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Abstract Sampling strategies for monitoring the status and trends in wildlife
populations are often determined before the first survey is undertaken. How-
ever, there may be little information about the distribution of the population
and so the sample design may be inefficient. Through time, as data are col-
lected, more information about the distribution of animals in the survey region
is obtained but it can be difficult to incorporate this information in the sur-
vey design. This paper introduces a framework for monitoring motile wildlife
populations within which the design of future surveys can be adapted using
data from past surveys whilst ensuring consistency in design-based estimates
of status and trends through time. In each survey, part of the sample is se-
lected from the previous survey sample using simple random sampling. The
rest is selected with inclusion probability proportional to predicted abundance.
Abundance is predicted using a model constructed from previous survey data
and covariates for the whole survey region. Unbiased design-based estimators
of status and trends and their variances are derived from two-phase sampling
theory. Simulations over the short and long-term indicate that in general more
precise estimates of status and trends are obtained using this mixed strategy
than a strategy in which all of the sample is retained or all selected with proba-
bility proportional to predicted abundance. Furthermore the mixed strategy is
robust to poor predictions of abundance. Estimates of status are more precise
than those obtained from a rotating panel design.
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1 Introduction

This paper is motivated by the requirement of many wildlife managers to ob-
tain efficient estimates of the total number of individuals in a population they
are managing and to monitor how this changes through time. In essence these
questions can be answered by a series of surveys at times t = 1, 2, . . ., from
which an estimate of τ (t), the total number of individuals in the population at
time t, can be obtained. Ideally these surveys are designed as part of a moni-
toring programme so that δ(t

′,t) = τ (t)− τ (t
′) can also be efficiently estimated.

This paper considers the question of which locations within a survey region
should be sampled in any one survey so that efficient design-based estimates
of τ (t) and δ(t

′,t) can be obtained.
In a design-based framework the most efficient estimate of τ (t) would be

obtained when the probability of inclusion for a sampling location is propor-

tional to the response variable - in this case y
(t)
i , the number of individuals

found at location i at time t. This is clearly never possible but if inclusion

probabilities can be related to covariates that are correlated with y
(t)
i , the es-

timate of τ (t) will be more efficient than if all units are selected with equal
probability.

At the start of a monitoring programme, there may be little known about

how y
(t)
i varies over the survey region. Although there will often be auxiliary

information about the survey region, such as habitat, distance from human
disturbance, topography etc., the relationship between these variables and

y
(t)
i may not be clear so that this information cannot be used to determine
inclusion probabilities. Alternatively the relationship may be known for some
or all of the covariates individually but combined together it may be difficult
to see how features of the overall survey design, such as stratification criteria
or inclusion probabilities, should be determined.

Once a survey has been conducted, the survey data can be used to construct
a model from which predictions of how species abundance varies through the
survey region can be made. This paper proposes a design-based framework for
incorporating this knowledge into the design of future surveys by using these
model-based estimates to determine inclusion probabilities in future surveys.
This is similar in spirit to the approach of Hansen et al (1983):

...design decisions may be guided and evaluated by models, but in-
ferences concerning population characteristics should be made on the
basis of induced randomization...

In a monitoring programme it is not just τ (t) that is required, but δ(t
′,t)

also. If y
(t)
i the number of individuals observed at location i at time t is ex-

pected to be correlated with y
(t′)
i the number observed at that location in a

previous survey, then a precise estimate of δ(t
′,t) is obtained by sampling the

same units in survey t as survey t′. In this paper the populations being con-
sidered are motile, that is individuals of the species can cover the whole of the
survey region in a much smaller time than the time between surveys. Even
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so, the distribution of the population over the survey region is expected to
be relatively constant between surveys, unless there have been large changes
in the environment, for example habitat or climate changes, or migrational

shifts. That is, if µ
(t)
i = kµ

(t′)
i is the expected number of individuals at loca-

tion i at time t then y
(t)
i and y

(t′)
i will be correlated. A precise estimate of

change in the population total, δ̂(t
′,t), could therefore be obtained by sampling

the same units in each survey. However if the original sample design was not
very efficient, then future survey design would also be inefficient. If however an
entirely new design is used based on what has been learnt from the previous
survey then again the estimate of δ̂(t

′,t) may be inefficient.

