
Fault tolerant decentralised K-Means
clustering for asynchronous large-scale
networks
Article

Accepted Version

Di Fatta, G., Blasa, F., Cafiero, S. and Fortino, G. (2013) Fault
tolerant decentralised K-Means clustering for asynchronous
large-scale networks. Journal of Parallel and Distributed
Computing, 73 (3). pp. 317-329. ISSN 07437315 doi:
https://doi.org/10.1016/j.jpdc.2012.09.009 Available at
https://centaur.reading.ac.uk/29421/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .
Published version at: http://dx.doi.org/10.1016/j.jpdc.2012.09.009
To link to this article DOI: http://dx.doi.org/10.1016/j.jpdc.2012.09.009

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Central Archive at the University of Reading
Reading’s research outputs online

Fault Tolerant Decentralised K-Means Clustering for Asynchronous Large-Scale Networks

Giuseppe Di Fattaa, Francesco Blasab, Simone Cafierob, Giancarlo Fortinob

aSchool of Systems Engineering, The University of Reading, Reading, UK
Email: g.difatta@reading.ac.uk

bDipartimento di Informatica, Elettronica e Sistemistica, University of Calabria, Italy
Email: g.fortino@unical.it

Abstract

The K-Means algorithm for cluster analysis is one of the most influential and popular data mining methods. Its straightforward
parallel formulation is well suited for distributed memory systems with reliable interconnection networks, such as massively parallel
processors and clusters of workstations. However, in large-scale geographically distributed systems the straightforward parallel
algorithm can be rendered useless by a single communication failure or high latency in communication paths. The lack of scalable
and fault tolerant global communication and synchronisation methods in large-scale systems has hindered the adoption of the K-
Means algorithm for applications in large networked systems such as wireless sensor networks, peer-to-peer systems and mobile
ad hoc networks. This work proposes a fully distributed K-Means algorithm (Epidemic K-Means) which does not require global
communication and is intrinsically fault tolerant. The proposed distributed K-Means algorithm provides a clustering solution which
can approximate the solution of an ideal centralised algorithm over the aggregated data as closely as desired. A comparative
performance analysis is carried out against the state of the art sampling methods and shows that the proposed method overcomes
the limitations of the sampling-based approaches for skewed clusters distributions. The experimental analysis confirms that the
proposed algorithm is very accurate and fault tolerant under unreliable network conditions (message loss and node failures) and is
suitable for asynchronous networks of very large and extreme scale.

Keywords: distributed clustering, k-means, peer-to-peer data mining, gossip protocols, epidemic protocols, extreme scale
computing

1. Introduction

Emerging challenges in ubiquitous networks and computing
[1] include the ability to extract useful information from a vast
amount of data which are intrinsically distributed. However,
the dynamic and unreliable nature of large-scale distributed en-
vironments pose hard challenges for parallel algorithms.

Research on Distributed Data Mining (DDM) has focused on
the formulation of data mining algorithms for distributed com-
puting environments, where each node processes its local data
and contributes to compute a global solution. In many appli-
cations the solution is required to be available at every node.
This is particularly important when considering applications in
networked systems where each node is autonomous and active,
like in peer-to-peer systems, mobile ad hoc networks, vehicular
ad hoc networks, mobile social networks [2, 3], wireless sensor
networks. Obviously it is desirable that the solutions at different
nodes are identical or within a bounded approximation error.

For example, a number of projects have recently been de-
voted to the design and implementation of Decentralised Online
Social Networks (DOSN) (e.g. Diaspora, Tribler, Spar, Whats
up, Scope, SuperNova, PrPl, OneSocialWeb). DOSN are a typ-
ical scenario where fault-tolerant Distributed Data Mining ap-
plications may be required and successfully applied.

The goal of cluster analysis is the determination of groups
(clusters) of data items which show high intra-cluster similarity

and low inter-cluster similarity. Clustering is known to be an
NP-hard problem [4, 5]. Therefore many clustering algorithms
use heuristic approaches, such as iterative ‘hill climbing’ meth-
ods. These methods typically lead to local convergence, where
further improvements cannot be made.

The K-Means algorithm [6, 7] is a typical ’hill climbing’
method for cluster analysis and, in general, is one among the
most influential and popular data mining methods [8, 9]. K-
Means determines a set of K points, called centres or centroids,
so as to minimise the mean-squared distance from each data
point to its nearest centre. The K-Means algorithm is an iter-
ative refinement process, where at each iteration the clustering
assignments are updated, consequently changing the definition
of the clusters and, consequently, of the centroids. Ideally dur-
ing and after the execution of a distributed algorithm the mean-
ing of each cluster should be consistent (synchronised) at every
node of the systems.

Parallel and distributed algorithms which have been pro-
posed to solve the distributed K-Means problem, have typically
adopted global communication (global reduction and broad-
cast) at the end of each K-Means iteration to provide global
synchronisation and consistency of the centroids at every node.
However, in large-scale distributed systems global communica-
tion is obviously unrealistic. In fact, the lack of scalable and
fault tolerant global communication and synchronisation meth-

In press, accepted manuscript, available online 24 September 2012, DOI:10.1016/j.jpdc.2012.09.009, Elsevier Journal of Parallel and Distributed Computing

ods has hindered the applications of data mining algorithms in
large-scale distributed computing environments.

In this work we present a distributed stochastic formulation
of the K-Means clustering algorithm. The proposed algorithm
is fully decentralised and intrinsically fault tolerant. The global
synchronisation and consistency required in the K-Means algo-
rithm is achieved without global communication. The global re-
duction operation is performed by means of a Gossip-based ag-
gregation protocol [10, 11, 12], which provides statistical guar-
antees of the convergence to the clustering result which would
be obtained by a monolithic K-Means approach over the ag-
gregated data. The same statistical guarantees ensure that the
cluster centres are consistent within a bounded approximation
error at every node of the system.

The simulations in the experimental analysis have confirmed
the quality and consistency of the results. In particular the re-
sults show that the proposed approach always performs much
better than the state of the art in distributed K-Means for large-
scale systems [13, 14, 15, 16, 17] and its accuracy degrades
gracefully under unreliable network conditions, such as packet
loss and node failures.

The rest of the paper is organised as follows; Section 2 re-
views related work on distributed K-Means Clustering. Sec-
tion 3 recalls the terminology and theory of the K-Means algo-
rithm in centralised and parallel settings. Section 4 introduces
a stochastic formulation of the distributed K-Means algorithms
for large-scale systems. Section 5 describes the Gossip-based
aggregation protocol. Section 6 introduces the proposed decen-
tralised and fault tolerant algorithm for the distributed K-Means
problem. Section 7 presents experimental comparative analyses
for both the adopted aggregation protocol and the distributed K-
Means algorithm. Finally Section 8 provides some conclusive
remarks and future research directions.

2. Related Work

The most notable effort for the formulation of distributed K-
Means in large-scale systems has produced a few related vari-
ants [13, 14, 15, 16, 17] which are all based on two sampling
strategies, local and random sampling.

The Local Synchronization-Based P2P K-Means (Local P2P
K-Means) [14, 17] adopts a local strategy, where each node
communicates and synchronises only with its physical neigh-
bours.

The Random Sampling-based Peer-to-Peer K-Means (Ran-
dom P2P K-Means) [15] adopts a random strategy, where each
node communicates and synchronises with a randomly selected
sample of network nodes. The local approach presented in [15]
is similar to the one described in [14, 17] with a slightly differ-
ent convergence criterion.

As these approaches did not provide an analytical accu-
racy guarantee, [17] introduces another approach, Uniform
Sampling-based Peer-to-Peer K-Means (USP2P K-Means)
which offers an accuracy guarantee. The guarantee holds if the
network topology and data do not change during the execution
of the algorithm. USP2P K-Means assumes that a leader node

computes the clustering solution by synchronising and commu-
nicating with a uniform sample of nodes in a master-slave ap-
proach. The clustering solution is only computed at this sin-
gle node and for this reason USP2P K-Means does not strictly
solve the distributed K-Means problem and does not use a de-
centralised approach. When data are not uniformly distributed a
large percentage of the nodes have to be involved in the commu-
nication in order to achieve a good approximation. Moreover,
if the solution has to be made available to all nodes, the leader
node has to broadcast the final result, or alternatively each node
of the network needs to run an independent USP2P K-Means
with two drawbacks: the clustering solution at different nodes
may be different and the communication cost is greatly redun-
dant.

