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ABSTRACT

Liquid clouds play a profound role in the global radiation budget, but it is difficult to retrieve their vertical

profile remotely. Ordinary narrow-field-of-view (FOV) lidars receive a strong return from such clouds, but

the information is limited to the first few optical depths. Wide-angle multiple-FOV lidars can isolate radiation

that is scattered multiple times before returning to the instrument, often penetrating much deeper into the

cloud than does the single-scattered signal. These returns potentially contain information on the vertical

profile of the extinction coefficient but are challenging to interpret because of the lack of a fast radiative

transfer model for simulating them. This paper describes a variational algorithm that incorporates a fast

forward model that is based on the time-dependent two-stream approximation, and its adjoint. Application of

the algorithm to simulated data from a hypothetical airborne three-FOV lidar with a maximum footprint

width of 600 m suggests that this approach should be able to retrieve the extinction structure down to an

optical depth of around 6 and a total optical depth up to at least 35, depending on the maximum lidar FOV.

The convergence behavior of Gauss–Newton and quasi-Newton optimization schemes are compared. Results

are then presented from an application of the algorithm to observations of stratocumulus by the eight-FOV

airborne Cloud Thickness from Off-Beam Lidar Returns (THOR) lidar. It is demonstrated how the averaging

kernel can be used to diagnose the effective vertical resolution of the retrieved profile and, therefore, the

depth to which information on the vertical structure can be recovered. This work enables more rigorous

exploitation of returns from spaceborne lidar and radar that are subject to multiple scattering than was

previously possible.

1. Introduction

Boundary layer clouds play an important role in the

global radiation budget and yet remain one of the largest

uncertainties in climate models (e.g., Randall et al. 2007)

as well as being an important source of error in weather

forecasting (Martin et al. 2000). Satellite remote sensing

of clouds is necessary to obtain global cloud observa-

tions. Vertical cloud profiles are very difficult to obtain

observationally yet can be used to quantify subadiabatic

behavior and therefore to study the role of entrainment

and boundary layer parameterization.

Spaceborne lidar measurements of clouds are affected

by multiple scattering of the lidar signals (Flesia and

Schwendimann 1995), as are cloud radar measurements

of deep convective clouds (Battaglia et al. 2010). The

direct lidar return consists of a single scattering event, and
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the return delay is linearly related to the vertical height in

the cloud where the scattering occurred. Multiply scattered

returns consist of radiation that may have undergone

many scattering events before being returned to the lidar

receiver, often at an angle to the incoming lidar beam.

The extra distance traveled between scattering events

means the relationship between return delay and cloud

height is no longer linear.

Multiply scattered returns potentially contain much

information about cloud structure and optical depth—in

particular, if observed in multiple fields of view (FOV)—

but are very challenging to interpret. Bissonnette et al.

(2005) successfully retrieved profiles of cloud extinction

coefficient using multiple-FOV lidar. Their algorithm

uses a small-angle diffusion approximation but does not

include wide-angle multiply scattered returns (by ‘‘wide

angle’’ we mean scattering from the part of the Mie

phase function that is outside the narrow forward lobe

that is typically only a degree or two wide) and so is

limited to receivers whose footprint diameter is smaller

than the scattering mean free path. To utilize the small-

angle scattering while excluding wide-angle multiply scat-

tered returns, Bissonnette et al. used a multiple-FOV lidar

that detects returns sequentially from narrow fields of

view with different widths. In this paper we consider

lidars that receive wide-angle returns, in addition to

direct and small-angle returns, in wide-angle multiple-

FOV receivers that can operate simultaneously. In this

paper, multiple-FOV lidar refers to these wide-angle

multiple-FOV receivers and not to the narrow-angle li-

dar of Bissonnette et al. (2005). Davis et al. (1999) and

Polonsky and Davis (2004) proposed an approach to

interpret multiply scattered returns on the basis of dif-

fusion theory and applied it to observations by a ground-

based instrument (Polonsky et al. 2005). Although

convenient analytical expressions were obtained, a lim-

itation is that the shape of the extinction profile needs to

be specified although the main variables of interest,

cloud base and optical depth, were retrieved. Moreover,

diffusion theory is only strictly valid after many scat-

tering events, and so practically this approach is limited

to interpretation of the tail of the backscatter profile,

although this limitation has been partially overcome by

further developments of Davis (2008). Cahalan et al.

(2005) interpreted multiply scattered returns from an

airborne lidar with a multiple-FOV receiver by compar-

ison with a library of profiles that were precalculated

using a Monte Carlo model, but the retrieval will always

be limited by the scope of the library.

In this paper, another approach is taken: a variational

algorithm (an approach also known as optimal estima-

tion theory; Rodgers 2000) is developed in which a first

guess of the extinction profile is iteratively refined on the

basis of its ability to forward model the observations. This

is facilitated by a combination of the models of Hogan

(2008) and Hogan and Battaglia (2008), which can esti-

mate multiply scattered returns approximately six orders

of magnitude faster than can Monte Carlo techniques and

which, therefore, can be run multiple times within an it-

erative retrieval algorithm. The retrieved extinction pro-

file is then the one that best forward models the returns

from all available fields of view in a least squares sense. So

that the retrieved profiles do not reproduce noise in the

measurements, Twomey–Tikhonov regularization is em-

ployed, with the degree of smoothness optimized by

performing an L-curve analysis (Hansen 1992).

Section 2 describes the retrieval method and details

how the fast forward model and additional constraints

may be included in the variational retrieval scheme. Sec-

tion 3 studies the behavior of the retrieval method with

synthetic measurements and examines the ability of the

method to retrieve the vertical structure of the extinc-

tion coefficient and the total cloud optical depth. We

also describe the use of averaging kernels to quantify the

effective spatial resolution. The retrieval method is ap-

plied to data from the Cloud Thickness from Off-Beam

Lidar Returns (THOR) instrument (Cahalan et al. 2005)

in section 4. Section 5 provides a brief summary and out-

look for the wider applications of this approach.

