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New results and open problems on
Toeplitz operators in Bergman spaces

A. Perälä, J. Taskinen and J. A. Virtanen

Abstract. We discuss some of the recent progress in the field of Toe-
plitz operators acting on Bergman spaces of the unit disk, formulate
some new results, and describe a list of open problems — concerning
boundedness, compactness and Fredholm properties — which was pre-
sented at the conference “Recent Advances in Function Related Opera-
tor Theory” in Puerto Rico in March 2010.
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148 A. PERÄLÄ, J. TASKINEN AND J. A. VIRTANEN

1. Introduction

Toeplitz operators form one of the most significant classes of concrete
operators because of their importance both in pure and applied mathematics
and in many other sciences, such as economics, (mathematical) physics, and
chemistry. Despite their simple definition, Toeplitz operators exhibit a very
rich spectral theory and employ several branches of mathematics.

Let X be a function space and let P be a projection of X onto some closed
subspace Y of X. Then the Toeplitz operator Ta : X → Y with symbol a
is defined by Taf = P (af). The two most widely understood cases are
when Y is either a Bergman space or a Hardy space; more recently Toeplitz
operators have been also studied in many other function spaces, such as
Fock, Besov, Harmonic-Bergman, and bounded mean oscillation types of
spaces; see, e.g., [10, 8, 26, 33].

We are interested in the case when Toeplitz operators are acting on
Bergman spaces Ap of the unit disk, which consists of all analytic functions
in Lp := Lp(D) (with area measure). For Toeplitz operators on Bergman
spaces of other types of domains, such as the unit ball, bounded symmetric
domains, pseudo-convex domains, see [3, 7, 12, 13]. The Bergman projection
P : Lp → Ap has the following integral presentation

Pf(z) =
∫
D

f(w)
(1− zw̄)2

dA(w) =
∫
D

f(w)Kz(w)dA(w) ,(1.1)

where dA denotes the normalized area measure on D and Kz is the Bergman
kernel. The properties of Toeplitz operators we are interested in are Fred-
holmness, compactness, and boundedness when the symbols are in general
(matrix-valued) functions in L1

loc or distributions. We focus on Bergman
spaces Ap when 1 < p <∞, except for Section 5 in which we briefly discuss
Toeplitz operators on the space A1.

2. Bounded Toeplitz operators

2.1. Locally integrable symbols. Clearly the Toeplitz operator Ta is
bounded on Ap with 1 < p < ∞ when a ∈ L∞. The real difficulty lies in
determining when Toeplitz operators with unbounded symbols are bounded.
One of the first results was Luecking’s characterization (see [18]) which states
the Toeplitz operator Ta : A2 → A2 with a nonnegative symbol a ∈ L1 is
bounded if and only if the average âr of a is bounded; here the average of a
is defined by

âr(z) = |B(z, r)|−1

∫
B(z,r)

a(w) dA(w),

where B(z, r) denotes the Bergman disk at z with radius r.
A complete description of bounded Toeplitz operators with radial symbols

was found by Grudsky, Karapetyants, and Vasilevski (see [31]), that is, they
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showed that Ta : A2 → A2 with a radial symbol a is bounded if and only if
supm∈Z+

|γa(m)| <∞, where

γa(m) = (m+ 1)

1∫
0

a(
√
r)rmdr.

This result is derived from the observation that in the radial case the Toeplitz
operator is unitarily equivalent to a multiplication operator on the sequence
space `2. More precisely, Ta is a Taylor coefficient multiplier. Since the
monomials zn do not form an unconditional Schauder basis in Ap for p 6= 2,
it is hard to provide an analogous result for the more general case. However,
a partial generalization to the case p 6= 2 was very recently found in [20].

Another useful tool for dealing with Toeplitz operators is the Berezin
transform, defined by

(2.1) B(f)(z) = (1− |z|2)2
∫
D

f(w)
|1− zw̄|4

dA(w) .

Zorboska (see [41]) observed that Luecking’s result can be used to deal with
a large class of unbounded symbols, and showed that when a is of bounded
mean oscillation, that is, when supz∈DMO1

r(a)(z) <∞, where

(2.2) MOp
r(a)(z) :=

(
1

|B(z, r)|

∫
B(z,r)

|a(w)− âr(z)|pdA(w)

)1/p

,

the Toeplitz operator Ta : A2 → A2 is bounded if and only if B(a) is
bounded.

