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Abstract 

We report on the formation of hydrogel monoliths formed by functionalized 

peptide Fmoc-RGD [Fmoc: fluorenylmethoxycarbonyl] containing the RGD cell 

adhesion tripeptide motif. The monolith is stable in water for nearly 40 days.  The gel 

monoliths have a self-supporting porous structure consisting of a network of peptide 

fibers. The RGD-decorated peptide fibers have a -sheet secondary structure. We 

prove that Fmoc-RGD monoliths can be used to release and encapsulate material, 

including model hydrophilic dyes and drug compounds. We give a first insight into the 

correlation between absorption and release kinetics of this new material, and show 

that both processes take place over similar time scales. 
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Introduction 

There is currently intense interest in the development of peptide-based 

hydrogels for applications in regenerative medicine/tissue engineering1-12  and the 

release of drugs and other actives.13-18 The peptide hydrogel as a minimum 

requirement must be cytocompatible, although many other elements are required to 

fully realise an artificial extracellular matrix (ECM).7,19 A common motif incorporated 

into peptide-based hydrogels is the Arg-Gly-Asp (RGD) tripeptide cell adhesion motif 

from fibronectin, which binds to integrins (cell-surface receptors) and is widely used 

to encourage cell growth in synthetic biomaterials.20-25 Here, we report on an RGD-

based peptide hydrogel that can be used for slow release of hydrophilic compounds, 

illustrated with a model amyloid-binding dye and model hydrophilic dyes and drug 

compounds. The slow release concept could potentially be extended to other 

encapsulated hydrophilic molecules for use in slow release delivery systems or re-

engineering of ECM mimics. 

Previous works in the literature explored the gelation of 

fluorenylmethoxycarbonyl (Fmoc)-RGD. The first attempt on this subject was 

undertaken by Gazit and co-workers,26 who initially dissolved Fmoc-RGD in dimethyl 

sulfoxide and then diluted in water to the final concentration, only achieving a clear 

solution. Shortly afterwards, Ulijn and co-workers have shown that Fmoc RGD can 

form a transparent hydrogel at low pH and peptide concentration.5 

In a previous work24 we reported on preparation of Fmoc-RGD peptide 

hydrogels for cell culturing. The Fmoc unit was used to control self-assembly in 

water, via aromatic stacking interactions. It was found that Fmoc-RGD forms well 

defined amyloid fibrils with a β-sheet structure for 2 wt% peptide. In addition, 2 wt% 

Fmoc-RGD forms self-supporting hydrogels. 

Here, we investigate the formation of hydrogels in more concentrated solutions 

of Fmoc-RGD. This study is driven by the unusual mechanical properties of the 10 

wt% peptide gel. We found that it is possible to make monoliths of 10 wt% Fmoc-
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RGD hydrogel, which are stable when immersed in water for at least ~ 40 days. This 

property could find applications in the slow release of encapsulated materials. The 

structure of 10 wt% Fmoc-RGD hydrogel is examined by X-ray diffraction (XRD), 

small angle scattering (SAXS), cryo-scanning electron microscopy (cryo-SEM) and 

laser scanning confocal microscopy (LSCM). We investigate the uptake and release 

properties of Fmoc-RGD monoliths through fluorescence spectroscopy and UV-vis 

absorption experiments. 

 

Experimental Section 

Materials. Fmoc-RGD was purchased from CS Bio (Menlo Park, CA) as a TFA salt. 

Purity is 98.89% based on HPLC using TFA in water/acetonitrile gradient, Mw 

expected 568.59, found 568.87.  Thioflavin T (ThT), methylene blue, salicylic acid and 

riboflavin were purchased from Sigma Aldrich (UK). 

Hydrogel Formation. Weighed amounts of Fmoc-RGD and water were added in a 

vial to obtain a 10 wt% peptide suspension. The pH of the water used in this work 

was pH 6.94. 10 wt% Fmoc-RGD monoliths were obtained according to the two 

following alternative procedures: 

  i ) The mixture was ultrasonicated for 15 minutes at 50 oC. The solution was stored 

at 5 oC for 15 hrs, and then placed again in an ultrasonic bath at 50 oC for 10 

minutes.  The cooling-heating/ultrasound process was repeated for 5 days, until the 

sample became a homogeneous gel.  

ii) The mixture was ultrasonicated for 15 minutes at 50 oC. The solution was stored at 

5 oC for 15 hrs. Then, the initial clustering of peptide was fragmented with a sterile 

needle and mixed with the excess of water in the sample using a magnetic stirrer. 

