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Temporal constraints on linear BRDF model

parameters

Tristan Quaife and Philip Lewis

Abstract

Linear models of BRDF are useful tools for understanding @mgular variability of surface
reflectance as observed by medium resolution sensors sUdB4S. These models are operationally
used to normalise data to common view and illumination gedeand to calculate integral quantities
such as albedo. Currently, to compensate for noise in obdamflectance these models are inverted
against data collected during some temporal window for Wwilie model parameters are assumed to be
constant. Despite this the retrieved parameters are ofimy ffor regions where sufficient observations
are not available. This paper demonstrates the use of Lggwramultipliers to allow arbitrarily large
windows and at the same time produce individual parametsrfee each day even for regions where

only sparse observations are available.

Index Terms

BRDF, MODIS, Terra, Aqua.

. INTRODUCTION

Kernel—driven linear Bi-directional Reflectance Disttibn (BRDF) models are operationally
inverted to provide information about photon scatteringcgsses occurring at the Earth’s surface
[1]. Such models form the basis of the joint Terra and Aqua &tate Resolution Imaging
Spectrometer (MODIS) BRDF/Albedo product (MCD43) [2], .[3lhe MCD43 product uses the
Ross-Thick and Li—Sparse kernels to model scattering frolamvetric and geometric media

respectively along with an isotropic kernel whose valuerigyu[4]. The primary use of these
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models has been in normalising remote sensing data to commaos-llumination geometries
and providing estimates of hemispherical integral quigstisuch as albedo [5]. More recently,
the ability of such models to explain variability in the obssl reflectance signal have enabled
the development of advanced algorithms for detecting ochamg¢he land surface, such as burned
area mapping [6], and tracking the evolution surface ald&§io[8].

Despite their ability to explain the observed reflectanee témporal trajectories of retrieved
kernel weights are often noisy. This is due in part to highr@ations between the kernels at
angular sampling typical of medium resolution sensors a&£MODIS [9]. For many areas of
the land surface this is exacerbated by large numbers oihaigms lost to cloud cover [10].
Various approaches have been employed or proposed to adtiese issues, such as varying
the size of the temporal window [6], biased estimation tépes [7] and applying temporal
functions to the kernel weights [11], [12] or to the obseiwas themselves [13].

This paper examines the use of Lagrangian multipliers tosttaim linear BRDF model
inversions by imposing conditions of temporal smoothnesshe derived kernel weights [14].
The method is widely employed in the atmospheric remote isgnsommunity where it is
used to constrain vertical profiles of retrieved atmosghproperties [15]-[18]. By applying
Lagrangian multipliers the extent of the temporal windovedigor inversion may be extended
to an arbitrarily large size whilst relaxing the conditidrat the kernel weights are constant over
this time period. In the current paper a window size of one ygaised and distinct parameter
sets are retrieved for every day. This permits more accuratking of events on the surface
such as snow melt and vegetation phenology. Furthermormétieod allows for kernel weights
to be retrieved even for periods where there are only verysspabservations.

From a starting point of Tikhonov regularisation a clos@lated technique has been employed
to constrain linear BRDF model inversions for the case wiikeethe number of observations
is fewer than the number of kernels [19], [20]. This metho@sloot employ a constraint of
temporal smoothness but a concept of smoothness withinmegea space. The justification for
this is unclear however. The idea that parameters shouldesgmoothly with time on the other
hand seems reasonable, and is the approach applied here.

The Kalman filter has been used as a means of applying temponatraints to the kernel
inversion within some time window, based on previous ine&rs [21]. This technique requires

careful parameterisation however and only takes into atdcprevious reflectance samples and
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not those from future points in the time series. Consequéhd retrieved kernel weight profiles
exhibit sharp changes when observations are available. [@ter point could be addressed by
applying a Kalman smoother (KS) [22], [23] in place of the iKah filter. The method developed
in this paper is shown to be functionally equivalent to thdnkan smoother and through its
derivation it is possible to explain the physical meaningtlud Kalman parameters for the

somewhat abstract concept of a kernel weight process model.

II. CONSTRAINED LINEAR INVERSION

Linear Bi-dectional Reflectance Factor (BRF) models areéhefdeneral form:

p(Q, Ql? )‘) = i fg()‘>KJ<Qv Q/> (1)
j=1

wherep is the BRF at wavelength and viewing and illumination geometriés and (2’ respec-
tively. K; are kernels that describe the variation of reflectance wighveiwing and illumination
geometry andf; are kernel weights that describe the contribution of eaaimekeat a given
wavelength. The number of kernels used is denotedypically 3. For a vector p of m

reflectance values (1) can be expressed in matrix notation as

p = Kf (2)

wheref is ann length vector of kernel weights ad is am x n matrix of kernel values. Given
observations of reflectance at known angles it is possibievert (2) to provide estimates of
the kernel weights. If the number of observations is gretitan the number of kernels.€,

m > n) then least squares methods may be used to minimise the irapabservation errors.