Sampling approaches can provide a good approximation of
the solution when the data clusters are uniformly distributed in
the network. Under moderately or highly skewed cluster distri-
butions these approaches are expected to fail in approximating
the ideal solution and in guaranteeing consistency over the net-
work nodes.

In [15] the performance of the algorithm is also tested under
non-uniform data distributions. However, it should be noted
that the tests are performed in a relatively small topology (50
nodes) and the skewed distribution refers to the number of data
points at each node, not to the distribution of clusters over the
nodes. Whether the data points of each cluster are randomly
distributed is not specified.

In this work we explicitly address this issue and show that
it has a significant impact on the performance of the sampling
approaches. Their accuracy significantly degrades for a non-
uniform cluster data distribution, which is a more realistic sce-
nario for intrinsically distributed data. For example, in P2P net-
works it is expected to find geographic aggregations in the data
distributions. They are based on deterministic communication
patterns and do not naturally cope with unreliable and dynamic
network conditions, such as packet loss and node failures.

The proposed algorithm is not based on a deterministic re-
duction operation over a sample of nodes and data. It rather
adopts a stochastic aggregation operation based on an epidemic
approach, which is intrinsically scalable and fault tolerant, and,
above all, allows achieving an accuracy and a consistency of the
results even for highly skewed cluster distributions.

3. The Deterministic K-Means Problem

3.1. Centralised K-Means

Given a set X = {x1, . . . , xn} of n data vectors in a d dimen-
sional space R

d and a parameter K (1 < K < n) which defines
the number of desired clusters, K-Means determines a set of K
vectorsM = {m1, . . . ,mK}, called centres or centroids, to min-
imise the average within-cluster variance. The clustering asso-
ciated to the set of centroidsM is the set of disjoint partitions
P = {P1, . . . ,PK}, such that

⋃K
k=1 Pk = X and Pi

⋂P j = ∅
(i � j).

The centroid of the cluster k is derived to approximate the
‘centre of mass’ of the cluster partition Pk and is defined as:

2

mk =

(
1
nk

) nk∑
i=1

x(k)
i , (1)

where nk is the number of data points in the cluster k (nk =

|Pk |), and x(k)
i is a data point in the cluster k (x(k)

i ∈ Pk).
The error for each cluster is the squared sum of a norm ||·||,

e.g. the Euclidean norm, between each input data point and
its nearest centroid. The objective function that K-Means opti-
mises is the overall error (square-error distortion) E(M) which
is given by the sum of the squared errors for each cluster:

E(M) =
n∑

i=1

min
k=1..K

||xi − mk ||2 =
K∑

k=1

nk∑
i=1

∣∣∣∣∣∣x(k)
i − mk

∣∣∣∣∣∣2 . (2)

The sum of the squared errors is a popular objective function
as it combines a measure of homogeneity and separation of the
clusters. The optimal clustering corresponds to the minimum
sum of the squared errors. For general values of K and d and
with the Euclidean distance as metric, the problem is known to
be NP-hard [5].

Given an initial condition, i.e. the initial set of centroids,
the K-Means algorithm [6, 7] adopts a ’hill climbing’ heuristic
method to determine the local minimum of the objective func-
tion. The algorithm repeats an iterative refinement step until
no further improvement can be achieved. At each iteration two
main steps are performed:

• distance calculation: for each data point compute the dis-
tance to each cluster centroid and find the closest cluster
centroid;

• centroid update: recompute each cluster centroid as the
average of data points assigned to the cluster partition.

3.2. Parallel K-Means

Parallel clustering algorithms have been extensively studied
(e.g. [18], [19], [20]). In particular, [20] proposes a straightfor-
ward implementation of the brute force K-Means algorithm for
distributed memory systems, which is based on a master-slave
approach and static data partitioning. The input data points are
partitioned in equal sized sets and distributed to the processes.
Initial centroids are generated at the master and distributed
(broadcast) to the other processes. Each process performs a
K-Means iteration on its local data partition. At the end of each
iteration a global reduction operation (e.g. MPI ALLREDUCE
[21]) generates the updated global centroid vectors and the
global distortion measure:

mk =

∑P−1
i=0 si,k∑P−1
i=0 ni,k

, 1 ≤ k ≤ K (3)

E(M) =
P−1∑
i=0

ei (4)

where P is the number of parallel processes, si,k and ni,k are,
respectively, the sum and the number of data points in the local

partition at process i which have been associated with cluster k;
ei is the local contribution at process i to the global square-error
distortion.

At each process and for each iteration three main steps are
performed:

• distance calculation: for each data point of the local data
set compute the distance to each cluster centroid and find
the closest cluster centroid;

• global reduction operation: all nodes perform a deter-
ministic reduction operation to compute the global sums
and counts for each cluster partition and the global error;

• centroid update: recompute each cluster centroid as the
average of all data points assigned to the cluster using the
global sums and counts.

At each iteration a single all-reduce operation can be used to
compute the aggregation for (d ·K+1) real values and K integer
values over all processes. The number of communication steps
of the all-to-all reduction operation is log2(P).

In a static and homogeneous computing environment the ap-
proach in [20] guarantees a perfectly balanced load among the
processes. In [22, 23] parallel formulations of the efficient K-
Means algorithms based on KD-trees were investigated. All
these parallel approaches are based on a global deterministic
reduction operation. They are not suitable for large-scale geo-
graphically distributed systems.

4. Stochastic K-Means for Large-Scale Distributed Systems

Given a set of P nodes connected by a physical network with
a transmission protocol for point-to-point communication, the
logic communication network can be represented by a com-
pletely connected graph, where the edge between two nodes
is associated with the communication cost of the shortest path
in the physical network.

Each node i of the network has a local set of data Xi = {x}
(0 ≤ i < P), where x ∈ R

d. The equivalent centralised clus-
tering problem is defined over the aggregated data set X =⋃P−1

i=0 Xi.
Given a set of K initial centroids, the sequential K-Means

deterministically converges to a set of final centroids M (∗) =
{m(∗)

k } which locally minimise the objective function (2). These
centroids uniquely define the resulting partitional clustering
configuration P(∗) = {P(∗)

1 , . . . ,P(∗)
K }. We refer toM(∗) and P(∗),

respectively, as the ideal centroids and the ideal cluster parti-
tions over the aggregated data.

A stochastic distributed K-Means problem can be defined by
relaxing the need of explicitly computing and synchronising the
unique global centroids for all network nodes. Global centroids
are still implicitly defined, but no longer computed in a deter-
ministic way.

Given a unique set of K initial centroids, each node i deter-
mines a set of K local centroids M(i) = {m(i)

k } which approx-
imate the ideal ones with a probabilistic guarantee. The set

3

of local centroids uniquely defines a set of disjoint partitions
P(i) = {P(i)

k } (1 ≤ k ≤ K) of the local data, where
⋃K

k=1 P(i)
k = Xi.

If the stochastic approximation of the centroids at various
network nodes is independent and small, then the aggregated
local data partitions closely approximate the ideal cluster par-
titions over the aggregated data and the distributed solution
closely approximates the minimisation of the global optimisa-
tion function (2).

The stochastic nature of the local centroids introduces local
approximation errors. However, globally the aggregated clus-
ter partitions maintain the properties and structure of the ideal
solution.

In the stochastic definition of the K-Means problem, we are
interested in characterising the error between the local centroids
and the ideal ones and the variance of the local centroids at
different nodes.

