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HANKEL AND TOEPLITZ TRANSFORMS ON H1:

CONTINUITY, COMPACTNESS AND FREDHOLM PROPERTIES

M. PAPADIMITRAKIS AND J. A. VIRTANEN

Abstract. We revisit the boundedness of Hankel and Toeplitz operators act-

ing on the Hardy space H1 and give a new proof of the old result stating that
the Hankel operator Ha is bounded if and only if a has bounded logarithmic

mean oscillation. We also establish a sufficient and necessary condition for Ha

to be compact on H1. The Fredholm properties of Toeplitz operators on H1

are studied for symbols in a Banach algebra similar to C + H∞ under mild

additional conditions caused by the differences in the boundedness of Toeplitz

operators acting on H1 and H2.

1. Introduction and main results

Let D = {z ∈ C : |z| < 1} be the unit disk of the complex plane C and T =
∂D = {ζ ∈ C : |ζ| = 1} be the unit circle. The usual Lebesgue spaces for T are
denoted by Lp = Lp(T) and we write

f(ζ) ∼
+∞∑

n=−∞
f̂(n)ζn

for the Fourier series of a function f in L1. The Hardy spaces for T are defined by

Hp =
{
f ∈ Lp : f̂(n) = 0 for n < 0

}
and their variants by Hp

0 =
{
f ∈ Lp : f̂(n) = 0 for n ≤ 0

}
. We also define the

spaces Hp =
{
f ∈ Lp : f̂(n) = 0 for n > 0

}
and the corresponding variants Hp

0 ={
f ∈ Lp : f̂(n) = 0 for n ≥ 0

}
.

The M. Riesz Theorem says that the Riesz projection P , defined by

Pf(ζ) ∼
+∞∑
n=0

f̂(n)ζn

for every f(ζ) ∼
∑+∞
n=−∞ f̂(n)ζn, is a bounded operator Lp → Hp when 1 < p <∞;

note, however, that the operator P is not bounded either on L1 or L∞. We also
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define a related operator P1 : Lp → Hp
0 by P1f(ζ) ∼

∑+∞
n=1 f̂(n)ζn and denote the

complementary projection of P by Q : Lp → Hp
0 , Qf(ζ) ∼

∑−1
n=−∞ f̂(n)ζn. We

say that Pf is the analytic part and Qf is the antianalytic part of f .
The Toeplitz operator Ta with symbol a ∈ L2 is defined by

Taf = P (af)

and the Hankel operator Ha by

Haf = P (aJf),

where J is the “flip operator” defined by

Jf(ζ) = ζf(ζ) ∼
+∞∑

n=−∞
f̂(−n− 1)ζn.

Both operators Ta and Ha are obviously well defined for analytic polynomials, i.e.

for finite sums f(ζ) =
∑N
n=0 f̂(n)ζn. The set of analytic polynomials is dense in

each Hp (1 ≤ p < +∞) and there are classical results which specify, for every
particular value of p, the necessary and sufficient conditions on the symbol a so
that these operators are extended as bounded or even compact operators on Hp.
It is easy to see that Ta is not compact whenever a is not the zero function. The
situation is described by the following Theorems 1.1–1.5.

Theorem 1.1. Let 1 < p < +∞. Then Ta is bounded on Hp if and only if a ∈ L∞.

Theorem 1.2. (Nehari, for p = 2) Let 1 < p < +∞. Then Ha is bounded on Hp

if and only if P1a ∈ BMO.

Theorem 1.3. (Hartman, for p = 2) Let 1 < p < +∞. Then Ha is compact on
Hp if and only if P1a ∈ VMO.

In the case of the space H1 the results are slightly more complicated.

Theorem 1.4. (Stegenga, 1976, for real or antianalytic a; Janson-Peetre-Semmes,
1984; Tolokonnikov, 1987; Cima-Stegenga, 1987) The Toeplitz operator Ta with
symbol a is bounded on H1 if and only if a ∈ L∞ and Qa ∈ BMOlog.

Theorem 1.5. (Janson-Peetre-Semmes, 1984; Tolokonnikov, 1987; Cima-Stegenga,
1987) The Hankel operator Ha is bounded on H1 if and only if P1a ∈ BMOlog.

The purpose of the first part of the article is to give a new proof of Theorem 1.5
together with a precise estimate of the operator norm of Ha and to prove the
analogous result about the compactness of Ha, that is, we prove the following two
theorems.

Theorem 1.6. The Hankel operator Ha is bounded on H1 if and only if P1a ∈
BMOlog, in which case

‖Ha‖H1→H1 � ‖P1a‖BMOlog
,

where A � B means that there are two positive numerical constants c1 and c2 so
that c1 ≤ A

B ≤ c2 for all values of the independent variables in A and B.

Theorem 1.7. The Hankel operator Ha is compact on H1 if and only if P1a ∈
VMOlog.
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The second part of this article deals with spectral properties of Toeplitz opera-
tors. The case of continuous symbols was recently studied in [14]. Here we consider
symbols that are not necessarily continuous. The motivation comes from the well-
known result on the Fredholm properties of Toeplitz operators on Hp (1 < p <∞)
with a ∈ C + H∞, due to Douglas [6] when p = 2. This suggests the follow-
ing theorem, which is indeed the best we can hope for because of the differences
in boundedness and compactness of the operators determined by the underlying
spaces H1 and Hp.