Rotating panel designs first proposed by Jessen (1942) and reviewed by
Duncan and Kalton (1987) and Binder and Hidiroglou (1988) are strategies
where part of the sample is retained from one survey to another, to obtain
precise estimates of δ(t

′,t), and the rest of the sample is selected from those
units not sampled previously. The idea is that by covering a greater part of
the sample space a better estimate of τ (t) can be obtained. For these designs
the sampling strategy is determined at the start of the monitoring programme
and remains fixed through time, even if the units in the sample vary. Hence
for wildlife populations, if little is known at the start about the species distri-
bution, the survey design will remain inefficient. Currently, these designs are
rarely used in wildlife population assessment, although they were proposed
by Skalski (1990). They are more commonly used in environmental monitor-
ing - for example in the Environmental Monitoring Assessment Programme
(EMAP) (Overton et al, 1990) - and in social surveys - for example the Cana-
dian Labor Force Survey (Dufour et al, 1998)).

To deal with environmental change, Overton and Stehman (1996) propose a
strategy for redefining strata to improve sample efficiency during the lifetime
of a monitoring programme. They advise that this adjustment should only
occur once or twice within the course of the monitoring programme. However,
more frequent updating may be important when much is being learnt about
the distribution of animals over the survey region in the first few surveys, or if
it is varying through time. The methods developed in this paper are an initial
step in addressing this problem.

This paper introduces a common notation before describing the general
design framework and derivation of estimators. A simulated population is used
to demonstrate the effectiveness of these methods when selecting a second
survey after obtaining a model of predicted abundance from the first survey.
Simulations are also used to investigate the robustness of the methodology
if predicted abundance is a biased estimate of true abundance. Results are
compared with standard rotating panel surveys. The paper also discusses and
illustrates the application of the methods over a 10 year monitoring study in
which a survey is taken each year.
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2 Method

2.1 Notation

Consider a survey region U divided into N contiguous units U = {1, ..., N}.
There is information about the survey region in the form of a number p of
covariates so that xi1, ..., xip are the value of the p covariates for unit i. These
covariates might be physical characteristics of the survey region such as: eleva-
tion or aspect (eg Opsomer et al, 2003); habitat types based on some classifica-
tion scheme (eg Buckland and Elston, 1993) who used those from the National
Habitat Survey of Grampian Region; or human influences such as distance to
transport networks (eg Khaemba and Stein, 2000). In addition, each unit is
georeferenced providing two further covariates on location. At time t, the num-

ber of individuals in unit i is y
(t)
i , so the total number of individuals in the

population is τ (t) =
∑N

i=1 y
(t)
i which can be written

∑
i∈U y

(t)
i . The change in

the population between time t and time t′ is δ(t
′,t) = τ (t) − τ (t

′) where t′ < t.

In survey t a sample s(t) ⊆ U of n units is taken. Assuming that there

is perfect detectability y
(t)
i is recorded for these n units and a design-based

estimate of τ (t) is obtained using these data. In addition the data are used

to predict E[y
(t)
i ] = µ

(t)
i the expected number of animals in each unit in the

survey region using a statistical model ζ(t) fitted to data from the sampled
units.

2.2 Design

At the start of the monitoring programme, t = 1, little is known about the
distribution of animals over the survey region so the first sample s(1) is selected
using simple random sampling without replacement (srswor). The data from
the sample s(1) and the explanatory variables are used to obtain ζ(1) from

which µ
(1)
i is predicted for all units in the survey region.

In the second survey, at time t = 2, a sample s(2) is selected, also of size

n. Part of the sample, say s
(2)
1 of size n

(2)
1 , is selected from the first survey

sample s(1) using srswor. The rest of the sample, s
(2)
2 of size n

(2)
2 = n−n

(2)
1 , is

selected without replacement with inclusion probability proportional to µ̂
(1)
i

from s
(1)
c = U − s(1), those units that were not included in survey 1, so that

s
(2)
2 ⊆ s

(1)
c .