The error with respect to the equivalent centralised problem
is defined as the error of the average distributed K-Means so-
lution with respect to the ideal solution. At node i the error
is:

errcKM(i, k) = |m(i)
k −m(∗)

k |.
The mean squared error of the distributed K-Means solutions

w.r.t. the ideal solution is given by

MS EcKM =
1

P · K
P−1∑
i=0

K∑
k=1

|m(i)
k −m∗k |2. (5)

The variance of the above error corresponds to the difference
between the solutions obtained at different network nodes. For
nodes i and j (i � j) the consistency error is defined as:

errdKM(i, j, k) = |m(i)
k −m(j)

k |.
The mean square consistency error at node i is given by

msedKM(i) =
1

(P − 1) · K
P−1∑

j=0, j�i

K∑
k=1

|m(i)
k −m(j)

k |2.

The overall consistency error in the distributed system is
given by:

MS EdKM =
2

P · (P − 1) · K
P−2∑
i=0

P−1∑
j=i+1

K∑
k=1

|m(i)
k −m(j)

k |2. (6)

Another important performance metric is the percentage of
cluster membership mismatch (PMM) w.r.t. the ideal solution
at each node, which is defined as:

PMM(i) =

∑K
k=1 |P(i)

k

⋂P(∗)
k |

|⋃K
k=1 P(i)

k |
. (7)

The average clustering accuracy over all network nodes is
defined1 as:

1The definitions of PMM and average clustering accuracy are equivalent to
the ones given in [17].

AccuracydKM =

∑P−1
i=0 PMM(i)

P
. (8)

5. Gossip-based Aggregation Protocol

Epidemic or Gossip-based protocols are a robust and scalable
communication paradigm to disseminate information (broad-
casting) in a large-scale distributed environment using ran-
domised communication [24, 25]. The advantages of Gossip
protocols over global communication schemes based on deter-
ministic interconnection networks are their inherent robustness
and scalability.

Gossip protocols can also be adopted to solve the data ag-
gregation problem in a fully decentralised manner. Each node
i of a networked system holds some local value xi and needs
to compute a global aggregation function F(x 0, · · · , xP−1) (e.g.
minimum, maximum, count, sum, average, etc.).

At each cycle of a Gossip protocol each node independently
selects a random communication peer with a uniform proba-
bility distribution. Local states are exchanged and updated.
Typically, the update of the local state produces a reduction in
the variance of the aggregate estimate. The definition of local
state, the number and type of messages and the update oper-
ation (variance reduction operation) depend on the particular
aggregation protocol.

An approximation of the global aggregate function can be
obtained at every node within a fixed number of protocol cycles.
The correct convergence to the true global value, for example
for computing the global average, is guaranteed if the ’mass
conservation’ invariant is maintained, i.e. at any time the sum
of all aggregated values is constant [10].

The diffusion speed of a Gossip-based aggregation protocol
is the minimum number of protocol cycles required to achieve
a good approximation of the true value of the global aggregate
function with high probability.

In the implementation of the proposed distributed K-Means
algorithm we have adopted a novel and straightforward Gossip-
based aggregation protocol, which combines the advantages
of the Push-Sum Protocol (PSP) and of the Push-Pull Gossip
(PPG) protocol.

5.1. Push-Sum Protocol

The Push-Sum Protocol (PSP) [10] adopts an asynchronous
and asymmetric approach. At each protocol cycle every peer
pushes its local state to a random peer. A peer receiving a push
message performs a variance reduction operation on its local
state.

In uniform Gossip the probability of a peer being selected as
destination of a push operation follows a binomial distribution.
The probability of a peer not being selected at all during a pro-
tocol cycle is not zero. In this case the peer does not perform
the variance reduction step during the cycle. For example, for
a network with 1000 nodes, the probability of a peer receiving
0, 1 or 2 push messages during a cycle is, respectively, 36.7%,
36.8% and 18.4%.

4

The diffusion speed of the simplest aggregation protocol has
been shown to have a complexity O(log(P)+log(ε−1)+log(δ−1))
[10], where P is the network size, ε (> 0) is the maximum
approximation error and δ (> 0) is the maximum probability of
greater error than ε.

In PSP the local scalar value is represented as a pair < v,w >,
where v is initialised with the local value x and the initial weight
w depends on the global aggregate function to be computed
[10]. (For example, the global sum can be computed by setting
the initial weight to 1 at a single node and to 0 in all others.)
The global aggregate value is given by v

w after a fixed number
of communication cycles. At each cycle each node halves its
local value and weight (< v,w >=< v

2 ,
w
2 >) and sends them to

a random node. The global mass is guaranteed to be conserved
in case a loss-less transport protocol is used. The number of
messages which are sent in total at each cycle is P.

5.2. Push-Pull Gossip protocol
The Push-Pull Gossip (PPG) protocol [11, 12] adopts a sym-

metric approach and each push from a source to a destination is
followed by a reply message (pull). Both peers perform a vari-
ance reduction step. In PPG, 2 · P messages are sent in total at
each cycle. The probability that a peer does not perform a vari-
ance reduction step during a cycle is zero. As a consequence,
the convergence rate is faster and steadier w.r.t. PSP. It is faster
because the protocols uses twice the number of message at each
cycle and steadier because every single peer is involved in at
least one variance reduction operation. In general, push-and-
pull schemes are expected to convergence faster than push-only
schemes even with the same number of exchanged messages
[25].

In PPG at each cycle a node i chooses a random node j
to exchange their local current aggregation values. Each peer
then performs an averaging operation xi+x j

2 to update its local
value. In the description of the protocol ([11, 12]) these three
steps are not required to be atomic and, in general, could be
implemented with asynchronous communication. Apparently,
in order to guarantee the mass conservation invariant, the only
requirement would be that the two messages (push and pull)
are both successfully received within the current Gossip cycle.
However, in [26, 27] it has been pointed out that this is not the
case. In order to conserve the global mass and to guarantee
a convergence to the true aggregate value, the two messages
used to exchange the local values must be sent and received
in an atomic communication operation. This requirement im-
poses additional complexity in practical implementations and
introduces dependability issues [26, 27] in real asynchronous
environments.

5.3. Symmetric Push Sum Protocol
We have adopted a Symmetric PSP protocol (SPSP) where

2 · P messages are sent in total at each cycle. At each random
push an asynchronous reply follows with a symmetric push.
Differently from the pull in the push-and-pull scheme, here the
push reply is not required to be performed atomically with the
initiating push operation. In our preliminary analysis this vari-
ant, similarly to PPG, has shown better performances than PSP

and is simpler to implement in a real asynchronous distributed
system than PPG.

The theoretical analysis of the convergence of PPG [11, 12]
is derived and is valid only for the ideal case with conservation
of the global mass and for static and faultless networks. Under
these conditions SPSP is equivalent to PPG and the results of
the theoretical analysis still hold.

The description of the protocol is given in terms of commu-
nication cycles. The use of synchronous cycles simplifies the
description and the analysis. The protocols has been imple-
mented and tested in a completely asynchronous simulation en-
vironment.

In real environments independent local Poisson clocks can
be used to generate synchronous cycles in asynchronous dis-
tributed environments (e.g. [28]). A second interesting ap-
proach different from the use of synchronous cycles, is the use
of an exact global estimation of the right termination time, sim-
ilar to the median-counter algorithm [25] for rumour spreading.

In the proposed Epidemic K-Means algorithm the aggre-
gation protocol is used to compute several multi-dimensional
weighted averages and a sum as discussed in the Section 6. The
global sum is often used as example in previous work and, for
the sake of brevity, here we provide only the formulation of the
weighted average.

Assuming that each node i holds a local value xi and a lo-
cal weight ωi (ωi ≥ 0), the aggregation protocol performs a
decentralised approximate computation of the global weighted
average:

m̃ ≈ m =

∑P−1
i=0 ωi · xi∑P−1

i=0 ωi

The aggregation protocol is described in Figure 1. At each
cycle a node i halves its local value and weight (< v,w >=<
v
2 ,

w
2 >) and sends them to a random node j. At the reception of

the message the node j will asynchronously perform a symmet-
ric push operation: it halves its local value and weight and sends
them to node i. Then, it adds the received value and weight to
its own. In case node i receives the symmetric push from j
immediately after its push operation (i.e. there is no interleav-
ing message from other nodes), this mechanism is equivalent
to PPG. Nevertheless, the symmetric push mechanism does not
require atomicity of the two messages involved in the exchange
to guarantee the mass invariant.