Theorem 1.8. Let a ∈ V + H∞ ∩ BMOlog := V + (H∞ ∩ BMOlog), where V =
C ∩VMOlog. Then the following conditions are equivalent:

(1) Ta is Fredholm on H1, that is, kerTa and cokerTa are both of finite dimen-
sion;

(2) a is invertible in the algebra V +H∞ ∩ BMOlog;
(3) a is bounded away from zero, that is, there are ε > 0 and δ > 0 such that

|a(z)| ≥ ε for 1− δ < |z| < 1,

where a(z) for z ∈ D is defined via the harmonic extension—see (1) below; in this
case for any 1− δ < r < 1

IndTa := dim kerTa − dim cokerTa = − ind ar

where ar(ζ) = a(rζ) for all ζ ∈ T and ind ar is the winding number of the function
ar.

2. Preliminaries

In this section we consider some (known) results from harmonic analysis. The
Poisson extension of f ∈ L1 at z ∈ D is given by

(1) f(z) =
1

2π

∫
T
f(ζ)

1− |z|2

|ζ − z|2
|dζ|

and the Szegö projection of f at z by

Pf(z) =
1

2πi

∫
T

f(ζ)

ζ − z
dζ.

For 1 ≤ p < +∞ and every f ∈ Lp the limit limr→1− f(rζ) = f(ζ) holds for almost
every ζ ∈ T and also in the Lp sense. Since f(z) is a harmonic function of z ∈ D,
it is also called the harmonic extension of f in D.

On the other hand, for 1 ≤ p < +∞ and every f ∈ Lp, the limit

lim
r→1−

Pf(rζ)

exists for almost every ζ ∈ T and, when 1 < p < +∞, this limit is equal to Pf(ζ)
(where P is the Riesz projection) in both the almost everywhere sense and in the Lp

sense. In the case p = 1, the limit Pf(ζ) = limr→1− Pf(rζ) serves as the definition
of the function Pf which, as is well known, belongs to the space L1,w of weak-L1

functions. In all cases Pf(z) is an analytic function of z ∈ D.
If 1 < p < +∞ and f ∈ Lp, the Poisson extension of Pf ∈ Lp at every z ∈ D is

equal to Pf(z):

Pf(z) =
1

2π

∫
T
Pf(ζ)

1− |z|2

|ζ − z|2
|dζ|,
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while if 1 ≤ p < +∞ and f ∈ Hp, then (obviously) Pf(ζ) = f(ζ) and

Pf(z) = f(z) =
1

2π

∫
T
f(ζ)

1− |z|2

|ζ − z|2
|dζ| = 1

2πi

∫
T

f(ζ)

ζ − z
dζ

for every z ∈ D.
We next consider the space of functions of bounded mean oscillation and its

important (logarithmic) subspaces. A function f is in BMO if f ∈ L1 and

‖f‖∗ = sup
I

1

|I|

∫
I

|f(ζ)− fI ||dζ| < +∞,

where the supremum is taken over all arcs I of T, fI = 1
|I|
∫
I
f(ζ)|dζ| and |I|

is the length of I. The space BMO is a Banach space under the norm ‖f‖BMO =

|f̂(0)|+‖f‖∗. We also have the space BMOA of analytic functions in BMO, defined

as BMOA = BMO∩H1 = {f ∈ BMO : f̂(n) = 0 for n < 0}.
It is well known that L∞ ⊆ BMO ⊆ Lp for every p < +∞ and that for every

f ∈ BMO

‖f‖∗ �
(

sup
z∈D

∫
T
|f(ζ)− f(z)|2 1− |z|2

|ζ − z|2
|dζ|

) 1
2

.(2)

The subspace VMO of BMO contains by definition all functions f ∈ L1 for which

lim
δ→0+

sup
I, |I|<δ

1

|I|

∫
I

|f(ζ)− fI ||dζ| = 0.

We also define VMOA = VMO∩H1. The space VMO is the closure in the space
BMO of the set of all polynomials (or, equivalently, of all continuous functions).
Also, f ∈ BMO belongs to VMO if and only if limr→1− ‖fr − f‖BMO = 0, where
the function fr is defined by fr(ζ) = f(rζ).

Somewhat less known are the spaces BMOlog and VMOlog and their variants
BMOAlog and VMOAlog. These are defined as follows. A function f is in BMOlog

if f ∈ L1 and

‖f‖∗∗ = sup
I

log 4π
|I|

|I|

∫
I

|f(ζ)− fI ||dζ| < +∞,

where, again, the supremum is taken over all arcs I of T. The space BMOlog is a

Banach space under the norm ‖f‖BMOlog
= |f̂(0)|+ ‖f‖∗∗. We define BMOAlog =

BMOlog ∩H1.
It is obvious that BMOlog ⊆ BMO. The following estimate

‖f‖∗∗ �
(

sup
z∈D

log2 2

1− |z|2

∫
T
|f(ζ)− f(z)|2 1− |z|2

|ζ − z|2
|dζ|

) 1
2

(3)

where f ∈ BMOlog, requires a similar consideration as in the case of the space
BMO, starting with the analogue of the John-Nirenberg theorem. The proofs do
not seem to have been recorded anywhere but they are almost straightforward and,
in any case, these facts have been used many times in the literature.