A. Sandard least squares solution

The least squares solution to (2), for the overdetermined,da obtained by:

tf = (K'C'K) K'Cp 3)

where T denotes a matrix transpose! denotes matrix inversion an@ is the observation
covariance matrix. For view—illumination geometries tygdiof medium resolution sensors such

as Terra and Aqua MODIS, (3) must be applied across some timdow so that sufficient
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samples are collected to solve for model parameters andexxgafe for noise in the observations.
In the MOD43 BRDF/albedo product, which uses data from ordyrd&MODIS, this window
is set to 16 days. In the MCDA43 product that uses data from Betta and Aqua MODIS this

window is 8 days. The underlying assumption is thaloes not change within that time period.

B. Constrained least squares solution

It is possible to modify (3) so as to impose an expectatiorheftemporal behaviour of the

kernel weights [18]:

-1
f* = (KTC'K*+BI’B) -
(4)
(K*Tc—l p + BTI\2q)
whereB specifies the required constraint, alids a weighting operator, witl'? = T'’T. This
provides the solution to the least squares problem in (2)esulbo the constrainBf* = q. To
impose a condition of temporal smoothness on the kernelhi®lg is set to a first difference
matrix, q is set to zero and’ is set to the product of the identity matrix and a scajain this

contexty is a Lagrange multiplier. The general constraint (4) became

- (K*TC_IK*—i—’YzBTB)_I K*Tc—l p (5)

which is the same formulation as provided by [14]. The Lageamultiplier,, can be interpreted
as a measure of confidence in the assumption that the firsreliifes of the model parameters
between adjacent days should be zero. This is illustratedrtajogy with Kalman smoother
below.

Unlike f the vectorf* does not refer to an instantaneous realisation of the kevaights that
is assumed to be uniform across some time window. It is ary af&ernel weights with one

realisation for each time step:

June 9, 2009 DRAFT



= =1 (6)

fn,t
wheret is the total number of time steps. The time stéf) (may be set to any size over which
it is sensible to expect variation in the kernel weights.He turrent papeit = 1 day and: = 3
kernels {.e., isotropic, Ross—Thick and Li—Sparse). If there is no moentbne observation per

day then the matriX<* is given by:

Ky (4,60)
K1 (Qm, 2,,)
Ko (2, 8)
K = ; )
K2(Qm7 Qin)
Kn<le Qll)
K (0, 27,,)

If there are no observations for some time step then the soraling kernel values are
replaced with zeros. In this case, or where there is exactly abservation per time step the
number of rows in the matrix will bet. If there is more than one observation for a time step
then the additional kernel values are placed directly umelgth the corresponding kernels for
that time step.e., off the diagonal. In this case the number of rowswis+ p wherep is the
total number of observations greater than one for a time stepmed across all time steps. The
number of columns irfK* is alwayst.

The nt x nt matrix B defines the constraint of first differences:
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where everyt’ +1 row is set to zero. This prevents the constraint being apg@®oss the end

of the time series for one kernel to the beginning of the next.

C. Determination of ~

There is very little consent in the literature as to how thkigaf v should be selected. The
approach taken here is to select a value that produces atsidhose standard deviation is equal
to the expected error in the reflectance data. For band osésthgual to 0.004 and for band two
it is 0.015 [6]. Consequently the RMSE of predicted to obsdrxeflectance is pre—determined
and cannot be used as a measure of goodness of fit.

Although this approach appears to give good results frompérspective of the temporal
trajectories of the retrieved kernel weights the valueyafself is quite variable both spatially
and spectrally when determined in this manner. In additmmes iteration is required to obtain
the required value. Clearly an analytical means of detangin would be preferable; this has

not been pursued here.

[Il. RESULTS
A. Smulations

[FIGURE 1 ABOUT HERE]

To test the method, hypothetical temporal trajectorieshef BRDF kernels were created
and used to simulate reflectance values. MODIS angular sagnfir a typical mid—latitude
site was used for the simulations, in this case the BartordB&BNEOS core validation site at
52.618° latitude,0.524° longitude [24]. The site is dominated by cereal crops anésbget and
typical field size is small compared to the resolution of th@MS sensor. Consequently pixels

generally contain mixed agricultural cover types. The kémmeights were inverted against the
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simulated reflectances using the method described abovdéododing this against the same
data with varying amounts of noise added and samples rentovegpresent realistic scenarios
for medium resolution satellite data.