A good approximation of the global weighted average is
available from a local service getAggregate() after a given num-
ber of cycles (NC).

The service getAggregate() is used to implement other
services. The aggregation of the weighted average can
be easily extended to multi-dimensional data. The service
getGlobalwAvg(m,w) returns a weighted average of the distri-
bution of local vectors m. The service getGlobalS um(x) returns
the global sum of local scalar values x. The sum operation can
also be implemented with getAggregate() and requires that all
initial weights are set to 0, apart from one which has to be set to
1. This initialisation operation is equivalent to a leader election
operation, which could also be solved dynamically by means of

5

At node i
Require:
The initial local value v0 and weight w0

The number of cycles nc
Initialisation:
1 Set < v,w > = < v0,w0 >.
At each cycle:
1 j← getNode();
2 send an aggregation message to j:

aggrMsg(< v
2 ,

w
2 >, reply=true);

3 v = v
2 and w = w

2 ;
At event: received an aggregation message m from j
1 if m.reply is true

1.1 send aggrMsg(< v
2 ,

w
2 >, reply=false) to j;

1.2 v = v
2 and w = w

2 ;
2 v = v + m.v;
3 w = w + m.w;
Export:
A local service getAggregate(v0,w0, nc) which returns
the global aggregate v

w after nc cycles.

Figure 1: The pseudocode of the aggregation protocol

a Gossip protocol. However, for the sake of simplicity, we have
statically assigned weight 1 to a random node.

5.4. Node Cache Protocol

In uniform Gossip protocols the random node selection is a
critical operation. A global knowledge of the whole network at
each node is not a reasonable assumption. We only assume that
the network topology is a connected graph, each node knows
its physical neighbours (Neighbours()) and a routing protocol
is available.

Scalable membership management approaches have typi-
cally been adopted in Gossip-based protocols. The approach
described in this section has been chosen for its simplicity and
low communication cost. In a preliminary analysis, not re-
ported in this work, no significant improvement was found in
adopting more accurate and complex approaches (e.g. [29]).
Nevertheless, the proposed SPSP aggregation protocol and,
consequently, the Epidemic K-Means algorithm do not depend
on a particular peer membership management protocol.

The node selection protocol maintains a local cache Q of
node identifiers (IDs), with |Q| ≤ QMAX2. The cache is ini-
tialised with the physical neighbours. At each protocol cy-
cle the local cache is sent to a node chosen from the cache at
random with uniform probability. When a remote cache is re-
ceived, it is merged with the local one and trimmed (at random)
to the maximum size.

The procedure in Figure 2 is a practical implementation of
multiple random walks. After sufficiently many cycles the en-
tries in the local cache are uniformly distributed. In regular

2In the experimental analysis QMAX has been set to 20.

connected graphs random walks converge to uniform indepen-
dent samples of the node set in a polynomial number of steps.
In expander graphs, i.e. sparse graphs that are very well con-
nected, random walks converge to the uniform distribution in
O(log(P)) [30].

The node cache protocol provides a local service getNode()
which removes and returns a random node from the cache.

At node i
Assumptions:
Let Neighbours() return the set of physical neighbour nodes.
Let Qi be the local node ID cache, |Qi| ≤ QMAX.
Let getNode() return and remove a random node ID from Q i.
Initialisation:
1 Qi ← Neighbours();
2 Randomly trim Qi such that |Qi| ≤ QMAX;
At each cycle:
1 j← getNode();
2 send cacheMsg(Q = Qi, reply = true) to j;
At event: received cache message m from node j
1 if m.reply is true,

send cacheMsg(Qi, reply = f alse) to j;
2 Qi ← m.Q

⋃{ j}⋃ Qi;
3 Randomly trim Qi such that |Qi| ≤ QMAX;

Figure 2: The pseudocode of the node cache protocol

6. The Epidemic K-Means Algorithm

This section presents a new method, the Epidemic K-Means
algorithm, to solve the stochastic distributed K-Means problem.
The proposed algorithm is ideal for very large scale distributed
systems as it is highly scalable and fault tolerant.

The method does not employ global communication as it
does not rely on any global communication operation (e.g.
broadcast, all-to-all reduction). The algorithm adopts a local
communication pattern, in the sense that during each K-Means
iteration the number of communication operations initiated by
each node is a small constant.

In the following we assume that a global set of initial cen-
troids is available to all network nodes.

There are at least two different methods that can be used to
achieve a global synchronisation of the initial centroids. In the
first and simpler method each node uses the random number
generator which is initialised with the same seed. Without loss
of generality we can assume that data attributes are normalised
in [0, 1] and that the same initial centroids can be chosen uni-
formly at random in the domain [0, 1] d by all nodes.

This approach may not give sufficient flexibility and control,
when for example different initial centroids need to be chosen
for multiple runs of the K-Means algorithm over the same data.
Even the solution of having multiple seeds configured a priori at
the nodes may not be flexible enough. For example, the struc-
ture of the data in the multi-dimensional space may be such that

6

initial centroids chosen uniformly at random over the entire do-
main is a poor start for K-Means. A safer and more popular
initialisation method for the centroids is a random choice over
the input data points. In this case a Gossip-based protocol can
be used to implement a global random sampling method [10] to
initialise the centroids. In our tests we adopted the simpler first
method.

The Epidemic K-Means algorithm substitutes the determinis-
tic all-reduce operation of the parallel K-Means algorithm with
a stochastic aggregation phase. Under certain conditions (mass
conservation and static data and network) the Gossip protocol
provides statistical guarantees that the aggregation process con-
verges to the true global aggregate (within a small bounded er-
ror) at every node of the systems. The efficiency and correctness
of this phase is at the core of the Epidemic K-Means algorithm.
The algorithm performance depends on how efficient, effective,
scalable and resilient the Gossip protocol is.

The Epidemic K-Means algorithm is described in Figure 3.
The algorithm requires a local set of data Xi, a set of initial
centroids M and a parameter τ which defines the termination
condition in terms of the relative improvement of the global
error at each iteration.

At any time each node may have one of two states AC-
TIVE and CONVERGED. When ACT IVE a node performs two
phases at each K-Means iteration. In the first phase (lines 5−13)
computation over the local data set is performed similarly to the
sequential K-Means. For each data point x the closest centroid
is computed and the local cluster partitions are determined. For
each cluster the local partial sums and counts are computed
(lines 9 − 12). The local squared error is also computed (line
13).

In the second phase global aggregates are computed by
means of the Gossip-based aggregation protocol (lines 14−17).
For each cluster the global weighted average is determined by
means of the local service getGlobalwAvg() and the centroid
is updated accordingly (line 15). The global squared error is
computed by means of the local service getGlobalS um() (line
17).

The K-Means iteration is repeated until the global error is
improved of at least a specified minimum threshold τ (line
18). Below this threshold the node state is changed into CON-
VERGED and the node may still receive messages to which it
will reply with a reject message. A node receiving a reject mes-
sage is forced to the CONVERGED state.

We have chosen the threshold τ to be much greater than the
maximum approximation error of the global aggregation of the
objective function (2). In all our tests all nodes converged spon-
taneously at the same iteration and there is no need to explicitly
synchronise the termination of the K-Means algorithm over the
network. However, due to the stochastic nature of the Gossip-
based aggregation we still need to consider the possibility that
some node (with low probability) fails to approximate correctly
the objective function.

A more robust termination condition has to be devised for
the use of the approach in real environments with adversarial
failures.