All the results above only deal with the Hilbert space case and it was not
until recently that results in Ap spaces were established. Indeed, denote by
D the family that consists of the sets D := D(r, θ) defined by

(2.3) D =
{
ρeiφ | r ≤ ρ ≤ 1− 1

2(1− r) , θ ≤ φ ≤ θ + π(1− r)
}

for all 0 < r < 1, θ ∈ [0, 2π]. Given D = D(r, θ) ∈ D and ζ = ρeiφ ∈ D,
denote

âD(ζ) :=
1
|D|

ρ∫
r

φ∫
θ

a(%eiϕ)%dϕd%.

Two of the authors showed (see [29]) that if a ∈ L1
loc and if there is a constant

C such that

(2.4) |âD(ζ)| ≤ C

for all D ∈ D and all ζ ∈ D, then the Toeplitz operator Ta : Ap → Ap is
well defined and bounded for all 1 < p <∞, and there is a constant C such
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that

(2.5) ‖Ta;Ap → Ap‖ ≤ C sup
D∈D,ζ∈D

|âD(ζ)|.

Note that not all such symbols are in L1. We also remark that if a is
nonnegative, the condition in (2.4) is equivalent to Luecking’s condition,
and thus the preceding theorem shows Luecking’s result holds true also for
Toeplitz operators on Ap with 1 < p <∞. Further, using this corollary, one
can show that Zorboska’s result can be generalized to the case 1 < p < ∞;
we leave out the details here and only note that the proof is similar to that
of Zorboska’s.

The fundamental question remains open, that is, find a sufficient and
necessary condition for Toeplitz operators to be bounded on A2.

2.2. Distributional symbols. We next consider the case of symbols that
are distributions, which leads to a natural generalization of the cases in
which symbols are functions (as above) or measures (see, e.g., [40]). Since

w 7→ f(w)(1− zw̄)−2

is obviously smooth, whenever f is smooth, it is not difficult to define Toe-
plitz operators for compactly supported distributions. Indeed, if a is such a
distribution, then for f ∈ Ap, we have

Taf(z) = 〈f(w)(1− zw̄)−2, a〉w,

where the dual bracket is taken with respect to the pairing 〈C∞, (C∞)∗〉.
Observe that compactly supported distributions always generate compact
Toeplitz operators. A characterization of finite rank Toeplitz operators can
be found in [1].

On the other hand, it seems difficult to define Toeplitz operators for
arbitrary distributional symbols because

w 7→ f(w)(1− zw̄)−2

fails to be a compactly supported test function, unless f is one. In particular,
the only such f ∈ Ap is the zero function.

In [25] we showed that symbols in a weighted Sobolev space W−m,∞
ν (D)

of negative order generate bounded Toeplitz operators on Ap. More pre-
cisely, let ν(z) = 1 − |z|2 and for m ∈ N, denote by Wm,1

ν := Wm,1
ν (D) the

weighted Sobolev space consisting of measurable functions f on D such that
the distributional derivatives satisfy

(2.6) ‖f ;Wm,1
ν ‖ :=

∑
|α|≤m

∫
D

|Dαf(z)|ν(z)|α|dA(z) <∞.

Here we use the standard multi-index notation, which is explained in detail
in [25]. Since the subspace C∞0 := C∞0 (D) is dense in Wm,1

ν (see [25]), we
can describe the dual space, that is, for m ∈ N we denote by W−m,∞

ν :=
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W−m,∞
ν (D) the (weighted Sobolev) space consisting of distributions a on D

which can be written in the form

(2.7) a =
∑

0≤|α|≤m

(−1)|α|Dαbα,

where bα ∈ L∞ν−|α| := L∞
ν−|α|

(D), i.e.,

(2.8) ‖bα;L∞
ν−|α|‖ := ess sup

D
ν(z)−|α||bα(z)| <∞.

Here every bα is considered as a distribution like a locally integrable function,
and the identity (2.7) contains distributional derivatives. Note that the
representation (2.7) need not be unique in general. Hence, we define the
norm of a by

(2.9) ‖a‖ := ‖a;W−m,∞
ν ‖ := inf max

0≤|α|≤m
‖bα;L∞

ν−|α|‖,

where the infimum is taken over all representations (2.7).
Suppose that

(2.10) a ∈W−m,∞
ν ⊂ D′

for some m. By Theorem 3.1 of [25], the Toeplitz operator Ta, defined by
the formula

(2.11) Taf(z) =
∑

0≤|α|≤m

∫
D

(
Dα

ζ

f(ζ)
(1− zζ̄)2

)
bα(ζ)dA(ζ) , f ∈ Ap,

is well defined and bounded Ap → Ap for all 1 < p < ∞. The resulting
operator is independent of the choice of the representation (2.7). Moreover,
there is a constant C > 0 such that

(2.12) ‖Ta : Ap → Ap‖ ≤ C‖a;W−m,∞
ν ‖.