The logarithmic Lipschitz space Liplog is defined by

Liplog =

{
f : T→ C : sup

ζ,η∈T
log

4

|ζ − η|
|f(ζ)− f(η)| <∞

}
.
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This is a space of continuous functions under the norm

‖f‖Liplog
= |f̂(0)|+ sup

ζ,η∈T
log

4

|ζ − η|
|f(ζ)− f(η)|.

The space Liplog is continuously imbedded in BMOlog and the main result of [9] is:

(4) BMOlog = {f + Pg : f, g ∈ Liplog} .
In particular, if h ∈ BMOlog, there are f, g ∈ Liplog such that h = f + Pg and

‖f‖Liplog
+ ‖g‖Liplog

≤ c ‖h‖BMOlog
.

where c is a positive numerical constant.
The subspace VMOlog of BMOlog contains by definition all functions f ∈ L1 for

which

lim
δ→0+

sup
I, |I|<δ

log 4π
|I|

|I|

∫
I

|f(ζ)− fI ||dζ| = 0.

We also define VMOAlog = VMOlog ∩H1. The following two results will be needed
several times.

Theorem 2.1. For the logarithmic VMO space, we have the following characteri-
zation:

(5) VMOlog = {f + Pg : f, g ∈ liplog} ,
where liplog stands for the so-called vanishing logarithmic Lipschitz space defined by

liplog =

{
f ∈ Liplog : lim

δ→0+
sup
|ζ−η|<δ

log
4

|ζ − η|
|f(ζ)− f(η)| = 0

}
.

Theorem 2.2. For f ∈ BMOlog, the following conditions are equivalent:

(1) f ∈ VMOlog;
(2) limη→1 ‖τηf − f‖BMOlog

= 0, where τηf(ζ) = f(ζη) for η, ζ ∈ T;

(3) limr→1− ‖fr − f‖BMOlog
= 0, where fr(ζ) = f(rζ) for ζ ∈ T.

The following descriptions are also useful:

(6) {a ∈ L∞ : Qa ∈ BMOlog} = Liplog +H∞

and

(7) {a ∈ L∞ : Qa ∈ VMOlog} = liplog +H∞.

These can be verified by means of the characterizations in (4) and (5); for example,
if a = l + h ∈ liplog +H∞, then a ∈ L∞ and Qa = Ql ∈ VMOlog, and conversely if
a ∈ L∞ and Qa ∈ VMOlog, then Qa = f + Pg for some f, g ∈ liplog, so Qa = Qf ,
which implies that a− f ∈ H∞ and we can write a = f + (a− f) ∈ liplog +H∞.

For each arc I we define S(I) = {z ∈ D : 0 < 1 − |z| < |I|
2π ,

z
|z| ∈ I}, called the

Carleson “square” with base I. A positive Borel measure µ in D is called a Carleson
measure if

sup
I

µ(S(I))

|I|
< +∞,

where the supremum is taken over all arcs I of T. It is known that µ is a Carleson
measure if and only if there is a constant c so that∫ ∫

D
|f(z)|2dµ(z) ≤ c

∫
T
|f(ζ)|2|dζ|, f ∈ L2,(8)
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and that, if c is the smallest constant for which this inequality holds,

c � sup
I

µ(S(I))

|I|
.(9)

In this connection, we have a function f ∈ L1 in BMO if and only if the Borel
measure |∇f(z)|2(1 − |z|2)dm(z), where dm is the area measure, is a Carleson
measure and

‖f‖∗ �
(

sup
I

1

|I|

∫ ∫
S(I)

|∇f(z)|2(1− |z|2)dm(z)
) 1

2

.(10)

Similarly, f ∈ L1 is in VMO if and only if

lim
δ→0+

sup
I, |I|<δ

1

|I|

∫ ∫
S(I)

|∇f(z)|2(1− |z|2)dm(z) = 0.(11)

Of course, in the case of f ∈ H1 we may replace ∇f(z) by f ′(z) in the above
characterizations of BMO and VMO.

Analogously, for functions f in BMOlog, we have

‖f‖∗∗ �
(

sup
I

log2 4π
|I|

|I|

∫∫
S(I)

|∇f(z)|2(1− |z|2)dm(z)
) 1

2

.(12)

Note also that there exists a positive numerical constant c so that for every f ∈
BMOA and every z ∈ D:

|f(z)| ≤ c‖f‖BMO log
2

1− |z|2
.(13)

Conversely, there exists a positive numerical constant c so that for every z ∈ D
there exists an f ∈ BMOA with

‖f‖BMO = 1 , |f(z)| ≥ c log
2

1− |z|2
.(14)

Also, if f ∈ VMOA then

lim
|z|→1−

|f(z)|
log 2

1−|z|2
= 0.(15)

Finally, we shall use the inequality

| 〈f, g〉 | ≤ c‖f‖H1‖g‖BMOA,

where the binary form 〈·, ·〉 is defined by

〈f, g〉 = lim
r→1−

1

2π

∫
T
fr(ζ)g(ζ)|dζ| = lim

r→1−

1

2πi

∫
T
f(rζ)g(ζ)ζdζ.

