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Temporal constraints on linear BRDF model

parameters

Tristan Quaife and Philip Lewis

Abstract

Linear models of BRDF are useful tools for understanding theangular variability of surface

reflectance as observed by medium resolution sensors such asMODIS. These models are operationally

used to normalise data to common view and illumination geometries and to calculate integral quantities

such as albedo. Currently, to compensate for noise in observed reflectance these models are inverted

against data collected during some temporal window for which the model parameters are assumed to be

constant. Despite this the retrieved parameters are often noisy for regions where sufficient observations

are not available. This paper demonstrates the use of Lagrangian multipliers to allow arbitrarily large

windows and at the same time produce individual parameter sets for each day even for regions where

only sparse observations are available.

Index Terms

BRDF, MODIS, Terra, Aqua.

I. INTRODUCTION

Kernel–driven linear Bi-directional Reflectance Distribution (BRDF) models are operationally

inverted to provide information about photon scattering processes occurring at the Earth’s surface

[1]. Such models form the basis of the joint Terra and Aqua Moderate Resolution Imaging

Spectrometer (MODIS) BRDF/Albedo product (MCD43) [2], [3]. The MCD43 product uses the

Ross–Thick and Li–Sparse kernels to model scattering from volumetric and geometric media

respectively along with an isotropic kernel whose value is unity [4]. The primary use of these

The authors are with the NERC National Centre for Earth Observation, Carbon Theme, Department of Geography, University

College London, Gower Street, London, WC1E 6BT. UK.
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models has been in normalising remote sensing data to commonview–illumination geometries

and providing estimates of hemispherical integral quantities such as albedo [5]. More recently,

the ability of such models to explain variability in the observed reflectance signal have enabled

the development of advanced algorithms for detecting change in the land surface, such as burned

area mapping [6], and tracking the evolution surface albedo[7], [8].

Despite their ability to explain the observed reflectance the temporal trajectories of retrieved

kernel weights are often noisy. This is due in part to high correlations between the kernels at

angular sampling typical of medium resolution sensors suchas MODIS [9]. For many areas of

the land surface this is exacerbated by large numbers of observations lost to cloud cover [10].

Various approaches have been employed or proposed to address these issues, such as varying

the size of the temporal window [6], biased estimation techniques [7] and applying temporal

functions to the kernel weights [11], [12] or to the observations themselves [13].

This paper examines the use of Lagrangian multipliers to constrain linear BRDF model

inversions by imposing conditions of temporal smoothness on the derived kernel weights [14].

The method is widely employed in the atmospheric remote sensing community where it is

used to constrain vertical profiles of retrieved atmospheric properties [15]–[18]. By applying

Lagrangian multipliers the extent of the temporal window used for inversion may be extended

to an arbitrarily large size whilst relaxing the condition that the kernel weights are constant over

this time period. In the current paper a window size of one year is used and distinct parameter

sets are retrieved for every day. This permits more accuratetracking of events on the surface

such as snow melt and vegetation phenology. Furthermore themethod allows for kernel weights

to be retrieved even for periods where there are only very sparse observations.

From a starting point of Tikhonov regularisation a closely related technique has been employed

to constrain linear BRDF model inversions for the case wherethe the number of observations

is fewer than the number of kernels [19], [20]. This method does not employ a constraint of

temporal smoothness but a concept of smoothness within parameter space. The justification for

this is unclear however. The idea that parameters should evolve smoothly with time on the other

hand seems reasonable, and is the approach applied here.

The Kalman filter has been used as a means of applying temporalconstraints to the kernel

inversion within some time window, based on previous inversions [21]. This technique requires

careful parameterisation however and only takes into account previous reflectance samples and
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not those from future points in the time series. Consequently the retrieved kernel weight profiles

exhibit sharp changes when observations are available. This later point could be addressed by

applying a Kalman smoother (KS) [22], [23] in place of the Kalman filter. The method developed

in this paper is shown to be functionally equivalent to the Kalman smoother and through its

derivation it is possible to explain the physical meaning ofthe Kalman parameters for the

somewhat abstract concept of a kernel weight process model.