The algorithm requires several global aggregates: K multi-

dimensional weighted averages and a sum. In the implemen-
tation these have been combined into a single aggregation op-
eration to optimise the communication cost. The data struc-
ture exchanged during the Gossip protocol cycles is a tuple of
K · (d+1)+2 elements. K ·d elements are for the d components
of each vector si,k, K elements for the counts ci,k (ci,k is the as-
sociated weight for all d components of s i,k), 2 elements for the
local error and its associated weight.

Assume: Local node i
Require: Xi,M, τ

The local data set Xi = {x}, ni = |Xi|
The initial centroidsM, |M| = K
The termination threshold (%) τ

1: state ⇐ ACT IVE
2: Ẽ ⇐ ∞
3: repeat
4: Eprev ⇐ Ẽ
5: for all x ∈ Xi do
6: find closest centroid mk ∈ M
7: assign x to cluster Ck

8: end for
9: for all k such that 0 ≤ k < K do

10: compute local sums si,k =
∑

x∈Ck x
|Ck |

11: compute local count ci,k = |Ck |
12: end for
13: compute the local sum of squared errors:

ei =
∑K−1

k=0
∑

x∈Ck |d(x,mk)|2
14: for all k such that 0 ≤ k < K do
15: compute the global weighted average and update

the local centroid: mk = getGlobalwAvg(si,k, ci,k)
16: end for
17: compute the global error:

Ẽ = getGlobalS um(ei)

18: until Eprev−Ẽ
Eprev

≥ τ
19: state ⇐ CONVERGED

Figure 3: The Epidemic K-Means algorithm

7. Experimental Analysis

We carried out the experimental tests in an ad hoc network
simulator [31] based on discrete events. The simulator has
an event scheduler, a set of processes which simulate network
nodes, a topology manager and events which represent a num-
ber of operations, such as initialisation, messages, computation,
etc.

The simulations in sections 7.1 and 7.2 assume that the net-
work is static and that a loss-less point-to-point communica-
tion protocol is available. The simulations in sections 7.3 con-
sider network failures, such as message losses and node fail-
ures. Each physical network connection is associated with a
cost which is the maximum transmission delay of a message.
For each message traversing a link a stochastic delay is deter-
mined between a minimum and a maximum percentage of the

7

link cost (MIN = 10% and MAX = 100%). The overall trans-
mission delay of a message is determined as the sum of the link
transmission delays over the shortest path between source and
destination.

We have tested the algorithms in two different types of net-
work topologies. Two Internet-like topologies were generated
using BRITE [32] with a Waxman model to simulate a flat
level Autonomous System3 with 1000 and 2000 nodes. Two
2D mesh topologies were also generated with dimensions, re-
spectively, 40 × 25 (1000 nodes) and 50 × 40 (2000 nodes).

No significative difference in performance has been noticed
between networks of different size or type. Thus, the results
presented in the following sections report global averages over
multiple simulations (with different initialisation) over each of
the different network topologies.

In the next Section an analysis of accuracy and the conver-
gence speed of the adopted aggregation protocol is carried out.
In the following Sections a comparative analysis of the dis-
tributed K-Means approaches is provided and, finally, an anal-
ysis of the performance degradation under unreliable network
conditions is presented.

7.1. Gossip-based Aggregation

In this section the adopted Gossip-based protocol SPSP is
evaluated and compared with PSP and PPG for the decen-
tralised approximate computation of a global average in an
asynchronous distributed environment. All three protocols have
been implemented with non-blocking communication opera-
tions. All protocols adopt the Node Cache Protocol reported
in Section 5.4, with QMAX = 20.

Figure 4: Gossip cycle structure

At each cycle c of the aggregation protocol each node i com-
putes an estimate m̃ of the global true average m. The protocols
were evaluated with a peak data distribution, where only a node
i holds a local value vi = N, and all others j hold a local values
v j = 0. According to this setting, the target value m is equal to
1.

In order to simulate an asynchronous environment and col-
lect relevant performance indices, we have adopted a cycle in-
terval of variable length. A minimum cycle duration guarantees
that there is no overlap in the messages of subsequent cycles
and provides a simple mechanism for varying the percentage of
atomic violations (AVP) in the variance reduction operations.

3BRITE was configured with the same parameters as used in [17].

Each cycle is composed of four time intervals as shown in
Figure 4. The four intervals have a length of, respectively, d1,
d2, d2 and d3:

• d1 is the (variable) length ([0, 600]s) of the interval in
which nodes send push messages;

• d2 is the maximum propagation delay ([0.5, 1]s) between
any pair of nodes in the network and is fixed for each net-
work topology;

• d3 is a fixed maximum synchronisation offset (10ms) be-
tween any pair of nodes in the network.

We assume a uniformly distributed synchronisation offset for
the start of the aggregation process at different nodes. In all
experiments the maximum synchronisation offset (d3) between
any pair of nodes is set to 10ms. This value is similar to a clock
synchronisation offset, which can be obtained using e.g. NTP
[33] or PariSync [34].

Each node (source) initiates a push operation at a random in-
stant of the first interval (d1). In particular, d1 is the simulation
parameter through which the AVP can be varied. By decreasing
the value of d1 the AVP increases and vice versa. The interval
d1 was varied between 0s and 600s to obtain the widest range
for the AVP rates from almost 100% to almost 0%.

After a propagation delay the push message is received at
the destination node, which asynchronously replies with a sym-
metric push (pull) message. After the corresponding propaga-
tion delay the reply is received at the source node. The second
and third intervals account for these propagation delays. Two
intervals of length d2 are necessary to guarantee that a sym-
metric push operation (push-pull) is completed. The value of
d2 was set according to each network topology and varied be-
tween 500ms and 1s.

A fixed padding interval d3 (10ms) is required to ensure that
communications of two different cycles do not overlap because
of the synchronisation offset of the nodes.

7.1.1. Performance Analysis
The performance of the three protocols are compared in

terms of accuracy and convergence speed at different AVP lev-
els. The accuracy is computed in terms of the mean percentage
error of the estimated average over all nodes, as shown in equa-
tion 9.

MPE(c) =
1
n
·

n∑
i=1

∣∣∣∣m − m̃i(c)
m

∣∣∣∣ (9)

The convergence speed is evaluated by means of the variance
of m̃i over all nodes, as indicated in equation 10.

VAR(c) =
1

n − 1
·

n∑
i=1

(μm̃ − m̃i(c))2 (10)

The accuracy w.r.t the true aggregate of the protocols can be
compared in Figure 5. The accuracy of PPG is effected by the
AVP level; PPG does not converge to the true aggregate for
AVP > 0%. The smallest AVP level (0.3%) is obtained with a

8

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50

M
P

E

cycles

PPG 90%
PPG 66%
PPG 44%
PPG 0.3%
PSP 90%
PSP 66%
PSP 44%
PSP 0.3%

SPSP 90%
SPSP 66%
SPSP 44%
SPSP 0.3%

Figure 5: Mean percentage error (MPE) varying AVP level: averages over 100
different simulations.

 1e-035

 1e-030

 1e-025

 1e-020

 1e-015

 1e-010

 1e-005

 1

 100000

 0 10 20 30 40 50 60 70 80 90 100

va
ria

nc
e

cycles

PPG 90%
PPG 0.3%
PSP 90%
PSP 0.3%

SPSP 90%
SPSP 0.3%

Figure 6: Convergence speed (variance). Selected AVP levels: 0.3% and 90%.

very large d1 interval (600s). Even in this case PPG does not
converge to the true average (MPE � 0). Communications are
performed randomly within the interval d1. A small number of
violations of the mass conservation invariant are inevitable and
a small error is still present after 100 cycles (though not visible
in the chart).

PSP preserves the mass conservation invariant and is guar-
anteed to converge to the true average. However it has a slow
convergence speed compared to the other protocols.

SPSP is not effected by the AVP level and is guaranteed to
converge to the true average after a sufficient number of cycles
(NC > 10 in this case).

Figure 6 shows the convergence speed of the protocols. PPG
and SPSP have a similar variance reduction slope; their conver-
gence speed is slightly effected by the AVP rate. Their expo-
nential convergence is faster than PSP, though PPG converges
to an incorrect estimate.

