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The Impact of Buffer Zone Size and Management on Illegal Extraction, Park 
Protection, and Enforcement 
 

Abstract 

Many protected areas or parks in developing countries have buffer zones at their 

boundaries to achieve the dual goals of protecting park resources and providing 

resource benefits to neighbouring people. Despite the prevalence of these zoning 

policies, few behavioural models of people’s buffer zone use inform the sizing and 

management of those zones.  This paper uses a spatially explicit resource extraction 

model to examine the impact of buffer zone size and management on extraction by 

local people, both legal and illegal, and the impact of that extraction on forest quality 

in the park’s core and buffer zone. The results demonstrate trade-offs between the 

level of enforcement, the size of a buffer zone, and the amount of illegal extraction in 

the park; and describe implications for “enrichment” of buffer zones and evaluating 

patterns of forest degradation. 

JEL codes: Q23, Q56, K42 

Key words: Protected area management; forest reserves; costly enforcement; buffer 

zone management; spatial economics 
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1. Introduction 

During the last 30 years, the number of protected areas (PAs) worldwide 

established to protect natural systems has grown dramatically.  Coinciding with that 

expansion, buffer zones at the boundaries of PAs have increasingly been incorporated 

into management plans in an attempt to serve the multiple purposes of protecting 

resources within the park core; providing resource benefits to local people who often 

must bear the burden of the PA; and desires for PAs to reduce poverty (Wells and 

Brandon, 1992; Naughton-Treves et al., 2005; Dudley, 2008).1  For example, 

UNESCO’s Biosphere Reserves incorporate three zones – a core zone, a buffer zone, 

and a transition area – to achieve conservation, development, and logistical functions 

(UNESCO, 2011). Recent satellite imagery and inquiries into the effectiveness of 

parks find high levels of degradation in buffer zones and areas outside of parks 

(Bruner et al., 2001; DeFries et al., 2005; Martin and Blackburn, 2009).  These 

observations and the absence of appropriate control sites for comparison to in-park 

sites highlight the need to “study land-use dynamics in areas adjacent to protected 

areas that are formally designated buffer zones” because they show “more intensive 

use in buffer zones than in areas further away from the protected area, but causal 

explanations for this pattern of intensive use are weak or absent” (Naughton-Treves et 

al., 2005).  

Despite increasing recognition of the social and ecological importance of 

buffer zones and the lack of causal explanations for patterns of degradation, only 

general guidelines exist to inform decisions over the size of a buffer zone (Dixon and 

                                                
1  The definition of buffer zones varies but a typical buffer zone permits local people to 
extract or grow products in a manner that does not threaten the core park areas. 
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Sherman, 1990; Dudley, 2008; Albers, 2010). Those guidelines may aim specifically 

at one goal of buffer zones, such as creating a forested distance between habitat and 

agricultural plots as determined by a species’ needs, or providing enough buffer zone 

forest to provide a subsistence level of fuelwood to neighbours. Even when buffer 

zone sizing and management decisions effectively address one such goal, however, 

little analysis of the broader impact of the buffer zone exists such as its effect on 

degrading and illegal activities within the core zone.  Similarly, the interaction and 

potential trade-offs between the multiple aims of buffer zones have not been 

addressed in a systematic way. Albers (2010) provides a starting point for 

investigating the impact of buffer zone size on conservation and rural welfare 

outcomes by demonstrating theoretically that the width of a buffer zone and the level 

of enforcement in the core zone can be substitutes, yet this trade-off is not addressed 

in the literature nor policy. With buffer zones meant to support the general mission of 

parks including protecting core resources while limiting the burden of parks on local 

people, a framework that places buffer zones within a broader context provides a 

basis for buffer zone policy as part of conservation policy.  

Building off a series of spatially explicit resource extraction and enforcement 

models (Robinson et al., 2002; Albers, 2010; and Robinson et al., 2011), this paper 

examines the impact of buffer zone size, enforcement levels, and enrichment activities 

on local people’s legal and illegal extraction decisions and the resulting levels of park 

protection and park-people conflict. Following the seminal Becker (1968) framework, 

our framework incorporates incomplete enforcement, in contrast to complete 

(Robinson et al. 2011) or no (Robinson et al., 2002, 2008) enforcement. Including 

incomplete enforcement implies that the model allows for illegal extraction activities 

in the protected core zone, a central feature of many protected areas. The model is 
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game theoretic in nature, and because it accommodates settings where there are areas 

with both enforcement and illegal resource extraction, it allows us to explore the 

possibility of conflict between villagers and park managers (unlike Robinson et al., 

2011). In this paper, we focus solely on spatial interactions to explore how 

management decisions influence the spatial extraction decisions of local people but 

generalize from the specific geometry of the protected area explored in Albers (2010). 

Analysis of the spatial extraction model and trade-offs informs buffer zone sizing and 

management decisions, rather than relying on vague statements about meeting 

people’s needs, creating goodwill, or guessing at appropriate widths (Dixon and 

Sherman, 1990; Shafer, 1999). We demonstrate that, for example, once incomplete 

enforcement is a possibility, intermediate sized protected areas surrounded by a buffer 

zone may result in both a larger pristine area of forest and reduced conflict between 

villagers and patrollers than a larger protected area with a small or no buffer zone. 

