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[1] A model for estimating the turbulent kinetic energy dissipation rate in the oceanic
boundary layer, based on insights from rapid-distortion theory, is presented and tested.
This model provides a possible explanation for the very high dissipation levels found by
numerous authors near the surface. It is conceived that turbulence, injected into the
water by breaking waves, is subsequently amplified due to its distortion by the mean
shear of the wind-induced current and straining by the Stokes drift of surface waves.
The partition of the turbulent shear stress into a shear-induced part and a wave-induced part
is taken into account. In this picture, dissipation enhancement results from the same
mechanism responsible for Langmuir circulations. Apart from a dimensionless depth and
an eddy turn-over time, the dimensionless dissipation rate depends on the wave slope
and wave age, which may be encapsulated in the turbulent Langmuir number Lat.
For large Lat, or any Lat but large depth, the dissipation rate tends to the usual surface
layer scaling, whereas when Lat is small, it is strongly enhanced near the surface, growing
asymptotically as ɛ ∝ Lat

�2 when Lat → 0. Results from this model are compared with
observations from the WAVES and SWADE data sets, assuming that this is the dominant
dissipation mechanism acting in the ocean surface layer and statistical measures of the
corresponding fit indicate a substantial improvement over previous theoretical models.
Comparisons are also carried out against more recent measurements, showing good
order-of-magnitude agreement, even when shallow-water effects are important.

Citation: Teixeira, M. A. C. (2012), The influence of Langmuir turbulence on the scaling for the dissipation rate in the oceanic
boundary layer, J. Geophys. Res., 117, C05015, doi:10.1029/2011JC007235.

1. Introduction

[2] A problem in oceanography that has generated some
controversy in recent years is the scaling for the dissipation
rate of turbulent kinetic energy (TKE) in the oceanic
boundary layer (OBL). This quantity influences gas transfer
across the air-water interface (by controlling surface
renewal), and is also important for small-scale mixing in the
upper ocean [Teixeira and Belcher, 2000]. It has become
clear that, in this and other respects, the OBL differs mark-
edly from the atmospheric boundary layer (ABL), and the
scalings which are applicable to one case are not transpos-
able to the other. It is widely recognized that these differ-
ences are essentially due to the existence of surface waves,
however the exact mechanisms through which the waves
give rise to these differences have not been totally clarified.
[3] In the ABL, the mean velocity profile in the surface

layer typically follows a logarithmic variation, and consis-
tently in the TKE budget the shear production term is

approximately balanced by dissipation, with the rate of dis-
sipation of TKE scaling like ɛ = u∗

3/(k|z|). In the OBL, how-
ever, the dissipation rate is often observed to exceed this
estimate by orders of magnitude, and various models have
been proposed to explain this phenomenon. Initial attempts
toward that aim [e.g., Drennan et al., 1992] merely noted the
similarity between the power laws observed near the surface
for the dissipation rate as a function of depth and the
corresponding behavior in grid-stirred water tanks (ɛ∝ |z|�4).
[4] More elaborate scalings have been developed, con-

sidering possible balances in the equations of motion. Craig
and Banner [1994], for example, assumed that turbulent
transport balances dissipation in the near-surface TKE bud-
get, leading to a dependence of the type ɛ ∝ |z|�3.4. How-
ever, their model is extremely sensitive to the value of the
water-side roughness length z0. Anis and Moum [1995], on
the other hand, considered two wave-turbulence interaction
mechanisms: one of them relying on the transport of TKE by
the orbital wave motions, and the other relying on the wave-
induced shear stress existing in a rotational wavefield. Both
mechanisms lead to an exponential variation of ɛ with |z|.
However, analysis of the dissipation data of Terray et al.
[1996], Drennan et al. [1996] and Gerbi et al. [2009], in
addition to those of Anis and Moum [1995] themselves,
show that the variation of ɛ with depth is much faster than
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exponential. On the other hand, the parameters used in both
models proposed by Anis and Moum [1995] (the correlation
coefficient between the wave and turbulence velocity fluc-
tuations and the phase angle by which the wave velocity
components are out of quadrature) are hard to estimate
independently. Finally, Terray et al. [1996] used dimen-
sional analysis and observations to establish the dependence
of the normalized dissipation rate on a number of dimen-
sionless parameters. Invoking some approximations, they
reduced the number of these parameters to one, obtaining a
scaling for which ɛ ∝ |z|�2.
[5] While there is considerable disagreement about the

functional form for the dependence of the dissipation rate
with depth, all the authors cited above agree that one aspect
of the waves which is relevant to this problem is wave
breaking. Underlying most of the mechanisms described
above is the idea that the dissipation rate enhancement near
the surface is directly caused by the injection of turbulence
into the water by breaking waves. Teixeira [2011b] proposed
a complementary mechanism, where turbulence, most
probably produced by wave breaking, but which might also
be generated by any other process (e.g., instability of a wind-
driven shear current), is distorted and amplified by the
joint action of a mean Eulerian current and the Stokes drift
of irrotational surface waves. In this mechanism, which
assumes that the dissipation rate is balanced at equilibrium
by production of TKE by mean shear and by Stokes drift
straining, the primary reason for dissipation enhancement is
the same instability mechanism that gives rise to Langmuir
circulations, which strongly amplifies the shear stress near
the surface. Teixeira [2011b] made preliminary comparisons
of results from his calculations to data from Agrawal et al.
[1992], Terray et al. [1996] and Drennan et al. [1996],
finding order-of-magnitude agreement. However, more sys-
tematic tests are required to evaluate the usefulness of those
calculations. Additionally, one problematic assumption
made by Teixeira [2011b] is that the profile of the wind-
induced water current remains logarithmic and with the same
friction velocity as when there is no Craik-Leibovich insta-
bility. This is in contradiction with the findings of, for
example, McWilliams et al. [1997], Li et al. [2005] and
Polton and Belcher [2007], who show that the shear in this
current weakens considerably in the presence of Langmuir
circulations.
[6] The present study uses observations from various

sources (including the field campaigns WAVES and
SWADE) to show that the mechanism for the enhancement
of the dissipation rate proposed by Teixeira [2011b] can
provide a better estimate of this quantity than a number of
previous models, including those of Craig and Banner
[1994] and of Terray et al. [1996]. The assumption of a
logarithmic water current profile is, however, corrected,
assuming instead that the shear stress near the surface is
partitioned between a shear-induced and a wave-induced
part (as noted in Teixeira [2011a]), with the former becom-
ing smaller as the turbulent Langmuir number Lat decreases.
[7] The new dissipation model is tested in the absence of

any other dissipation enhancement mechanisms, through the
calculation of statistics of its fit to the WAVES and SWADE
data sets. While this approach is rather radical, it is adopted
here for simplicity. It is not claimed that this is the only
dissipation enhancement mechanism acting in the OBL.

However, if the present model shows an improved perfor-
mance over existing models, as turns out to be the case, this
suggests that the corresponding mechanism may be domi-
nant over those previously proposed. The new model is also
shown to avoid a number of inconsistencies displayed by
previous models with other data sets, namely the need to
recalibrate the constant in the wave energy input parameter
(which is not a key parameter in the dissipation scaling pre-
sented here), and an unsatisfactory performance in shallow-
water conditions.
[8] This paper is organized as follows: in section 2, the

model for the dissipation rate is presented. Section 3 con-
tains the results, which include tests to the model using data
from the WAVES and SWADE campaigns, and compar-
isons with more recent observations. Finally, in section 4, an
overview of the main findings is presented.