We remark that when D is considered as a subset of R2 and f(w)(1−zw̄)−2

a real-analytic function, we can even consider Toeplitz operators with sym-
bols that are arbitrary hyperfunctions on D ⊂ R2. This obviously makes it
possible to define Toeplitz operators for distributions of arbitrary order as
well, since hyperfunctions generalize distributions. We restrict our hyper-
function considerations in this paper to the following example; for further
details about hyperfunctions, see [15, 22].

Example 1. Consider the (not necessarily continuous) linear form h on C∞

defined by
h : f 7→

∑
α

aα(Dαf)(0)/α!.

Suppose also that for every ε > 0 there exists Cε > 0 such that |aα| ≤ Cεε
|α|.

This functional represents a hyperfunction, which is a distribution if and
only if the sum is finite. However, assuming that aα tends to zero rapidly
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enough as α→∞ (aα = |α|!−5 will do), it is easy to see that if hm is defined
by

hm : f 7→
∑
|α|≤m

aα(Dαf)(0)/α!,

then the associated finite rank Toeplitz operators Thm converge in norm to
a compact operator, which indicates that one could extend the theory of
Toeplitz operators even beyond distributional symbols.

In what follows we restrict to the case a ∈ L1
loc is radial, i.e. a(z) = a(|z|).

This is motivated by two facts. First, the sufficient conditions in (2.4)
and (2.10) can be formulated in a more simple way, suitable for radial sym-
bols. Second, we are able to clarify the relation of the two conditions:
Proposition 7 shows that in the radial case (2.4) is weaker than (2.10).

For all r ∈]0, 1[=: I denote I := I(r) = [r, 1− (1− r)/2] and

(2.13) âI(ρ) =
1

1− r

ρ∫
r

a(%)%d% ,

where ρ ∈ I.

Lemma 2. For a radial a ∈ L1
loc, (2.4) is equivalent to the existence of a

constant C > 0 such that

(2.14) |âI(ρ)| ≤ C

for all r ∈ I and ρ ∈ I(r).

Proof. Assume that a satisfies (2.14). Let r ∈]0, 1[ and θ ∈ [0, 2π] be given,
and let φ be such that θ ≤ φ ≤ θ + π(1− r); see (2.3). We have∣∣∣∣∣

ρ∫
r

φ∫
θ

a(%eiϕ)%dϕd%

∣∣∣∣∣ = (φ− θ)

∣∣∣∣∣
ρ∫

r

a(%)%d%

∣∣∣∣∣ ≤ C(φ− θ)(1− r) ≤ C ′|D|,

where D is as in (2.3). Notice that |D| is proportional to (1 − r)2. On the
contrary, if a satisfies (2.4), we can deduce from the radiality of a∣∣∣∣∣

ρ∫
r

a(%)%d%

∣∣∣∣∣ =
∣∣∣∣∣∣∣

ρ∫
r

1
π(1− r)

θ+π(1−r)∫
θ

a(%eiϕ)%dϕd%

∣∣∣∣∣∣∣ ≤
C|D|
1− r

≤ C ′(1− r). �

The main result on the boundedness of Toeplitz operators in [29] now
gives the following fact.

Corollary 3. If the symbol a ∈ L1
loc is radial and satisfies (2.14), then the

Toeplitz operator Ta : Ap → Ap is bounded.

It also follows from (2.5) that in the presence of (2.14), the bound

‖Ta : Ap → Ap‖ ≤ C sup |âI(ρ)|
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holds, where the supremum is taken over all intervals I and ρ ∈ I.
We next consider radial distributional symbols. We choose an approach

which in the beginning only comprises distributions on D\{0}, see Remark 5
for a discussion. Let us define the weight function µ(r) = r(1−r2), r ∈ I, and
the Sobolev space Wm,1

µ (I), m ∈ N, which consists of measurable functions
f : I → C such that the distributional derivatives of f up to order m are
locally integrable functions I → C and satisfy

(2.15) ‖f ;Wm,1
µ ‖ :=

m∑
j=0

1∫
0

∣∣∣djf(r)
drj

∣∣∣µ(r)jdr <∞ .