The mixture was finally allowed to gel at 5 oC for 2 days, in order to achieve 

homogeneity. 

Congo Red Staining and Birefringence Monitored by Polarized Optical 

Microscopy (POM). A 0.5 wt% Congo red solution was filtered and then pipetted 
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onto a glass microscope slide. The peptide gel was placed under the surface of the 

Congo red solution and stained for approximately 2 min. The excess Congo red 

solution was then removed by blotting. Images of the sample placed between 

crossed polarisers were obtained with an Olympus CX-41 microscope. 

Cryo-Scanning Electron Microscopy (cryo-SEM).  Imaging was performed using 

an FEI Quanta 600F instrument.  The peptide gel was mounted onto aluminium stubs 

and frozen in liquid nitrogen slush at approximately -210°C.  Once frozen, the sample 

was transferred under vacuum to a sample preparation chamber and allowed to 

equilibrate to the appropriate temperature prior to fracturing. The gel was fractured at 

-140 oC and allowed to sublime at -90 oC for approximately 5 minutes before an initial 

examination by SEM. Following this a further 5 minutes of sublimation was used to 

reveal more detail of the sample surface. The sample was allowed to cool at -140 oC, 

and then coated with platinum prior to the final imaging at 5 kV.  

 X-ray Diffraction (XRD). A stalk, dried from a 10 wt% Fmoc-RGD gel, was prepared 

for XRD experiments. The stalk was mounted vertically onto the four axis goniometer 

of a RAXIS IV++ X-ray diffractometer (Rigaku) equipped with a rotating anode 

generator. The XRD data was collected using a Saturn 992 CCD camera.  

Small-Angle X-ray Scattering (SAXS). SAXS was performed using a Bruker 

Nanostar instrument using CuK radiation from an Incoatec microfocus source. The 

sample was sandwiched between two mica windows with a 1 mm thick Teflon spacer. 

The sample-detector distance was 65 cm and a Vantec-2000 photon counting 

detector was used to collect SAXS patterns. 

Laser Scanning Confocal Microscopy (LCSM). Experiments were performed using 

a Leica TCS SP2 confocal system mounted on a Leica DM-IRE2 upright microscope, 

using an objective x63 in a glycerol-immersion lens. A 10 wt% Fmoc-RGD gel was 

dyed using a 3.4x10-3 wt% ThT solution, instead of pure water, as a solvent. The 

sample was studied using 458 nm excitation wavelength (Argon laser emission), 

together with a 463-568 nm emission detection range. 
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Fluorescence Spectroscopy. Spectra were recorded on a Varian Cary Eclipse 

Fluorescence Spectrometer with samples in 10 mm quartz cuvette.  ThT emission 

fluorescence was measured for = (460-650) nm using ex= 440 nm, while the 

fluorenyl emission fluorescence was measured for = (290-470) nm using ex= 265 

nm. 

UV-vis Absorption. Spectra were recorded using a Varian Cary 300 Bio UV/Vis 

spectrometer. Samples were analyzed in quartz cuvettes with a 5.0 mm path length 

and were baseline corrected with respect to a blank cell with the appropriate solvent. 

Release of Fmoc-RGD monolith studied by ThT fluorescence. A quantity of 0.1 

ml of 10 wt% Fmoc-RGD hydrogel was loaded with ThT by using 9.8x10-3 wt% ThT 

as a solvent. The monolith was then immersed in 1.5 ml of water. The fluorescence 

emission of the liquid surrounding the peptide monolith was measured as a function 

of time (ex= 440 nm). 

Release of Fmoc-peptide monomers from peptide monoliths studied by 

fluorescence. 0.1 ml of 10 wt% Fmoc-RGD monolith was prepared using water as a 

solvent, and then immersed in 1.5 ml of water. The fluorescence emission of small 

fractions of liquid surrounding the peptide monolith (0.01 ml diluted by 325-fold in 

water) was measured at regular intervals of time (ex= 265 nm). 

Release and uptake of methylene blue by Fmoc-RGD monoliths studied by UV-

vis spectroscopy. Fmoc-RGD gel dye uptake was measured by immersing 0.1 ml of 

10 wt% Fmoc-RGD hydrogel into 3 ml of 4.9x10-4 wt% methylene blue. In order to 

measure the release of dye by the hydrogel, we prepared 0.1 ml of 10 wt% Fmoc-

RGD hydrogel loaded with methylene blue by using a 5.6x10-3 wt% methylene blue 

solution as a solvent. The hydrogel was then immersed in 3 ml of water. The UV-vis 

spectra of the solution surrounding the hydrogel were measured at regular interval of 

times, in order to evaluate both uptake and release of methylene blue by Fmoc-RGD 

monoliths.  