In future surveys, the strategy is similar. In survey t, s
(t)
1 can be selected

from s(1) using srswor, or can be the same as s
(2)
1 , depending on whether it is

δ(1,t) or δ(t
′,t) where t′ > 1 that is of most interest. Then s

(t)
2 will be selected

with probability proportional to predicted abundance, µ̂
(t)
i , from U − s(1) or

U − s
(2)
1 respectively.
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2.3 Models of predicted abundance

After survey t data from all previous surveys, t = 1, . . . , t can be used to con-
struct a model ζ(t) which describes the relationship between auxiliary data

and species abundance. Because the y
(t)
i are count data, the type of model

used to predict the abundance of the species over the survey region will often

be of the form: y
(t)
i ∼ Poisson(µ

(t)
i ) although there will often be overdisper-

sion. Generalised linear models McCullagh and Nelder (1989) or generalised
additive models Wood (2006) can be used to model the relationship between
the explanatory variables and the observed counts. Smooth terms for location,
such as latitude and longitude, perhaps using a thin-plate spline, might be in-
cluded in the model to describe spatial variability in the data. A very general
population model would therefore be of the form:

log(µ
(t)
i ) =

P∑
j=0

f
(t)
j (x

(t)
ij ) + g(t)

where f
(t)
j (x

(t)
ij ) is a linear or smooth function of the jth auxiliary variable

at time t and g(t) is a function, linear or smooth, of time. Simpler versions
of the model include those with a constant population size through time

or with covariate effects remaining constant over time so that log(µ
(t)
i ) =∑P

j=0 fj(x
(t)
ij ) + g(t). Then, data from all surveys would be equally important

for modelling the relationship between habitat and abundance. By contrast,
if ζ(t) models a changing relationship between habitat and abundance, for
example in the presence of climate change, then data from past surveys will
contribute less to the construction of ζ(t).

To design the survey at time t+1, the model ζ(t) is used to predict µ̂
(t+1)
i .

This may be equivalent to µ̂
(t)
i if there have been no habitat changes between

the two surveys and the relationship between habitat and abundance remains
constant over time. One alternative would be to use the same model ζ(t) but

recalculate µ̂
(t+1)
i using updated values of the covariates.

2.4 Estimation

Here, a rationale and estimators for τ (2) and δ(1,2) given that s
(2)
1 is selected

using srswor from s(1), and s
(2)
2 is selected with probability proportional to µ̂

(1)
i

from s
(1)
c is given. The Appendix provides more details and general results for

two surveys s(t
′) and s(t) and demonstrates that these estimators are unbiased.

Let π
(t)
i = Pr(i ∈ s(t)) and π

(t)
ij = Pr(i&j ∈ s(t)). In survey t = 1 these

are:

π
(1)
i =

∑
s(1)∋i

p(s(1)) =
n

N
and π

(1)
ij =

n(n− 1)

N(N − 1)
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Standard estimators are derived using the Horvitz-Thompson estimator (Horvitz
and Thompson, 1952) and the Sen-Yates Grundy variance estimator (Yates
and Grundy, 1953; Sen, 1973).

In the second survey, when some sample units in s(2) are selected from s(1)

then

π
(2)
i = Pr(i ∈ s

(2)
1 |i ∈ s(1))Pr(i ∈ s(1)) + Pr(i ∈ s

(2)
2 |i ∈ s(1)c )Pr(i ∈ s(1)c )

The probability Pr(i ∈ s
(2)
2 |i ∈ s

(1)
c ) =

∑
s
(1)
c ∋i

π
(2)

i2|s(1)
p(s(1)) where π

(2)

i2|s(1)
is

the probability that unit i is included in s
(2)
2 given that the sample s(1) has

been selected. This requires calculating the probability that unit i is included

in s
(2)
2 for all possible samples s(1). This probability depends on µ̂

(1)
i and the

value of µ̂
(1)
i for all other units in s

(1)
c . However µ̂

(1)
i will depend on the sample

s(1) that is selected. As only one sample is taken it is not possible to evaluate

the second half of π
(2)
i directly.

Instead, the principles of two-phase sampling and estimation can be used to
develop estimators of τ (2). Särndal et al (1992) describe unbiased design-based
estimators for two phase sampling in which a sample s2 is an unequal probabil-
ity sample selected conditional on the selection of a sample s1. It is often used
when s2 is contained within s1, from which only auxiliary information is ob-
tained. One use of these two-phase sampling schemes is for sampling through
time, in which part of the sample is retained from one survey to another.

The estimate τ̂ (2) is a weighted average, τ̂ (2) = ωτ̂
(2)
1 + (1− ω)τ̂

(2)
2 , where

τ̂
(2)
k uses the data from s

(2)
k only. Ideally, ω is selected to minimise the variance

of τ̂ (2) but in practice, given estimates of var(τ̂
(2)
k ), var(τ̂ (2)) and cov(τ̂

(2)
1 , τ̂

(2)
2 ),

ω can be selected to minimise the estimated variance v̂ar(τ̂ (2)). Alternatively,
weights can be based on the relative sample sizes so that ω = n1

n as is imple-
mented here.