Fig. 1 shows the results for the constrained linear invergk) and a 16—day moving window
where 60% of reflectance samples have been removed and @aussse has been added into
the simulated data with a standard deviation of 0.015. Theosinmess constraint clearly does
a better job of reconstructing the original signal, esdbcifr the volumetric kernel. It also
appears to be more robust to local outliers than the movinglew approach. It should be
noted that in the actual MODIS BRDF/albedo the ‘magnitudesision’ method is invoked if
there is not sufficient good quality data to produce a redighlll’ inversion [25]. As more
samples are used in the inversion and less noise is addethanttata both methods fit better to
the data. With all samples present and no noise both techsicpirieve the hypothetical kernel
weights perfectly. As noise is added they all begin to deviabwever the smoothness constraint
appears remarkably robust to the removal of samples comipgarthe 16—day window (results
not shown).

[FIGURE 2 ABOUT HERE]

[FIGURE 3 ABOUT HERE]

B. MODIS data

The technique is applied here to MODIS data for two differeegions. The MODO09 and
MYDO09 500m surface reflectance products from the Terra andaAgODIS instruments (re-
spectively) were filtered using their internal QA flags to\pde reflectance samples. The results
were compared against the combined Terra and Aqua BRDE@Ipeduct MCD43, which is
produced on an 8—day moving window basis. These are showigirRFRand 3. Kernel weights
produced by magnitude inversion [25], or for which no ini@nswas performed for the MCD43
product are indicated in the results figures as grey bars.

1) MODIS tile h17v04: Fig. 2 shows results for a pixel in Northern Spain, latitude025,
longitude -6.674, an area of deciduous forest. The pheigabgignal is clear in both band 1
and band 2 with leaf—out occurring between day 100 and 15®&edain the isotropic kernel

weight by a decline in red band and an increase in the nea-irdd. Senescence appears to
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be a longer processes and is marked by a gradual decline metireinfra—red isotropic kernel
weight and no appreciable signal change in the red channel.

The volumetric kernel weights produced by the smoothnesstcaint are considerably less
noisy than those in the MCD43 product, as predicted by theilsition results. This is especially
so in band 1. Intriguingly, in band 2, the constrained voltrineernel weight exhibits a clear
phenological signal that is not readily distinguished ia MCD43 data. This fits the expectation
of photon scattering in the canopy, where near infra—rett ligill be scattered strongly by
an abundance of green leaves. There is no clear signal ingbenearic kernel for either the
smoothness constraint or the MCD43 kernel weights.

2) MODIStile h23v03: The pixel represented in Fig. 3 is deciduous forest in Sahdatitude
52.906, longitude 86.968. The temporal signal in this pigsemore complex as there are two
processes effecting the reflectance: vegetation phena@ogysnow presence. In addition the
number of reflectance samples available in the winter moisthery low forcing the use of
magnitude inversion for approximately half of the MCD43 alaf\t the very end of the year
there are no samples at all so neither method produces anystda the case of the constrained
inversion increasing the time window up to the point wherensmbservation were available
would result in estimates of the kernel weights for the etyirof this time period. This is not
possible with the MCD43 alogrithm.

The influence of snow is very clear in these inversions. Boih near infra—red and red
reflectances are very high for around the first 100 days of &ae. JAfter this the snow begins to
melt, resulting in decreasing reflectance, but then leatagste flush and and the near infra—red
reflectance increases. During the middle of the year botthodst agree well for the isotropic
and geometric kernel weights. As with the previous examipteyever, the volumetric kernel
weights do not correspond well between the two methods. Dmstained volumetric kernel
weights in band 2 exhibit a similar temporal profile to thosenf the pixel in tile h17v04.

During the periods for which the MCD43 product uses magmtinyersions, or produces no
data, the constrained inversion pushes the geometric lkeright slightly negative. This could

be addressed by adding further constraints into the inwersi
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C. Predicting Aqua MODIS data from Terra MODIS

By adjustingy the reflectance data used to fit the kernel weights can begbeeldiith arbitrary
accuracy. Consequently to test the fitting of the BRDF madslnecessary to exclude some data
from the constrained least squares procedure and use thesmltiate the performance of the
method. Fig. 4 shows the results of fitting the kernel weight3erra MODIS reflectance data
and then predicting the observed Aqua MODIS reflectancehigndircumstance it is acceptable
to calculate metrics such as the Root Mean Squared Error §M& the test data has not
been used in the model fitting or the determinationyoExcluding a single outlier in the Aqua
reflectance data the RMSE is 0.0058 and 0.0296 for band 1 amdl baespectively for tile
h17v04. In band 1 this corresponds to 26% of the mean obseefledtances, and 13% in band
2. The data appear to lie evenly around the 1:1 line and edtilty a small negative bias in both
bands, -0.0016 in band 1 and -0.0039 in band 2. The Aqua ddisams have slightly higher
values than those modelled from the Terra data. For tile B23ke prediction is much stronger.
The RMSE values are 0.0051 and 0.0117 for bands 1 and 2 rasgbgctorresponding to a
15% in band one and 4% in band 2.