In the following sections the simulations of the Epidemic K-
Means are based on SPSP with the smallest Gossip interval
(d1 = 0s) and a number of cycles NC = 15.

7.2. Distributed K-Means Clustering

In this section the proposed Epidemic K-Means algorithm is
compared with two approaches based on sampling strategies,
Local P2P K-Means [14, 17] and Random P2P K-Means [15].

For a given set of initial centroids the sequential K-Means
clustering algorithm is fully deterministic. We have used the
ideal clustering solution found by the sequential algorithm over
the aggregated data till full convergence is reached, to deter-
mine and compare the clustering accuracy of the distributed al-
gorithms.

7.2.1. Data
In this work an important distinction between data distribu-

tion in the multi-dimensional space and cluster distribution over
the network is made.

A prototype for each cluster (K = 20 and d = 10) is gener-
ated with uniform probability distribution in the range [0, 1] d.
Data points are generated in [0, 1]d using independent multi-
variate Gaussian distributions (σ = 0.2) centered at each proto-
type. The total number of data points was varied to have always
100 data points per node.

The data were partitioned and assigned to network nodes
in order to generate a range of cluster distributions, from uni-
formly distributed to highly skewed. In particular, the following
procedure was used.

Each cluster is associated with a specific node, the cluster
topological centre. K cluster topological centres n (k) are se-
lected randomly with uniform distribution among the network
nodes. Data points of a cluster k are distributed over network
nodes with a probability which decreases with the distance from
the centre n(k).

The likelihood and the probability that a node n has a data
point in the cluster k whose topological centre is n (k) are defined
as:

likelihood(n, k) = (1 + distance(n, n (k)))−λ

Prob(n, k) = likelihood(n,k)∑K
j=0 likelihood(n, j)

(11)

where λ ≥ 0 is a parameter which determines the cluster
distribution. For λ = 0 the clusters are uniformly distributed in
the network nodes. For larger values of λ the clusters become
less uniform and more concentrated in the neighbourhood of
the topological cluster centres.

While the parameter λ has been used to generate multiple
distributed data sets with different cluster distributions, the Jain
fairness index [35] has been used to measure the degree of non-
uniformity of the cluster distribution. The Jain index is a more
appropriate index and has good properties, which do not depend
on the procedure used to generate and distribute the data.

The Jain index is often adopted to measure the equality of the
allocation of a shared resource to different contending entities.
The Jain index is defined as:

J = f (x0, ..., xP−1) =

(∑ P−1
i=0 xi

)2

P ·∑ P−1
i=0 x2

i

, (12)

9

where xi is a measure of the shared resource at node i.
In particular, the quantity we consider is the number of data

points of cluster k at node i, or equivalently the probability de-
fined in (11). The distribution of the data points of cluster k
over the network is measured by a cluster Jain index J(k):

J(k) =

(∑ P−1
i=0 Prob(i, k)

)2

P ·∑ P−1
i=0 Prob(i, k)2

. (13)

The overall Jain index for a data distribution is the average
cluster Jain index:

J =
1
K

K∑
k=1

J(k). (14)

The Jain index is continuous and bounded in the range [0, 1].
It is independent of the scale, the metric and the total amount
of the shared resource and of the number of contending entities.
In our context, the index is a measure of the cluster data distri-
bution over the network nodes. An index closer to 1 means a
better fairness in the allocation, i.e. a uniform distribution. An
index closer to 0 means a skewed allocation, i.e. a non-uniform
distribution with cluster data concentrated around the topologi-
cal cluster centres.

Figure 7 shows the cluster distributions for four values of the
parameter λ (0, 2, 3, 5) for a 2D mesh topology. Each cluster is
associated with a colour. The coloured diagram is a matrix rep-
resenting the network topology. Each cell of the matrix corre-
sponds to a network node and contains pixels of various colour
corresponding to its local data points. In Figure 7(a) there is no
emerging colour pattern as clusters are uniformly distributed
over the network (J ≈ 1). On the contrary in Figure 7(d) the
colour patches around the topological cluster centres are clearly
visible (J ≈ 0).

7.2.2. Initialisation and termination condition
All algorithms have been executed under the same condi-

tions: the same data and cluster distributions and the same ini-
tial centroids. Two different sets of initial centroids were ran-
domly generated for each test case.

The sequential algorithm was run till full convergence. The
total number of iterations varied for the different configurations
roughly in the range [20, 80]. On average the sequential algo-
rithm achieved full convergence in 43 iterations.

In each distributed algorithm each node performs a constant
number of communication operations at each iteration. The
Aggregation protocol in Epidemic K-Means on average sends
2 messages at each Gossip cycle (NC = 15) in each K-Means
iteration. Random P2P K-Means was run with two different
parameter values for the number of neighbours: 4 as used in
[15] and 15 to match the number of messages sent by Epidemic
K-Means. Both Random P2P K-Means (15) and Epidemic K-
Means send 30 messages at each K-Means iteration.

The number of iterations required to converge is important
as it determines the total number of messages. Each distributed
algorithm has its own early termination condition based on the
same threshold value τ = 1%.

The Epidemic K-Means algorithm adopts the relative varia-
tion of the global objective function (2). In all simulations the
algorithm has always converged within a small number of iter-
ations (at most 8).

In Local P2P K-Means each node converges when the lo-
cal updates of the centroids are below the threshold [14, 17].
On average it converged in 14 iterations. In some simulations
the algorithm has converged in a number of iterations (> 80)
greater than the centralised algorithm.

Random P2P K-Means adopts a similar approach to the Lo-
cal P2P K-Means with the difference that the convergence cri-
terion must be verified at the random communication partners
[15]. On average it has converged in 87 iterations.

Local P2P K-Means did not converge spontaneously in a few
cases, where the execution was forced to terminate after 100
iterations. Random P2P K-Means did not converge in 95% of
the simulations, where the execution was forced to terminate
after 100 iterations. In such cases Local P2P K-Means Random
P2P K-Means have shown an oscillating behaviour because of
the highly skewed cluster distribution.

7.2.3. Comparative Analysis
We have compared the three distributed approaches by com-

puting their performance with respect to two main criteria: how
well each algorithm approximates the ideal K-Means solution
and how similar the solutions at different nodes are.

A total of 168 simulations have been carried out varying the
cluster distribution, the topology type, the network size and the
initial centroids. The results have been averaged and are pre-
sented in function of the cluster distribution (Jain index).

Figure 8 shows the average cluster accuracy with respect to
the ideal solution and its standard deviation over the network
nodes according to (8). The Epidemic K-Means always out-
performs the other two approaches, even for uniformly cluster
distributions. Moreover, the performance of the proposed ap-
proach is constant and the standard deviation is very low across
the entire range of the Jain index.

Figure 8(a) indicates that the error of the proposed approach
is very small, but not null. The reason is that the distributed
algorithm is using the early termination criterion based on a
minimum relative improvement, while the sequential K-Means
algorithm is run till full convergence.

Figure 9(a) shows the mean squared error of the final cen-
troids w.r.t. the ideal solution according to (5). The error of
the proposed approach is very low. The two sampling-based
algorithms always show a significant error. For uniformly dis-
tributed cluster data their error is relatively low, while for more
skewed data distributions their error becomes larger. The lo-
cal approach obviously performs even worse than the random
approach when clusters are more localised.

Figure 9(b) shows the mean squared error of the final
centroids at different network nodes (the consistency error)
according to (6). This chart confirms that only the proposed
approach can achieve an important objective: the final cluster-
ing is strictly consistent in all network nodes (the line overlaps
with the x axis).

10

(a) λ = 0 (J=0.9936) (b) λ = 2 (J=0.4068)

(c) λ = 3 (J=0.2297) (d) λ = 5 (J=0.1181)

Figure 7: Four examples of cluster distributions

The experimental analysis has shown that the proposed ap-
proach outperforms the sampling-based approaches for all data
distributions, even for uniformly cluster distributions. As ex-
pected, for skewed data distributions the performance gap be-
comes more significant. Most notably, Local P2P K-Means and
Random P2P K-Means find different clustering solutions than
the ideal sequential K-Means and find different solutions at dif-
ferent nodes. The proposed approach provides a very good ap-
proximation of the ideal solution and the same solution is ob-
tained by all network nodes.