Buffer zone management tools include the choice of buffer zone width and 

enforcement of access restrictions at the buffer zone-park boundary.2 Empirical 

studies demonstrate that distance to resources creates an important cost in the 

resource extraction production function (Skonhoft and Solstad, 1996; MacDonald et 

al., 1998; Kohlin and Parks, 2001).  Buffer zones create a distance between local 

villagers living at the buffer zone boundary and the park resources, and that distance 

enters villagers’ decisions about extraction locations.  Higher levels of enforcement 

discourage extraction within the park, but parks rarely have sufficient budgets to deter 

all degrading activities within their boundaries (Bruner et al., 2001; Figueroa and 

                                                
2  In practice, the size and shape of the buffer zone depends on site-specific 
characteristics including socioeconomic conditions and threats to the core areas but most 
buffer zones are contiguous with the core zone. 
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Sanchez-Cordero, 2008).  With low budgets, incomplete enforcement leads to illegal 

extraction within the park boundaries.  

In addition to choices over buffer zone width and enforcement levels, 

management decisions can include “enrichment” of the buffer zone to increase the 

benefits it provides to local people (e.g. Hjortso et al., 2006) or to reduce illegal 

extraction within protected areas.  For example, Straede and Treue’s (2006) analysis 

of Royal Chitwan National Park in Nepal suggests that illegal activities in the park 

result from higher resource abundance there and that those activities would not be 

necessary following enrichment activities in the buffer zone. Because villagers 

consider buffer zone width, the quality of resources within the buffer zone and core 

zones, and enforcement in their extraction decisions, effective park management must 

also consider width, enrichment, and enforcement decisions jointly. 

This paper’s next section 2 describes a spatial extraction model of a non-

timber forest product—defined by the Center for International Forestry Research 

(CIFOR) as “...any product or service other than timber that is produced in forests” 

(CIFOR, 2011)—that incorporates a villager’s response to resource density within the 

buffer zone and the protected area, and the forest manager’s enforcement.  Section 3 

uses the model to determine the impact of buffer zone width, enforcement, and 

enrichment activities on extraction, benefits to locals, and degrading activities in the 

core area.  The final section discusses the implications of these results for park and 

buffer zone siting, sizing, and management decisions and for evaluating park 

effectiveness.   

2. The model 
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In our model we envisage a single-dimensional expanse of forest of width . 

A large number of villagers live adjacent to this forest throughout which a valuable 

resource is evenly distributed. In the context of Tanzania and several other African 

countries where forest reforms have been introduced, this forest could be a previously 

designated government forest that had seen little protection and was now being placed 

under a new forest management regime such as joint forest management (Persha and 

Blomley, 2009). In such a situation the extraction of forest resources could be banned 

in most of the forest but, as we have found in Tanzania’s Amani Nature Reserve, the 

forest manager might allocate some area of the forest to a buffer zone from which 

resource collection is allowed (Robinson et al., 2011). In our model, the forest 

manager (or forest management team) chooses how much of the forest to allocate as 

the protected inner core where resource collection is not permitted (width ), and 

how much to allocate as a buffer zone (width ) from which villagers can legally 

collect resources ( ). As such, the forest manager behaves in the same 

way as the forest manager in Robinson et al. (2011). However, whereas Robinson et 

al. (2011) assumes perfect enforcement of a protected zone so that extraction only 

occurs in a buffer zone, in contrast, in this paper we model a more commonly found 

scenario in which the forest manager cannot under all situations completely deter 

extraction from the core zone. We therefore allow for the possibility of NTFP 

extraction occurring in the protected zone, and villagers being caught in this zone and 

punished.  By extending the model to incorporate imperfect enforcement and illegal 

activities, the model presented and analyzed here identifies the forest manager’s 

trade-offs between buffer zone size, enforcement, and the degree of illegal extraction 

and degradation within the core zone; trade-offs that models in earlier papers cannot 

accommodate. By including illegal extraction this paper therefore takes a significant 
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step towards a more realistic setting that more completely represents some of the 

manager’s trade‐offs, and identifies areas of potential conflict between villagers 

and managers.  Because the goals in establishing buffer zones include protecting 

the inner core, providing benefits to local people, and reducing people‐park 

conflict, the model analyzed here provides a more appropriate platform for 

considering buffer zone sizing decisions than any of our previous models. 

2.1. The forest manager’s choice 

In practice, a forest manager’s objective function can include a variety of 

factors such as the amount of pristine (or no-extraction) forest, the biomass of the 

landscape, and the welfare of individuals (see Robinson et al., 2011, for a comparison 

across forest manager objective functions in a similar context but where the core zone 

is perfectly enforced and all extraction is in the buffer zone). Because the shape and 

characteristics of the forest manager’s objective function can mask the reaction of 

villagers to a policy and the resulting impact on forest characteristics and rural 

welfare we do not make any explicit assumptions about our forest manager’s 

objective function. Rather we parametrically vary the size of the core zone that the 

forest manager attempts to protect and determine the impact of this size on returns to 

the villager, total degradation both in the protected core and the buffer zone, and the 

size of forest that is actually fully protected. We undertake sensitivity analysis for a 

wide range of enforcement budget levels and policy combinations, which allows us to 

focus on the villagers’ reaction to the forest manager’s choice. In summary, the forest 

manager’s choice variables are the width of the protected core and the number of 

rangers, N, who patrol at the boundary between the core and the buffer zone, such that 

the probability of the villager being caught leaving the core is p(N), where p’(N)>0 

and p’’(N)<0.  
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2.2. A villager’s optimisation 