2. Theoretical Model

[9] Teixeira and Belcher [2010] and Teixeira [2011a]
used rapid-distortion theory (RDT) to investigate the char-
acteristics of turbulence in the OBL. RDT is a highly ide-
alized theory, where the equations of motion are linearized
with respect to the turbulence. Nevertheless, when taking
into account distortion of the turbulence by two external
forcings—the mean shear associated with an Eulerian mean
current driven by the wind stress and the gradient of the
mean Lagrangian transport associated with the Stokes drift
of surface waves—it was possible to produce turbulent flow
structures, like streaks and streamwise vortices, which are
observed in the OBL. Furthermore, the turbulence anisot-
ropy and elongation were shown to be qualitatively, and
even quantitatively concerning some aspects, in agreement
with LES data of fully nonlinear OBL flows.
[10] One consequence of Teixeira’s [2011a] calculations

was the identification of a mechanism for the amplification
of the turbulent shear stress through the same instability that
leads to the initial exponential growth of Langmuir circula-
tions. This led to the derivation by Teixeira [2011b] of an
estimate for the TKE dissipation rate, using standard
assumptions of RDT, namely that turbulence in equilibrium
(where TKE production balances dissipation) has roughly
similar characteristics to turbulence subjected to external
forcings (as assumed in RDT) over a time of the order one
eddy turn-over time. The reasoning of Teixeira [2011a,
2011b] relevant to TKE dissipation will be briefly recalled
next.
[11] The inviscid and non-rotating equations of motion

linearized with respect to the turbulent quantities and con-
taining a ‘vortex force’ term [cf. Leibovich, 1983;McWilliams
et al., 1997; Teixeira, 2011a] are considered. Combining
these equations, and subject to the above assumptions,
Teixeira [2011a] found that the turbulent shear stress satisfies:

d2uw

dt2
� 4

dU

dz

dUS

dz
uw ¼ � 1

r
d

dt
w
∂p
∂x

þ u
∂p
∂z

� �

� 2

r
dU

dz
w
∂p
∂z

þ dUS

dz
u
∂p
∂x

� �
; ð1Þ

where U is the mean velocity (associated with an Eulerian
mean current), US is the Stokes drift velocity (associated with
the Lagrangian mean transport induced by surface waves),
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(u, v, w) is the turbulent velocity (including Langmuir cells or
any other large-scale coherent structures), p is the turbulent
pressure, r is the density (assumed to be constant), and the
overbar denotes ensemble averaging. In this equation, it was
assumed that both dU/dz and dUS/dz are in the x direction
(a situation consistent with the existence of wind waves,
when the wind stress and the Stokes drift of surface waves
are roughly aligned), and that U and US only depend on z.
Additionally, it was assumed that the turbulence statistics
(e.g., second-order correlations of turbulent quantities) also
only depend on z. This is consistent with a horizontally
statistically homogeneous situation.
[12] If p can be considered of secondary importance in the

evolution of the shear stress, then if follows that:

d2uw

dt2
� 4

dU

dz

dUS

dz
uw ¼ 0: ð2Þ

This neglect of the pressure is a common assumption in
‘parcel methods’ used to investigate numerous geophysical
instabilities [cf. Holton, 2004] and is adopted here for
mathematical convenience. Its approximate validity in the
present context was shown by Teixeira [2011a].
[13] When (dU/dz)(dUS/dz) > 0 (which is typically satis-

fied for wind waves, because the surface wind stress and the
Stokes drift of the waves are roughly in the same direction),
(2) has exponentially growing or decaying solutions. For
dissipation enhancement, only the exponentially growing
solution is relevant, so the shear stress evolves in time,
at least initially, approximately according to

uw ¼ uw t ¼ 0ð Þexp 2
dU

dz

dUS

dz

� �1=2

t

" #
: ð3Þ

The growth rate of the shear stress is in this case similar to
that derived by Craik and Leibovich [see Leibovich, 1983]
for Langmuir circulations in a neutrally stratified ocean,
which is not surprising since the physical mechanism at
work is the same. The shear stress for turbulence in equi-
librium is, according to RDT, approximately described by
(3) with t = TL where TL is the eddy turn-over time.
[14] The initial state of the turbulence assumed in the RDT

calculations is that of turbulence embedded in a mean shear
flow similar to that which exists in a stationary ABL, with
the difference that the effect of the Stokes drift of surface
waves is included (see details in Teixeira [2011b]). There-
fore, the shear stress is assumed to be initially constant,

uw t ¼ 0ð Þ ¼ �u2∗; ð4Þ

where u∗ is the friction velocity in the water, as derived from
viscous coupling between the ABL and the OBL.
[15] The Stokes drift is assumed to be that corresponding

to an irrotational monochromatic surface wave (which
represents the peak of the surface wave spectrum),

dUS

dz
¼ 2 awkwð Þ2swe

�2kwjzj; ð5Þ

where aw, kw and sw are, respectively, the amplitude, wave
number and angular frequency of the wave. This is done for
simplicity, since the use of a full wave spectrum would

introduce additional input parameters into the model. In fact,
except very close to the surface, the contribution of surface
waves to the Stokes drift gradient comes mainly from the
spectral peak [Teixeira, 2011b].
[16] Due to the presence of surface waves, the mean shear

stress uw is partitioned between a shear-induced and a wave-
induced part. Teixeira [2011a, equation (19)] proposed a
parameterization for this partition based on the linearized
equation for uw. In this equation, the mechanical production
terms due to mean shear and the Stokes drift strain are,
respectively, w2dU/dz and u2dUS/dz, where u2 and w2 are
the streamwise and vertical velocity variances. If one accepts
that uw is primarily shaped by these mechanical production
terms, then it seems reasonable to assume that its shear-induced
part is proportional to the fraction of the mechanical production
terms corresponding to shear production [cf. Teixeira, 2011a,
equation (30)], yielding:

uwð Þs ¼ � u2∗

1þ u2

w2

dUS=dz
dU=dz

: ð6Þ

[17] It is fairly obvious that the ratio (dUS/dz)/(dU/dz) is
proportional to Lat

�2 = US(z = 0)/u∗ [see Teixeira, 2011a,
equation (31)], and it should also contain the exponential
vertical dependence of the Stokes drift of surface waves.
On the other hand, the ratio u2=w2 is a priori unknown, but
it should tend to infinity as z → 0, while (dU/dz)�1 should
tend to zero as z → 0, because it is proportional to the eddy-
viscosity, which, in the surface layer shows a similar
dependence. Assuming that the z dependence of u2=w2 and
of (dU/dz)�1 cancels, a parameterization for the part of the
shear stress associated with mean shear takes the form:

uwð Þs ¼ � u2∗
1þ gLa�2

t e�2kwjzj ; ð7Þ

where g is an adjustable constant. In addition, the usual
surface layer turbulence closure is adopted here only for
uwð Þs (as makes sense physically):

uwð Þs ¼ �Km
dU

dz
; ð8Þ

where, however, Km = ku∗z is defined using the ‘total’ fric-
tion velocity u∗, as usual. Then, using (7) and (8), it turns out
that the mean shear rate can be written:

dU

dz
¼ u∗

kjzj
1

1þ gLa�2
t e�2kwjzj ; ð9Þ

where k is Von Kármán’s constant. Equation (9) expresses
the fact that the velocity profile is no longer logarithmic, and
the mean shear is reduced as Lat decreases. This only hap-
pens near the surface, over the depth range where the Stokes
drift is important. Note that, by (7) and (9), this corresponds
to the definition of a surrogate friction velocity associated
only with mean shear,

u∗s ¼ � uwð Þs z ¼ 0ð Þ
u∗

¼ u∗
1þ gLa�2

t

; ð10Þ
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which becomes a progressively smaller fraction of u∗ as
Lat decreases. The need to use a reduced friction velocity in
the presence of Langmuir turbulence was noted by Teixeira
and Belcher [2010]. In order to calibrate the constant g
in (7), the mean velocity profiles presented in Li et al. [2005,
Figure 2e] for various Lat will be used.
[18] Figure 1 shows dU/dz as derived from the data of