Moreover, by W−m,∞
µ (I) we denote the space of distributions on I which can

be written, using distributional derivatives, in the form

(2.16) a =
m∑

j=0

(−1)j d
jbj(r)
drj

for some functions bj ∈ L∞µj (I); the spaces have the norms

‖bj ;L∞µ−j‖ := ess sup
r∈I

µ−j(r)|bj(r)| , ‖a;W−m,∞
µ ‖ := inf max

j≤m
‖bj ;L∞µ−j‖,

where the infimum is taken over all representations (2.16).

Lemma 4. The dual of Wm,1
µ (I) is isometric to W−m,∞

µ (I) with respect to
the dual paring

(2.17) 〈f, a〉 =
m∑

j=0

1∫
0

djf(r)
drj

bjdr.

Here f ∈Wm,1
µ (I), a ∈W−m,∞

µ (I), and the representation (2.16) applies.

This can be proven in the same way as the general case in Section 2
of [25]. Notice that the representation (2.16) is not unique, but the value of
the right hand side of (2.17) is. See [25] for further details.

If b : D → C is a smooth function, the chain rule implies ∂rb(reiθ) :=
∂b(reiθ)/∂r = (D(1,0)b(z)) cos θ + (D(0,1)b(z))i sin θ, where z = reiθ and the
multi-index notation is used for partial derivatives; now more generally,

(2.18) ∂j
rb(re

iθ) =
j∑

l=0

cj,l(D(j−l,l)b)(z)(cos θ)j−l(sin θ)l,

where cj,l are positive constants. Given a ∈ W−m,∞
µ (I) as in (2.16) the

correct extension of it as a distribution on D \ {0} is given by the formula

(2.19) 〈ϕ, a〉 =
m∑

j=0

2π∫
0

1∫
0

bj(r)
∂jrϕ(reiθ)

∂rj
drdθ,
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where ϕ is an arbitrary compactly supported C∞-test function on D \ {0}.
The reason is that if a ∈ Cm, (2.19) equals

∫
D a(|z|)ϕ(z)dA(z), by (2.16)

and an integration by parts in the variable r. Moreover, by (2.18), (2.19)
also equals

(2.20)
m∑

j=0

j∑
l=0

∫
D

bj(z)cj,lD(j−l,l)

(
ϕ(z)(cos θ)j−l(sin θ)l

)
dA(z),

where bj(z) := bj(|z|). Note that it does not matter that the functions cos θ
and sin θ are not smooth at the origin because of the support of ϕ.

Remark 5. It was necessary to define the weight µ such that it vanishes also
at 0. Otherwise, the simple duality relation of the Sobolev spaces presented
above would fail, and in practise this would lead to unnecessary technical
complications in the partial integration above (especially in the substitutions
at 0).

The present approach leads to the drawback that the Dirac measure of
0 ∈ D, or any of its derivatives, are not included in the symbol class of the
next theorem. However, this is not at all serious, since the results of [25]
show that all distributions with compact support inside D automatically
define compact Toeplitz operators.

Theorem 6. If a ∈W−m,∞
µ (I), then the Toeplitz operator Ta defined by the

formula

(2.21) Taf(z) =
m∑

j=0

2π∫
0

1∫
0

bj(r)
∂j

∂rj

rf(reiθ)
(1− zre−θ)2

drdθ,

where the functions bj are as in (2.16), is well defined and bounded Ap → Ap.

We also get the bound ‖Ta : Ap → Ap‖ ≤ C‖a;W−m,∞
µ ‖.

Proof. Referring to the notation of [25], the identities (2.16) and (2.18), or
alternatively, (2.19) and (2.20), imply that Ta coincides with the Toeplitz
operator TA on the disk in the sense of [25], where

(2.22) A :=
m∑

j=0

j∑
l=0

(−1)jbj,l , bj,l := cj,l
(
D(j−l,l)bj(z)

)
(cos θ)j−l(sin θ)l

and the partial derivatives are in the sense of distributions (on the disk).
Comparing to (2.7)–(2.9) and taking into account the definition of the space
W−m,∞

µ (I) 3 a, we see that A ∈ W−m,∞
ν (D), and Ta = TA is bounded

Ap → Ap; see Theorem 3.1 of [25]. �

In particular any a such that the supports of all bj are contained in some
interval [0, R] with R < 1 defines a compact Toeplitz operator on Ap, by [25,
Proposition 4.1].
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The motivation of the definition (2.21) is that it is obviously much simpler
in the radially symmetric case, just due to the use of polar coordinates.
Another motivation is the following observation which clarifies the relation
of the sufficient conditions in (2.4) and (2.10) for radial symbols: the latter
condition is weaker.