Demand for forest products by nearby villagers in low-income countries 

depends on many factors. For example, demand for fuelwood is relatively inelastic 

and many villagers collect the firewood that they require from the forest rather than 

relying on markets. In contrast, forest resources such as weaving materials and honey 

are often important sources of cash income and villagers are likely to make a marginal 

decision over how much to collect that is influenced by their opportunity cost of 

labour and market prices and access (Mahapatra et al., 2005; Adhikari et al., 2007; 

Lopez-Feldman and Wilen, 2008; Robinson and Kajembe, 2009). In this model, 

villagers maximize their expected returns to collecting forest resources that are sold in 

the nearby market, given some positive opportunity cost of their labour. Villagers face 

uncertainty because choosing to collect forest resources in the protected core zone 

bears the risk of being caught and punished. 

The villager’s optimization can therefore be considered in the following way. 

A risk-neutral villager chooses how far into the forest to go, X, and how intensively to 

extract forest resources, to maximize her expected returns from the sale of the NTFPs. 

Following Robinson et al. (2008), the villager has two choice variables: the distance 

she goes into the forest, X; and w(x), the time spent collecting forest resources per unit 

distance across that width. w(x) translates into a harvest intensity  at a distance  

from the village, which is a function of w(x); m(x), the resource density at that 

distance from the village; and α, a parameter that takes into account extraction 

effectiveness. This formulation is such that the more time a villager spends per unit 

distance, the more she harvests, or extracts, per unit distance.  
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Given our assumption of enforcement at the boundary between the core and 

extraction zones, the villager knows that if she chooses to collect from the core zone, 

there is some probability that she will be caught leaving the core zone at its boundary 

with the buffer zone, where enforcement patrols are located. If caught, the punishment 

includes confiscation of anything extracted, a fine that is proportional to the amount 

confiscated, and expulsion from the forest without being allowed to collect from the 

buffer zone. This standard punishment regime derives from field observations and 

similar punishment structures in the literature. Villagers can only be punished if they 

are caught coming out of the protected core and in possession of forest resources; the 

possession of forest resources alone is not an illegal act (nor is entering the exclusion 

zone).3 The villager knows how much enforcement effort there is and where the 

boundary between the buffer zone and the core zone is, but not exactly where on the 

boundary a patroller will be at any given time.  The villager therefore goes into the 

forest, turns around at some distance that could be in the buffer zone or in the core, 

and extracts the resource as she moves back towards her home.4 If the villager does 

enter the core zone, she faces uncertainty as to whether or not she will be caught by 

the patrollers on the way out and therefore makes decisions based on the expected 

value of an extraction trip. Extraction is costly for villagers because they could 

                                                
3 Forest patrollers cannot tell whether villagers in possession of forest resources collected 
these resources legally from the buffer zone or illegally from the protected core but make the 
determination that leaving the core zone with forest products implies the illegal extraction 
within that zone.  For example, Tanzanian forest managers make such an assumption about 
people exiting Ruvu North Forest Reserve unless the individual can provide documentation of 
the source of the fuelwood or charcoal.   
4 Naturally there are many ways that enforcement could be spatially allocated. For example, it 
could be spread throughout the width of the core, through some proportion of the core, as is 
found in Albers (2010), or at the boundary of the core and buffer zone as is the case in this 
paper. Our choice in this paper of situating enforcement at the core-buffer boundary allows us 
to focus on the key elements of a buffer zone/enforcement strategy and in particular the trade-
offs between the width of the core and buffer zones, enforcement, and illegal extraction from 
the core. 
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allocate time to other activities, whether paid labour, on-farm labour, or working in 

the home. In common with much of the law enforcement literature, we solve the 

model as a Stackelberg interaction between the forest manager responsible for 

enforcement who moves first, choosing the size of the protected core, and the 

villagers whose choice over from where to collect forest resources responds to the 

forest manager’s choice.  

The villager’s optimal distance decision fits within three possible endogenous 

distance scenarios: (a) “Core”, she chooses to extract in the core zone as well as the 

buffer zone, thereby risking being caught and punished while leaving the core; (b) 

“Boundary”, she chooses to extract in the buffer zone just up to the enforcement 

boundary, thereby extracting legally and not risking being caught; and (c) “Buffer”, 

she chooses to extract within the buffer zone but not to the edge of the zone, again not 

undertaking any illegal extraction and not risking being caught. These three 

possibilities are shown schematically in Figure 1, with the villager’s path under each 

scenario marked by a dashed line. Which scenario holds for a villager is endogenous 

to the model parameters including the width of the buffer and the level of 

enforcement chosen by the forest manager. Although the buffer zone is defined by 

where the enforcement boundary is located, the “extraction zone” where extraction 

occurs is defined by the villagers’ distance decision ( in Figure 1).  The extraction 

zone may therefore be bigger than, smaller than, or the same size as the buffer zone. 