2. Retrieval method

a. Overview

The retrieval obtains a one-dimensional profile of the

visible extinction coefficient an (at the wavelength of the

lidar: c/n) from observed profiles of apparent backscat-

ter b at one or more different fields of view. Extinction

coefficient is useful because it is directly related to op-

tical depth. It is related to apparent backscatter using the

lidar equation in the following form:

b(r) 5 b̂(r) exp

�
22

ðr

0
a

n
(r9) dr9

�
1 bMS(r, r, rl), (1)

where b̂(r) is the true, unattenuated, lidar backscatter

coefficient at range r and is proportional to a through

the extinction-to-backscatter ratio S:

b̂ 5 a
n
/S. (2)

The first term on the right of (1) describes the apparent

backscatter in the absence of multiple scattering. The

second term includes the contribution to apparent

backscatter from multiple scattering and is dependent

on the receiver FOV r and the lidar beam divergence rl.
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We use a variational retrieval scheme (Rodgers 2000)

to obtain a best estimate of a at each range gate. The

best estimate is obtained by minimizing a cost function,

J 5 Jobs 1 Jprior 1 Jconstraint, (3)

that is the sum of cost functions for observations (Jobs),

prior constraints (Jprior), and additional constraints

(Jconstraint).

The observation part of the cost function penalizes the

squared difference between the real observations b and

the predicted observations b9 as forward modeled from

the estimated profile of extinction coefficient; that is (for

N observations),

Jobs 5
1

2
�
N

i51

(bi 2 b9i )
2

s2
b

i

, (4)

where s
b

i
is the standard error in bi, which typically con-

sists of the contribution from observational error (e.g., due

to photon-counting noise) and from forward-model error.

Note that the summation in (4) is over all lidar fields of

view.

Generally applicable prior profiles of extinction co-

efficient for cloud are not available; Miles et al. (2000)

observed a typical maximum extinction coefficient of

0.08 m21 in stratocumulus clouds, however, and there-

fore we can expect 0 , ai , 0.08 m21. We add a Gaussian

prior constraint centered at a
( p)
i 5 0 m21 with a width of

s( p),i 5 0.08 m21. This prior does not prevent unphysical

values of ai 5 0 m21, and so in this algorithm we prevent

negative values by forcing ai 5 0 m21 wherever the

minimization algorithm tries to make it negative. The

lack of a positivity constraint needs to be taken into ac-

count when estimating the uncertainties on the retrieved

profile, and this point is discussed in section 2e. An alter-

native to this approach would be to use a prior distribution

that excluded negative values of extinction coefficient,

such as a lognormal distribution. This could be imple-

mented by formulating the cost function in terms of the

natural logarithm of the extinction coefficient.

In regions with no, or poor, observations, the prior pulls

the profile to the clear-sky solution, which is a sensible

assumption in the absence of information. In regions

where there are observations, the prior constraint will be

relatively weak and the retrieval will be dominated by the

observations. The contribution of the prior to the cost

function is

Jprior 5
1

2
�
M

i51

[ai 2 a
( p)
i ]2

s2
( p),i

, (5)

where there are M parameters to be retrieved.

Additional constraints on the retrieved state vector

can be applied as an additive term in the cost function

Jconstraint. We use the Twomey–Tikhonov smoothness

constraint introduced below in section 2b.

The cost function can be conveniently written in ma-

trix notation as

J 5 0:5[y 2 H(x)]TR21[y 2 H(x)]

1 0:5[x 2 x
( p)

]TB21[x 2 x
( p)

] 1 Jconstraint, (6)

where x is the state vector, a vector of the ai values to be

retrieved, and x(p) is a vector of the a
( p)
i values of the prior.

In addition, y is the observation vector, a vector of the bi

values for all fields of view; H(x) is the forward-model

operator outlined in section 2d; and R and B are the error

covariance matrices of the observations and the prior,

respectively.

b. Smoothness constraint

Lidar measurements can be noisy, which can contam-

inate the retrieved extinction-coefficient profile. In their

variational radar–lidar ice-cloud retrieval, Delanoë and

Hogan (2008) reduced the impact of noise by including

a smoothness constraint on the retrieved extinction-

coefficient profile by penalizing the second derivative

of the an profile. The constraint is (Rodgers 2000)

Jconstraint 5 0:5lxTTx, (7)

where T is a Twomey–Tikhonov matrix whose elements,

for example for a state vector of length 6, are

T 5

1 22 1 0 0 0

22 5 24 1 0 0

1 24 6 24 1 0

0 1 24 6 24 1

0 0 1 24 5 22

0 0 0 1 22 1

0
BBBBBBB@

1
CCCCCCCA

(8)

and similarly for other sizes. The constraint is weighted

relative to the observations and prior information by

the constant l. Section 3f discusses how l may be

chosen.

c. Minimizing the cost function

An optimal estimate of the extinction-coefficient

profile is obtained by minimizing the cost function (6)

starting from an initial guess of the state vector, x1.

There are several methods that can be used to minimize
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a function; we consider the Gauss–Newton and quasi-

Newton methods.

The iterative Gauss–Newton method (e.g., Rodgers

2000) has been applied by a number of authors in the

formulation of radar and lidar retrievals of cloud prop-

erties (e.g., Austin and Stephens 2001; Löhnert et al.

2004; Hogan 2007; Delanoë and Hogan 2008). In this

approach, the forward model is linearized by making the

approximation

H(x) ’ H(xk) 1 HDx, (9)

where Dx 5 x 2 xk, xk is the estimated state vector at

iteration k and H(xk) is the corresponding forward-

modeled estimate of the observations. Here, H 5 ›y=›x is

the Jacobian matrix: the rate of change of each forward-

modeled observation with respect to each element of the

state vector. Matrix H is recalculated each time the for-

ward model is called. At each iteration of the algorithm,

the new estimate of the state vector, xk11, is taken to lie at

the minimum of the linearized cost function, JL, that is

obtained by substituting (9) into (6). At this minimum,

$DxJL 5 0, which may be rearranged to obtain

xk11 5 xk 2 A21$
Dx50JL , (10)

where

$
Dx50JL 5 2HTR21[y 2 H(x)]

1 B21[xk 2 x
( p)

] 1 lTxk (11)

is a vector containing the gradient of the full cost func-

tion with respect to each element of Dx at Dx 5 0, and

the symmetric Hessian matrix is given by

A 5 =2
Dx50JL 5 HTR21H 1 B21 1 lT. (12)

In an operational scheme this process would be iterated

until convergence as determined by a x2 test. As this

paper is a proof of concept, we perform a fixed number

of iterations and confirm that convergence has been

achieved by observing only small changes in the value of

the cost function for the final iterations. The conver-

gence behavior is studied in section 3g.