II. CONSTRAINED LINEAR INVERSION

Linear Bi-dectional Reflectance Factor (BRF) models are of the general form:

ρ(Ω, Ω′, λ) =
n

∑

j=1

fj(λ)Kj(Ω, Ω′) (1)

whereρ is the BRF at wavelengthλ and viewing and illumination geometriesΩ andΩ′ respec-

tively. Kj are kernels that describe the variation of reflectance with the veiwing and illumination

geometry andfj are kernel weights that describe the contribution of each kernel at a given

wavelength. The number of kernels used is denotedn, typically 3. For a vector ρ of m

reflectance values (1) can be expressed in matrix notation as:

ρ = Kf (2)

wheref is ann length vector of kernel weights andK is am×n matrix of kernel values. Given

observations of reflectance at known angles it is possible toinvert (2) to provide estimates of

the kernel weights. If the number of observations is greaterthan the number of kernels (i.e.,

m > n) then least squares methods may be used to minimise the impact of observation errors.

A. Standard least squares solution

The least squares solution to (2), for the overdetermined case, is obtained by:

f =
(

KTC−1K
)

−1

KTC−1
ρ (3)

where T denotes a matrix transpose,−1 denotes matrix inversion andC is the observation

covariance matrix. For view–illumination geometries typical of medium resolution sensors such

as Terra and Aqua MODIS, (3) must be applied across some time window so that sufficient

June 9, 2009 DRAFT



4

samples are collected to solve for model parameters and compensate for noise in the observations.

In the MOD43 BRDF/albedo product, which uses data from only Terra-MODIS, this window

is set to 16 days. In the MCD43 product that uses data from bothTerra and Aqua MODIS this

window is 8 days. The underlying assumption is thatf does not change within that time period.

B. Constrained least squares solution

It is possible to modify (3) so as to impose an expectation of the temporal behaviour of the

kernel weights [18]:

f∗ =
(

K∗T C−1K∗ + BTΓ2B
)

−1

·

(

K∗T C−1
ρ + BTΓ2q

) (4)

whereB specifies the required constraint, andΓ is a weighting operator, withΓ2 = ΓTΓ. This

provides the solution to the least squares problem in (2) subject to the constraintBf∗ = q. To

impose a condition of temporal smoothness on the kernel weights B is set to a first difference

matrix, q is set to zero andΓ is set to the product of the identity matrix and a scalar,γ. In this

contextγ is a Lagrange multiplier. The general constraint (4) becomes:

f∗ =
(

K∗TC−1K∗ + γ2BTB
)

−1

K∗TC−1
ρ (5)

which is the same formulation as provided by [14]. The Lagrange multiplier,γ, can be interpreted

as a measure of confidence in the assumption that the first differences of the model parameters

between adjacent days should be zero. This is illustrated byanalogy with Kalman smoother

below.

Unlike f the vectorf∗ does not refer to an instantaneous realisation of the kernelweights that

is assumed to be uniform across some time window. It is an array of kernel weights with one

realisation for each time step:
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f∗ =


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

f1,1

...

f1,t
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...
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


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









(6)

wheret is the total number of time steps. The time step (δt) may be set to any size over which

it is sensible to expect variation in the kernel weights. In the current paperδt = 1 day andn = 3

kernels (i.e., isotropic, Ross–Thick and Li–Sparse). If there is no more than one observation per

day then the matrixK∗ is given by:

K∗ =


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. . .
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1
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. . .
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(7)

If there are no observations for some time step then the corresponding kernel values are

replaced with zeros. In this case, or where there is exactly one observation per time step the

number of rows in the matrix will bent. If there is more than one observation for a time step

then the additional kernel values are placed directly underneath the corresponding kernels for

that time stepi.e., off the diagonal. In this case the number of rows isnt + p wherep is the

total number of observations greater than one for a time step, summed across all time steps. The

number of columns inK∗ is alwayst.

The nt × nt matrix B defines the constraint of first differences:
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B =
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(8)

where everytth + 1 row is set to zero. This prevents the constraint being applied across the end

of the time series for one kernel to the beginning of the next.