Proposition 7. If the radial symbol a ∈ L1
loc(D) satisfies (2.4), then a ∈

W−1,∞
ν (D); in particular a satisfies (2.10).

Proof. Since any compactly supported function in L1
loc(D) satisfies (2.10),

we may assume that the support of a is outside the disk {|z| ≤ 1/2}. More-
over, we may assume by Lemma 2 that a satisfies (2.14), and finally, by the
proof of Theorem 6, it will be enough to show that the restriction of a to I
belongs to the Sobolev space W−1,∞

µ (I).
First, let r ∈ I and denote, for all n ∈ N, rn = 1− 2−n. Keeping in mind

that a is only locally integrable, we define

1∫
r

a(%)d% :=

rN∫
r

a(%)d%+
∞∑

n=N

rn+1∫
rn

a(%)d%,

where N = N(r) ∈ N is the unique number such that r ∈]rN−1, rN ]. This
sum converges, since the formulas (2.13) and (2.14) imply

(2.23)
∞∑

n=N

∣∣∣∣∣
rn+1∫
rn

a(%)d%

∣∣∣∣∣ ≤
∞∑

n=N

C2−n = C2−N+1

for any N . Let ψ : I → [0, 1] be a C∞-function which is increasing, equal to
0 in ]0, 1/8] and equal to 1 in [1/4, 1[. We define

b0(r) = ψ′(r)

1∫
r

a(%)d%,

b1(r) = ψ(r)

1∫
r

a(%)d%.

The identity (2.16) follows from the assumptions made on the supports of a
and ψ:

b0(r)−
db1(r)
dr

= ψ(r)a(r) = a(r).

We need to show that bj ∈ L∞
µ−j . Let us first consider b1. Due to the

choice of ψ we have b1(r) ≤ cr for small r, and it remains to show that
|b1(r)| ≤ C(1− r) for r close to 1. But assuming r > 1/2 and choosing N as
in (2.23), we have |

∫ rN

r a| ≤ C2−N , and hence an estimate similar to (2.23)
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implies

|b1(r)| =

∣∣∣∣∣
1∫

r

a(%)d%

∣∣∣∣∣ ≤ C2−N ≤ C ′(1− r).

This estimate, the fact that a ∈ L1
loc(I), and the compactness of the support

of ψ′ clearly also imply that b0 is a bounded function. �

3. Compact Toeplitz operators

3.1. Locally integrable symbols. For bounded symbols, a compactness
criterion (in terms of the Berezin transform) for Toeplitz operators on Ap is
well known, see, e.g., Suárez’s recent description of compact operators in the
Toeplitz algebra generated by bounded symbols in [27] and references therein
for previous results concerning finite sums of finite products of Toeplitz
operators.

For general symbols, the results in the previous section can be reformu-
lated for compactness by replacing the condition “be bounded” by “vanishes
on the boundary.” For example, for a positive symbol a in L1, the Toeplitz
operator Ta is compact on Ap (1 < p < ∞) if and only if B(a)(z) → 0 as
|z| → 1 (see [18, 29]); for further details about compactness of Toeplitz oper-
ators with several classes of (locally) integrable symbols, see the articles we
referred to in Section 2. We’d like to mention one generalization provided
by Zorboska (see [41]), that is, if f ∈ L1, if Tf is bounded on A2, and if

(3.1) sup
z∈D

‖Tf◦ϕz1;Lp‖ <∞ and sup
z∈D

‖Tf̄◦ϕz
1;Lp‖ <∞

for some p > 3, where ϕz(w) = (z − w)(1 − z̄w)−1, then Tf is compact on
A2 whenever B(f)(z) → 0 as |z| → 1. She also posed a question of whether
this result remains true when (3.1) holds for some p > 2.

As in the case of boundedness, the most fundamental question remains
open: find a sufficient and necessary condition for Toeplitz operators with
L1 symbols to be compact on A2.

Regarding compact Toeplitz operators, it is worth noting that Lueck-
ing [19] showed that there are no nontrivial finite rank Toeplitz operators
on A2 with bounded symbols; observe that his proof actually covers Toeplitz
operators on any space of analytic polynomials. It would also be interesting
to find out whether there are nontrivial finite rank Toeplitz operators on the
Bloch space B = {f ∈ H(D) : supz∈D |f ′(z)| (1− |z|)2 <∞}.