A benefit of the Gauss–Newton method is that a good

estimate of the error covariance matrix of the retrieved

variables Sx is given by the inverse of the Hessian matrix

after the final iteration: Sx 5 A21 (Rodgers 2000). More-

over, the fact that the curvature of the cost function is

available, in the form of (12), ensures that convergence is

very rapid; indeed, if the full forward model is perfectly

linear then the minimum can be found in one iteration of

(10).

The main disadvantage of the Gauss–Newton method is

that the Jacobian of the forward-modeled observations is

required. If the state and observation vectors each have N

elements, then H is an N 3 N matrix and the computa-

tional cost to fill it is proportional to at least the square of N

[i.e., O(N2)]. As described in section 2d, the forward model

we use for estimating the wide-angle multiply scattered

returns already has a computational cost of O(N2), and the

nature of this algorithm means that it is not possible to

calculate the Jacobian more efficiently than O(N3).

This is too slow for operational usage—for example, from

a multiple-FOV spaceborne lidar for which we would

want to process each individual profile in less than 1 s.

A solution is offered by atmospheric data assimilation

systems, which cannot use the Gauss–Newton method be-

cause N is so large that the cost of computing and storing

H and A is excessive. Most of these systems minimize

the cost function using only information on its gradient

and, therefore, do not calculate the Hessian. The quasi-

Newton family of methods performs iterations using (10)

but uses an approximation for A21. We use the limited-

memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)

method (Nocedal 1980; Liu and Nocedal 1989), which

uses the cost-function gradients from a limited number

of the most recent iterations to reconstruct an esti-

mate of the curvature of the cost function. This ap-

proach was found by Gilbert and Lemaréchal (1989) to

be superior to several of its competitors for large-scale

problems, and their implementation of L-BFGS is

currently used in the data assimilation system of the

European Centre for Medium-Range Weather Fore-

casts. It appears from (11) that calculating $Dx50 JL

requires H to be calculated first, which is expensive. This

can be avoided by using the adjoint method, in which

the vector $Dx50 Jobs is calculated from the gradient of

the cost function with respect to each forward-modeled

observation, $H(x)Jobs 5 R21[y 2 H(x)] (also a vector),

without requiring the intermediate matrix H. This is ach-

ieved by coding the adjoint of the forward model (e.g.,

Giering and Kaminski 1998), which is typically slower to

compute by approximately a factor of 3 than the original

forward model but is much faster than the additional order

of N in computational cost associated with computing the

full Jacobian. The adjoint code calculates $Dx50Jobs from

$H(x)Jobs 5 R21[y 2 H(x)] by performing what can be

thought of as a ‘‘time reversed’’ sequence of linearized

forms of the operations in the original forward model.

The other terms in (11) take much less time to compute.

Because the L-BFGS method uses an approximation to

A21, more iterations are required to reach convergence

than for the Gauss–Newton method. The difference in

the number of iterations is typically less than the factor of

approximately N/3 between the costs of each iteration of
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the two methods, however, and therefore, for large N,

L-BFGS can be much faster than Gauss–Newton to reach

a solution. The difference in the number of iterations re-

quired depends on both N and the nonlinearity of the

problem. In section 3g, the convergence rates are com-

pared for retrievals using multiply scattered returns. The

approximate nature of A21 unfortunately means that it is

less accurate as an estimate of the error covariance matrix

of the solution. It is also a little tricky to calculate because

it is not held explicitly by the L-BFGS algorithm (see

Fisher and Courtier 1995). An alternative for calculating

the error covariance matrix is to perform a single itera-

tion of the Gauss–Newton method after the L-BFGS

method has converged, yielding a more accurate A21.

d. Forward model and adjoint

The forward model we use for lidar returns that are

subject to multiple scattering consists of the sum of the

output from two fast algorithms: the photon variance-

covariance (PVC) method of Hogan (2006, 2008) for the

single- and small-angle-scattering contribution, and the

time-dependent two-stream (TDTS) method of Hogan

and Battaglia (2008) for the wide-angle contribution. The

PVC method was used for lidar scattering in the combined

radar–lidar algorithm of Delanoë and Hogan (2008), which

employs the Gauss–Newton method to minimize the cost

function. This algorithm has been applied to satellite ob-

servations of ice clouds (Delanoë and Hogan 2010), for

which wide-angle scattering may be safely neglected. In

wide-FOV lidar observations of stratocumulus clouds, ra-

diation that has undergone wide-angle scattering can dom-

inate the returned signal, necessitating the use of the TDTS

method. This method involves integrating a pair of cou-

pled partial differential equations forward in time, and its

computational cost is O(N2). Hogan and Battaglia (2008)

reported that the TDTS method applied to a profile of N 5

100 points took approximately 16 ms to compute on a

1-GHz Intel Corporation processor, with the PVC method

being much faster. For N 5 50, this reduces by a factor of 4.

As outlined in section 2c, it appears not to be possible

to formulate an exact Jacobian model with a cost of less

than O(N3) (i.e., approximately 1.6 s per iteration for N 5

100 and 0.2 s for N 5 50 on a 1-GHz Intel processor).

Therefore, we have coded the adjoints of both the PVC

and TDTS methods so that the L-BFGS method may be

applied. The adjoint for the TDTS method is exact, but

that for the PVC method is approximate; it is the adjoint

equivalent to the Jacobian calculation for the simple

small-angle multiple-scattering model of Platt (1973) as

described by Hogan (2008). Because most of the infor-

mation in the retrieval comes from wide-angle scattering,

the L-BFGS algorithm is still able to converge rapidly

with this approximate adjoint.

e. Calculating optical depth and its error

The total optical depth down to range gate m can be

calculated from the retrieved extinction-coefficient profile

as

dm 5 �
m

i51
aiDz (13)

5 wx, (14)

where Dz is the range-gate spacing and the row vector w 5

Dz[1, 1, . . . , 1] is of length m. The error variance S
dm

of the

optical depth to range gate m may naı̈vely be calculated

as

S
d

m

5 wTS(m)
x w, (15)

where S(m)
x is a matrix containing the first m 3 m ele-

ments of the full covariance matrix Sx. This provides a

reasonable estimate of the positive uncertainty on the

optical depth, but more thought is required for the negative

uncertainty, which is overestimated because the prior does

not include a positivity constraint. Consider a retrieved

extinction-coefficient profile for an optically thick cloud in

which the lidar has been completely attenuated. Near

cloud top, the retrieval is dominated by the observations

and the error on the retrieved extinction is dominated by

the observation errors. Toward cloud base, there is no

information from observations and the retrieval and error

are dominated by the prior and the large prior uncertainty.