The Fefferman-Stein duality which is induced by this binary form says that BMOA
is isomorphic to (H1)∗. It is also true that, under the same binary form, H1 is
isomorphic to (VMOA)∗.
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3. Proof of Theorem 1.6

Proof. Before proceeding to the proof, note that the part a − P1a of a plays no
role in the Hankel operator Ha. Indeed, for all analytic polynomials f the function
(a−P1a)Jf is antianalytic and, hence, Haf = HP1af . We may thus suppose in all
that follows that a = P1a or in other words that

(16) â(n) = 0 , n ≤ 0.

We recall that BMOA is isomorphic to the dual space of H1 and it is easy to
see that, formally at least, the dual operator to Ha on H1 is Ha on BMOA. This
means that

〈Haf, g〉 = 〈f,Hag〉

for all analytic polynomials f and all g ∈ BMOA. Hence, we need to prove that
Ha is bounded on BMOA if and only if a ∈ BMOlog and that

‖Ha‖BMOA→BMOA � ‖a‖BMOlog

under the assumption (16).
Sufficiency. Let a ∈ BMOlog satisfy (16) and take an arbitrary f ∈ BMOA.

Then

Haf(z) =
1

2πi

∫
T

a(ζ)ζf(ζ)

ζ − z
dζ =

1

2πi

∫
T

b(ζ)g(ζ)

ζ − z
dζ,

where we set b(ζ) = ζa(ζ) and g(ζ) = f(ζ). It is obvious that b ∈ BMOAlog with
‖b‖BMOlog

� ‖a‖BMOlog
and that g ∈ BMOA with ‖g‖BMO = ‖f‖BMO.

Throughout, the symbol c denotes a numerical constant, not necessarily the same
at each occurrence. We have

(Haf)′(z) =
1

2πi

∫
T

b(ζ)g(ζ)

(ζ − z)2
dζ

=
1

2πi

∫
T

b(ζ)(g(ζ)− g(z))

(ζ − z)2
dζ + g(z)

1

2πi

∫
T

b(ζ)

(ζ − z)2
dζ

=
1

2πi

∫
T

(b(ζ)− b(z))(g(ζ)− g(z))

(ζ − z)2
dζ + g(z)b′(z).

Applying the Cauchy-Schwarz inequality together with (2) and (3), we get

|(Haf)′(z)|2 ≤ c

∫
T

|b(ζ)− b(z)|2

|ζ − z|2
|dζ|

∫
T

|g(ζ)− g(z)|2

|ζ − z|2
|dζ|+ c|g(z)|2|b′(z)|2

≤ c‖b‖2∗∗‖g‖2∗
1

(1− |z|2)2 log2 2
1−|z|2

+ c|g(z)|2|b′(z)|2.
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This, for every arc I of T, implies

1

|I|

∫ ∫
S(I)

|(Haf)′(z)|2(1− |z|2)dm(z)

≤ c‖b‖2∗∗‖g‖2∗
1

|I|

∫ ∫
S(I)

1

(1− |z|2) log2 2
1−|z|2

dm(z)

+c
1

|I|

∫ ∫
S(I)

|g(z)− g(zI)|2|b′(z)|2(1− |z|2)dm(z)

+c|g(zI)|2
1

|I|

∫ ∫
S(I)

|b′(z)|2(1− |z|2)dm(z)

= A+B + C,(17)

where zI is the point in the middle of the internal side of S(I), defined by 1−|zI | =
|I|
2π and zI

|zI | =midpoint of I.

Let us first estimate the term A. A direct calculation of the integral, using polar
coordinates, gives

A ≤ c
1

log 4π
|I|
‖b‖2∗∗‖g‖2∗

≤ c
1

log 4π
|I|
‖a‖2BMOlog

‖f‖2BMO.(18)

Observing that |1 − zIz| � |I| for all z ∈ S(I) and considering the Borel measure
dµ(z) which is equal to |b′(z)|2(1−|z|2)dm(z) on S(I) and equal to zero on D\S(I),
we find using (8) and (9) that

B ≤ c|I|
∫ ∫

S(I)

|g(z)− g(zI)|2

|1− zIz|2
|b′(z)|2(1− |z|2)dm(z)

≤ c|I| sup
J

µ(S(J))

|J |

∫
T

|g(ζ)− g(zI)|2

|1− zIζ|2
|dζ|

≤ c sup
J

µ(S(J))

|J |

∫
T
|g(ζ)− g(zI)|2

1− |zI |2

|ζ − zI |2
|dζ|

≤ c‖g‖2∗ sup
J

µ(S(J))

|J |
.(19)

Estimating µ(S(J))
|J| = µ(S(J)∩S(I))

|J| , we observe that we need only consider arcs J

having nonempty intersection with I. In the case |J | > |I|, µ(S(J))
|J| ≤ µ(S(I))

|I| . If

|J | ≤ |I|, then J ⊆ 3I, where 3I is the arc with the same midpoint as I and with
length three times the length of I. Hence, in both cases we get using (12)

sup
J

µ(S(J))

|J |
≤ sup

J⊆3I

1

|J |

∫ ∫
S(J)

|b′(z)|2(1− |z|2)dm(z)

≤ c sup
J⊆3I

1

log2 4π
|J|
‖b‖2∗∗

≤ c
1

log2 4π
|I|
‖b‖2∗∗.
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Therefore (19) implies

B ≤ c
1

log2 4π
|I|
‖b‖2∗∗‖g‖2∗

≤ c
1

log2 4π
|I|
‖a‖2BMOlog

‖f‖2BMO.(20)

Finally, (12) and (13) imply

C ≤ c ‖b‖2∗∗‖g‖2BMO

≤ c ‖a‖2BMOlog
‖f‖2BMO.(21)

Now, estimates (18), (20) and (21) together with (17) imply

1

|I|

∫ ∫
S(I)

|(Haf)′(z)|2(1− |z|2)dm(z) ≤ c ‖a‖2BMOlog
‖f‖2BMO

and, taking the supremum over all arcs I and using (10),

‖Haf‖∗ ≤ c ‖a‖BMOlog
‖f‖BMO.