C. Determination of γ

There is very little consent in the literature as to how the value of γ should be selected. The

approach taken here is to select a value that produces residuals whose standard deviation is equal

to the expected error in the reflectance data. For band one this is equal to 0.004 and for band two

it is 0.015 [6]. Consequently the RMSE of predicted to observed reflectance is pre–determined

and cannot be used as a measure of goodness of fit.

Although this approach appears to give good results from theperspective of the temporal

trajectories of the retrieved kernel weights the value ofγ itself is quite variable both spatially

and spectrally when determined in this manner. In addition some iteration is required to obtain

the required value. Clearly an analytical means of determining γ would be preferable; this has

not been pursued here.

III. RESULTS

A. Simulations

[FIGURE 1 ABOUT HERE]

To test the method, hypothetical temporal trajectories of the BRDF kernels were created

and used to simulate reflectance values. MODIS angular sampling for a typical mid–latitude

site was used for the simulations, in this case the Barton Bendish EOS core validation site at

52.618◦ latitude,0.524◦ longitude [24]. The site is dominated by cereal crops and sugar beet and

typical field size is small compared to the resolution of the MODIS sensor. Consequently pixels

generally contain mixed agricultural cover types. The kernel weights were inverted against the

June 9, 2009 DRAFT



7

simulated reflectances using the method described above andfollowing this against the same

data with varying amounts of noise added and samples removedto represent realistic scenarios

for medium resolution satellite data.

Fig. 1 shows the results for the constrained linear inversion (5) and a 16–day moving window

where 60% of reflectance samples have been removed and Gaussian noise has been added into

the simulated data with a standard deviation of 0.015. The smoothness constraint clearly does

a better job of reconstructing the original signal, especially for the volumetric kernel. It also

appears to be more robust to local outliers than the moving window approach. It should be

noted that in the actual MODIS BRDF/albedo the ‘magnitude inversion’ method is invoked if

there is not sufficient good quality data to produce a reliable ‘full’ inversion [25]. As more

samples are used in the inversion and less noise is added intothe data both methods fit better to

the data. With all samples present and no noise both techniques retrieve the hypothetical kernel

weights perfectly. As noise is added they all begin to deviate, however the smoothness constraint

appears remarkably robust to the removal of samples compared to the 16–day window (results

not shown).

[FIGURE 2 ABOUT HERE]

[FIGURE 3 ABOUT HERE]

B. MODIS data

The technique is applied here to MODIS data for two differentregions. The MOD09 and

MYD09 500m surface reflectance products from the Terra and Aqua MODIS instruments (re-

spectively) were filtered using their internal QA flags to provide reflectance samples. The results

were compared against the combined Terra and Aqua BRDF/albedo product MCD43, which is

produced on an 8–day moving window basis. These are shown in Fig. 2 and 3. Kernel weights

produced by magnitude inversion [25], or for which no inversion was performed for the MCD43

product are indicated in the results figures as grey bars.

1) MODIS tile h17v04: Fig. 2 shows results for a pixel in Northern Spain, latitude 43.025,

longitude -6.674, an area of deciduous forest. The phenological signal is clear in both band 1

and band 2 with leaf–out occurring between day 100 and 150 marked in the isotropic kernel

weight by a decline in red band and an increase in the near infra–red. Senescence appears to
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be a longer processes and is marked by a gradual decline in thenear infra–red isotropic kernel

weight and no appreciable signal change in the red channel.

The volumetric kernel weights produced by the smoothness constraint are considerably less

noisy than those in the MCD43 product, as predicted by the simulation results. This is especially

so in band 1. Intriguingly, in band 2, the constrained volumetric kernel weight exhibits a clear

phenological signal that is not readily distinguished in the MCD43 data. This fits the expectation

of photon scattering in the canopy, where near infra–red light will be scattered strongly by

an abundance of green leaves. There is no clear signal in the geometric kernel for either the

smoothness constraint or the MCD43 kernel weights.