The optical depth and associated error at each range gate

can be calculated using (14) and (15). At each range gate

we can consider d
m

2 S
dm

to be a minimum bound on the

total optical depth to that range gate; as the retrieved

extinction-coefficient error becomes large toward cloud

base, however, so does S
d

m
. In some cases the estimated

‘‘minimum bounds’’ at each range gate increase as we

descend into the cloud until the retrieval uncertainties be-

come large, at which point the minimum bounds decrease

again toward cloud base. We cannot have less knowledge

about the minimum extent of cloud optical depth as we

descend into the cloud, and therefore we use the maximum

minimum bound dmin to recalculate the negative un-

certainty on the retrieved optical depth below that point

as S2
dm

5 dm 2 dmin. This results in asymmetric errors.

3. Studies with synthetic data

a. Retrieving a triangular extinction-coefficient profile

The general behavior of the retrieval algorithm has

been studied using synthetic measurements. The expec-

ted observations (in the absence of noise) for a chosen an

profile are simulated using the forward model described
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above. Random, normally distributed fluctuations are

added to the simulated observations to represent in-

strument noise, with a variance that is characteristic of a

photon counter with a sensitivity comparable to the

THOR receiver to be described in section 4.

Two extinction-coefficient profiles are used: a triangular

profile (cloud top at 1600 m and cloud base at 705 m) and

a sinusoidal profile (cloud top at 1600 m and cloud base

at 400 m). The triangular profile is chosen to represent

an adiabatic cloud, and the sinusoidal profile is chosen to

test the sensitivity of the method to a highly structured

cloud. The synthetic data use 540-nm lidar with a 325-mrad

beam divergence at the 1/e level. The lidar is at an alti-

tude of 7980 m. The lidar receiver has up to three fields

of view: a central, circular FOV with a footprint of 10 m

at ground (1.25-mrad full-width FOV) and two, concen-

tric, annular fields of view whose outer limits encompass

footprints of 100 and 600 m at ground (12.53- and

75.19-mrad full-width fields of view, respectively). In

each case the receiver has a top-hat pattern.

Figure 1 shows an example of a retrieval using a tri-

angular extinction-coefficient profile with a total optical

depth of 40. Triangular profiles of liquid water content

are commonly observed (e.g., Slingo et al. 1982), indi-

cating an extinction coefficient with an approximately

triangular profile as well. For this retrieval, l 5 105 was

chosen using the method described in section 3f below.

We use scattering properties that are suitable for liquid

droplets: an asymmetry factor of 0.85, single-scattering

albedo of 1, lidar ratio S 5 18.5 sr (Pinnick et al. 1983;

O’Connor et al. 2004), and droplet equivalent-area radius

of 10 mm (required by the PVC method for calculating the

width of the forward-scattering lobe). All are kept constant

with height and are the same for simulating the synthetic

data and for the retrieval. The lidar range-gate spacing is

30 m. Figure 1a shows the true extinction-coefficient pro-

file and retrieved profiles using the three-FOV receiver

and using the central field alone. The error bars are the

square root of the diagonal of the retrieval error covari-

ance matrix Sx. The simulated observations are shown in

Fig. 1b along with the corresponding values forward

modeled from the extinction profile retrieved using all

three fields of view. The retrieval using only a narrow

FOV underestimates an because the signal is rapidly

attenuated. The retrieved total optical depth using only

the narrow FOV is 11:4116
23:2.

Using all three fields of view, the retrieved total op-

tical depth is 35:4113
22:7, in much better agreement with the

true optical depth. The retrieved extinction profile is un-

derestimated near cloud top and base although the slope

is generally well reproduced and the extinction goes to

zero near cloud base. The retrieved extinction coefficient

is accurate to 15% down to 1000 m (35 optical depths).

Above this height the retrieval is dominated by the ob-

servations, but below it the constraint provided by the

observations is weaker and the prior becomes relatively

more important. Information about the relative contri-

butions of parts of the cost function is contained in the

averaging kernel matrix described in section 3b below.

In section 3d we shall see that the total optical depth of

this example is about five optical depths greater than can

be retrieved using this receiver configuration, and so we

expect the profile to be underestimated in this case.

The synthetic data and the retrieval algorithm use the

same forward model. These studies demonstrate how

the retrieval behaves with a perfect forward model. To

study the effect of our forward model on the retrieved

extinction profile and total optical depth, we perform the

retrieval on simulated observations, for the same extinc-

tion profile, generated using the Monte Carlo simulator of

Battaglia et al. (2006), which is the same as that used by

Hogan and Battaglia (2008) to test the forward model.

The retrieved profile is shown in Fig. 1a. The retrieved

total optical depth is 32:3113
22:7, which agrees with the total

optical depth retrieved from the idealized synthetic data.

The extinction coefficient in the lower part of the cloud is

well retrieved, but the retrieval does not reproduce cloud

top as well. This appears to be because the forward model

does not perfectly model the backscatter peak at the tran-

sition between the parts of the profile for which narrow-

and wide-angle scattering are dominant. Nonetheless, the

algorithm is good for retrieving the total optical depth

and the extinction-coefficient gradient toward cloud base.

The studies with the synthetic data illustrate the potential

of a variational retrieval scheme for liquid clouds and that

the current forward model can still be improved.

b. The information content of a retrieval

The averaging kernel matrix W (5›xretrieved/›xtruth)

describes the way the observing system smooths the

profile. It is given by Rodgers (2000) as

W 5 (=2J)21[y 2 H(x)]TR21[y 2 H(x)]. (16)

Because the state vector represents a profile, the rows,

aT
i of W are averaging kernels or smoothing functions,

one for each point in the extinction-coefficient profile. If

the inverse method were perfect, W would be a unit ma-

trix. In reality, the averaging kernels are functions peaked

at their associated range gate with a half-width that is a

measure of the spatial resolution of the observing system.