 7 

 

Results and Discussion 

Weighed quantities of Fmoc-RGD and water were mixed, inside a 0.5 ml 

Eppendorf, to a 10 wt% peptide concentration. The resulting gel surprisingly adopted 

a rigid structure, moulded by the Eppendorf tube, allowing for the preparation of a gel 

monolith similar to that displayed in Figure 1a.   

The birefringence of the sample was studied by polarized optical microscopy 

and Congo red staining experiments. The latter assay is used to identify amyloid self-

assembly, since uptake of Congo red leads to characteristic birefringence.27 The 

texture obtained for the gel (Figure S1, Supplementary Information) suggests the 

formation of amyloid fibrils.  This result was confirmed by the blue-green 

birefringence resulting from Congo red staining, shown in the inset of Figure S1.  

 Small angle X-ray scattering (SAXS) experiments were used as an in situ 

method to examine the self-assembled nanoscale structure. The SAXS intensity I(q) 

measured for 10 wt% Fmoc-RGD was fitted using Porod’s approximation for a long 

infinite cylinder, with a Gaussian size distribution to account for the polydispersity in 

cylinder radius (Figure 2).  The fitting of the SAXS data in Figure 2 is not highly 

accurate at low scattering angles because our model does not consider interactions 

between the peptide fibrils (present at high concentrations)28 but only the shape of 

the peptide fibrils. However, the SAXS fitting in Figure 2 corresponds to a radius R = 

(35±5) Å, in good agreement with the cylinder radius (40±18) Å previously found by 

us for 2 wt% Fmoc-RGD.24  The estimated extended peptide length of 17 Å 

([3x3.5+6] Å= 16.5 Å where 3.5 Å is the repeat distance -strand and 6 Å is the 

estimated size of the Fmoc unit), compared to the fibril radius provided by SAXS in 

Figure 2, suggests that each Fmoc-RGD fibril is up to 4 extended Fmoc-RGD 

molecules in width.  

The SAXS fitting in Figure 2 corresponds to a cylinder 300 Å long, shorter than 

the 800 Å long peptide fibrils previously measured by us for 2 wt% Fmoc-RGD from 



 8 

the modelling of the SAXS data.24 The wide difference in peptide length between 2 

and 10 wt% peptide, reflects partly the high polydispersity in that structural parameter 

and also the lack of sensitivity of the fit to this parameter in the limit that the length L 

>> R.  

Cryo-SEM was used to image the self-assembled structure of the 10 wt% 

Fmoc-RGD gel. A representative image is shown in Figure S2 (Supplementary 

Information). The gel structure consists of a network of fibres, assembled to form a 

porous structure with a highly polydisperse pore size of (247±100) nm (Figure S2a). 

The fibres comprising the network are (61.5±23.1) nm thick (Figure S2b). Some 

clustering of fibres was observed, which may be the origin of the cloudiness 

observed for the hydrogel (Figure 1a).  It is highly probable that the fibres in Figure 

S2b correspond to bundles of the 35 Å radius fibrils revealed by SAXS. 

XRD was performed on a 10 wt% Fmoc RGD gel and on a stalk dried from 

such a gel. The 2D spectra revealed a partial orientation of the crystallographic 

planes (Figure S3, Supplementary Information). The meridional reflection at 4.71 Å 

(Figure S3) corresponds to the in-plane spacing of a -sheet.27 The equatorial 

reflections measured for the stalk (Figure S3), are associated to the lateral ordering 

of -sheet strands.27  

Fmoc-RGD monoliths have pH 2. Our results show that when 0.1 ml of 10 wt% 

Fmoc-RGD is immersed in 3 ml of water, the initial pH of the water (pH 6.94) 

decreases to 3.86 after one minute, and remains stable with an average value of 

(3.47±0.14) for the next two days. As a consequence of the acidic properties of the 

gel and the solution surrounding it, Fmoc-RGD monoliths might find applications as 

topical agents for encapsulation of drugs used in skin therapeutics. 

The properties of Fmoc-RGD hydrogel as a slow release encapsulating agent 

were investigated. In particular, we qualitatively evaluated the interplay between the 

release and absorption properties of the hydrogel.  
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We prepared a 10 wt% Fmoc-RGD gel loaded with 3.4x10-3 wt% of the 

amyloid-binding fluorescent probe ThT. The resulting rectangular monolith is 

displayed in Figure 1b. The probe ThT was loaded to enhance visual observation and 

to allow for fluorescence experiments described below. 