Setting the initial resource density in the buffer zone, , and the initial 

resource density in the core zone, , constant over distance implies a constant 

extraction intensity in each zone (Robinson et al., 2002). We therefore write the 
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harvest function explicitly as (where the subscript  can be either  for the buffer 

zone or  for the core zone): 

  (1) 

The key element of the harvest function is that the more time the villager 

spends per unit distance in the forest, wi, the greater the harvest, but with diminishing 

returns to wi. If the villager chooses to collect from the PA and the buffer zone, the 

“Core” scenario, then, with q as the price of the extracted forest resource, and F the 

fine per unit of the resource if the villager is caught, the villager’s expected revenues 

R from extracting to a distance X are: 

 

                  (2) 

The first term on the RHS of Equation 2 gives the expected returns to 

extraction in the buffer zone (the villager can only extract in the buffer zone if she has 

not been caught and evicted from the core zone). The second term gives the expected 

returns to extraction in the core zone (if she is caught she gets no revenue and pays a 

fine proportional to the amount she has collected illegally). The villager’s choice 

variables are therefore , , and , where  is the rate of traversing though 

the PA, and  through the buffer zone. 

The villager’s time costs  are a non-linear function of the total time spent in 

the forest, T; k, a simple scaling parameter; and γ, which reflects the labour market 

conditions. When γ=1, the villagers’ opportunity cost of time is constant, which 
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implies a perfectly functioning labour market with a constant market wage as the 

opportunity cost (Robinson et al, 2011). The low-income rural areas that our paper 

considers rarely contain such perfect labour markets, making such an implicit 

assumption unrealistic. Therefore in this model we set γ>1 implying an incomplete 

labour market. For example, such a situation would be relevant to villagers allocating 

some fixed quantity of labour between farming with diminishing returns to labour or 

collecting from the forest (Robinson et al, 2011):5  

=  (3) 

 depends on which endogenous distance decision scenario holds for the 

villager’s turn-around distance. For example, in the “Core” scenario, if the villager 

goes into the core zone and is not caught at the enforcement boundary, T comprises 

walking into the forest and back, 2 , where v is the time it takes the villager to walk 

a unit distance through the forest; extracting in the core, ; and extracting 

in the buffer zone, . If she is caught, her time costs differ because she must 

leave the core where she is caught at the boundary and cannot extract in the buffer 

zone. Her total expected time costs can therefore be written as: 

 

=  

                   +  (4) 

                                                
5  From a modeling perspective, if γ=1, then when we differentiate the expected 
revenues with respect to  there is no interior solution for  because it drops out of the FOC.  
The resulting solution is to extract throughout the entire forest or not at all.   
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With , conceptually the optimal harvest intensity in the 

buffer zone and core and the distance into the core that the villager extracts for the 

“Core” scenario would be determined by taking the first order conditions with respect 

to , , and  and solving simultaneously. However, analytical solutions to the 

simultaneous equations cannot be determined for any but the simplest formulations. 

If the villager turns around just before the boundary of the core zone, 

“Boundary” scenario,  and  and the villager has only one choice 

variable, . The villager’s optimization becomes: 

 (5) 

For the “Buffer” scenario, there are two choice variables,  and  

. In this scenario villagers choose not to go as far as the boundary of the 

buffer and core zones and so are not constrained by the buffer zone. In this case the 

optimization is written: 

,  (6) 

This scenario, explored in detail in Robinson et al. (2002), is the least 

interesting for this paper because the buffer zone is not a binding constraint for the 

villagers’ extraction distance decision. 

Whether or not a villager chooses to enter the core zone is determined by 

comparing the returns to each of the three scenarios for a particular probability of 

being caught and location of the buffer-core boundary. 
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3. Parameterization and results    

This model determines where villagers extract and the intensity of this 

extraction as a function of two buffer zone characteristics that the forest manager 

controls: the width of the buffer zone; and the probability of detection/enforcement of 

extraction beyond that zone. In this section we also address a third possible choice 

variable for the forest manager, enrichment of a degraded buffer zone to increase 

forest density there, proxied by varying mB. Because the analytical model cannot fully 

depict all the characteristics of interest, we use optimization simulation analysis to 

solve the model for a wide range of parameter values and map the pattern of 

extraction resulting from changes in buffer zone width, enforcement levels, and 

relative degradation of the buffer zone.  This information, paired with ecological data 

and rural welfare goals, can inform manager’s decisions about buffer zone size and 

management. 

3.1. Parameter values 

In this paper we develop a general model rather than a particular case study.  

We therefore choose parameter values that permit exploration of a wide range of 

possible scenarios and allow comparisons of decisions amongst scenarios. The 

parameter values themselves do not therefore represent a particular situation.  The 

representative villager makes her extraction distance and intensity decision in a 10 

unit wide forest (see Robinson, et al., 2002, for the impact of heterogeneous villager 

decisions on forest density patterns). 6 With an initial condition of homogeneous 

resource density across the landscape, we choose the baseline simulation’s parameters 

to ensure that the villager when facing no enforcement chooses an internal distance 

                                                
6 Individual villagers travel perpendicularly into the forest, making a one-dimensional 
distance decision.  Summing the individual villagers who are located along the forest 
boundary creates a two dimensional pattern of extraction and forest degradation. 
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solution, that is, less than the full 10 units of the forest. When we set v=0.8; =0.3; 

p=0.1; m=8; ;k=3; =1.4, q=4.6; and F=0, this distance is 8.2 units, or 82 percent of 

the forest width. Because distance is costly for the villagers, the remaining 1.8 units of 

forest are protected by distance alone (Robinson et al., 2002; Albers 2010). We 

choose a zero value for the fine because, as can be seen explicitly in Equation 2, the 

value of the fine augments the probability of being caught, making p and F 

substitutes. Thus, parametrically increasing F has a similar impact to parametrically 

increasing p. In the approach here, we first impose a constant level of enforcement 

(implying a fixed budget for the forest manager) and then look for relationships either 

between the level of enforcement and the width of the buffer zone or the relative 

quality of resource in the buffer and protected zones. 