On the other hand,

|Ĥaf(0)|2 ≤ c

∫
T
|Haf(ζ)|2|dζ| = c

∫
T
|a(ζ)|2|f(ζ)|2|dζ|

≤ c
(∫

T
|a(ζ)|4|dζ|

) 1
2
(∫

T
|f(ζ)|4|dζ|

) 1
2

≤ c ‖a‖2BMO‖f‖2BMO ≤ c ‖a‖2BMOlog
‖f‖2BMO.

The last two estimates show that

‖Haf‖BMO ≤ c ‖a‖BMOlog
‖f‖BMO

and hence

‖Ha‖BMOA→BMOA ≤ c ‖a‖BMOlog
.

Necessity, step 1. Here we make the a priori assumption that a ∈ BMOlog (and,

that a satisfies (16)) and we set b(ζ) = ζa(ζ) as before.

If |̂b(0)| ≥ 1
2‖b‖BMOlog

, then

‖Ha‖BMOA→BMOA ≥ ‖Ha1‖BMO = ‖b‖BMO

≥ |̂b(0)| ≥ 1

2
‖b‖BMOlog

≥ c‖a‖BMOlog
.

If |̂b(0)| < 1
2‖b‖BMOlog

, then ‖b‖∗∗ ≥ 1
2‖b‖BMOlog

and based on (12) we find an arc
I such that

(22) c‖a‖2BMOlog
≤ c‖b‖2BMOlog

≤
log2 4π

|I|

|I|

∫ ∫
S(I)

|b′(z)|2(1− |z|2)dm(z).

Through (14) we find an f ∈ BMOA and the corresponding g(ζ) = f(ζ) so that

‖f‖BMO = 1 , c log
4π

|I|
≤ |f(zI)| = |g(zI)|.(23)
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The trivial variant of inequality (17) together with the estimates (18), (20), (22)
and (23) imply

‖Ha‖2BMOA→BMOA ≥ ‖Haf‖2BMO

≥ 1

|I|

∫ ∫
S(I)

|(Haf)′(z)|2(1− |z|2)dm(z)

≥ C −A−B ≥ c
(

1− c 1

log 4π
|I|

)
‖a‖2BMOlog

.

Hence, if |I| is smaller than a certain positive numerical constant we find that

‖Ha‖BMOA→BMOA ≥ c‖a‖BMOlog
.

On the other hand, if |I| is larger than the same positive numerical constant, then

‖Ha‖2BMOA→BMOA ≥ ‖Ha1‖2BMO = ‖b‖2BMO

≥ c
1

|I|

∫ ∫
S(I)

|b′(z)|2(1− |z|2)dm(z)

≥ c
log2 4π

|I|

|I|

∫ ∫
S(I)

|b′(z)|2(1− |z|2)dm(z)

≥ c‖a‖2BMOlog
.

We conclude that if a is assumed to be in BMOlog and satisfy (16) then

‖Ha‖BMOA→BMOA ≥ c‖a‖BMOlog

and, by the usual duality,

‖Ha‖H1→H1 ≥ c‖a‖BMOlog
.

Lemma 3.1. If Ha is bounded on H1, then for every f ∈ H1 and all r < 1 we
have Harf = r(Hafr)r.

Proof. The operator Har is bounded on H1 since ar is smooth. Verifying the
equality involves a straightforward calculation using Fourier series.

Necessity, step 2. Applying the a priori estimate of step 1 to the functions ar we
have

‖Har‖H1→H1 ≥ c‖ar‖BMOlog
.(24)

The lemma of Fatou with (12) implies that

‖a‖BMOlog
≤ lim inf

r→1−
‖ar‖BMOlog

.(25)

Now, Lemma 3.1 implies that for all f ∈ H1

‖Harf‖H1 ≤ r‖Hafr‖H1

≤ ‖Ha‖H1→H1‖fr‖H1

≤ ‖Ha‖H1→H1‖f‖H1

and hence

‖Har‖H1→H1 ≤ ‖Ha‖H1→H1 .(26)

Relations (24), (25) and (26) complete the necessity part of Theorem 1.6. �



HANKEL AND TOEPLITZ TRANSFORMS ON H1 11

4. Proof of Theorem 1.7

Proof. Let a ∈ VMOlog satisfy (16). Let r < 1 and take fn ∈ H1 with ‖fn‖H1 ≤ 1.
Choosing a subsequence, we may assume that there is a function f ∈ H1 so that
(fn)r → f in H1. Since Ha is bounded, we get Ha(fn)r → Haf in H1 and,
hence, Harfn = r

(
Ha(fn)r

)
r
→ r(Haf)r in H1. Therefore, Har is compact on H1.