7.3. Epidemic K-Means Fault Tolerance
Finally we have investigated the fault tolerance of the Epi-

demic K-Means algorithm to message losses and node failures.
Message losses may be disregarded when using a reliable

transport protocol, such as TCP. However, the packet retrans-
mission mechanism in TCP can introduce unbounded delays
which may make messages obsolete (related to a past Gossip
cycle) and consequently discarded at the application layer. In
both cases of reliable and unreliable transport protocols, packet
loss and discarded messages introduce a violation of the mass
conservation property and represent a source of inaccuracy for
the Gossip-based Aggregation protocol. An unreliable trans-
port protocol is used and nodes do not detect the lost messages.
During each simulation messages are randomly discarded with
a uniform probability distribution.

We have adopted a lifetime-based node failure model [36]
with a stationary overlay network size, i.e. for each node leav-
ing the system a node joins in. Nodes’ lifetime follows a shifted

Pareto distribution F(x) = 1−(1+ x
β)
−α, where x > 0 and α > 1.

In the simulations we adopted a Pareto index α = 3 and varied
the scaling factor β ∈ [7′, 240′], which corresponds to an av-
erage lifetime in the range between 210” and 2h. Churn is the
rate at which nodes join and leave the system. The above con-
figuration generates churn rates in the range between 1% and
20%.

We have adopted a stationary data distribution; data distribu-
tion at nodes does not change over time and follows the same
approach described in Section 7.2.1, from uniform to skewed
distributions.

We assume that nodes take random departure decisions to
simulate sudden node failures; nodes do not perform any par-
ticular procedure when leaving the system, nor node failures are
detected. As a consequence, messages sent to departed nodes
are lost. Similarly when a node joins the system, it simply re-
covers computation and communication from the previous lo-
cal state and, if not available, from the initial configuration (i.e.
random centroids).

Simulations were carried out to investigate the performance
degradation of the Epidemic K-Means algorithm with a varying
percentage (0− 20%) of uniform message loss and node churn.

Figure 10 shows the average Clustering Accuracy and its
standard deviation over the network nodes for both types of
failures. Figure 11 shows the mean squared error over the ideal
centroids (MS EcKM) for the simulations for both types of fail-
ures. The consistency error among network nodes is not shown:
it is not effected by network failures and is always close to zero,

11

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
lu

st
er

in
g

A
cc

ur
ac

y
(%

)

cluster distribution (Jain index)

Epidemic K-Means
Local P2P K-Means

Random P2P K-Means (4)
Random P2P K-Means (15)

(a) average

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1

st
an

da
rd

 d
ev

ia
tio

n
(%

)

cluster distribution (Jain index)

Epidemic K-Means
Local P2P K-Means

Random P2P K-Means (4)
Random P2P K-Means (15)

(b) standard deviation

Figure 8: Clustering accuracy at network nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 E
rr

or

cluster distribution (Jain index)

Epidemic K-Means
Local P2P K-Means

Random P2P K-Means (4)
Random P2P K-Means (15)

(a) MS EcKM

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 E
rr

or

cluster distribution (Jain index)

Epidemic K-Means
Local P2P K-Means

Random P2P K-Means (4)
Random P2P K-Means (15)

(b) MS EdKM

Figure 9: Mean squared error of the cluster centroids w.r.t. the ideal centroids (MS EcKM) and the consistency error among network nodes (MS EdKM)

similarly to Figure 9(b).
All cases confirm the intrinsic fault tolerant characteristics of

the Epidemic K-Means algorithm. The performance degrades
gracefully under higher rates of network failures.

Some conclusive remarks can be drawn by looking at the
worst simulation scenario. For highly skewed data (J = 0.12)
and with a high rates of network failures (20% of either
message losses or node churn), Epidemic K-Means is still
performing better than any of the sample-based approaches in
faultless network conditions (see Figure 8(a)): it provides a
cluster accuracy of 81% against 30% and 70%, respectively,
for Local P2P K-Means and Random P2P K-Means with 15
neighbours.

In all simulations the assumption of stationary network size
and stationary data distribution is necessary to generate an ideal
K-Means clustering solution against which comparing the solu-
tion obtained by the distributed algorithm at convergence. The
distributed algorithm could be run in continuous mode to adapt
to non-stationary data distributions. However, in non-stationary
conditions there is not a single ideal K-Means clustering so-
lution and the performance analysis would be difficult and ar-
guable. In this case, convergence could only be achieved when

the system persists in stationary conditions long enough, i.e.
for a sufficient number of K-Means iterations. As reported
in Section 7.2.2, the convergence of the proposed approach is
achieved in a very low number of iterations (< 10) on aver-
age; while the approaches based on a sampling strategy, such
as Random P2P K-Means, do not converge with non-uniform
data distributions and have been terminated in 100 iterations in
the 95% of the simulations. Moreover, these methods cannot
naturally cope with failures as they are based on deterministic
communication patterns.

8. Conclusions

We have presented Epidemic K-Means, a formulation of the
distributed K-Means clustering algorithm which is suitable for
asynchronous networked systems of any scale. The proposed
algorithm is completely decentralised and intrinsically fault tol-
erant. The global synchronisation and consistency required in
the K-Means algorithm is achieved by means of a Gossip-based
aggregation protocol. The experimental analysis has confirmed
the convergence to the clustering results which would be ob-
tained by a monolithic K-Means approach over the aggregated
data. The statistical guarantees of the Gossip protocol ensure

12

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
lu

st
er

in
g

A
cc

ur
ac

y
(%

)

cluster distribution (Jain index)

0% msg loss
5% msg loss

10% msg loss
20% msg loss

(a) message loss: average clustering accuracy

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

st
an

da
rd

 d
ev

ia
tio

n
(%

)

cluster distribution (Jain index)

0% msg loss
5% msg loss

10% msg loss
20% msg loss

(b) message loss: standard deviation

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
lu

st
er

in
g

A
cc

ur
ac

y
(%

)

cluster distribution (Jain index)

0% churn
5% churn

10% churn
20% churn

(c) node churn: average clustering accuracy

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

st
an

da
rd

 d
ev

ia
tio

n
(%

)

cluster distribution (Jain index)

0% churn
5% churn

10% churn
20% churn

(d) node churn: standard deviation

Figure 10: Clustering accuracy at network nodes with failures

that the results are consistent within a bounded approximation
error at every node of the system in static and faultless net-
works. The results from extensive simulations have shown that
the proposed approach always performs better than the state
of the art distributed K-Means algorithms for large scale sys-
tems. The simulations have also shown that its performance
degrades gracefully under message loss and node failures in
asynchronous networks.

Epidemic K-Means is the first complex data mining algo-
rithm which is based on Gossip protocols. A similar approach
can be adopted to implement other data mining algorithms for
distributed systems of large and extreme scale. Their adoption
in ubiquitous computing and networking may open up a new
range of powerful applications which have not been possible so
far.

An adaptive termination condition may need to be devised
when the approximation error of the global aggregation is
greater than the termination threshold. In this case nodes may
not terminate synchronously. If and how a Gossip protocol un-
der adversarial failures may still be used to guarantee a syn-
chronous termination of all nodes with high probability, is an
interesting open issue.

References

[1] M. Weiser, Hot topics-ubiquitous computing, Computer 26 (10) (1993)
71 –72.

[2] A. Bonifati, A. Cuzzocrea, Efficient fragmentation of large XML docu-
ments, in: Proceedings of the 18th international conference on Database
and Expert Systems Applications, DEXA ’07, Springer-Verlag, Berlin,
Heidelberg, 2007, pp. 539–550.