3.2. Impact of buffer zone width on forest extraction decisions 

Because larger buffer zones provide more legal benefits to villagers, 

practitioners may, at first blush, expect that larger buffer zones will reduce extraction 

in the core zone.  To investigate the impact of impact of the buffer zone width on 

villager decisions, we set the enforcement level, . We then parametrically vary 

the buffer zone width and determine the villagers’ optimal extraction distance as a 

function of that width.  The results include the width of the extraction zone, the total 

amount harvested, and the expected returns to the villagers at each possible buffer 

zone width (Figure 2).    

3.2.1. Do wider buffer zones reduce extraction in the core?  

At relatively small buffer zone sizes, up to 3.2 units wide, the villager chooses 

to extract in both the buffer zone and the core zone despite the risk of detection within 

the core zone (scenario a in Figure 1 and Figure 2, where the extraction zone width is 
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above the 45 degree line).  For example, if the buffer zone is two units wide, the 

villager extracts over 6.2 units, which includes extracting 4.2 units into the core 

protected area (Figure 2 “Core” scenario). Varying the size of the buffer zone 

between zero and 3.2 units does not change the distance the villager goes into the 

forest. However, the villager’s harvest intensity in the protected zone varies slightly 

depending on the width of the protected zone because the latter affects how many of 

the distance units are within the protected zone and therefore risky, and how many are 

in the buffer zone and therefore not risky.  

For intermediate sizes of the buffer zone (3.2 to 8.2 units wide), the villager 

chooses to turn around at the boundary of the core zone rather than risk extraction in 

the core (“Boundary” scenario). The greater legal access to forest resources due to a 

wider buffer zone combined with the level of enforcement at the boundary results in 

villagers extracting from the full width of the buffer zone but not beyond.  The buffer 

zone width interacts with the enforcement level and, at these intermediate buffer zone 

sizes, the villager prefers not to risk losing the entire amount collected by entering the 

core (scenario b in Figure 1). In these circumstances, the buffer zone and extraction 

zone coincide, the buffer zone binds, and villagers undertake no illegal extraction.7  

The resources in the core zone are thus protected by combination of the wider buffer 

zone and enforcement.  For larger buffer zones (>8.2 units) the buffer zone no longer 

binds and, no matter how large the buffer zone is, villagers choose to go 8.2 units into 

the buffer zone, turning around before the official boundary. 

                                                
7 If the buffer zone is larger than 8.2 units, the enforcement at the PA boundary is no longer 
binding (and is therefore unnecessary). The villager is unconstrained, choosing to extract only 
up to a distance of 8.2 units from her house despite the wider formal buffer zone. 
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Perhaps counter-intuitively, increasing the width of the buffer zone decreases 

the size of the extraction zone at only one point: the point at which the villager shifts 

between interior distance decisions with illegal extraction (“Core” scenario) to 

constrained or “corner” distance decisions with only legal extraction up to the 

boundary of the buffer zone (“Boundary” scenario).  What size buffer zone leads to 

this endogenous scenario shift depends on the returns to extraction and the risk of 

being caught extracting illegally.  The width of the buffer zone informs the marginal 

distance decision only when that width is binding, which occurs only in the distance 

decision scenario of extracting up to the buffer zone boundary.  

Our model shows that an intermediate rather than small sized buffer zone 

deters illegal extraction. Such intermediate-sized buffer zones bring an added benefit 

of reducing head-to-head conflict between villagers and park guards. When villagers 

extract illegally a combative relationship between villagers and forest managers can 

arise and when villagers are detected during illegal extraction, direct conflict between 

guards and villagers can ensue (Robinson et al., 2010).  This conflict might be 

considered in the enforcement cost function but it might also be part of a manager’s 

objective function: to minimize park-villager conflict.  Although villagers may still 

harbour negative feelings towards forest managers in a setting with an intermediate to 

large buffer zone, no instances of direct conflict arise in our model because the 

villagers choose to extract only legally.   