In order to study the release properties of the Fmoc-RGD hydrogel, a piece of 

the monolith in Figure 1b was immersed in water. The peptide gel initially remained 

stable in water (Figure 1c). By the ninth day it was possible to observe the 

detachment of a fibrillar structure, which continued to grow until the fortieth day 

(Figure 1d).  Confocal microscopy was used to investigate the structure of the 

detached material in Figure 1d. The results, displayed in Figure 1e, show that peptide 

fibres detach, in a slow process, from the main body of the peptide gel. However, it is 

notable that after the detachment process, the initial aspect of the sample (Figure 1c) 

remained nearly unaltered after 40 days. It is remarkable that this gel, with no 

covalent cross-linking but only non-covalent supramolecular interactions, is so stable 

in dissolution.  

The release kinetics from the concentrated Fmoc-RGD gel was studied by ThT 

fluorescence,29-30 following the procedure already described in the experimental 

section. The fluorescence emission of the solution fractions was characterized by a 

broad peak at 483 nm. The release curve, displaying the time-dependence of the 

fluorescence emission intensity at 483 nm, is shown in Figure 3. 

It is well-known that ThT binds to amyloid peptide fibrils upon fibril self 

assembly, leading to an increase of ThT fluorescence emission at 480 nm (ex= 440 

nm).29-30 The release curve in Figure 3 shows that the fluorescence intensity 

increases with time, because the release process takes place through the 

detachment of -sheet structures in the media, in agreement with the macroscopic 

detachment of fibres shown in Figure 1d. According to Figure 3, the release of 
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material becomes noticeable after 380 min. The release of amyloid fibrils from the 

hydrogel may be useful in creating novel functional amyloid-fibril materials.  

We further studied the release of Fmoc-peptide monomers in the media using 

fluorescence spectroscopy, according to the procedure given in the experimental 

section. Previous studies on Fmoc-peptides solutions show that it is possible to 

monitor the emission of Fmoc-peptide monomers, by measuring the fluorenyl 

fluorescence at ~ 313 nm (ex= 265 nm).31-32 In addition, the presence of fluorene 

excimers is detected by a red shift to 330 nm of the emission peak.31-32 

In our work, the fluorescence emission of the solution aliquots was 

characterized by peaks at 304 nm and 313 nm (Figure S4, Supplementary 

Information). We plotted the time dependence of the fluorescence emission at 313 

nm, associated to peptide monomers,31-32 to construct the Fmoc-RGD monomer 

release curve shown in Figure 3. The time dependence of the fluorescence emission 

at 304 nm followed the same trend as that displayed for 313 nm (results not shown), 

suggesting that the fluorescence at 304 nm might also be associated with the Fmoc-

unit.  

The data in Figure 3 indicate that the release of Fmoc-RGD fibres is preceded 

by the expulsion of Fmoc-RGD monomers in the solution. Regarding drugs delivery 

applications, Figure 3 shows that the release of encapsulated material is ~380 min 

delayed with respect to the initial release of Fmoc-peptide monomers in the media.  

The ThT fluorescence data in Figure 3 probes the release of material trapped in 

the fibres. The release and uptake of an alternative hydrophilic compound, which 

presumably is not hosted inside the peptide fibres but within the hydrogel pores, has 

also been examined. In particular, we performed UV/vis spectroscopy experiments to 

determine the uptake and release of methylene blue by Fmoc-RGD monoliths. 

Details of these experiments are given in the Experimental section. For Fmoc-RGD 

solutions, the maxima in adsorption bands are present between 233 and 309 nm 

(Figure S5, Supplementary Information) far removed from that of methylene blue 
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which exhibits max=  667 nm, allowing simple determination of the dye taken up or 

released by the hydrogel.  

Figure 4 displays the kinetics of the release and uptake experiments measured 

as the time dependence of the maximum in the adsorption band at 667 nm. Figure 4 

shows that the release and uptake profiles of methylene blue by an Fmoc-RGD 

monolith develop over similar time scales, reaching a constant value 330 minutes 

after both processes have started.   

Additional tests were performed in order to load the bioactive riboflavin and the 

hydrophilic pseudo-drug salicylic acid into Fmoc-RGD monoliths. In these 

experiments, the drugs were loaded by preparing gel monoliths using solutions 

containing the drugs as a solvent. The material loading capacity  = 100×weight of 

material loaded/(weight of drug loaded + weight of dry Fmoc-RGD gel) is listed in 

Table 1, together with the data corresponding to the monoliths loaded with ThT and 

methylene blue used to perform release experiments shown in Figure 3 and Figure 4.  