The area of the averaging kernel, calculated as aT
i u, where

u is a column vector of unit elements, can be considered to

be a rough measure of the fraction of the retrieval, at gate

i, that comes from the observations rather than from the

prior or additional constraints.
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Figure 1c shows some of the averaging kernels for the

three-FOV retrieval. For clarity, only every third kernel

is shown. The first kernel is strongly peaked at the first

range gate, which indicates very good spatial resolution

at cloud top. Further into the cloud, the spatial resolu-

tion worsens and the kernels broaden. The width and

area of the kernels are shown in Fig. 1d. The kernel

width is approximated as

sa,i 5

�
M

j50
Wij(zi 2 zj)

2

�
M

j50
Wij

2
666664

3
777775

1/2

. (17)

The kernel width is approximately equal to the range-

gate spacing for the first kernel, broadening to 2 times

FIG. 1. Example results from a retrieval of an idealized triangular extinction-coefficient profile. (a) The true extinction-coefficient profile

(‘‘Truth’’) and profiles retrieved from synthetic observations using two different receiver configurations: a single- FOV receiver with a 10-m

footprint (1 FOV) and a three-FOV receiver with a 10-m central FOV and two concentric annular fields of view encompassing 100- and 600-m

footprints (3 FOV). Also shown is the profile retrieved from Monte Carlo generated observations using the three-FOV receiver (MC). (b)

The observed (Obs.) apparent backscatter coefficients for each of the fields of view (points with error bars) and the forward-modeled (FM)

observations (lines) for the extinction-coefficient profile retrieved from the synthetic observations using all three fields of view: FOV 1

(central FOV), FOV 2, and FOV 3 (widest FOV). (c) The averaging kernels for the retrieval of the synthetic observations that used the three-

FOV receiver. For clarity, only every third kernel is plotted. (d) The area (top scale) and width (bottom scale) of each averaging kernel.
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that, around 60–70 m, down to a height of about 1300 m,

where the kernel width increases to about 100 m, before

rising rapidly below a height of about 1100 m as the

retrieval loses spatial resolution. In physical terms, the

process of multiple scattering means that information on

vertical structure is lost as more scattering events have

taken place. The dip near ground is an artifact of the

truncated kernels at the base of the retrieval. The areas

of the kernels are approximately 1 from 1600 m down to

about 1100 m, and therefore the retrieval is dominated by

the observations over this range. From 1100 m, the areas

smoothly drop to near zero at about 700 m. In this region

the retrieval is only weakly determined by the observa-

tions and has a significant contribution from the prior,

which is why the extinction coefficient is underestimated

in this region. The smoothing constraint has had the effect

of smoothing the information from the observations across

that range. In a real case in which the true extinction co-

efficient is not known, the averaging kernels show which

regions of the retrieval are only weakly determined by

observations and are therefore less trustworthy.

c. Retrieval of a sinusoidal extinction profile

Figure 2 shows another simulated retrieval for a cloud

with exaggerated vertical structure to determine to what

extent the information on vertical structure is smoothed

out after many scattering events. The total optical depth

of this profile is 14.4, and the optical depth between

troughs is about 2.4. The results of retrievals using two

different receiver configurations are shown. As with the

triangular profile, when using only the narrowest FOV it

is possible to locate the cloud top but it is not possible to

retrieve the extinction-coefficient profile with any accu-

racy. Using the three-FOV receiver, the structure of the

profile can be retrieved to about 6 optical depths (three

peaks). Below this, although the structure is no longer

retrieved, it is still possible to constrain the total optical

depth and the extinction coefficient goes to zero near true

FIG. 2. Performance of the retrieval algorithm for an extinction-coefficient profile with sinusoidal structure. (a) As in Fig. 1a, but without

the MC line. (b) As in Fig. 1b. (c) As in Fig. 1d.
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cloud base. The retrieved total optical depth is 13:318:3
21:3.

The true optical depth down to a height of 1005 m, where

structure is retrieved, is 7.2, and the retrieved optical

depth to this height is 7:116:4
20:2.

d. Optical depth

Figure 1 showed an example retrieval for one extinction

profile. We have repeated the retrieval for a number of

triangular extinction-coefficient profiles, with different

optical depths, for each of the lidar receiver configurations

described in section 3a. For each profile, the cloud-top

height was 1600 m and the gradient da/dz was 1024 m22.

The physical thickness and peak extinction coefficient

were varied to change the total cloud optical depth. For

each extinction profile we simulated one set of observa-

tions without instrument noise and 100 sets with in-

strument noise. For the simulated observations that do not

include instrument noise, we do assign a measurement

error that is consistent with what we would expect for noisy

observations. Figure 3 shows the retrieved total optical

depth as a function of input total optical depth. The lines

with error bars are the retrievals for observations without

noise, and the shaded regions indicate the central 60% of

retrieved optical depths for the observations with noise.

For each of the receiver configurations, the true optical

depth for the idealized, noise-free, observations is well

retrieved for small optical depths and then, after some

point, the retrieved optical depth levels off. Using a single

FOV with a 10-m footprint, the optical depth can be re-

trieved up to about 2 with a negative error of about 0.3

before this ‘‘saturation’’ effect occurs. At this point, the

positive error has saturated and is about 14. This confirms

the common ‘‘rule of thumb’’ that a narrow-FOV lidar

contains useful information only in the first two or three

optical depths of a cloud. Use of a wider FOV with a 100-m

footprint [comparable to Cloud–Aerosol Lidar and In-

frared Pathfinder Satellite Observations (CALIPSO;

Winker et al. 2004)] allows retrieval of optical depth up to

about 25. The three-FOV receiver can retrieve optical

depths up to about 35 before the retrieved optical depth

begins to level off. Instrument noise increases the retrieved

optical depth in retrievals using the three-FOV receiver

for optical depths up to about 20. The maximum optical

depth retrievable by this method will depend on the fields

of view of the lidar and the forward model. In principle,

increasing the width of the widest FOV will increase the

maximum total optical depth that can be retrieved as long

as the assumptions in the forward model are still valid.