The estimate τ̂
(2)
1 and its variance are obtained using the data from s

(2)
1 .

Because units are selected using simple random sampling without replacement,

the inclusion probabilities π
(2)
i1

= Pr(i ∈ s
(2)
1 |i ∈ s(1))Pr(i ∈ s(1)) are π

(2)
i1

=
n1

n
n
N = n1

N . Similarly the joint inclusion probability π
(2)
(ij)1

= n1(n1−1)
N(N−1) and so

the Horvitz-Thompson estimator and the Sen-Yates-Grundy estimator of the

variance can be used to obtain τ̂
(2)
1 and v̂ar(τ̂

(2)
1 ).

To obtain τ̂
(2)
2 a similar argument to Särndal et al (1992) can be followed.

The sample s
(2)
2 is a probability sample of s

(1)
c which itself is a probability

sample of U . So π
(1)
ic

= Pr(i ∈ s
(1)
c ) = N−n

N and an unbiased estimate of τ (2)

would be
∑

i∈s
(1)
c

y
(2)
i

π
(1)
ic

= N−n
n

∑
s
(1)
c

y
(2)
i . The y

(2)
i are only known for i ∈ s

(2)
2

rather than for all i ∈ s
(1)
c . Because s

(2)
2 is a probability sample from s

(1)
c

where unit i is selected with the inclusion probability π
(2)

2|s(1) proportional to

µ̂
(1)
i an unbiased estimator of

∑
i∈s

(1)
c

y
(2)
i is

∑
i∈s

(2)
2

y
(2)
i

π
(2)

2|s(1)
.
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Hence τ
(2)
2 is estimated as:

τ̂
(2)
2 =

∑
s
(2)
2

y
(2)
i

π
(2)

i|s(1)c

π
(1)
ic

=
∑
s
(2)
2

y
(2)
i

π
(2)†
i

and the probability π
(2)†
k = π

(2)

k|s(1)c

π
(1)
kc

where k = i or k = ij for joint inclusion

probabilities.

The variance of this estimator has two components that express the vari-

ability in estimating τ̂ (2) using the units from s
(1)
c and the expected variance

given that the sample s
(1)
c has been selected. Its estimator can be calculated

explicitly as:

v̂ar(τ̂
(2)
2 ) =

∑
s
(2)
2

∑
s
(2)
2

∆
(1)
(ij)c

π
(2)†
ij

y
(2)
i y

(2)
j

π
(1)
ic

π
(1)
jc

+
∑
s
(2)
2

∑
s
(2)
2

∆(ij)
2|s(1)c

π
(2)

(ij)2|s(1)c

y
(2)
i

π
(2)†
i

y
(2)
j

π
(2)†
j

where ∆(ij)k = π(ij)k − π(i)kπ(j)k

The covariance cov(τ̂
(2)
1 , τ̂

(2)
2 ) is the negative of the variance of the data in

U . If all N units had the same value so that y
(2)
i = y(2) then the covariance

would be zero as the totals τ̂
(2)
1 and τ̂

(2)
2 would remain the same for all possible

s
(2)
1 and s

(2)
2 . Its estimator only uses the data from s

(2)
1 . This is reasonable

because s
(2)
1 is a probability sample from U but it does mean that if n1 is

small then the estimator will not be very precise.

The estimated variance of δ̂(1,2) = τ̂ (2) − τ̂ (1) requires the covariance term

cov(τ̂ (2), τ̂ (1)), which is a weighted average of cov(τ̂ (1), τ̂
(2)
1 ) and cov(τ̂ (1), τ̂

(2)
2 ).

These covariances require information from units that were sampled in both

time periods so only those data from s
(2)
1 are used. These covariances will be

poorly estimated when s
(2)
1 is small. Further work to develop estimators that

use all the data would be useful.

3 Simulation

A population was generated for a square area A. Four covariates were gener-
ated and combined to produce a density surface λL. An inhomogeneous Poisson
process with intensity λL was used to generate populations for the two sur-
veys. No trend in the population or in the density surface was incorporated.
Further details of how λL and the four covariates were generated are provided
in the on-line information.