3.2. Distributional symbols. Note first that all distributions a ∈ D′ with
compact support belong to the Sobolev space W−m,∞

ν and generate Toeplitz
operators on Ap via (2.11); see [25]. In the same article it was also shown
that if we make no assumption that the symbol a be compactly supported,
then Ta is still compact provided that a has a representation (2.7) such that
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the functions bα satisfy

(3.2) lim
r→1

ess sup
|z|≥r

ν(z)−|α||bα(z)| = 0 .

Let us look at radial symbols as in the previous section.

Lemma 8. For a radial a ∈ L1
loc the condition

(3.3) lim
r→1

sup
ρ∈I(r)

|âI(ρ)| = 0

is equivalent to the compactness condition in [29], that is,

(3.4) lim
d(D)→0

sup
ξ∈D

|âD(ζ)| = 0.

Proof. Proceed as in the proof of Lemma 2 and note that 1− r → 0 if and
only if d(D) → 0, which happens if and only if |D| → 0. �

Theorem 9. Suppose that a ∈W−m,∞
µ (I) has a representation

a =
m∑

j=0

(−1)j d
jbj(r)
drj

where each bj satisfies

ess lim
s→1

sup
r∈(s,1)

µ(r)−j |bj(r)| = 0,

then Ta is compact.

Proof. Since the symbol a can be seen as a distribution that satisfies (3.4),
an application of Theorem 6 completes the proof. �

For the following result, see the comment preceding Proposition 7.

Proposition 10. If the radial symbol a ∈ L1
loc(D) satisfies (3.3), then a ∈

W−1,∞
ν (D) satisfies the condition of the preceding theorem.

Proof. We proceed as in the proof of Proposition 7 and write a using b0
and b1. The function b0 is obviously compactly supported. To deal with b1,
we just note that given ε > 0, we can pick N such that∣∣∣∣∣

∫ rn+1

rn

a(%)d%

∣∣∣∣∣ ≤ ε2−n

for n ≥ N − 1. Arguing along the lines of the proof of Proposition 7 we see
that |(1 − r)b1(r)| ≤ ε, when r is close enough to 1. This proves that the
representation is as desired. �
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3.3. The Berezin transform. Recall that, for an operator T on A2, the
Berezin transform of T at the point z ∈ D is defined by

T̃ (z) = 〈Tkz, kz〉,
where kz is the normalized reproducing kernel kz = Kz/‖Kz‖2 and Kz is
the kernel in (1.1). Also recall (2.1). For a distribution a ∈ W−m,∞

ν , we
define

ã(z) = 〈Takz, kz〉 = 〈|kz(w)|2, a〉w = 〈1, a ◦ ϕz〉w,
where 〈·, ·〉w stands for the dual bracket of the pair 〈Wm,1

ν ,W−m,∞
ν 〉 and ϕz

is the disk automorphism w 7→ (z − w)/(1 − z̄w), which interchanges the
origin and z; also note that the expression a ◦ ϕz is defined by its action on
Wm,1

ν by
〈f(w), a ◦ ϕz〉w = 〈(f ◦ ϕz)|ϕ′z|2(w), a〉w.

For f = 1, all of the above definitions are the same.
Since the functions kz converge to 0 weakly as z approaches T, it is clear

that the compactness of Ta implies ã(z) vanishes on the boundary. On the
other hand, in [25], we gave a sufficient condition for compactness, that is,
if a ∈ D′ is in W−m,∞

ν for some m, then Ta is compact provided that a has
a representation (2.7) such that the functions bα satisfy

(3.5) lim
r→1

ess sup
|z|≥r

ν(z)−|α||bα(z)| = 0.

This condition is by no means related to the Berezin transform and it would
be useful to shed light to the relevance of the Berezin transform in the study
of compact Toeplitz operators generated by distributions.

4. Fredholm properties

Fredholm theory is often very useful in connection with applications, and
this is indeed the case with Toeplitz operators; see, e.g., [5, 6, 31]. Let X be
a Banach space and let T be a bounded operator on X. Then T is Fredholm
if

α := dim kerT and β := dim(X/T (X))
are both finite, in which case the index of T is IndT = α − β. For further
details of Fredholm theory, see, e.g., [23].