FIG. 3. Retrieved optical depth for synthetic, triangular extinction-coefficient profiles with

different optical depths. Each retrieval is performed for three different lidar receiver config-

urations: a single-FOV receiver with a 10-m footprint, a single-FOV receiver with a 100-m

footprint, and a three-FOV receiver with 10-, 100-, and 600-m footprints for each FOV. The

shaded regions indicate the central 60% of the retrieved optical depths for 100 retrievals of

independent observations including instrument noise (not shown for retrievals using the 100-m-

footprint receiver). The lines with error bars are the retrieved optical depths for observations

with no instrument noise. The insert contains an enlarged view for 0–10 optical depths.
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The standard deviation of the retrieved optical depths

for observations with instrument noise is indicative of

the statistical uncertainty on the measurements. The

spread in the retrieved optical depth due to this noise is

significantly reduced when using the three-FOV receiver

as compared with the narrow-FOV receiver alone. The

statistical spread agrees well with the negative error bars

on the noise-free retrievals at small optical depths where

the retrieval is dominated by statistical uncertainty. The

positive errors in optical depth include the uncertainty in

the retrieval that is due to the lack of observations once

the lidar is completely attenuated. The magnitude of this

uncertainty is determined by the uncertainty on the prior,

and the positive errors are large where they become dom-

inated by the prior uncertainty. Above approximately 40

optical depths, the peak extinction coefficient has be-

come unphysically large and inconsistent with the prior

uncertainty of 0.08 m21, and therefore we do not expect

the positive errors on the retrieved optical depth to in-

corporate the true optical depth because these are un-

physical clouds.

e. Sensitivity to input parameters

In the studies described above, the droplet effective

radius re and scattering asymmetry parameter g that are

assumed by the retrieval have been chosen to match those

used to generate the simulated observations. In this sec-

tion we demonstrate the sensitivity of the retrieval algo-

rithm to the choice of these parameters. Varying re has

two effects on the retrieval. First, g is dependent on re,

affecting the depth to which wide-angle multiply scattered

photons penetrate into the cloud. Second, the width of

the forward lobe of the phase function varies inversely

with re, affecting the degree of small-angle multiple

scattering in the first few optical depths in the cloud. We

separate the two effects by varying g independent of the

value of re in the forward lobe. Figure 4a shows the re-

trieved optical depth as a function of true optical depth

for the instrument-noise-free synthetic data in Fig. 3 but

for 10 input values of re in the forward lobe between 5

and 15 mm (re 5 10 mm was used to simulate the ob-

servations). The spread of the retrieved optical depth for

the three-FOV receiver and the 10-m-footprint receiver

are small relative to the statistical uncertainties on the

retrieval in Fig. 3, and therefore the uncertainty on the

retrieved optical depth due to assuming re to calculate

the width of the forward lobe of the phase function is

negligible.

Figure 4b is the same as Fig. 4a except that re is fixed at

10 mm and five different input values of g, between 0.845

and 0.867, are used in the retrievals (g 5 0.850 was used

to simulate the data). That range corresponds to the change

in g when varying re between 5 and 15 mm. The effect of

varying g is small for the narrow FOV, which is domi-

nated by single scattering. Varying g has a considerable

effect on the retrieval for the three-FOV receiver. At a

true total optical depth of 35 (the limit of this receiver’s

ability to retrieve optical depth), the retrieved optical

FIG. 4. The sensitivity of the retrieved optical depth to the assumed parameters. (a) Retrieved optical depth as

a function of true optical depth for 10 values of re between 5 and 15 mm. (b) As in (a), but for five values of g between

0.845 and 0.867.
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depth varies by ;5 as g is varied between 0.845 and

0.867. The uncertainty associated with assuming g is

reduced as the true optical depth decreases.

f. Optimizing the smoothness constraints

Section 2b introduced a smoothness constraint to the

retrieval. The constraint is weighted relative to the rest

of the cost function by a constant l that should be op-

timized to smooth out contributions from noise without

smoothing away true structure. Hansen (1992) proposed

an L-curve analysis as a computational tool for choosing

this regularization parameter. The so-called L-curve is a

plot of xTTx (52l21Jconstraint), a measure of the sum of

the squared curvature of the solution, against the norm

of the residual of the forward model to observations

(52Jobs) for different values of l. Figure 5 shows an

example L-curve for retrievals of a sinusoidal an profile

using a three-FOV receiver (i.e., the black curve in Fig.

2a). The L-curve demonstrates the balance between in-

formation coming from the observations and the con-

straint. In the top-left vertical part of the curve (l , 104),

l is small and the retrieval is dominated by the observa-

tions. Large values of Jconstraint indicate that the retrieval

is noisy. Increasing l in this region increases the smooth-

ness of the solution while having little impact on the re-

sidual from observations. The smoothness of the solution

has been increased by removing fluctuations in the re-

trieved solution that are due to noise in the observations.

Beyond l 5 105, the curve becomes less steep. In this

region, increasing l pulls the forward-modeled solution

away from the observations, increasing the residual, while

having little further impact on the smoothness of the so-

lution. As l is increased beyond l 5 106, the L-curve

becomes vertical again. Here, the retrieval is dominated

by the constraint and the smoothness of the retrieved

solution is increased by removing the true structure. In this

particular example there are two scales of structure: 1)

small-scale structure due to instrument noise that is not in

the true extinction-coefficient profile and that varies on

the scale of the spacing between neighboring points in the

profile and 2) the true, large-scale structure of the original

sine curve. The optimal choice for l is at the heel of the

L-curve around l 5 105. At this point the noise has been

reduced in the retrieved solution without significantly in-

creasing the residual of the solution.

g. Convergence of different minimization methods

Section 2c introduced two methods for minimizing the

cost function: the Gauss–Newton and L-BFGS methods.

We stated that the Gauss–Newton method is quick to

converge for a linear system but requires the Jacobian

matrix of the forward model to be calculated, which is

computationally expensive. In contrast, the L-BFGS

method does not require the Jacobian but may require

more iterations to reach convergence.

Figure 6 compares the convergence rates of the two

methods when retrieving the triangular extinction pro-

file in Fig. 1. The starting point for the minimization was

ln(ai) 5 24 (with ai in reciprocal meters) for both

methods, and for these studies the cost function was

formulated in terms of the natural logarithm of extinc-

tion coefficient and apparent backscatter. The retrieved

extinction-coefficient profiles agreed within errors. The

minimization was halted when the change in the cost

function between iterations was less than 1024. This

happened after 15 Gauss–Newton iterations but required

135 quasi-Newton iterations: a factor-of-9 difference. As

discussed in section 2c, each quasi-Newton iteration is

around N/3 times as fast as a Gauss–Newton iteration for

observation and state vectors containing N elements. The

retrieval in Fig. 6 has a 53-element state vector and a 135-

element observation vector, and therefore each quasi-

Newton iteration is at least 18 times as fast as a Gauss–

Newton iteration, making the quasi-Newton convergence

faster than the Gauss–Newton option despite the extra

iterations required.