Li et al. [2005] after some smoothing (symbols), against
predictions from (9) with g = 2 (lines) for Lat = 10, Lat =
0.73 and Lat = 0.34. It can be seen that for Lat = 10 (which is
effectively equivalent to Lat = ∞) the agreement with (9) is
excellent, showing that the mean velocity profile is loga-
rithmic, despite the fact that the shear stress is not constant
[see Li et al., 2005, Figure 2d]. For Lat = 0.73 and Lat =
0.34, the shear rate near the surface is well approximated
by (9), although further below it is overestimated. This may
be attributed to vertical mixing caused by the turbulence,
a higher-order effect neglected in the present model. Nev-
ertheless, what is important for the present calculations is the
ability to reproduce correctly the order of magnitude of the
shear rate near the surface, where this quantity is highest,
and this is achieved by (9) with g = 2.
[19] It is assumed that, throughout the distortion described

by (3), both the mean velocity and the Stokes drift retain
their initial forms (9) and (5). Especially in the case of the
mean velocity, this is not strictly true, because the vertical
mixing induced by the change in the turbulence character-
istics as the distortion progresses tends to weaken the mean
shear, as noted above [Teixeira and Belcher, 2010]. How-
ever, this might be an effect of secondary importance,
because it occurs at depths where the shear rate is lower, and
during the course of the amplification of uw that causes the
enhancement of ɛ. So it can be argued that this amplification
must be influenced by the initial state of the shear rate, still
unaffected by this mixing, to some degree.

[20] The mean velocity profile (9) could also be destroyed
by wave breaking, but this effect is more intermittent and
localized than that of the wind stress that forces the current
[Sullivan et al., 2004].
[21] Finally, it is assumed that, at equilibrium, turbulence

production by the shear and Stokes drift straining balances
dissipation in the TKE budget, that is:

ɛ ¼ �uw
dU

dz
þ dUS

dz

� �
: ð11Þ

This balance is questioned by some authors [e.g., Craig and
Banner, 1994; Noh et al., 2004], who argue instead for a
balance between dissipation and turbulent transport, associ-
ated with the injection of turbulence into the water by
breaking waves. However, there is no conclusive evidence to
support that hypothesis beyond doubt, since existing wave
breaking representations in LES (which are the only practi-
cal means of analyzing the TKE budget), are questionable.
The argument of Teixeira [2011b] to support (11) is based
on the idea that wave breaking is highly intermittent
[Sullivan et al., 2004, 2007], and that the balance expressed
by (11) could be reached after the shear stress has been
amplified considerably by the instability mechanism
described by (3). The dominant contributions to the dissi-
pation rate should occur at this stage. Additional support for
(11) is given by the TKE budgets presented in the LES
studies of Polton and Belcher [2007], Grant and Belcher
[2009], and Kukulka et al. [2010], which show a dominant
balance between the sum of the mechanical production terms
and dissipation over the sum of the turbulent flux terms,
particularly near the surface, although these studies neglec-
ted wave breaking. Other studies including the effect of
wave breaking [Noh et al., 2004; Sullivan et al., 2007]
parameterized this effect in a way whose physical basis is
not as solid as that of the effect of the Stokes drift, so their
results are not wholly reliable. Additionally, these studies
did not explicitly analyze the TKE budget. For those rea-
sons, the processes that balance dissipation in the OBL
cannot be considered sufficiently well-known, and (11) is
adopted here as a working hypothesis.
[22] Given these cautions, and taking into account (3)

evaluated at t = TL, and also (4) and (11), it follows that at
equilibrium

ɛ ¼ u2∗
dU

dz
þ dUS

dz

� �
exp 2

dU

dz

dUS

dz

� �1=2

TL

" #
: ð12Þ

A key quantity in (12), but one of the most difficult to esti-
mate from standard data, given that it depends on char-
acteristics of the turbulence in the OBL, is TL. Teixeira
[2011b] estimated this quantity as TL ≈ l/u∗, where l is a
representative length scale of the turbulence near the surface.
Since the most likely source for the turbulence that causes
dissipation enhancement is wave breaking, the length scale
used for estimating TL should be related to the characteristics
of the dominant waves. For that reason, in the present study
it will be assumed, as in Teixeira [2011b], that

TL ¼ c
k�1
w

u∗
; ð13Þ

Figure 1. Normalized shear rate as a function of normal-
ized depth for the mean velocity profiles presented in Li
et al. [2005, Figure 2e] (symbols) against predictions of
the same quantity from (9) (lines). Circles and solid line:
Lat = 10, squares and dashed line: Lat = 0.73, triangles and
dotted line: Lat = 0.34.
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where c is a dimensionless constant. This implies that l is
proportional to the wavelength of the dominant waves. The
only other wave length scale available apart from kw

�1 is
the wave amplitude aw, but tests (not shown) revealed that
this choice would degrade the performance of the model.
[23] Like Agrawal et al. [1992] and Melville [1996],

Teixeira [2011b] provided an expression for the dissipation
rate normalized using u∗ and z as a function of depth nor-
malized by u∗ and g (the acceleration of gravity). However,
especially since the studies of Terray et al. [1996] and
Drennan et al. [1996], it became more usual to scale the
dissipation rate using the wave significant height Hs and the
energy flux into the waves F. The latter quantity was initially
defined by Terray et al. [1996] in two different ways
depending on the wave age, but more recently the following
unique definition has become more popular [Burchard,
2001; Feddersen et al., 2007; Gerbi et al., 2009]:

F ¼ au3∗; ð14Þ

where a is a dimensionless constant, generally assumed to
be a = 100. Taking into account (9), (5) and (13), and nor-
malizing z using Hs and ɛ using Hs and F, (12) may be
shown to be equivalent to

ɛHs

F
¼ 1

a
1

k jzj=Hsð Þf zð Þ þ 1

4
kwHsð Þ3 cw

u∗

� �
e�2 kwHsð Þ jzj

Hsð Þ
� �

� exp c
cw
u∗

� �
1

k jzj=Hsð Þf zð Þ
� �1=2

kwHsð Þ1=2e� kwHsð Þ jzj
Hsð Þ

( )
;

ð15Þ
where

f zð Þ ¼ 1

1þ 2La�2
t e�2kwjzj ¼

1

1þ 1
4 kwHsð Þ2 cw

u∗

� �
e�2 kwHsð Þjz j=Hs

; ð16Þ

and where the linear dispersion relation of deep-water sur-
face gravity waves, sw

2 = gkw, and the definition of phase
velocity, cw = sw/kw, have been used. In (15), the significant
wave height was related to the monochromatic wave
amplitude through Hs ¼ 2

ffiffiffi
2

p
aw. This results from noting

that Hs ¼ 4 z2
� �1=2

, where z2
� �1=2

is the root-mean square

surface elevation [see Csanady, 2004] and that, for a mono-

chromatic wave z2
� �1=2

¼ aw=
ffiffiffi
2

p
. In (16), the definition of

the turbulent Langmuir number Lat = [(awkw)
2cw/u∗)]

�1/2 was
also used.
[24] Apart from |z|/Hs and c, (15) shows that the normal-

ized dissipation rate depends on kwHs and cw/u∗, which are
parameters related to the wave slope and wave age, respec-
tively, and equivalent to those found by Teixeira [2011b].
[25] If the definition of the turbulent Langmuir number,

Lat, is used, and the length scale used to normalize both ɛ
and z is kw instead of Hs, then (15) becomes:

ɛ
kwF

¼ 1

a
1

k kwjzjð Þf zð Þ þ 2La�2
t e�2kwjzj

� �

� exp 2cLa�1
t

2

k kwjzjð Þf zð Þ
� �1=2

e�kwjzj
( )

: ð17Þ

Normalizing ɛ using z instead of kw, (17) can also be
written:

ɛkjzj
u3∗

¼ f zð Þ þ 2kLa�2
t kwjzjð Þe�2kwjzj

h i

� exp 2cLa�1
t

2

k kwjzjð Þf zð Þ
� �1=2

e�kwjzj
( )

: ð18Þ

Note that (18) only differs from Teixeira [2011b, equa-
tion (11)] by the presence of function f(z) (which accounts
for the partition of the shear stress into shear-induced and
wave-induced parts), and reduces to that equation when
f(z) = 1.
[26] These forms, where the depth scales on kw

�1, empha-
size the connection between dissipation enhancement and
Langmuir turbulence, since apart from depth and c the nor-
malized dissipation rate only depends on Lat (note that,
from (16), f(z) also only depends on Lat and kw|z|). For
Lat ≫ 1 or large depths kw|z| ≫ 1, ɛ/(kwF) or ɛk|z|/u∗

3 reduce
to the ABL surface layer scaling form, in agreement with the
data of Agrawal et al. [1992]. For low Lat, on the other hand,
the normalized dissipation rate is strongly enhanced relative
to the usual surface layer scaling. In fact, it can be shown
that, in the limit Lat → 0, the dissipation rate becomes pro-
portional to Lat

�2, because the dependence on Lat of the
main exponential in (17) or (18) cancels out. This result is
consistent with the scaling inferred for ɛ by Grant and
Belcher [2009] at low Lat (without the present theoretical
basis).
[27] Incidentally, (17), where ɛ/(kwF) is presented as a

function of kw|z|, has a generically similar form to a scaling
suggested by Drennan et al. [1996] as an alternative to that
of Terray et al. [1996]. Note that, while in (15) and (17) ɛ is
normalized by F, a appears on the right hand side in both
equations. This means that the value of a is immaterial for
the scaling presented here, as is clearly confirmed by (18),
where a does not appear. Therefore, F is not a key parameter
in the present model.
[28] All of the above calculations have been carried out

assuming that the surface waves are in deep water. In the
more general case of arbitrary water depth h, the Stokes drift
profile for a monochromatic surface water wave is instead
given by

dUS

dz
¼ awkwð Þ2sw

sinh 2kw h� jzjð Þ½ �
sinh2 kwhð Þ : ð19Þ

Then it can be shown that, for example, (15) becomes:

ɛHs

F
¼ 1

a
1

k jzj=Hsð Þf zð Þ þ 1

8
kwHsð Þ3 cw

u∗

� �	

� sinh 2kwh� 2 kwHsð Þ jzj=Hsð Þ½ �
sinh2 kwhð Þ




� exp c
cw
u∗

� �
1

2k jzj=Hsð Þf zð Þ
� �1=2

kwHsð Þ1=2
(

� sinh1=2 2kwh� 2 kwHsð Þ jzj=Hsð Þ½ �
sinh kwhð Þ

)
; ð20Þ
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where f(z) must also have a modified form due to the
dependence of the shear-induced part of the shear stress
on dUs/dz (see (6)):

f zð Þ ¼ 1

1þ La�2
t

sinh 2kwh�2kwjzjð Þ
sinh2 kwhð Þ

¼ 1

1þ 1
8 kwHsð Þ2 cw

u∗

� �
sinh 2kwh�2 kwHsð Þjzj=Hs½ �

sinh2 kwhð Þ
: ð21Þ

These last equations should be used in cases where shallow-
water effects are important.

3. Results

[29] Results from the model described above will be
compared next with field data from various sources and
results from previous models. In the data analysis that fol-
lows, three measures of the performance of the models for
the dissipation rate will be used. The first of these measures
is the correlation coefficient, which is defined as:

R ¼ ∑n
i¼1 xi � xð Þ yi � yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1 xi � xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 yi � yð Þ2
q ; ð22Þ

where xi is a generic observation, yi is a generic prediction,
n is the number of observations and x and y are the averages
of xi and yi, respectively. Secondly, the goodness of fit will
be evaluated through a linear regression:

y ¼ aþ bx; ð23Þ

where

b ¼ ∑n
i¼1 xi � xð Þ yi � yð Þ
∑n

i¼1 xi � xð Þ2 ; a ¼ y� b x: ð24Þ

Thirdly and finally, the root-mean square error (RMSE) will
be calculated:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 yi � xið Þ2
n

s
: ð25Þ

[30] Since most recent studies about TKE dissipation in
the OBL focus on ɛ′ = ɛHs/F, (15) will be used to obtain
theoretical values of the dissipation rate. As TKE dissipation
is a highly intermittent process, when plotted in graphs with
linear axes ɛ′ tends to have apparent outliers, which artifi-
cially increase the correlation coefficient. For that reason the
quantity that will be considered in the analysis that follows is
log(ɛ′), which makes the data distribution more homoge-
neous. Consider a relationship between the predicted and the
observed values of ɛ′, ɛ′p and ɛ′o, respectively:

ɛ′p ¼ aɛ′ob; ð26Þ

where a and b are constant coefficients. Taking the loga-
rithm of (26), one obtains

log ɛ′p
� � ¼ log aþ b log ɛ′oð Þ: ð27Þ

In (27), if log ɛ′oð Þ and log ɛ′p
� �

correspond to x and y,
respectively, clearly log a and b correspond to the coeffi-
cients a and b in (23). If the prediction of the theoretical
models was perfect, this would correspond to R = 1, a = 1,
b = 1 and RMSE = 0. R decreases and RMSE increases as
the predictions of log(ɛ′) depart from the corresponding
observations. If b differs from 1, this means that the rela-
tionship between ɛ′p and ɛ′o is not linear. If, on the other hand,
b is near 1 but a ≠ 1, the predictions either tend to under-
estimate (if a < 1) or overestimate the observations (if a > 1).

3.1. Comparisons With the WAVES and SWADE
Data Sets

[31] The WAVES [Terray et al., 1996] and SWADE
[Drennan et al., 1996] data sets are first used to calibrate the
model constant c in (13). Using values of the dissipation rate
from these two data sets, derived from both the horizontal
and the vertical velocity spectra, it could be found that the
RMSE is minimized for c = 0.64. From (13), this means that
the assumed length scale for the turbulence that determines
the eddy turn-over time is a relatively small fraction of the
wavelength of the dominant surface waves (about 10%).
This makes sense physically, since wave breaking, which
presumably generates this turbulence, is a highly localized
process. By contrast, in the study of Teixeira [2011b], the
value found for c was 0.24, which is considerably smaller. If
f(z) was not included in (15), this would be approximately
the value of c that would minimize the RMSE for the present
data sets. However, as was seen above, f(z) encapsulates
important physics in the problem (practically all statistical
measures are improved when it is included, as will be seen),
so c = 0.64 will be adopted henceforth.
[32] Before more detailed comparisons with the WAVES

and SWADE data sets are presented, it is worthwhile
exploring the variation of the dissipation rate with the tur-
bulent Langmuir number. Figure 2 shows ɛk|z|/u∗

3, as given
by (18), as a function of Lat for kw|z| = 1. In Figure 2a, results
from the present model are displayed, showing its two
asymptotic limits as Lat → ∞ (ɛk|z|/u∗