3.2.2. Do wider buffer zones promote forest quality?   

Different types of forests create ecological benefits in various ways.  If NTFP 

extraction degrades the forest in ways that alter the provisions of benefits or services, 

the amount of NTFP extraction may provide one indicator of the forest’s quality or 

the forest’s ability to generate those benefits. For example, a park’s ecological 
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benefits may derive only from forests without extraction that are relatively pristine or, 

alternatively, from maximizing the forest biomass within the buffer and core zones, 

among other possible processes (Robinson et al., 2011).8  For a particular level of 

enforcement, the results in Figure 2 demonstrate the impact of the choice of a buffer 

zone on these two measures of “forest quality”. As the inverse of the amount of forest 

biomass remaining, total amount of forest biomass harvested follows the extraction 

distance decision, as seen by the “total harvest” line on Figure 2.  At the baseline 

parameter values, the width of the buffer zone that maximizes either of the forest 

quality measures – pristine width or total remaining biomass – occurs at buffer zone 

width of 3.2.  That buffer zone width leads to a total biomass of 62.6 units (out of a 

no-extraction total of 80 units) and a 6.8 unit wide core zone.  At smaller buffer 

zones, the pristine area is smaller (around 3.8 units) and the total remaining biomass 

smaller (around 47 units) than at the intermediate sized buffer zone width.  Similarly, 

large buffer zone widths lead to smaller pristine areas and lower biomass remaining. 

The finding that an intermediate sized buffer zone leads to higher forest quality (by 

these two measures) than very small or very large buffer zones comes from the 

villagers’ spatial extraction decisions as a function of both distance and enforcement 

costs.  Only when the buffer zone’s width causes the villager to switch from 

extracting within the core zone illegally to turning around at the enforced boundary 

does a decision to widen the buffer zone lead to large changes in forest quality, for a 

given level of enforcement.   

3.2.3. Do wider buffer zones benefit villagers?  

Not surprisingly, the larger the buffer zone, the greater the expected returns to 

villagers from collecting forest resources. However, this relationship contains a 
                                                
8 Robinson et al. (2011) considers four different forest manager objective functions and four 
different damage functions that describe the impact of extraction on forest quality. 
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distinct non-linearity. With small buffer zones and villagers extracting illegally in the 

core zone, increasing the buffer zone has a small impact on their expected returns. 

When the buffer zone boundary becomes a binding constraint at a width of 3.2 units, 

increasing the width of the buffer zone further has a greater marginal impact on 

villagers’ returns to extracting as they increase their extraction distance to equal the 

buffer zone width. Naturally, when the buffer zone width is greater than 8.2 units and 

no longer binding, its width does not affect villager returns to extraction.  Attempts to 

manipulate buffer zone widths to benefit villagers will produce more significant 

effects if the buffer zone width binds villagers, inducing only legal extraction.   

3.3. Enforcement needed to deter villagers from extraction in the core zone 

Forest managers typically face budget constraints that limit the probability of 

detection that they can impose, which makes incomplete enforcement and illegal 

extraction in the core common.  We reflected such a situation in the analysis above, 

where we maintained a constant level of enforcement expenditure and varied the 

width of the buffer zone. In this section in contrast, we vary the probability of 

detection and enforcement at the buffer-core boundary. From the villager’s 

perspective, a probability of detection exists that induces them to not extract in the 

core zone.  Because of the distance costs in the extraction production function, that 

probability varies with the width of the buffer zone; it takes a lower probability of 

detection to deter illegal extraction in the core if the core is farther away (Albers, 

2010).  Viewing the minimum probability that deters a villager from entering the core 

zone as a proxy for the extraction pressure on the boundary between the buffer zone 

and this core, we examine how pressure on the boundary changes with management 

decisions about buffer zone width, enforcement levels, and buffer zone enrichment 

activities.  
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3.3.1. Enforcement probability and buffer zone width   

Because of the distance cost, the width of the buffer zone interacts with the 

enforcement probability in determining the representative villager’s optimal 

extraction distance and whether illegal extraction occurs in the core zone.  In Albers 

(2010), due to the spatial structure of the forest, the forest manager can afford a higher 

level of enforcement at higher distances from the village, which leads to an optimal 

width for the buffer zone.  Here, the enforcement costs do not vary with the location 

of the buffer-core boundary but the villagers’ distance cost creates different pressure 

on the boundary depending on that boundary’s location. 

In Figure 3 we plot the minimum probability of being caught required to deter 

a villager from entering the core zone for different widths of the buffer zone, 

assuming homogeneous resource density. The figure demonstrates explicitly the 

trade-off between the width of the buffer zone and the cost of enforcement required to 

protect fully the core zone of the forest – the larger the buffer zone, the smaller the 

enforcement budget required to prevent illegal extraction in the core zone.  The 

distance cost effectively augments the enforcement budget.  Thus even without cost 

savings from patrolling a smaller area, as in Albers (2010), the forest manager faces 

lower costs of deterrence with a larger buffer zone.  A forest manager can compare 

those cost savings with lost benefits from having a smaller core zone in determining 

buffer zone size. 

3.3.2. Does buffer zone “enrichment” protect the core zone?  

The analysis behind Figure 3 assumes a homogeneous resource density across 

the buffer and core zones.  In practice, the buffer zone is likely to be more degraded 
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than the core zone (Bruner et al., 2001; Figueroa and Sanchez-Cordero, 2008).9  

Because the resource density enters the villagers’ extraction decisions, a more 

degraded buffer zone changes the pressure on the boundary and the enforcement 

required to protect the core zone from illegal extraction. To explore this relationship, 

we fix the size of the buffer zone, first to a width of 3.2 units and then 2.0 units, and 

vary the level of degradation in the buffer zone relative to the pristine core zone 

(Figure 4).  For example, with the same resource density in both the buffer and the 

core zone  ( ), a buffer zone of 3.2 units requires an enforcement 

probability of 0.10 to deter extraction from the core zone (as in Figure 3 at 3.2 units 

wide buffer zone and in Figure 4 at resource density = 100 percent). But a buffer zone 

of width 2 requires twice the enforcement probability of 0.20. Conversely, with a 

fully degraded buffer zone ( =0), no enforcement is needed if the buffer zone is 3.2 

units wide because, even without enforcement, villagers choose not to collect at all.  