Finally, ‖Har − Ha‖H1→H1 ≤ c‖ar − a‖BMOlog
→ 0 as r → 1− and, hence, Ha is

compact on H1.
Let a ∈ BMOlog satisfy (16). It is a consequence of the proof of Theorem 1.6

that Ha is bounded on VMOA. Indeed, taking any f ∈ VMOA, (17) together with
(12), (15), (18) and (20) imply that

sup
I, |I|<δ

1

|I|

∫ ∫
S(I)

|(Haf)′(z)|2(1− |z|2)dm(z)

≤ c 1

log 4π
δ

‖a‖2BMOlog
‖f‖2BMO + c‖a‖2BMOlog

sup
I, |I|<δ

|f(zI)|2

log2 4π
|I|

→ 0

as δ → 0+. Therefore, (11) implies that Haf ∈ VMOA.
Now, if we assume that Ha is compact on H1 then it is also compact on VMOA,

since H1 is isomorphic to (VMOA)∗. To get a contradiction we suppose that a does
not belong to VMOlog. Then there exist some δ > 0 and rn → 1− such that

‖arn − a‖BMOlog
≥ δ.

This implies

‖Harn
−Ha‖BMOlog

≥ cδ

and we can choose fn ∈ H1 with ‖fn‖H1 ≤ 1, so that

cδ ≤ ‖Harn
fn −Hafn‖H1

= ‖rn
(
Ha(fn)rn

)
rn
−Hafn‖H1

= ‖
(
Ha(fn)rn

)
rn
−Hafn‖H1 + o(1)

≤ ‖
(
Ha(fn)rn

)
rn
− (Hafn)rn‖H1 + ‖(Hafn)rn −Hafn‖H1 + o(1)

≤ ‖Ha(fn)rn −Hafn‖H1 + ‖(Hafn)rn −Hafn‖H1 + o(1).

Taking a subsequence, if necessary, we may assume that there is a v ∈ H1 so that
Hafn → v in H1. Therefore

cδ ≤ ‖Ha

(
(fn)rn − fn

)
‖H1 + ‖(Hafn)rn − vrn‖H1 + ‖vrn − v‖H1

+‖v −Hafn‖H1 + o(1)

= ‖Ha

(
(fn)rn − fn

)
‖H1 + o(1).

If we choose hn ∈ VMOA with ‖hn‖BMOA = 1 and

c‖Ha

(
(fn)rn − fn

)
‖H1 ≤

〈
Ha

(
(fn)rn − fn

)
, hn
〉
,

we have

cδ ≤
〈
Ha

(
(fn)rn − fn

)
, hn
〉

+ o(1)

= 〈(fn)rn − fn, Hahn〉+ o(1)

= 〈fn, (Hahn)rn −Hahn〉+ o(1).
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Since Ha is compact on VMOA, taking a subsequence once more we see that there
is a w ∈ VMOA so that Hahn → w in VMOA. Hence

cδ ≤ 〈fn, (Hahn)rn − wrn〉+ 〈fn, wrn − w〉+ 〈fn, w −Hahn〉+ o(1)

≤ c‖(Hahn)rn − wrn‖BMO + c‖wrn − w‖BMO + c‖w −Hahn‖BMO + o(1)

≤ c‖wrn − w‖BMO + o(1)

= o(1).

This is false and hence a ∈ VMOlog. �

5. Fredholmness of Toeplitz operators

We start by proving the equivalence of the criteria (2) and (3) for Fredholmness
in Theorem 1.8. We use the symbol χn for the functions

χn(ζ) = ζn , ζ ∈ T.

Lemma 5.1. The functions in V+H∞∩BMOlog can be approximated in the space

L∞ ∩ BMOlog by functions of the form χnh with n ≥ 0 and h ∈ H∞ ∩ BMOlog.

Proof. Let v + b ∈ V +H∞ ∩ BMOlog. According to (3) of Theorem 2.2, there are
trigonometric polynomials pk such that ‖v − pk‖L∞∩BMOlog

→ 0. Since

pk + b ∈
{
χnh : n ≥ 0, h ∈ H∞ ∩ BMOlog

}
,

the proof is complete. �

Proposition 5.2. Let a ∈ V +H∞ ∩ BMOlog. Then a is invertible in V +H∞ ∩
BMOlog if and only if a is bounded away from zero, that is, there are ε > 0 and
δ > 0 such that

|a(z)| ≥ ε for 1− δ < |z| < 1.

Proof. If a is invertible in V + H∞ ∩ BMOlog, then it is obviously invertible in

C +H∞ and thus bounded away from zero according to [7, Theorem 6.45].
By the preceding lemma, there are N → +∞ and corresponding hN ∈ H∞ ∩

BMOlog such that ‖a − χNhN‖L∞∩BMOlog
→ 0. By [7, Theorem 6.45], hN is

invertible in H∞ with N sufficiently large. As hN ∈ BMOlog, so is its inverse. Thus,

χNhN is invertible in V +H∞ ∩BMOlog. Now χ−NhN
−1 → a−1 in L∞ ∩BMOlog

and so a−1 is in the closed space V +H∞ ∩ BMOlog. �

It remains to show that the two conditions above are indeed sufficent and neces-
sary for Fredholmness. This follows from Theorem 5.6 and Proposition 5.9 below.