3 = 1) and as Lat → 0
(ɛk|z|/u∗

3 = 0.82Lat
�2). Figure 2a bears a remarkable quali-

tative resemblance to Grant and Belcher [2009, Figure 4],
showing the same kind of asymptotic behaviors. However,
the dip in the curve at Lat ≈ 1 does not occur. Such a dip
would imply a decrease of the dissipation rate relative to its
usual surface layer scaling for Lat in the range 0.4–2, which
is not supported by the field data considered either here or in
Teixeira [2011b]. Figure 2b shows a similar plot of ɛ using
the model of Teixeira [2011b] (i.e., (18) with f(z) = 1) for
the value of c = 0.24 resulting from the calibration of that
model by Teixeira [2011b] against his data, and also for
c = 0.64, as used here. It is clear that the asymptotic behavior
of the model of Teixeira [2011b] is not in accordance with
the scaling of Grant and Belcher [2009], overestimating the
dissipation rate for low Lat. Nevertheless, over the range of
Lat displayed by the data used by Teixeira [2011b] (0.3–0.8)
the departure from the present model is slight when c = 0.24
is used, which explains why Teixeira [2011b] was able
to obtain a good fit to the data. When c = 0.64 is used,
however, as assumed in the present improved model,
the overestimation produced by the model of Teixeira
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[2011b] is much more pronounced. This is a consequence of
erroneously assuming that the mean velocity profile in the
wind-induced current is not changed by the presence of
surface waves. An indication that this aspect has been ade-
quately corrected in the present model is the fact that the
asymptotic behavior in Figure 2a for low Lat is now con-
sistent with that of Grant and Belcher [2009].
[33] The main subject of this section is now addressed.

Figure 3 shows comparisons between log(ɛ′) calculated from
various models and from the WAVES and SWADE obser-
vations. In Figure 3a, the theoretical values are given by the
usual surface layer scaling, which when expressed in terms
of ɛ′ becomes:

ɛ′¼ ɛHs

F
¼ 1

ak z=Hsð Þ : ð28Þ

In Figure 3b, on the other hand, the theoretical values are
given by the model of Craig and Banner [1994], more
specifically using the uniformly valid approximation derived
by Soloviev and Lukas [2003]:

ɛHs

F
¼ 1

ak z=Hs þ z0=Hsð Þ 1þ 94:8
z=Hs þ z0=Hs

z0=Hs

� ��2:4
" #

: ð29Þ

It will be assumed that z0/Hs = 0.6, which is supported by
various authors [Terray et al., 1996; Soloviev and Lukas,
2003; Gerbi et al., 2009]. In Figure 3c the theoretical
values of the dissipation rate are obtained from the model of
Terray et al. [1996]:

ɛHs

F
¼ 0:3

z

Hs

� ��2

: ð30Þ

In Figure 3d the dissipation rate is calculated from the model
of Teixeira [2011b] (i.e., (15) with f(z) = 1 and c = 0.24).
Finally, in Figure 3e the dissipation rate is calculated from
(15) (with c = 0.64). All input parameters are taken from
Terray et al. [1996, Tables 1 and 2] and Drennan et al.
[1996, Table 1], and a = 100 is always assumed.
[34] In Figure 3 it can be seen that the surface layer scaling

(28) underestimates the dissipation rate in both the WAVES
(open symbols) and SWADE (filled symbols) data sets. For
the theory of Craig and Banner [1994], the underestimation
still exists, but occurs mainly for the SWADE data set. The
theory of Terray et al. [1996] fits quite well the WAVES
data set (for which it was developed), but somewhat under-
estimates the SWADE data set. The model of Teixeira
[2011b] corrects the underestimation of the SWADE data
set but, on the other hand, overestimates some of its data
points. The present model, (15), is the one that fits best both
data, being able to correct the underestimation of the
SWADE data set, while introducing no overestimation.
There are some systematic differences in the agreement
between the various theoretical predictions and measure-
ments derived either from the horizontal or from the vertical
velocity spectra (circles and triangles, respectively). These
differences will be analyzed next.
[35] A better quantitative appraisal of the behavior of each

model is obtained if the statistics defined above in (22), (24)
and (25) are calculated for log(ɛ′). This is done in Table 1,
where a clear improvement on the models of surface layer
scaling, Craig and Banner [1994] and Terray et al. [1996],
is obtained using the present model concerning all of the
statistics considered. An improvement of the present model
relative to the model of Teixeira [2011b] does not occur for
all statistics, but is clearly verified for the RMSE.
[36] It is interesting to note that, in Table 1, for all theo-

retical predictions, the correlation is always lower and the
RMSE larger for data derived from the vertical velocity
spectrum (ɛw) than for data derived from the horizontal
velocity spectrum (ɛu). Additionally, the values of both a
and b are higher in the former case. This suggests that there
is some slight systematic error in the procedure used to
obtain the dissipation rate by each method, or in the under-
lying assumptions. For that reason, further statistics will
carry on being calculated for ɛu or ɛw separately.

Figure 2. Normalized dissipation rate as a function of
Lat for kw|z| = 1. Dashed lines: ɛk|z|/u∗

3 = 1, dotted lines:
ɛk|z|/u∗

3 = 0.82Lat
�2. (a) Solid line: present model (18)

(with c = 0.64). (b) Model of Teixeira [2011b] ((18) with
f(z) = 1) for c = 0.24 (solid line) and c = 0.64 (dash-
dotted line).
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Figure 3. Comparison between measured and predicted logarithm of the normalized dissipation rate.
Open symbols: WAVES data set, filled symbols: SWADE data set. Circles: dissipation estimated from
horizontal velocity spectrum, triangles: dissipation estimated from vertical velocity spectrum. (a) Surface
layer scaling. (b) Model of Craig and Banner [1994]. (c) Model of Terray et al. [1996]. (d) Model of
Teixeira [2011b]. (e) Present model.
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[37] Tables 2 and 3 show statistics similar to those
contained in Table 1, with the difference that they are cal-
culated separately for the WAVES and SWADE data sets. In
Table 2, it can be seen that the present model manages to
predict the WAVES data better than all other models, even
that of Terray et al. [1996] (which was developed for this
data set). The correlation values are higher for the present
model, the values of b are closer to 1, the values of log a
differ less from zero, and the RMSE is smaller than in all
other models, including that of Terray et al. [1996]. This
improvement is not as expressive, and does not occur for all
statistics, using the model of Teixeira [2011b], which
emphasizes the importance of the modifications introduced
in the present study (these subtle differences were not
obvious in Figure 3).
[38] For the SWADE data set, Table 3 shows that the

present model is, without doubt, the one that presents the
best performance, with considerably higher correlation
coefficients, lower RMSE, and values of a and b closer to 1.
The model of Teixeira [2011b] also provides a substantial
improvement in the statistics, although globally not as large
as the present model. For these data, the difference between
the correlation coefficients of ɛu and ɛw is even larger than in
the WAVES data set, however, in contrast, the value of b is
higher for ɛu than for ɛw.
[39] Clearly, the improvement in the prediction of the

SWADE data set must be related to some specific physical
process that is captured by the present model. As noted by
Teixeira [2011b], the average value of the turbulent Lang-
muir number is considerably lower in the SWADE data set
(Lat = 0.478) than in the WAVES data set (Lat = 0.694).
According to (17) and Figure 2, the dissipation rate increases
as Lat decreases, which may explain why the present model
corrects the underestimation of the SWADE data produced
by the other models. On the other hand, the overestimation
of some data points in the SWADE data set by the model of
Teixeira [2011b] (see Figure 3d) is also consistent with
Figure 2b, where it is shown that this model should

overestimate the dissipation rate at sufficiently low Lat. Not
surprisingly, the values of Lat of these data points are among
the lowest in the data set.
[40] Teixeira [2011b, Figure 1] presented the WAVE and