This is because with complete degradation in the buffer zone the distance to reach the 

core zone presents too large a fixed cost to merit illegal extraction in the core as the 

villagers do not get any revenue from extraction in the buffer zone that would offset 

the distance costs of travelling through the buffer zone.  In contrast, with the smaller 

2-unit buffer zone fully degraded, enforcement at the boundary is still required 

(p=0.17) to prevent villagers collecting from the core zone.   

                                                
9 Here we emphasize purely spatial aspects of resource extraction.  Although it is out of the 
scope of this paper to model dynamic pathways of resource extraction, this framework’s 
finding of extraction closer to villages corresponds to observed patterns and suggests that 
villagers without long-term property rights in the buffer zone will extract in patterns that lead 
to degraded buffer zones over time.  The analysis of degraded buffer zones here can be 
viewed as an initial condition that derives from years of extraction.  See Robinson, et al. 
(2011) for analysis of extraction decisions over time with resource regeneration, community 
management rights, and no enforcement. 
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Figure 4 contains a distinct non-linearity in the relationship between the 

pressure on the boundary and the relative degradation of the buffer zone. When the 

buffer zone is highly degraded, relatively little enforcement effort, if any, is required 

to protect fully the core zone because villagers incur a fixed “distance cost” passing 

through the buffer zone with little extraction benefit in return. For less-degraded 

buffer zones, relatively more enforcement is required to prevent villagers from 

entering the core zone because the buffer zone’s extraction benefits outweigh the 

distance costs and encourage longer extraction distances, thereby putting pressure on 

the buffer-core boundary. However, when the resource density in the buffer zone is 

about 60 percent greater than that of the pristine forest, further increases in resource 

density reduce the enforcement effort required to deter villagers from going into the 

PA. Because punishment for illegal extraction includes lost access to the buffer zone, 

when the buffer zone resource density is relatively high, villagers have more at risk 

when extracting illegally in the core zone and instead focus their extraction in the 

buffer zone.  

Managers often seek to “enrich” degraded buffer zones to protect the core 

zone (Straede and Treue, 2006; Hjortso et al., 2006).  Our results, however, 

demonstrate that whether such resource-density increasing activities lead to more or 

less illegal extraction in the core zone depends on the level of enrichment, the width 

of the buffer zone, and the enforcement probability. When the buffer zone is very 

degraded, enhancing the resource in the buffer zone may put the core zone at risk if 

the enforcement effort is not increased in parallel. In effect, degradation of the buffer 

zone increases the fixed costs of getting to the core zone and therefore distance costs 

plus degradation in the buffer zone protect the core zone. However, if the buffer zone 

is less degraded, enhancing the buffer zone further may reduce pressure on the 
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boundary thereby reducing enforcement costs and/or illegal extraction. A priori it is 

not possible to predict the impact of a policy intervention that improves resource 

quality within the buffer zone, but these results demonstrate that understanding the 

villager extraction decisions in a particular setting leads to better-informed buffer 

zone width and enrichment policy decisions. 

4. Discussion and conclusion 

Despite the widespread use of buffer zones in protected areas worldwide to 

enhance the positive, and reduce the negative, impact of conservation on local 

communities, and vice versa (Wild and Mutebi, 1996), few analyses inform the size 

and management of that buffer zone (Dixon and Sherman, 1990; Shafer, 1999; and 

Dudley, 2008).  To fill that gap, we explore the impact of buffer zone width, in 

tandem with enforcement at the buffer-core boundary and with enrichment in the 

buffer zone, on villagers’ extraction patterns.  Expanding on previous analysis, this 

paper focuses on the impact of buffer zone policy on protecting core zone ecosystems 

from illegal extraction. The framework that we have developed demonstrates that 

buffer zones can improve returns to villagers and contribute to deterrence of illegal 

extraction in the core zone, but only at sizes large enough to change marginal 

extraction distance decisions.  

Our model also demonstrates implicitly that buffer zone sizing decisions 

should reflect absolute widths/areas rather than focusing on some proportion of the 

forest.  Information about the area in which a villager extracts in a no-enforcement 

setting – which can create a “natural core” of no extraction and no enforcement – 

matters more for determining the appropriate buffer zone size and the related levels of 

enforcement of the core zone than the size of the forest itself (Robinson et al, 2002; 
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Albers, 2010). Because absolute distances drive the extraction decisions, in similar 

ecological and socioeconomic settings, forest managers using our framework would 

locate proportionately smaller buffer zones in larger forests than in smaller forests. 

Although little systematic data describe the relative size of buffer zones in practice, 

Götmark et al. (2000) found buffer zones in Sweden of around 200 meters necessary, 

which accounted for up to 50 percent of the forest area. In contrast, in the large 

Amani nature reserve in Tanzania, managers established a proportionally smaller 

buffer zone.  However, as this and earlier papers have shown, the optimal size of a 

buffer zone also depends on agro-ecological and socio-economic characteristics of the 

area and the population, which could differ between small and large forests. 