In addition to the scalar-valued symbols, we also discuss the matrix-
valued case. For that, recall that if X is a Banach space and we set
XN = {(f1, . . . , fN ) : fk ∈ X}, then XN is also a Banach space with the
norm

‖(f1, . . . , fN );XN‖ := ‖f1;X‖+ . . .+ ‖fN ;X‖
(or with any equivalent norm). Note each A ∈ L(XN ) can be expressed as
an operator matrix (Aij)N

i,j=1 in L(XN×N ).
The Fredholm properties of Toeplitz operators with continuous matrix-

valued symbols are well understood (see [11] for the Hilbert space case
and [24] for the general case). The case of scalar-valued symbols in the
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Douglas algebra C(D) +H∞(D) was dealt with in [9], however their treat-
ment included no formula for the index. A formula for the index can be
found in [24], which also deals with matrix-valued symbols in the Douglas
algebra and shows that Fredholmness can be reduced to the scalar-valued
case; however, finding an index formula remains an open problem even in
the Hilbert space case when the symbols are matrix-valued.

The situation is similar with the so called Zhu class L∞ ∩ VMO, that
is, Fredholmness of Ta with a matrix-valued symbol in the Zhu class can
be reduced to the scalar-valued case, while the index computation remains
open; for further details, see [24].

A treatment on the Fredholm properties of Toeplitz operators on A2 with
scalar-valued piecewise continuous symbols can be found in Vasilevski’s re-
cent book [31]. Roughly speaking, the essential spectrum is obtained in this
case by joining the jumps of the symbol and adding them to continuous
parts to get a closed continuous curve. What happens in Ap is not known,
but we suspect that the value of p affects the way one should join the jumps;
indeed, in the Hardy space case (which is of course in many ways different
from the A2 case), one joins the jumps by lines when p = 2 while in other
cases by curves whose curvature is determined by the value of p. Further
one could also try to establish Fredholm theory for Toeplitz operators on
A2 with matrix-valued piecewise continuous symbols, which is an extremely
important part of the theory of Toeplitz operators on Hardy spaces.

We finish this section by mentioning a result which deals with a symbols
class that contains unbounded symbols, see [29]. Suppose that a ∈ VMO1

satisfies (2.4) and that for some δ > 0, C > 0,

|âD(ζ)| ≥ C

for all D ∈ D with d(D) ≤ δ, for all ζ ∈ D. Then Ta is Fredholm, and there
is a positive number R < 1 such that

IndTa = − ind(B(a)�sT) = − ind(âr�sT)

for any s ∈ [R, 1), where h�sT stands for the restriction of h into the set sT.

5. Toeplitz and Hankel operators acting on the Bergman
space A1

Here the extra difficulty is caused by the fact that the Bergman projection
is no longer bounded and bounded symbols no longer generate bounded
Toeplitz operators. In order to deal with some of these difficulties, let us
recall the logarithmically weighted versions of BMO spaces: we say that a
function f ∈ L1 is in BMOp

log if

sup
z∈D

W(z)MOp
r(f)(z) <∞ , where W(z) := 1 + log

1
1− |z|

(recall (2.2) for the definition of MOp
rf). The VMOp

log space is defined
similarly.
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Zhu was the first one to consider this case and showed that if a ∈ L∞ ∩
BMO2

log, then Ta is bounded on A1; see [36]. More recently two of the
authors established the following useful norm estimates (see [28])

‖Ta : A1 → A1‖ ≤ C1 ‖a‖ , ‖Ha : A1 → L1‖ ≤ C2 ‖a‖ ,

where ‖a‖ = ‖a;L∞‖+ ‖a;BMOlog‖. Wu, Zhao, and Zorboska [33] proved
that for a ∈ L∞, the Toeplitz operator Tā is bounded on A1 if and only if
P (a) belongs to the logarithmic Bloch space

LB =
{
f ∈ H(D) : sup

z∈D
log(1− |z|2)−1

∣∣f ′(z)∣∣ (1− |z|)2 <∞
}
.

Let us look at Hankel operators and their compactness on L1. The case
of continuous VMOlog symbols was recently considered in [28]. For more
general symbols, recall Zhu’s result that states Ha and Hā are both bounded
on Lp with 1 < p <∞ if and only if a ∈ BMOp. It is natural to ask whether
Hankel operators are compact on L1 with BMOlog symbols.