[3] A. Cuzzocrea, F. Furfaro, D. Saccà, Enabling OLAP in mobile environ-
ments via intelligent data cube compression techniques, Journal of Intel-
ligent Information Systems 33 (2) (2009) 95–143.

[4] M. Inaba, N. Katoh, H. Imai, Applications of weighted Voronoi diagrams
and randomization to variance-based k-clustering, in: SCG ’94: Proceed-
ings of the tenth annual symposium on Computational geometry, ACM,
New York, NY, USA, 1994, pp. 332–339.

[5] D. Aloise, A. Deshpande, P. Hansen, P. Popat, Np-hardness of euclidean
sum-of-squares clustering, Machine Learning 75 (2009) 245–248.

[6] J. B. MacQueen, Some methods for classification and analysis of multi-
variate observations, in: L. M. L. Cam, J. Neyman (Eds.), Proc. of the fifth
Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1,
University of California Press, 1967, pp. 281–297.

[7] S. P. Lloyd, Least squares quantization in PCM, IEEE Transactions on
Information Theory IT-28 (2) (1982) 129–137.

[8] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda,
G. McLachlan, A. Ng, B. Liu, P. Yu, Z.-H. Zhou, M. Steinbach, D. Hand,
D. Steinberg, Top 10 algorithms in data mining, Knowledge and Informa-
tion Systems 14 (2008) 1–37.

[9] A. K. Jain, Data clustering: 50 years beyond k-means, Pattern Recog-
nition Letters 31 (8) (2010) 651 – 666, award winning papers from the
19th International Conference on Pattern Recognition (ICPR), 19th Inter-
national Conference in Pattern Recognition (ICPR).

[10] D. Kempe, A. Dobra, J. Gehrke, Gossip-based computation of aggregate

13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

M
S

E
cK

M

cluster distribution (Jain index)

0% msg loss
5% msg loss

10% msg loss
20% msg loss

(a) message loss

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

M
S

E
cK

M

cluster distribution (Jain index)

0% churn
5% churn

10% churn
20% churn

(b) node churn

Figure 11: Mean squared error of the cluster centroids w.r.t. the ideal centroids (MS EcKM) under failures

information, in: Proceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science, 2003, pp. 482 – 491.

[11] M. Jelasity, A. Montresor, O. Babaoglu, Gossip-based aggregation in
large dynamic networks, ACM Transactions on Computer Systems 23
(2005) 219–252.

[12] S. Boyd, A. Ghosh, B. Prabhakar, D. Shah, Randomized gossip algo-
rithms, Information Theory, IEEE Transactions on 52 (6) (2006) 2508 –
2530.

[13] S. Datta, C. Giannella, H. Kargupta, K-means clustering over peer-to-peer
networks, in: Proceedings of the 8th International Workshop on High Per-
formance and Distributed Mining (HPDM’05). In conjunction with the
SIAM International Conference on Data Mining, Newport Beach, Cali-
fornia, 2005.

[14] S. Datta, C. Giannella, H. Kargupta, K-means clustering over a large,
dynamic network, in: Proceedings of the Sixth SIAM International Con-
ference on Data Mining, Bethesda, Maryland, USA, 2006, pp. 153–164.

[15] S. Bandyopadhyay, C. Giannella, U. Maulik, H. Kargupta, K. Liu,
S. Datta, Clustering distributed data streams in peer-to-peer environments,
Information Sciences, Elsevier, 176 (14) (2006) 1952 – 1985.

[16] S. Datta, K. Bhaduri, C. Giannella, R. Wolff, H. Kargupta, Distributed
data mining in peer-to-peer networks, Internet Computing, IEEE, 10 (4)
(2006) 18 –26.

[17] S. Datta, C. Giannella, H. Kargupta, Approximate distributed k-means
clustering over a peer-to-peer network, IEEE Transactions on Knowledge
and Data Engineering 21 (10) (2009) 1372–1388.

[18] D. Foti and D. Lipari and C. Pizzuti and D. Talia, Scalable parallel clus-
tering for data mining on multicomputers, Proceedings of the 15th IPDPS
2000 Workshops on Parallel and Distributed Processing, Lecture Notes in
Computer Science (2000) 390–398.

[19] D. Judd and P. K. McKinley and A. K. Jain, Large-scale parallel data clus-
tering, IEEE Transactions on Pattern Analysis and Machine Intelligence
20 (8) (1998) 871–876.

[20] I. S. Dhillon, D. S. Modha, A data-clustering algorithm on distributed
memory multiprocessors, In Large-Scale Parallel Data Mining, Lecture
Notes in Computer Science 1759 (2000) 245–260.

[21] M. P. I. Forum, MPI: A message-passing interface standard, version 2.2,
mpi22-report.pdf (Sep. 2009).
URL http://www.mpi-forum.org/docs/mpi-2.2/

[22] D. Pettinger, G. D. Fatta, Scalability of efficient parallel K-Means, in:
Proceedings of the 5th IEEE International Conference on e-Science,
Workshop on Computational e-Science, 2009, pp. 96–101.

[23] G. D. Fatta, D. Pettinger, Dynamic load balancing in parallel KD-Tree K-
Means, in: Proceedings of the International IEEE Conference on Scalable
Computing and Communications (ScalCom), 2010, pp. 2478–2485.

[24] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Stur-
gis, D. Swinehart, D. Terry, Epidemic algorithms for replicated database
maintenance, in: Proceedings of the sixth annual ACM Symposium on
Principles of distributed computing, PODC ’87, ACM, 1987, pp. 1–12.

[25] R. Karp, C. Schindelhauer, S. Shenker, B. Vocking, Randomized rumor

spreading, in: Proceedings of the 41st Annual Symposium on Founda-
tions of Computer Science, IEEE Computer Society, 2000, pp. 565–.

[26] P. Jesus, C. Baquero, P. Almeida, Dependability in aggregation by aver-
aging, in: 1st Symposium on Informatics (INForum 2009), 2009, pp. 482
– 491.

[27] I. Rao, A. Harwood, S. Karunasekera, Gossip-based asynchronous and
robust aggregation protocol - a pessimistic approach, in: Consumer Com-
munications and Networking Conference (CCNC), 2011 IEEE, 2011, pp.
543 –548.

[28] J. Tsitsiklis, D. Bertsekas, M. Athans, Distributed asynchronous deter-
ministic and stochastic gradient optimization algorithms, Automatic Con-
trol, IEEE Transactions on 31 (9) (1986) 803 – 812.

[29] E. Ogston, S. Jarvis, Peer sampling with improved accuracy, Peer-to-Peer
Networking and Applications 2 (2009) 24–36.

[30] D. Gillman, A chernoff bound for random walks on expander graphs,
SIAM Journal on Computing (Society for Industrial and Applied Mathe-
matics) 27 (4) (1998) 12031220.

[31] G. Fortino, C. Mastroianni, W. Russo, A hierarchical control protocol for
group-oriented playbacks supported by content distribution networks, J.
Network and Computer Applications 32 (1) (2009) 135–157.

[32] A. Medina, I. Matta, J. Byers, On the origin of power laws in internet
topologies, SIGCOMM Comput. Commun. Rev. 30 (2000) 18–28.

[33] D. L. Mills, On the accuracy and stability of clocks synchronized by the
network time protocol in the Internet system, ACM Computer Communi-
cation Review 20 (1990) 65–75.

[34] P. Bertasi, M. Bonazza, N. Moretti, P. E., PariSync: Clock Synchroniza-
tion in P2P Networks, ISPCS 2009 Internation IEEE Symposium on Pre-
cision Clock Synchronization for Measurement, Control and Communi-
cation (2009) 12–16.

[35] R. Jain, D. Chiu, W. Hawe, A quantitative measure of fairness and dis-
crimination for resource allocation in shared computer systems, Tech.
rep., DEC Research Report TR-301 (1984).

[36] D. Leonard, Z. Yao, V. Rai, D. Loguinov, On lifetime-based node
failure and stochastic resilience of decentralized peer-to-peer networks,
IEEE/ACM Transactions on Networking 15 (3) (2007) 644 –656.

14