Our results stem from analysis of a model of homogeneous extractors and 

homogeneous resources but consideration of previous analyses of related models 

suggests the impact of heterogeneity on patterns of degradation and buffer zone sizes 

within the framework of this model.  First, the model presented here assumes that 

villagers extract a composite resource or just one specific resource and that that 

resource occurs homogeneously across space.  If the resource occurs in particular 

locations or clusters across space, as in Robinson et al. (2008), this modelling 

approach’s results still apply albeit with the modification that buffer zone width 

considers which clusters are within the buffer zone and within the core.  If extractors 

collect a number of different resources, their returns to extraction may vary with the 

resource collected on that trip, implying different length trips for different resources 

collected, in which case the buffer zone/core boundary matters differently for each 

resource.  In practice, a manager might choose that boundary location based on the 

resource that causes the most ecological damage to the core area or that provides 

lower returns to villagers, depending on their objective.   
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Robinson et al. (2002) derives spatial extraction and forest degradation 

patterns for villagers who display heterogeneity in labour opportunity costs and finds 

that villagers with lower opportunity costs of labour, when unconstrained, extract over 

longer distances into the forest. Under these conditions, the pattern of resource 

degradation therefore reflects decreasing levels of extraction with distance further into 

the forest because only villagers with lower opportunity costs of labour extract further 

into the forest. Within the context of the model in this paper, with heterogeneous 

villagers the forest manager’s decision over the optimal width of the buffer zone 

would take into account whether it is worth enforcing the boundary of a large buffer 

zone if only a few villagers are constrained by such a buffer zone. This decision 

would be influenced by, for example, whether the forest manager’s objective is to 

minimize total biomass extracted from the forest or to maximize the total area of 

pristine forest. In the cases of heterogeneity in resource density across space, resource 

type, and extractors’ opportunity costs of labour, the basic relationships between 

buffer zone size, villager decisions, and enforcement probabilities discussed in this 

paper remain but the heterogeneity implies a less clear cut buffer zone sizing decision 

because heterogeneity modifies the spatial pattern of resource degradation in ways 

that require consideration by a manager.  Managers with different objective functions, 

such as one that considers only values from pristine core areas versus one that 

considers rural welfare, will make different buffer zone size and enforcement 

decisions both with and without heterogeneity (Robinson et al, 2011).   

Our analysis considers one period’s decisions and one threat – illegal 

extraction – to core zones of protected areas.  A dynamic perspective would provide 

further input into buffer zone sizing and management decisions but would not 

overturn the central results here about the interactions between zone size, enforcement 
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levels, and degraded resources in the buffer zone.  Similarly, ecological determinants 

of buffer zone size and management might trump the extraction-degradation concerns 

emphasized here in some settings.  Even in those situations, however, successful 

protection of core resources requires an understanding of how villagers respond to 

buffer zone management.  In other situations, prioritization of rural development 

goals over conservation goals may lead to different buffer zone management 

decisions but, again, improving villager welfare requires understanding villager 

response to forest management policy.    

Remote sensing imagery and site-surveys show patterns of relatively intense 

resource degradation in buffer zones as compared to within core zones of protected 

areas (Bruner et al., 2001; Lee et al., 2007).  Still, the core zones of most parks show 

some degrading activity, which implies a significant role of illegal activities resulting 

from incomplete enforcement in those areas.  Although analysts often depict the 

difference in resource quality in buffers and core zones, and between parks and 

surrounding areas, as evidence of core zone effectiveness, those differences represent 

the interaction of policies like buffer zone width and enforcement with villagers’ 

extraction decisions.  Patterns of resource quality cannot be understood without an 

understanding of the behavioural decisions that have generated that pattern.  In this 

case, illegal extraction in the core diminishes the benefits of the core zone policy and 

represents something akin to leakage.  Similarly, the intensive use of buffer zones and 

the resulting degraded resource there represents leakage of extraction activities from 

the core to the buffer zone. 

Zoning of protected areas, and the management of those zones, is an 

inherently spatial management decision.  In turn, the success of buffer zone 
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management relies on the spatial response of villagers to those decisions.  Although 

park zoning decisions often reflect spatial aspects of ecological processes, the spatial 

aspects of the economic decisions by villagers rarely inform zone designations and 

management despite their importance to the policy’s success.   
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Figure captions 
 

 
Figure 1: Schematic of spatial elements of the model 

Figure 2: Relationship between width of buffer zone and village decisions/returns 
Figure 3: Minimum enforcement probability required to deter villager from entering 

the exclusion zone as a function of the width of the buffer zone 
Figure 4: Impact of varying level of degradation in the buffer zone on enforcement 

required to stop all villagers entering the protected zone 
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Figure 1. Schematic of spatial elements of the model 
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Figure 2: Relationship between width of buffer zone and villager decisions/returns 
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Figure 3: Minimum enforcement probability required to deter villager from entering 

the exclusion zone as a function of the width of the buffer zone 
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Figure 4: Impact of varying level of degradation in the buffer zone on enforcement 

required to stop all villagers entering the protected zone  
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