Using the decompositions

BMOp
log = BOlog +BAp

log and VMOp
log = V Olog + V Ap

log;

cf. BMOp = BO +BAp and VMOp = V O + V Ap, where

BO =

{
f ∈ C(D) : sup

z∈D
sup

w∈D(z,r)
|f(z)− f(w)| <∞

}
and

BAp =
{
f ∈ Lp : sup

z∈D
|̂f |pr(z) <∞

}
,

two of the authors [30] recently showed that if a ∈ BOlog ∩ L∞, then Ta :
A1 → A1 is bounded; and if a ∈ BOlog ∩ L∞ +BA1

log, then Ta : A1 → A1 is
bounded. In the same article, also “logarithmic versions” of the boundedness
and compactness results of [29] were considered. As a consequence, they also
derived that if a ∈ BMO1

log is such that a = f + g with f ∈ BOlog ∩ L∞

and g ∈ BA1
log, then the Hankel operator Ha : A1 → L1 is bounded. The

problem whether Ha : A1 → L1 is bounded for every a ∈ BMO1
log remains

open.
Concerning the Fredholm properties, things get even more complicated

and there are only very few results; we mention a recent result (see [28]).
Let a ∈ C(D)∩ VMOlog. Then Ta is Fredholm on A1 if and only if a(t) 6= 0
for any t ∈ T, in which case

IndTa = − ind ar.

We can also prove an analogous result for Toeplitz operators with matrix-
valued symbols.
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Theorem 11. Let a be a matrix-valued symbol with ajk ∈ C(D)∩ VMOlog.
Then the Toeplitz operator Ta is Fredholm on A1

N if and only if det a(t) 6= 0
for any t ∈ T, in which case IndTa = − ind det ar.

Proof. Since Toeplitz operators with continuous VMOlog symbols com-
mute modulo compact operators (use the compactness of Hankel operators—
see [28] or [30]) and each Ta with a ∈ C(D) ∩ VMOlog can be approxi-
mated by Fredholm Toeplitz operators with symbols in the same algebra
C(D) ∩ VMOlog (see the proof of Theorem 14 in [28]), it is not difficult
to see that the matrix-valued case can be reduced to the scalar case (see
Chapter 1 of [16]). �

6. Summary of open problems

We summarize the open problems discussed in the previous sections.

Problem 1. Find a sufficient and necessary condition for Toeplitz operators
with L1, or L1

loc, or distributional symbols to be bounded on Bergman spaces
Ap (for 1 < p < ∞ or at least for p = 2). Notice that for locally integrable
and thus for L1-symbols, the condition (2.10) makes very well sense, and
in view of Proposition 7 it is to be expected that (2.10) is weaker than
(2.4). We in particular ask, if (2.10) is also a necessary condition for the
boundedness of Ta : Ap → Ap, 1 < p <∞, say, for a ∈ L1.

Problem 2. Generalize the results on boundedness, compactness and Fred-
holmness of Toeplitz operators on A2 with radial symbols to other Bergman
spaces Ap.

Problem 3. Find a necessary and sufficient condition for Toeplitz operators
with L1

loc (or even distributional) symbols to be compact on Bergman spaces
Ap (at least in the case p = 2).

Problem 4. Generalize Zorboska’s result on compactness to other Bergman
spaces Ap.

Problem 5. Find an index formula for Fredholm Toeplitz operators on Ap

with matrix-valued symbols in C(D) +H∞(D) (at least in the case p = 2).
Also consider the index when the symbols are matrix-valued in the Zhu class
L∞ ∩ VMO.

Problem 6. Extend Fredholm theory of Toeplitz operators on A2 with
piecewise continuous symbols to other Bergman spaces Ap. Also consider
matrix-valued piecewise continuous symbols.

Problem 7. Determine when Hankel operators are bounded and compact
on L1, in order to extend Fredholm theory of Toeplitz operators on the
Bergman space A1.
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Problem 8. Assume that a ∈ W−m,∞
ν with ã(z) → 0 as |z| → 1. Find out

whether the function a can then be represented in the following form

(6.1) a =
∑
α≤m

(−1)|α|Dαbα,

where
ess lim

r→1
sup

r<|z|<1
|bα(z)|ν−|α|(z) = 0.

An affirmative answer implies that Ta is compact on Ap, and hence provides
a sufficient and necessary condition for Ta to be compact.

Problem 9. If a ∈ W−m,∞
ν is of the form (6.1) with bαν

−|α| ∈ C(D), does
if follow that ã ∈ C(D)? A positive answer would be useful in the study of
Fredholm properties of Toeplitz operators with distributional symbols.
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