[FIGURE 4 ABOUT HERE]

D. Functional equivalence with the Kalman smoother

[FIGURE 5 ABOUT HERE]

Fig. 5 shows the kernel weights for MODIS band 2 retrieved@ggionstrained inversion, as
shown in Fig. 2b, superimposed with the results for a Kalmawoather applied to the same
data. The KS requires some concept of an underlying procesielnthat controls the evolution
of the kernel weights with time. In this case the model useal Zzero—order modei,e., there is
no expected change in the kernel weights with time. This reeptually similar to constraining
the first differences to be as small as possibke, by definingB as in (8) and setting to zero.

A common difficulty with utilising the KS is setting the erréerm for the process model.
In previous work utilising the kernel BRDF models with a Kamfilter and a zero order
process model it has been set arbitrarily [21]. In Fig. 5 thierederm for the KS has been given
a value of1/+? corresponding to that used for the Lagrangian multipliettia constrained
inversion. Although the results are not identical, they agy similar and differences could be

due to computational precision: the constrained inversexguires one large matrix inversion
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and the KS requires many small matrix inversions. Using #raesvalue ofy for both the KS

and the constrained inversion demonstrates that the Lggranultiplier may be interpreted as
the certainty in the underlying assumption of smoothnebss Juggest a functional equivalence
between the two methods, although it is not proved here. &prently the constrained inversion

outlined in this paper may have applications in the field dadessimilation.

IV. DISCUSSION

The approach of using Lagrangian multipliers to constrhminversions clearly works well.
By allowing for a large time window the angular sampling isahuncreased and inversions
with greater stability are produced. Both phenology andwsneelt in the results shown for
Northern Spain and Siberia are well described by the methfibése are attractive features
for such a technique as the size of windows typically usedBBRDF model inversions can
reduce the accuracy with which the timing of such events iealed. Attempting to track such
changes with surface reflectance, or even vegetation exdzan be difficult without taking into
account the variability in reflectance caused by changesewing and illumination geometry:
the magnitude in the angular signal may be significant in seomthat induced by the change
in surface properties.

Step changes in the reflectance signal, such as burning fatswegetation or flash flooding,
may not be as well detected because they are not smooth. ldgvieeknay be able possible to
adapt the technique to deal with such situations by applyioge elaborate constraints using
different formulations oB, " andq [26]. For example, this may entail an iterative approach to
building of theI" matrix. At times when the signal is changing rapidly the edats ofT" can
be relaxed to allow the parameters to respond more quickly.

In aerosol profile retrieval problems it is common to use asddifference constraint rather
than first differences, as here. Second differences wezd with the BRDF model inversions
but first differences gave more satisfactory results, aafpedowards either end of the time
series. It is worth noting that (4) can be extended with mldticonstraint matrices allowing
for complex models of expectation in the temporal evolutidrthe kernel weights. It is also
possible to add constraints that prevent the kernel weiffbte going negative (as with the
MCD43 algorithm). An additional example of a modified coasit that is straight forward to

apply, is to have separatefor each kernel.
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The method for selecting requires further investigation. Here the approach takenbeen
to select a value that produces appropriate residuals, landetsulting kernel weight profiles
appear to justify this method. The actual valuesyofletermined by this mechanism are very
variable though. Clearly a more satisfactory solution wobe to have an analytical approach
to the problem. This is likely to be a function of the anguladaemporal sampling and will
form the basis of a future study.

Errors in the retrieved kernel weights have not been examninethis paper. These may
be estimated directly from the inverse matrix using the sésebnique as for the weights of
determination [9]. As the formulation used in this paperludes the observation covariance
matrix the results will be direct estimates of the error eattihan the noise amplification factor.
This is important as it will permit direct quantification ofrer in information derived from the
kernel weights such as phenological metrics or hemisphleintegrals €.g., albedo).

Although only a single matrix inversion is required to prodikernel weights for an entire year
(or more) the size of the matrix is such that no advantageeaeds gained: it is comparable with
the KS. Techniques for dealing with large, sparse matriea® mot been investigated however

and these may provide a computational advantage.

V. CONCLUSION

This paper has described a method for inverting linear kednwen BRDF models using
Lagrangian multipliers to impose expectations of tempsmabothness on the resulting kernel
weights. The method permits for an arbitrarily large timaaaw for the collection of reflectance
observations without assuming that the kernel weights tm@stonstant within this time window.
Individual sets of kernel weights can be produced for eagte tstep inside the window. The
technique is shown to work well for two different areas of tharth’s surface that both exhibit
strong temporal variability due to vegetation phenologg anow. In these cases the window
size was set to one year and the time step was set to one dayndgptes the requirement for
a backup algorithm to retrieve the kernel weights such astieeused in the MCD43 product.
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