Let us first consider two basic results for quite general symbols that are needed
in what follows.

Proposition 5.3. Let a, b ∈ L∞ ∩ BMOlog. Then

Tab = TaTb +HaHb̃ ,(27)

Hab = TaHb +HaTb̃ ,(28)

where b̃(ζ) = b(1/ζ), ζ ∈ T.

Proof. See, e.g., [3, Proposition 2.14]. �

The next theorem gives a necessary condition for Fredholmness—cf. the well-
known theorem of Simonenko in the case of 1 < p <∞.
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Theorem 5.4. Let a ∈ L∞ ∩ BMOlog. If Ta is Fredholm, then

ess infζ∈T |a(ζ)| > 0;

in particular, the symbol is invertible in L∞ ∩ BMOlog.

Proof. Suppose that Ta is Fredholm but ess infζ∈T |a(ζ)| = 0.
We consider a small ε > 0 and decompose a = u + iv into real and imaginary

parts. Define uε = max(u, ε) + min(u,−ε) and vε by the analogous formula. Now
the function aε = uε + ivε is equal to 0 on a set of positive measure and ‖a −
aε‖L∞∩BMOlog

→ 0 as ε → 0+. This implies that ‖Ta − Taε‖ → 0 as ε → 0+ and,
hence, that Taε is Fredholm if ε is small enough.

If Taεf = P (aεf) = 0, then Q(aεf) = aεf − P (aεf) = 0 on a set of positive
measure and, hence, Q(aεf) = 0. Therefore, aεf = 0 and, if ε is small enough
(so that aε 6= 0) we find that f = 0 on a set of positive measure. This implies
that f = 0 and we conclude that Taε is one-to-one. The same is true for the dual
operator (Taε)

∗ = Tãε . Therefore, Taε is invertible.
Since Taε is invertible, there is some f so that Taεf = P (aεf) = 1. Then

Q(aεf) = aεf−P (aεf) = −1 on a set of positive measure and, hence, Q(aεf) = −1
which is clearly impossible. �

Remark 5.5. We do not know whether Fredholmness of Ta, when a ∈ L∞ and
Qa ∈ BMOlog, implies invertibility of the symbol in this symbol class, which is
optimal in the sense of boundedness.

We next turn our attention to the relation between the symbol class V +H∞ ∩
BMOlog and the space

A1 =
{
a ∈ L∞ ∩ BMOlog : Ha ∈ K(H1)

}
according to the following result.

Theorem 5.6. A1 = V +H∞ ∩ BMOlog.

Proof. If a = v + h for some v ∈ V and h ∈ H∞ ∩ BMOlog, then

Ha = Hv +Hh = Hv,

which is compact according to Theorem 1.7. On the other hand, if Ha is compact,
then P1a ∈ VMOlog according to Theorem 1.7. Therefore, (7) implies that

a ∈ liplog +H∞ ∩ BMOlog ⊆ V +H∞ ∩ BMOlog .

�

Proposition 5.7. The space A1 is a closed subalgebra of L∞ ∩ BMOlog.

Proof. The fact that the space is an algebra follows from Proposition 5.3. Suppose
that an → a in L∞ ∩ BMOlog with an ∈ A1. Then

‖Ha −Han‖ = ‖Ha−an‖ ≤ c ‖P1(a− an)‖BMOlog
→ 0

(see Theorem 1.6). Thus, Ha is compact. �

Corollary 5.8. The space V +H∞ ∩ BMOlog is a Banach algebra.

Proof. This is immediate from the preceding two results. It can also be proved
directly. �
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The proof of the following theorem is based on an argument of Böttcher and
Silberman [2, ch. IV] when 1 < p <∞.

Proposition 5.9. Let a ∈ A1. Then Ta is Fredholm on H1 if and only if a is
invertible in A1.

Proof. If a is invertible, then formula (27) shows that Ta−1 is a regularizer of Ta,
and so Ta is Fredholm.

If Ta is Fredholm, then Theorem 5.4 implies that a is invertible in L∞∩BMOlog.
Since Ta has a regularizer, say R, we can write

RTa = I +K,

where K is compact. Therefore, by (28),

0 = Haa−1 = TaHa−1 +HaTã−1 .

This implies

Ha−1 = −KHa−1 −RHaTã−1

and, hence, a−1 ∈ A1. �

6. Index formula

For analytic symbols, the Fredholm properties of Toeplitz operators on H1 are
well understood:

Theorem 6.1. For a ∈ H∞, the Toeplitz operator Ta on H1 is Fredholm if and
only if a is bounded away from zero, in which case

IndTa = − ind ar.

Proof. See [15, Theorem 10]. �

Our aim in this section is to show that the preceding formula also holds for
invertible symbols in the algebra V +H∞ ∩ BMOlog. We start with a preliminary
lemma.

Lemma 6.2. If v ∈ V and f ∈ L∞ ∩ BMOlog, then

(29) ‖(vf)r − vrfr‖L∞∩BMOlog
−→ 0

as r → 1.