4. Application to THOR data

The method has been applied to airborne 540-nm lidar

measurements collected over Oklahoma on 25 March 2002

FIG. 5. Example L-curve for retrievals of the sinusoidal extinc-

tion profile in Fig. 2a using the Twomey–Tikhonov smoothness

constraint. The retrieval is repeated, applying a different weighting

l to the smoothness constraint. The optimum choice for l lies in the

heel of the curve.
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by the THOR instrument (Cahalan et al. 2005). During

the flight, the region was covered by low-level stratus

cloud plus a layer of highly variable but optically thin

cirrus clouds at about 5.5 km above the ground. The re-

trieval has been designed for a single layer of liquid water

cloud and therefore has been tested on profiles from

THOR taken in regions with very thin cirrus. The THOR

receiver has eight fields of view: one circular, central FOV

and seven concentric annular rings. The receiver fields of

view are summarized in Table 1.

Figure 7b shows a sample THOR observation of ap-

parent backscatter. The altitude of the lidar was 8046 m

for these observations. At this altitude the footprint of the

central FOV at ground level is 7 m while the widest FOV

encompasses a footprint of 859 m. The central FOV has

an intense signal at cloud top that is quickly attenuated.

The signals from the wider fields of view are weaker and

broader because they originate from the multiply scattered

radiation coming from deep within the cloud. The ob-

served apparent backscatter, above 1200 m, in the second

and third fields of view is likely caused by cross talk with

the first FOV. The raw THOR observations are photon

counts and must be calibrated and converted to apparent

backscatter. The central FOV is calibrated by matching

the molecular return from above cloud to the Rayleigh

scattering predicted from a nearby radiosonde ascent. The

signals from the other fields of view are calibrated relative

to the central FOV and each other using the approach of

Cahalan et al. (2005). The raw observations include ran-

dom background noise the amplitude of which is inde-

pendent of apparent height. The mean magnitude and

standard deviation of the background are estimated from

the apparent measured signal at the range gates below the

ground. To remove the background, this mean is sub-

tracted from the signal at each range gate, and observa-

tions within 4 standard deviations of 0 are removed. The

observation errors are estimated from the raw photon

counts by assuming Poisson statistics.

The smoothness constraint l used in the retrieval of

the THOR data was optimized using an L-curve analysis

as shown in Fig. 8. The THOR observations have struc-

ture on several length scales. Reducing l below 103 has no

effect on the retrieval. Increasing l to 105 increases the

smoothness of the retrieved extinction profile with only a

small effect on the residual of the observations, and this is

chosen as the optimal value. The L-curve does not level

out, because increasing l continues to remove structure

on larger and larger length scales.

Figure 7a shows the retrieved extinction-coefficient

profile and associated errors. The total retrieved optical

depth is 16:419:1
20:6. Cahalan et al. (2005) retrieved physical

cloud thickness, but not optical depth, for this profile

using THOR’s three outermost fields of view. They ob-

tained a thickness of 560 6 20 m. Using the narrowest

FOV to infer cloud top, this implies that cloud base is at

528 m, which is consistent with where our retrieved ex-

tinction coefficient approaches zero.

The widths and areas of the averaging kernels are

summarized in Fig. 7c. The areas indicate that the retrieval

is dominated by the observations down to an altitude of

about 500 m. The averaging-kernel areas show the reso-

lution of the retrieval gradually increasing to about 120 m,

at an altitude of 540 m, before increasing more rapidly as

the prior and smoothness constraints become relatively

more important.

The apparent backscatter coefficient profiles as for-

ward modeled from the retrieved extinction profile are

shown in Fig. 7. The observations and forward model

TABLE 1. Fields of view of the THOR receiver channels. The

widest FOV is divided into three segments (channels 8–10) that are

merged before being used in the retrieval.

Channel FOV (full angle; mrad)

1 0.000–0.840

2 1.029–1.681

3 1.681–3.361

4 3.361–6.723

5 6.723–13.40

6 13.40–26.72

7 26.72–53.40

8–10 53.40–106.7

FIG. 6. Convergence rates for the Gauss–Newton and L-BFGS

minimization methods for the triangular profile in Fig. 1. The

minimization was halted when the change in the cost function was

less than 1024.

FEBRUARY 2012 P O U N D E R E T A L . 361



agree well for the tails of the wide fields of view; the

forward model overestimates the peak of the narrowest

FOV by approximately a factor of 4, however. There is

evidence that this is due to a nonlinearity in the response

of the first FOV of THOR: this channel has been cali-

brated by matching the molecular scattering above the

stratocumulus with what would be expected from the air

density, but the results are not consistent with the cali-

bration method of O’Connor et al. (2004) that instead

uses the signal at the upper end of the dynamic range of

the receiver. O’Connor et al. showed that the vertically

integrated attenuated backscatter observed in an optically

thick liquid water cloud by a lidar with an FOV narrow

enough that it only detects single-scattered returns is

1/(2S)’ 0.027 sr21 (assuming a lidar ratio S 5 18.5 sr). We

expect the first FOV of the THOR lidar to also detect

photons that have been forward scattered by the narrow

forward lobe in the Mie phase function, resulting in an

expected integrated backscatter of 1/S’ 0.054 sr21. This

is almost exactly the value calculated from the forward-

modeled backscatter for the first FOV. The corre-

sponding value for the THOR measurements in this

channel is only 0.019 sr21, however. Recalibration of this

channel by multiplying by 2.8 would yield the expected

integrated backscatter but would be inconsistent with

the molecular calibration. Therefore, it seems likely that

the signal measured in this channel has suffered from

saturation.