2) MODIS tile h23v03: The pixel represented in Fig. 3 is deciduous forest in Siberia, latitude

52.906, longitude 86.968. The temporal signal in this pixelis more complex as there are two

processes effecting the reflectance: vegetation phenologyand snow presence. In addition the

number of reflectance samples available in the winter monthsis very low forcing the use of

magnitude inversion for approximately half of the MCD43 data. At the very end of the year

there are no samples at all so neither method produces any results. In the case of the constrained

inversion increasing the time window up to the point where some observation were available

would result in estimates of the kernel weights for the entirety of this time period. This is not

possible with the MCD43 alogrithm.

The influence of snow is very clear in these inversions. Both the near infra–red and red

reflectances are very high for around the first 100 days of the year. After this the snow begins to

melt, resulting in decreasing reflectance, but then leaves start to flush and and the near infra–red

reflectance increases. During the middle of the year both methods agree well for the isotropic

and geometric kernel weights. As with the previous example,however, the volumetric kernel

weights do not correspond well between the two methods. The constrained volumetric kernel

weights in band 2 exhibit a similar temporal profile to those from the pixel in tile h17v04.

During the periods for which the MCD43 product uses magnitude inversions, or produces no

data, the constrained inversion pushes the geometric kernel weight slightly negative. This could

be addressed by adding further constraints into the inversion.

June 9, 2009 DRAFT
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C. Predicting Aqua MODIS data from Terra MODIS

By adjustingγ the reflectance data used to fit the kernel weights can be predicted with arbitrary

accuracy. Consequently to test the fitting of the BRDF model it is necessary to exclude some data

from the constrained least squares procedure and use these to evaluate the performance of the

method. Fig. 4 shows the results of fitting the kernel weightsto Terra MODIS reflectance data

and then predicting the observed Aqua MODIS reflectance. In this circumstance it is acceptable

to calculate metrics such as the Root Mean Squared Error (RMSE), as the test data has not

been used in the model fitting or the determination ofγ. Excluding a single outlier in the Aqua

reflectance data the RMSE is 0.0058 and 0.0296 for band 1 and band 2 respectively for tile

h17v04. In band 1 this corresponds to 26% of the mean observedreflectances, and 13% in band

2. The data appear to lie evenly around the 1:1 line and exhibit only a small negative bias in both

bands, -0.0016 in band 1 and -0.0039 in band 2. The Aqua observations have slightly higher

values than those modelled from the Terra data. For tile h23v03 the prediction is much stronger.

The RMSE values are 0.0051 and 0.0117 for bands 1 and 2 respectively, corresponding to a

15% in band one and 4% in band 2.

[FIGURE 4 ABOUT HERE]

D. Functional equivalence with the Kalman smoother

[FIGURE 5 ABOUT HERE]

Fig. 5 shows the kernel weights for MODIS band 2 retrieved using constrained inversion, as

shown in Fig. 2b, superimposed with the results for a Kalman smoother applied to the same

data. The KS requires some concept of an underlying process model that controls the evolution

of the kernel weights with time. In this case the model used isa zero–order model,i.e., there is

no expected change in the kernel weights with time. This is conceptually similar to constraining

the first differences to be as small as possible,i.e., by definingB as in (8) and settingq to zero.

A common difficulty with utilising the KS is setting the errorterm for the process model.

In previous work utilising the kernel BRDF models with a Kalman filter and a zero order

process model it has been set arbitrarily [21]. In Fig. 5 the error term for the KS has been given

a value of1/γ2 corresponding to that used for the Lagrangian multiplier inthe constrained

inversion. Although the results are not identical, they arevery similar and differences could be

due to computational precision: the constrained inversionrequires one large matrix inversion
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and the KS requires many small matrix inversions. Using the same value ofγ for both the KS

and the constrained inversion demonstrates that the Lagrange multiplier may be interpreted as

the certainty in the underlying assumption of smoothness. This suggest a functional equivalence

between the two methods, although it is not proved here. Consequently the constrained inversion

outlined in this paper may have applications in the field of data assimilation.

IV. D ISCUSSION

The approach of using Lagrangian multipliers to constrain the inversions clearly works well.