SWADE data as a function of depth using different nor-
malizations for ɛ and z. Although, from (17), it would be
expected that the scaling adopted in that equation is the
one that minimizes the data scatter, comparison between
Figures 5 and 6 of Drennan et al. [1996] does not allow a
clarification of which scaling variable works best: Hs or kw.
This problem is briefly addressed next.
[41] In Figure 4, the dissipation rate data from WAVES

and SWADE are presented as a function of depth. The
symbols have the same meaning as in Figure 3. Since the
variation of the logarithm of the dissipation as a function of
the logarithm of depth is reasonably linear, straight lines are
fitted to these variations using F and Hs as scaling variables
in Figure 4a and F and kw instead in Figure 4b. The solid
lines in Figures 4a and 4b correspond to linear fits of the
variation of the logarithm of dimensionless dissipation ver-
sus the logarithm of dimensionless depth, whose parameters
are shown in Table 4. The dashed lines correspond to the
model of Terray et al. [1996] (in Figure 4a) and to the model
of Drennan et al. [1996] (in Figure 4b). The latter can be
expressed as:

ɛ
kwF

¼ 0:1 kwjzjð Þ�2: ð31Þ

In Table 4 it can be seen that the correlation coefficient is
always larger, and the RMSE is smaller, for the scaling using
kw than for that using Hs. This suggests that the dimension-
less depth kw|z| and dissipation rate ɛ/(kwF) scalings, sug-
gested by (17), are indeed the most appropriate in the
problem.

3.2. Comparisons With Other Data Sets

[42] Results from the present model will now be compared
with data from more recent sources. In the literature,

Table 2. Same as Table 1, but Including Data Only From the WAVES Data Set

WAVES

Wall Layer
Craig and

Banner [1994] Terray et al. [1996] Teixeira [2011b] Present Model

ɛu ɛw ɛu ɛw ɛu ɛw ɛu ɛw ɛu ɛw

R 0.818 0.739 0.841 0.736 0.818 0.739 0.851 0.755 0.844 0.756
b 0.363 0.422 0.659 0.752 0.726 0.845 0.755 0.863 0.772 0.890
log a �1.587 �1.442 �0.856 �0.613 �0.493 �0.203 �0.615 �0.343 �0.491 �0.120
RMSE 0.706 0.601 0.469 0.450 0.394 0.438 0.414 0.436 0.383 0.431

Table 1. Statistics of the Comparison Between Measured and Predicted Values of the Logarithm of the Normalized Dissipation Ratea

WAVES+SWADE

Wall Layer
Craig and

Banner [1994] Terray et al. [1996] Teixeira [2011b] Present Model

ɛu ɛw ɛu ɛw ɛu ɛw ɛu ɛw ɛu ɛw

R 0.910 0.840 0.924 0.846 0.910 0.840 0.937 0.904 0.941 0.892
b 0.352 0.371 0.663 0.692 0.704 0.741 1.040 1.128 0.909 0.972
log a �1.609 �1.536 �0.854 �0.721 �0.538 �0.390 �0.077 0.160 �0.228 �0.031
RMSE 1.061 0.925 0.614 0.547 0.448 0.444 0.379 0.443 0.336 0.399

aR is the correlation coefficient, a and b are parameters of the linear fit (27) and RMSE is the root-mean square error. Measured values of log(ɛ′) are from
the WAVES and SWADE data sets and theoretical values are predicted by various models (first line). ɛu and ɛw (second line) refer to dissipation rate values
derived from measurements of the horizontal and vertical velocity spectra, respectively.
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measurements of the dissipation rate are generally presented
with much fewer details, concerning the wavefield and tur-
bulence in the OBL, than in Terray et al. [1996] or Drennan
et al. [1996]. Often, a typical value, or at most a histogram of
the distribution of u∗/cw or kwHs is all that is provided for a
whole set of measurements. That is the case in the studies
that will be considered next. So, a typical value for these
parameters is deduced from these studies in the most
objective way possible. In all of these studies, the dissipation
rate is presented as a function of depth, and both quantities
are normalized using Hs and F. For that reason, the same
scaling will be employed here.
[43] Burchard [2001] used two-equation turbulence mod-

els to simulate the behavior of various quantities beneath
breaking surface waves, one of them being the dissipation
rate. He tested the performance of the models using data
from Terray et al. [1996], Drennan et al. [1996], and Anis
and Moum [1995]. Although the first two sources of data
overlap with those used in the previous section, they were
normalized using an F calculated explicitly from its wave-
age-dependent definition instead of using the parameteriza-
tion expressed by (14). These data, as extracted from
Burchard [2001, Figure 7], are reproduced in Figure 5a as
the symbols. In that figure the dotted line corresponds to
surface layer scaling (28), the dashed line corresponds to the
model of Terray et al. [1996] (30), the dash-dotted line
corresponds to the model of Craig and Banner [1994] (29),
the thin solid line corresponds to the model of Teixeira
[2011b] and the thick solid line corresponds to the present
model (15). In Terray et al. [1996, Table 1], the average
values of the parameters required in (15) are u∗/cw = 0.00573
and kwHs = 0.308, and inDrennan et al. [1996, Table 1] those
averages are instead u∗/cw = 0.00184 and kwHs = 0.254. In the
study of Anis and Moum [1995], the average values of the
same parameters are u∗/cw = 0.00211 and kwHs = 0.268.
If these values are averaged (with equal weight) the global
averages thus obtained are u∗/cw = 0.00323 and kwHs = 0.277
(corresponding to Lat = 0.580). These values were employed
both in the model of Teixeira [2011b] and in the present
model.
[44] Looking at Figure 5a it can be seen that all models

apart from the present one and that of Teixeira [2011b]
underestimate the dissipation, with this underestimation
being pronounced for the surface layer scaling, moderate for
the model of Craig and Banner [1994] and relatively slight
for the model of Terray et al. [1996]. It may be concluded
that the present model is equally effective in predicting
the dissipation rate whether F is parameterized using (14),
or calculated using the presumably more accurate method
developed by Terray et al. [1996]. This is a good indication
that the value a = 100 used in (14) and supported by various

authors [Craig and Banner, 1994; Burchard, 2001; Kantha
and Clayson, 2004; Stips et al., 2005] is adequate.
[45] More recently, Gerbi et al. [2009] carried out obser-

vations of turbulence in the OBL, obtaining new data for the

Figure 4. Logarithm of normalized dissipation rate as a
function of logarithm of normalized depth for the WAVES
and SWADE data sets. Meaning of symbols as in Figure 3.
(a) Dissipation and depth normalized using Hs and F. Solid
line: linear fit to data, dashed line: model of Terray et al.
[1996]. (b) Dissipation and depth normalized using kw
and F. Solid line: linear fit to data, dashed line: model of
Drennan et al. [1996].