It is possible that this saturation has affected the ac-

curacy of the retrieved extinction profile. To investigate

FIG. 7. Observations of apparent backscatter and retrieval of extinction coefficient for a profile observed by THOR. (a) The extinction-

coefficient profiles retrieved using observations from all fields of view (all FOV; black line) and retrieved excluding observations from the

narrow FOV (gray line). (b) The observed apparent backscatter coefficient from each of the eight fields of view (points with error bars)

and the apparent backscatter forward modeled from the retrieved extinction profile in (a) (FOV 1 is the central FOV, and FOV 8 the

widest). (c) The area (top scale) and width (bottom scale) of each averaging kernel.
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this, we repeated the retrieval but excluded measure-

ments from the first FOV. The result is shown by the

gray line in Fig. 7a. The retrieved extinction profile is

now much smoother near cloud top, and the trough is no

longer present. The gradient of the tail is unchanged, as

expected, because information about cloud base can

only come from the wide fields of view. The apparent

backscatter forward modeled from the retrieved ex-

tinction profile agrees well with the observations at the

peak as well as the tail for all but the widest FOV, where

the forward model has a peak that is too low and too

large. The retrieved total optical depth is 18:219:6
20:6, only

1.8 optical depths larger than was retrieved when using

all fields of view. The incompatible narrow FOV affects

the shape of the retrieved profile, but the wide fields of

view are able to constrain the total optical depth despite

this influence. This is because the wide fields of view

tightly constrain the total optical depth and the gradient

at cloud base while the narrow FOV constrains cloud top.

The trough at around 1000 m is an artifact of the retrieval

trying to reconcile these two constraints when the narrow

FOV is inconsistent with the others.

Discrepancies between the narrow and wide fields of

view could also be introduced by the presence of cirrus

and also by horizontal inhomogeneities in the stratocu-

mulus cloud. High-altitude cirrus will predominately at-

tenuate the direct return but not the multiply scattered

return. The cirrus will also scatter parts of the downwel-

ling lidar pulse into a wider cone, increasing the returns in

the wider fields of view. Although there was some high

cirrus in this profile, it was optically thin and cannot ex-

plain the majority of the observed differences. We have

also assumed that the stratus cloud is horizontally ho-

mogeneous. The profile used here was averaged over 500

lidar pulses. With accounting for the aircraft speed, the

central FOV sampled a 7 m 3 70 m area whereas the

widest FOV samples over a 1-km square area, and

therefore sampling errors could cause differences be-

tween the fields of view. In this case, however, saturation

of the narrow FOV is likely the dominant effect.

5. Conclusions and discussion

A variational retrieval scheme has been described that

retrieves extinction-coefficient profiles in liquid water

clouds from wide-FOV lidar measurements. This scheme

incorporates the fast multiple-scattering models of Hogan

(2008) and Hogan and Battaglia (2008). Using this tech-

nique, we have demonstrated that it is possible to retrieve

cloud vertical structure down to around 6 optical depths

with a perfect forward model and to retrieve total cloud

optical depth up to about 35 optical depths, as compared

with only 2 optical depths when using a conventional

narrow-FOV lidar. Larger optical depths than 35 are

likely to be retrievable for lidars the receivers of which

have a wider FOV than is considered in this paper. The

retrieval has been tested on Monte Carlo and idealized

synthetic data with realistic instrument noise, as well as

on real observations by the airborne THOR instrument.

It has been necessary to make several assumptions so

that the retrieval problem is tractable. The forward model

assumes that the cloud is horizontally homogeneous on

the scale of the footprint of the receiver with the largest

FOV, making the algorithm more applicable to stratiform

liquid clouds than to cumulus. We have also assumed

values for the lidar ratio S, single-scattering albedo; and

asymmetry factor. In practice these are not significant

weaknesses; S is only relevant for the narrowest FOV

and in any case is approximately constant for the range

of droplet size distributions in stratocumulus. Likewise,

the single-scattering albedo, important for calculating the

multiply scattered returns, is approximately constant over

the droplet size range of interest. The asymmetry factor

can have a significant effect for multiply scattered

returns in optically thick clouds, although this is also

approximately constant over the droplet size range of

interest.

We hope that the ability to routinely and rapidly in-

terpret returns from multiple-FOV lidar in liquid clouds

encourages the development of more such instruments.

In particular, this technology is perfectly suited to a sat-

ellite platform, which would enable global measurements

FIG. 8. The L-curve for retrievals, using the Twomey–Tikhonov

smoothness constraint, of a profile observed by the THOR ex-

periment.
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of the extinction profile of liquid clouds for the first time.

The dependence of spaceborne lidar returns on FOV is

highlighted by comparing the profiles from the 1994

Lidar In-Space Technology Experiment (LITE; Winker

et al. 1996), with those from CALIPSO. LITE, with its

FOV of up to 1 km, frequently exhibited returns with so

much multiple scattering that they appeared to originate

from below the surface (Miller and Stephens 1999),

whereas the effect in CALIPSO, with its 90-m FOV, is

only apparent on close inspection of the data. Idealized

retrievals, such as those in Figs. 1 and 2, can be used to

optimize the design of lidar receivers. In particular, a

study of total retrieved optical depth, as in section 3d,

could shed light on the optimum receiver footprint, and

the effect of increasing the number of fields of view

could be tested in retrievals with exaggerated vertical

structure, such as in section 3c. Such studies are beyond

the scope of this paper.

We have concentrated on retrievals of cloud total op-

tical depth and vertical cloud structure, but cloud geo-

metric thickness is also of interest. For cloud retrievals for

which the total optical thickness can be retrieved by the

algorithm, the height of cloud base can be estimated as

the height at which the retrieved extinction coefficient

goes to zero. It is not possible to retrieve confidently the

position of the cloud base with the current algorithm in

very optically thick clouds. This could be achieved by

including in the cost function physically based constraints

(e.g., including cloud adiabaticity), however, and we in-

tend to include such a constraint in the future.

The technique is most powerful when applied to lidars

equipped with multiple-FOV receivers, but we have

demonstrated that useful extra information on cloud

optical depth is available even with a single-, wide-FOV

receiver. Both the spaceborne CALIPSO lidar and the

CloudSat radar are affected by multiple scattering in op-

tically thick media (liquid clouds in the case of CALIPSO

and deep convective clouds in the case of CloudSat), but

since only a single FOV is available there is a limit to what

can be retrieved unambiguously from a single instrument.

We are therefore currently developing a comprehensive

variational cloud and precipitation retrieval that exploits

multiple instruments simultaneously; in this scheme, the

additional constraints necessary to interpret multiple-

scattered radar or lidar signals come not from extra fields

of view but from other instruments such as radiometers.

This is a natural extension to the radar, lidar, and radi-

ometer retrieval scheme of Delanoë and Hogan (2008) in

which small-angle lidar multiple scattering was accounted

for by the Hogan (2006) forward model.
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