua transform of any Herglotz function
wg, given the expansion of its kernel g in harmonics.

Appendix A. Bessel Functions

We denote the usual Bessel functions of the first kind by Jν(z) and the spherical Bessel functions of
the first kind by jν(z). The first ones are defined, for every ν, z ∈ C, as

Jν(z) =

∞
∑

t=0

(−1)t

t! Γ(t+ ν + 1)

(z

2

)2t+ν

, (60)
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where Γ is the gamma function. When ν /∈ Z and z belongs to the segment [−∞, 0], Jν(z) is not
single-valued. When ν ∈ Z, Jν is an entire function.

We list some properties of these functions (references can be found in [26, 37]):

J−k(z) = (−1)kJk(z) ∀ k ∈ Z, (61)

Im
(

Jk(t)
)

= 0, Re
(

Jk(it)
)

= 0 ∀ k ∈ Z, t ∈ R,

|Jk(t)| ≤ 1 ∀ k ∈ Z, t ∈ R, (62)

|Jν(z)| ≤
e| Im z|

Γ(ν + 1)

( |z|
2

)ν

∀ ν > −1

2
, z ∈ C, (63)

J0(0) = 1, Jk(0) = 0 ∀ k ∈ Z \ {0},
∂

∂z
Jν(z) =

1

2
(Jν−1(z)− Jν+1(z)) , (64)

∂

∂z

(

zkJk(z)
)

= zkJk−1(z),

∂

∂z
J0(z) = −J1(z),

∂

∂z
(zJ1(z)) = zJ0(z), (65)

∂l

∂zl
Jk(z) =

1

2l

l
∑

m=0

(−1)m
(

l

m

)

J2m−l+k(z). (66)

The last equality can be easily proved by induction from (64).
The spherical Bessel functions are defined as

jν(z) =

√

π

2z
Jν+ 1

2
(z). (67)

These functions are a particular case of the so-called hyperspherical Bessel functions (see [2] p. 52):

jNk (z) =

∞
∑

t=0

(−1)t z2t+k

(2t)!! (N + 2t+ 2k − 2)!!
=

{

z1−
N
2 Jk+N

2
−1(z), N even,

√

π
2 z

1−N
2 Jk+N

2
−1(z), N odd,

Jk(z) = j2k(z), jk(z) = j3k(z).

The above equality is proved using (60) and

(2m)!! = 2mm!, (2m+ 1)!! =
Γ
(

m+ 3
2

)

2m+1

√
π

, m ∈ N. (68)
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