Table 3. Same as Table 1, but Including Data Only From the SWADE Data Set

SWADE

Wall Layer
Craig and

Banner [1994] Terray et al. [1996] Teixeira [2011b] Present Model

ɛu ɛw ɛu ɛw ɛu ɛw ɛu ɛw ɛu ɛw

R 0.892 0.657 0.890 0.650 0.892 0.657 0.922 0.803 0.928 0.732
b 0.369 0.283 0.746 0.566 0.892 0.566 1.383 1.251 0.994 0.815
log a �1.615 �1.580 �0.846 �0.779 �0.548 �0.480 0.112 0.311 �0.142 �0.030
RMSE 1.522 1.356 0.822 0.701 0.537 0.456 0.303 0.456 0.223 0.327
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dissipation rate beneath both wind waves and swell. Swell
corresponds to waves that may be propagating in a different
direction from that of the surface wind stress. In those cir-
cumstances dU/dz and dUS/dz may not be aligned, and (15)
will be expected to overestimate the dissipation rate. This
is consistent with the conclusion of Cox [1997] that the
growth of Langmuir circulations is reduced by misalignment
between the shear flow and the Stokes drift that generate
them.
[46] For these reasons, only the dissipation data for the

wind waves case, contained in Gerbi et al. [2009, Figure 9a],
will be considered next. These data were extracted and are
presented in Figure 5b as the symbols. The lines have the
same meaning as in Figure 5a. The dissipation data in Gerbi
et al. [2009, Figure 9a] use a = 168 in the definition of F
according to (14) in order to obtain a better fit using the

Figure 5. Normalized dissipation rate as a function of normalized depth from various recent sources
compared with theoretical models. Dotted lines: surface layer scaling, thin dashed lines: model of
Terray et al. [1996], dash-dotted lines: model of Craig and Banner [1994], thin solid lines: model of
Teixeira [2011b], thick solid lines: present model. (a) Data from Burchard [2001]. (b) Data from
Gerbi et al. [2009]. (c) Data from Jones and Monismith [2008]. (d) Data from Feddersen et al. [2007].
Dash-dot-dotted lines: deep-water approximation, solid lines: finite water depth, thick dashed line:
no shallow-water effects in f(z).

Table 4. Statistics of a Linear Fit Between the Logarithm of the
Dissipation and the Logarithm of Deptha

WAVES
+SWADE

Scaling Using Hs Scaling Using kw

Terray et al.
[1996]

Linear
Fit

Drennan et al.
[1996]

Linear
Fit

R 0.859 0.859 0.880 0.880
b �2 2.039 �2 �1.983
log a �0.523 �0.394 �1 �0.950
RMSE 0.435 0.420 0.410 0.407

aThe parameters have the same meaning as in the previous tables and in
(27), with the difference that they are applied to a linear relationship
between the logarithm of dissipation and the logarithm of depth, as
defined in Figures 4a and 4b, respectively. ‘Linear fit’ refers to the values
that minimize the RMSE in each case.
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model of Terray et al. [1996] (30). Since here the value a =
100 is always used, the corresponding data plotted in
Figure 5b have been multiplied by a factor of 1.68. From
Gerbi et al. [2009, Figure 5a], the dominant significant wave
height of wind waves was estimated as Hs = 0.6 m. From
Gerbi et al. [2009, Figure 8], on the other hand, the domi-
nant angular frequency of wind waves was estimated as
sw = 1.4 rad s�1, which leads to kw = 0.2 m�1 using
the linear dispersion relation of surface gravity waves.
This yields kwHs = 0.12. Finally, from Gerbi et al. [2009,
Figure 5c], the dominant wave age was estimated as 30, which,
via continuity of the surface stress at the air-water interface
gives u∗/cw = 0.0012. Both of these values (which corre-
spond to Lat = 0.816) were used in the present model.
[47] In Figure 5b it can be seen that, once again, the

present model and the model of Teixeira [2011b] provide the
best fit to the data, followed by the models of Terray et al.

[1996], Craig and Banner [1994] and surface layer scaling.
The model of Teixeira [2011b] is perhaps slightly better at
larger depths (if the outlying points are ignored) and the
present model is perhaps slightly better near the surface, but
differences are not very significant. The fact that good
agreement is possible without having to change the value of
the constant a confirms that F may not be a key quantity
determining the dissipation rate. The need of Gerbi et al.
[2009] to change a in order to obtain good agreement with
the model of Terray et al. [1996] may be an artifact of the
dependence of that model on that parameter. This aspect will
be further addressed below.
[48] Jones and Monismith [2008] recently investigated the

effect of whitecaps on the vertical structure of turbulence in
a relatively shallow estuary. They obtained new dissipation
rate measurements, which are presented in their Figure 12.
The data in Jones and Monismith [2008, Figure 12a] are
reproduced in Figure 5c as the symbols. The lines have the
same meaning as in Figure 5b. The parameters of the present
model have been obtained in the following way. The domi-
nant significant wave height was estimated from Jones and
Monismith [2008, Figure 6a] as Hs = 0.26 m. The domi-
nant wave number could not be inferred from Figure 6b of
the same study, because what is presented is the average
wave period, which is different from the peak wave period
[see Jones and Monismith, 2007]. The peak wave number in
the measurements of Jones and Monismith [2008] is in fact
about kw = 1.05 m�1 (N. L. Jones, personal communication,
2010), so the value of the wave slope employed in the
present model is kwHs = 0.273. From Jones and Monismith
[2008, Figure 6c], the dominant wave age is estimated as
11, which gives u∗/cw = 0.00315. These two values yield
Lat = 0.581.
[49] In Figure 5c it can be seen that the present model, as

well as the model of Teixeira [2011b], somewhat overesti-
mate the dissipation rate data, while the model of Terray
et al. [1996] is of comparable accuracy, and both the model
of Craig and Banner [1994] and especially surface layer
scaling, underestimate the data. Nevertheless, the present
model and the model of Teixeira [2011b] reproduce better
the trend of the data with depth at small |z|/Hs, whereas all
other models underestimate the dissipation rate more
severely at these depths.
[50] It should be noted that the dissipation estimates from

the present model were calculated using the deep-water
formula (15). It might appear that the conditions are too
shallow for this, but Jones and Monismith [2008] refer
that, for the peak of the wave spectrum, kwh = 2.2. Since
tanh(kwh) = 0.976, this effect is expected to be almost
insignificant, and calculations of the dissipation rate using
the arbitrary depth formula (20) confirmed this. For that
reason, (15) has been used, as in the previous cases (see
further discussion below).
[51] The reason for the overestimation of the dissipation

rate by the present model may be related with the fact,
mentioned in Jones and Monismith [2008, p. 1567] that, due
to wave refraction by the bathymetry, “the wave direction
was predominantly toward the northeast for a range of wind
directions.” In these circumstances, the Stokes drift of the
waves and the surface stress (and the corresponding current
shear) are generally not aligned, which is at odds with the
assumptions of the present model. It would be interesting to

Figure 6. Profile of the normalized strain rate of the
Stokes drift for a monochromatic surface wave as a function
of normalized depth from linear wave theory, for arbitrary
water depth (solid lines) and in the deep-water approx-
imation (dotted lines). (a) Shown is kwh = 2.2, as in Jones
and Monismith [2008], and (b) kwh = 0.41, as in Feddersen
et al. [2007].
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extend the model to overcome this limitation, but that is
beyond the scope of the present paper.
[52] The final field study to be mentioned is that carried

out by Feddersen et al. [2007], addressing the vertical
structure of dissipation in the nearshore. The measurements
of the dissipation rate carried out by Feddersen et al. [2007]
are presented in their Figure 11b. In order to fit the model of
Terray et al. [1996] to their data, Feddersen et al. [2007]
again changed the value of the constant in the definition of
F (14) to a = 250, which does not seem a very satisfactory
approach. The data of Feddersen et al. [2007] are repro-
duced in Figure 5d as the symbols, albeit multiplied by a
factor of 2.5, which corresponds to assuming a = 100, as
usual. The lines have the same meaning as in Figure 5c,
except that the solid lines now correspond to the dissipation
rate using the formulas valid for arbitrary water depth (20),
whereas the dash-dot-dotted lines use the deep-water
formulas (15). The thick dashed line corresponds to a model
that uses (20), but where f(z) does not take into account
shallow-water effects (16).
[53] Feddersen et al. [2007, p. 1766] mention that the

peak period of the surface waves is between 9 and 10 s.
Taking an average value of 9.5 s and using the linear dis-
persion relation, sw = [gkwtanh(kwh)]