By allowing for a large time window the angular sampling is much increased and inversions

with greater stability are produced. Both phenology and snow melt in the results shown for

Northern Spain and Siberia are well described by the method.These are attractive features

for such a technique as the size of windows typically used forBRDF model inversions can

reduce the accuracy with which the timing of such events is detected. Attempting to track such

changes with surface reflectance, or even vegetation indicies can be difficult without taking into

account the variability in reflectance caused by changes in viewing and illumination geometry:

the magnitude in the angular signal may be significant in terms of that induced by the change

in surface properties.

Step changes in the reflectance signal, such as burning of surface vegetation or flash flooding,

may not be as well detected because they are not smooth. However, it may be able possible to

adapt the technique to deal with such situations by applyingmore elaborate constraints using

different formulations ofB, Γ andq [26]. For example, this may entail an iterative approach to

building of theΓ matrix. At times when the signal is changing rapidly the elements ofΓ can

be relaxed to allow the parameters to respond more quickly.

In aerosol profile retrieval problems it is common to use a second difference constraint rather

than first differences, as here. Second differences were tried with the BRDF model inversions

but first differences gave more satisfactory results, especially towards either end of the time

series. It is worth noting that (4) can be extended with multiple constraint matrices allowing

for complex models of expectation in the temporal evolutionof the kernel weights. It is also

possible to add constraints that prevent the kernel weightsfrom going negative (as with the

MCD43 algorithm). An additional example of a modified constraint that is straight forward to

apply, is to have separateγ for each kernel.
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The method for selectingγ requires further investigation. Here the approach taken has been

to select a value that produces appropriate residuals, and the resulting kernel weight profiles

appear to justify this method. The actual values ofγ determined by this mechanism are very

variable though. Clearly a more satisfactory solution would be to have an analytical approach

to the problem. This is likely to be a function of the angular and temporal sampling and will

form the basis of a future study.

Errors in the retrieved kernel weights have not been examined in this paper. These may

be estimated directly from the inverse matrix using the sametechnique as for the weights of

determination [9]. As the formulation used in this paper includes the observation covariance

matrix the results will be direct estimates of the error rather than the noise amplification factor.

This is important as it will permit direct quantification of error in information derived from the

kernel weights such as phenological metrics or hemispherical integrals (e.g., albedo).

Although only a single matrix inversion is required to produce kernel weights for an entire year

(or more) the size of the matrix is such that no advantage in speed is gained: it is comparable with

the KS. Techniques for dealing with large, sparse matrices have not been investigated however

and these may provide a computational advantage.

V. CONCLUSION

This paper has described a method for inverting linear kernel–driven BRDF models using

Lagrangian multipliers to impose expectations of temporalsmoothness on the resulting kernel

weights. The method permits for an arbitrarily large time window for the collection of reflectance

observations without assuming that the kernel weights mustbe constant within this time window.

Individual sets of kernel weights can be produced for each time step inside the window. The

technique is shown to work well for two different areas of theEarth’s surface that both exhibit

strong temporal variability due to vegetation phenology and snow. In these cases the window

size was set to one year and the time step was set to one day. This negates the requirement for

a backup algorithm to retrieve the kernel weights such as theone used in the MCD43 product.
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Fig. 1. Simulation results for typical mid–latitude Terra/MODIS angular sampling with gaussian noise added to simulated

reflectance atσ = 0.015 and 60% of samples removed at random. Langrange refers to theconstrained inversions.
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Fig. 2. Temporal trajectories of the kernel weights for MODIS bands 1 and 2 for the pixel in tile h17v04. Lines refer to values

obtained using the smoothness constraint and points are taken from the MCD43 product. Grey boxes indicate periods wherethe

MCD43 product has used the magnitude inversion backup algorithm or produced no results at all.
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Fig. 3. Temporal trajectories of the kernel weights for MODIS bands 1 and 2 for the pixel in tile h23v03. Lines refer to values

obtained using the smoothness constraint and points are taken from the MCD43 product. Grey boxes indicate periods wherethe

MCD43 product has used the magnitude inversion backup algorithm or produced no results at all.
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