Proof. From Lemma 2.61 of [3] it follows that ‖(vf)r − vrfr‖∞ → 0. Therefore, it
is enough to show that ‖(vf)r − vrfr‖BMOlog

→ 0. Also, since

‖(vf)r − vrfr‖∗∗ ≤ ‖(vf)r − vfr‖∗∗ + ‖vfr − vrfr‖∗∗ ,

and ‖v − vr‖BMOlog
→ 0 according to Theorem 2.2, it is sufficient to prove that

‖(vf)r − vfr‖∗∗ → 0.

For a function g : T→ C, we write

gη(ζ) = g(ζη)

when ζ, η ∈ T. Then

(vf)r(ζ)− (vfr)(ζ) =
1

2π

∫
T

1− r2

|1− rη|2
(vη(ζ)− v(ζ))fη(ζ)|dη|
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and we need to estimate the expression

J :=
log 4π
|I|

|I|

∫
I

|(vf)r(ζ)− (vfr)(ζ)− ((vf)r − vfr)I | |dζ|

=
log 4π
|I|

|I|

∫
I

∣∣∣∣ 1

2π

∫
T

1− r2

|1− rη|2
(

(vη(ζ)− v(ζ))fη(ζ)

− 1

|I|

∫
I

(vη(θ)− v(θ))fη(θ)|dθ|
)
dη

∣∣∣∣ |dζ|
≤

log 4π
|I|

|I|

∫
I

1

2π

∫ 2π

0

1

|I|

∫
I

1− r2

|1− rη|2

∣∣∣∣(vη(ζ)− v(ζ))fη(ζ)

− (vη(θ)− v(θ))fη(θ)

∣∣∣∣|dθ||dη||dζ|.
Write

(30) (vη(ζ)− v(ζ))fη(ζ)− (vη(θ)− v(θ))fη(θ)

=
[
(vη(ζ)− v(ζ))fη(ζ)− (vη − v)Ifη(ζ)

]
+
[
(vη − v)Ifη(ζ)− (vη − v)Ifη(θ)

]
+
[
(vη − v)Ifη(θ)− (vη(θ)− v(θ))fη(θ)

]
=: J1 + J2 + J3.

Then

J ≤
log 4π
|I|

|I|

∫
I

1

2π

∫ 2π

0

1

|I|

∫
I

1− r2

|1− rη|2
(|J1|+ |J2|+ |J3|)|dθ||dη||dζ|.

Let us first consider J1. We have

log 4π
|I|

|I|

∫
I

1

2π

∫ 2π

0

1

|I|

∫
I

1− r2

|1− rη|2
|J1| |dθ||dη||dζ|

≤
‖f‖∞

2π

∫ 2π

0

1− r2

|1− rη|2
log 4π
|I|

|I|

∫
I

|vη(ζ)− v(ζ)− (vη − v)I | |dζ||dη|

≤
‖f‖∞

2π

∫ 2π

0

1− r2

|1− rη|2
‖vη − v‖∗∗ |dη|

=
‖f‖∞

2π

∫
0<|1−η|<δ

1− r2

|1− rη|2
‖vη − v‖∗∗ |dη|

+
‖f‖∞

2π

∫
δ<|1−η|<2

1− r2

|1− rη|2
‖vη − v‖∗∗ |dη|.

Now given ε > 0, there is δ > 0 (according to Theorem 2.2) and r < 1 such that
the above sum of two integrals can be estimated above by

‖f‖∞
2π

2πε+
‖f‖∞

2π
ε2 ‖v‖∗∗ .

Similarly the part made of J3 can be shown to be as small as we wish provided
that r is sufficiently close to 1.

It remains to consider J2. Note that

(vη − v)Ifη(ζ)− (vη − v)Ifη(θ)

= (vη − v)I(fη(ζ)− (fη)I) + (vη − v)I((fη)I − fη(θ))
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and that it is sufficient to consider only one of the terms in the equality above.
Since, by the choice of δ > 0 and r < 1,

1

2π

∫ 2π

0

1− r2

|1− rη|2
|vη − v|I

log 4π
|I|

|I|

∫
I

|fη(ζ)− (fη)I | |dζ||dη|

≤
‖f‖∗∗

2π
(

∫
0<|1−η|<δ

1− r2

|1− rη|2
|vη − v|I |dη|

+

∫
δ<|1−η|<2

1− r2

|1− rη|2
|vη − v|I |dη|

can be made arbitrarily small, the proof is complete. �

Theorem 6.3. If a, b ∈ V +H∞ ∩ BMOlog, then

‖(ab)r − arbr‖L∞∩BMOlog
−→ 0 as r → 1

Proof. The statement follows easily from the preceding lemma and the fact (hg)r =
hrgr for h, g ∈ H∞. �

Proof of the index formula. According to Lemma 5.1 and the general theory of
Fredholm operators, there is a function χnh (n ≥ 0 and h ∈ H∞) that has the
same index as a and generates a Toeplitz operator that is Fredholm of the same
index as Ta. Using Theorems 6.1 and 6.3, and well-known properties of the index
(of Fredholm operators and of continuous functions), and [14, Lemma 5] saying
that IndTχn = −n, we can conclude that for r sufficiently close to 1, we have

IndTχnh = IndTχn + IndTh (Atkinson)

= −n− indhr

= − ind((χn)rhr)

= − ind(χnh)r

= − ind ar.

�

Proof of Theorem 1.8. Indeed this is an immediate consequence of Propositions 5.2
and 5.9, Theorem 5.6, and the preceding proof of the index formula. �
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