1/2, noting also that
typically kwh = 0.41 at the measurement location [Feddersen
et al., 2007], one gets a dominant wave number
kw = 0.115 m�1. From Feddersen et al. [2007, Figure 3b],
the dominant significant wave height is estimated as
Hs = 1 m. This gives kwHs = 0.11, a value used in the present
model. Secondly, from Feddersen et al. [2007, Figure 3d],
the friction velocity is estimated as u∗ = 0.01 ms�1. Since
cw = 5.76 ms�1, this yields u∗/cw = 0.00174, a value also
adopted here. This corresponds to Lat = 0.549.
[54] Figure 5d shows that all models except the present

model including full shallow water effects underestimate the
measurements of the dissipation rate. While the present
model using the deep-water approximation produces a rela-
tively modest underestimation, the same model including
shallow-water effects in (20), but excluding them in the
definition of f(z) considerably overestimates the data. The
model of Teixeira [2011b], on the other hand, is as accurate
as the present one when shallow water effects are taken into
account, except at larger depths. The same model using
the deep-water approximation underestimates much more
severely the data. This suggests that only the complete
model is physically consistent, and that the shape of the
Stokes drift profile, rather than any change in the scaling
of F, crucially determines the dissipation enhancement in the
present case.
[55] The mechanism through which this enhancement

arises, which is inaccessible to any other of the theoretical
models under consideration except that of Teixeira [2011b],
is illustrated in Figure 6. Figure 6a shows the difference
between normalized dUS/dz as a function of depth for
kwh = 2.2 (the case considered by Jones and Monismith
[2008]), using the deep-water approximation (5) and for
arbitrary water depth (19). Figure 6b shows the same quan-
tities for kwh = 0.41, i.e., the case considered by Feddersen
et al. [2007]. It can be seen that, while in the first case the
differences between the Stokes drift strain rate in the two
approximations are minimal, they are very large in the sec-
ond case. In this last case, the Stokes drift strain rate is much

higher, by a factor of more than 2 near the surface, than the
strain rate predicted with the deep-water approximation.
This increase in the strain rate is responsible, in the present
model, for the enhancement of the dissipation rate that is
necessary to match the data.
[56] It is also interesting to note that the dissipation rate is

slightly underestimated by the present model, even taking
shallow-water effects into account, at the largest values of
|z|/Hs reached by the data. This is probably due to the neglect
of the bottom boundary layer, since the data for which this
underestimation occurs are relatively close to the ocean
bottom.

4. Concluding Remarks

[57] A theoretical model for estimating the TKE dissipa-
tion rate in the surface layer of the OBL, based on RDT
arguments, was described and tested in the present study.
The model improves that of Teixeira [2011b] by taking into
account the partition of the shear stress into shear-induced
and wave-induced components, an important aspect of the
OBL that leads to substantial weakening of the mean shear
rate near the surface. The model aims to provide an alter-
native explanation for the very high values of dissipation
rate observed in various existing data sets. It is assumed in
the model that, at equilibrium, when the dominant values of
the dissipation rate are presumably attained, production of
TKE by the shear of the mean Eulerian flow and by the
Stokes drift gradient of surface waves approximately balance
dissipation. In this framework, the dissipation enhancement
arises from a saturated state of the same instability mecha-
nism that is accepted to be the source of Langmuir circula-
tions in the OBL, which is shown to be associated with a
vigorous amplification of the turbulent shear stress. Like all
models based on RDT, the present model assumes that this
amplification proceeds until it is halted by nonlinear pro-
cesses at a time of the order the eddy turn-over time of the
turbulence. Since this turbulence is most probably generated
initially by wave breaking, the eddy turn-over time in the
OBL is scaled as TL � (kwu∗)

�1.
[58] The model predicts that the dissipation rate, when

normalized in conventional ways, is a function not only of a
dimensionless depth, but also of dimensionless parameters
u∗/cw and kwHs, related with the wave age and wave slope,
respectively. When the dissipation rate is normalized using
kw or z instead of Hs, these two controlling parameters
reduce to one, the turbulent Langmuir number Lat. This
result emphasizes the connection between dissipation
enhancement and Langmuir turbulence [McWilliams et al.,
1997]. According to the present model, the depth over
which the dissipation rate is enhanced scales like kw

�1,
not Hs.
[59] The model was first calibrated (the constant of pro-

portionality in the relationship TL = c(kwu∗)
�1 was estimated

as c = 0.64) using the WAVES and SWADE data sets
[Terray et al., 1996; Drennan et al., 1996]. Its performance
was then assessed by first calculating various statistics of its
prediction of the logarithm of the dissipation rate in the same
data sets. The correlation coefficient, linear regression
parameters and RMSE were shown to be improved by the
present model relative to surface layer scaling, the model of
Craig and Banner [1994], the model of Terray et al. [1996]
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and the model of Teixeira [2011b]. The new model was then
tested against dissipation data from Burchard [2001],
Feddersen et al. [2007], Jones and Monismith [2008] and
Gerbi et al. [2009]. The agreement of the present model with
these data sets is clearly better than that of previous models,
except for the data of Jones and Monismith [2008], where
considerable wave refraction effects are thought to be pres-
ent. In particular, it is unnecessary to change the constant in
the expression for the energy flux F, a, to fit the data, as, for
example, Feddersen et al. [2007] and Gerbi et al. [2009] had
done. In fact, F is not an important parameter in the present
model.
[60] Both when an improvement on previous models was

obtained and in the cases where the model failed, a clear
physical interpretation could be ascribed to this behavior.
Hence, for example, the data of Feddersen et al. [2007]
could only be predicted adequately using a formula for the
dissipation rate that fully takes into account the effect of
finite water depth, because this effect increases the strain rate
of the Stokes drift by a factor of 2 or more. This increase is
thought to be responsible for part of the observed enhance-
ment of the dissipation rate in the data. Additionally, when
the new model overestimates the dissipation rate in the
observations of Jones and Monismith [2008], this overesti-
mation is attributable to the fact that the Stokes drift of the
waves may not have been aligned with the surface shear, as
is assumed in the model.
[61] The present model does not have the roughness

length z0 as an input parameter, and in that respect it cir-
cumvents the problem of relating this quantity to other
quantities, like for example Hs. This is apparently an
advantage over the model of Craig and Banner [1994],
which is very sensitive to the prescription of this quantity.
[62] The friction velocity used in the present model

implicitly assumes a simple viscous coupling between the
ABL and the OBL, as has been done by numerous previous
authors [Terray et al., 1996; Drennan et al., 1996; Gerbi
et al., 2009]. Since this friction velocity exists before any
amplification of the shear stress by the mechanism that is
at the heart of the model has taken place (see (3) and (4)),
it obviously provides an underestimate of the actual near-
surface shear stress in the OBL when dissipation is enhanced.
However, if this friction velocity is used instead as a measure
of the mean shear (e.g., assuming a logarithmic mean
velocity profile), it leads to an overestimation of the shear
rate, since the shear stress is actually partitioned into a shear-
induced and a wave-induced part, as was fully taken into
account here. This partitioning is crucial not only for
obtaining realistic estimates of the shear rate in the OBL, but
also for improving the agreement of the model with obser-
vations, in particular avoiding the overestimation of the dis-
sipation rate at low Lat produced by the model of Teixeira
[2011b], and achieving an asymptotic behavior, as Lat → 0,
in agreement with Grant and Belcher [2009], namely
ɛ ∝ Lat

�2.
[63] There are few reasons to doubt that the dissipation

enhancement mechanism proposed here acts almost contin-
uously in the OBL, since wind-forcing, turbulence and sur-
face waves are ubiquitous there. It is left for future studies to
understand how this mechanism fits together with competing
ones.
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