 We further studied the absorbing properties of the Fmoc-RGD gel, following a 

qualitative visual method already used by Liebmann and co-workers to measure the 

mobility of dye throughout a Fmoc-dipeptide hydrogel.12 We first prepared a gel 

loaded with 3.4x10-3 wt% ThT in an Eppendorf tube. Once the ThT-loaded gel was 

stabilized, an additional layer of 10 wt% Fmoc-RGD gel in pure water was formed on 

top, by hydrating freeze dried 10 wt% Fmoc-RGD gel. The additional peptide in water 

layer bound to the previously formed ThT-loaded hydrogel.  One day after the ThT-

free gel layer was stabilized, the two-layer hydrogel was removed from the Eppendorf 

mould.  The resulting monolith is shown in Figure 5.  

Figure 5 clearly shows a diffusion of dye from the ThT-loaded top towards the 

ThT-free base of the gel monolith. The shape of the monolith was maintained during 

the diffusion process, as a consequence of the rigid hydrogel structure. Since ThT is 

hosted within the core of the amyloid fibre, the diffusion within the gel points to the 
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porous structure displayed in Figure S2a, allowing local mobility of  ThT molecules 

within the fibrillar network.  

    The results in Figure 1 and Figures 3-4, suggest that absorption and release 

processes might co-exist in a dynamic equilibrium in the Fmoc-RGD gel. It is possible 

that using Fmoc-RGD gel as a delivery agent in vivo, absorption of the physiological 

media will not screen the slow release of the encapsulated material. 

 

Conclusions 

In summary, this report shows that concentrated gels of Fmoc-RGD offer new 

opportunities for developing delivery agents. The unusual rigid structure of 10 wt% 

Fmoc-RGD gel allows for the construction of peptide-based monoliths able to remain 

stable in water for nearly 40 days, only partially affected by the detachment of 

peptide fibers.  We found that the structure of Fmoc-RGD monoliths consists of a 

network of fibers, such that each fiber is made out of a bundle of thinner fibrils with 

an internal -sheet structure. Fmoc-RGD fibres build a self-supporting but porous 

structure in a hydrogel functionalized with RGD motifs at high density. 

The RGD sequence incorporated within the hydrogel provides biocompatibility 

via the integrin cell adhesion motif (it does not have a particular role in drug 

encapsulation) whereas the fibrillar structure of the monolith enables encapsulation 

and release. In particular, encapsulation can be achieved by loading the material in 

the gel (using a solution of the material as the solvent for Fmoc-RGD gel) or 

alternatively through the spontaneous uptake by the Fmoc-RGD gel of the material 

diluted in a surrounding liquid media. 

 Our findings represent a new approach to the use of the Fmoc-RGD peptide 

amphiphile as a delivery agent,33-34  and provide a first insight into a reliable 

correlation between absorption and slow release properties of this material. 
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Table 1. Materials loaded in 0.1 ml of 10 wt% Fmoc-RGD monoliths  
 

Materials Material loading capacity 
 
             (%) 

Solution used as solvent to prepare 
Fmoc-RGD monoliths 

ThT 0.1 9.8x10-3 wt% ThT  

Riboflavin 0.01 1.27x10-3 wt% riboflavin 

Salicylic acid 0.03 3.5x10-3 wt% salicylic acid 

Methylene blue 0.06 5.6x10-3 wt% methylene blue 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  (a) 10 wt% Fmoc-RGD monolith gel prepared using an eppendorf mould. 

(b) 10 wt% Fmoc-RGD monolith stained with ThT. Material in (b) immersed in water 

at (c) day 0 and (d) day 40. (e) Laser scanning confocal microscopy image of 

detached material in (d). 
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Figure 2. SAXS data for 10 wt% Fmoc-RGD gel. The solid line is a fit to the form 

factor of a long cylinder, model shown. 
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Figure 3. Fluorescence intensity showing fluorescence of ThT bound to fibrils and of 

Fmoc units in the Fmoc-peptides, obtained for a Fmoc-RGD monolith immersed in 

water.  
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Figure 4.  Release and uptake experiments of methylene blue by a 10 wt% Fmoc-

RGD monolith, measured as the time dependence of the absorbance maximum at 

667 nm. 
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Figure 5.  Fmoc-RGD monolith showing ThT diffusion through the gel. 
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Fmoc-RGD monolith showing Thioflavin T diffusion through the gel. 