The area A was divided into N = 1296 units in a 36 x 36 grid. The value of
each covariate was recorded for the central point in each unit, and the number

of individuals in unit i at time t recorded as y
(t)
i .
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3.1 Survey 1

In survey 1 a without replacement simple random sample s(1) of n = 100 units

was taken and y
(1)
i recorded for i ∈ s(1) and an estimate of τ (1) obtained.

These data and covariate information for the n units in s(1) were also used
to construct a model of the form: y

(1)
i ∼ Poisson(µ

(1)
i ) where log(µ

(1)
i ) =

β0 +
∑4

k=1 βkxik A step-wise AIC procedure Venables and Ripley (2002) was
then used to select covariates for the final model. This model was then used
to predict µ̂

(1)
i for all units in the survey region.

3.2 Survey 2

In survey 2 a sample s
(2)
1 of n1 units was selected from s(1) and a sample s

(2)
2

of n2 units was selected with probability proportional to µ̂
(1)
i from s

(1)
c . Five

different values of n1 = 100, 75, 50, 25, 0 were selected. When n1 = 100 all units
from the first survey, s(1), are retained and when n1 = 0, all units are selected

with probability proportional to µ̂
(1)
i from s

(1)
c . Figure 1 shows an example

for one set of µ̂
(1)
i from a model ζ(1) where different proportions of s(2) were

sampled with inclusion probability proportional to µ̂
(1)
i . As n2 increases the

number of samples seen in the high density areas, the light coloured areas,
increases. This whole procedure was repeated B = 1000 times so that 1000
samples for survey 1 were taken and a sample from each of these taken for
the five values of n1. In addition, a second set of surveys was run to compare
with results with a repeating panel survey. In this case all of the second survey

sample s(2) was selected using srswor where s
(2)
1 of size n1 was selected from

s(1) and s
(2)
2 of size n2 from s

(1)
c .

Sunter’s method (Sunter, 1977a,b) was used to select units with inclusion

probability proportional to µ̂
(1)
i . Using this strategy, units are ordered from

those with largest µ̂
(1)
i to smallest µ̂

(1)
i and units with small values of µ̂

(1)
i ,

below a certain threshold, are selected with simple random sampling. This

could be seen as smoothing µ̂
(1)
i when µ̂

(1)
i is small. Sunter states that it is often

desirable that the smallest valued units are sampled with equal probability
as the correlation between the size measure and the variable of interest can
become unstable for these units. This seems appropriate here as interest is in

the units with high values of µ̂
(1)
i . Alternative methods that could be used are

Chao (Chao, 1982) or those described by Brewer and Hanif (1982) or Tillé
(2006).

Results are given in table 1. Unbiased estimates of τ (2), and δ̂(1,2) were
obtained using the new method. The estimated variance v̂ar(τ̂ (2)) decreases

as the proportion of the sample selected with probability proportional to µ̂
(2)
i

increases. In comparison, when s
(2)
2 is selected using srswor the estimated

variance
√
v̂ar(τ̂ (2)) remains constant as n2 increases. Retaining units from

s(1) to s(2) leads to a more precise estimate of δ̂(t
′,t) because cor(y

(1)
i , y

(2)
i ) > 0
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Fig. 1 Illustrations of different designs for predicted abundance. Lighter areas in the survey

region indicate higher abundance. White squares indicate s
(2)
1 , those retained from s(1), and

black squares indicate those sampled with probability proportional to µ̂
(t)
i

Table 1 Results from survey 2 where from a total sample size of n = 100 units, s
(2)
2 of size

n2 is selected with inclusion probability proportional to µ̂
(1)
i and s

(2)
1 of size n1 = n− n2 is

selected from s(1) using simple random sampling without replacement. Results show mean

(and standard deviation) from the 1,000 simulations of: τ̂ (2) and
√

v̂ar(τ̂ (2)) when s
(2)
2 of

size n
(2)
2 is selected with inclusion probability proportional to µ̂

(1)
i from s

(1)
c ;

√
v̂ar(τ̂ (2)) srs

when s(2) of size n(2) is selected using simple random sampling from s
(1)
c , and

√
v̂ar(δ̂(1,2))

under both sampling strategies just described.

n2 τ̂ (2)
√

v̂ar(τ̂ (2))
√

v̂ar(τ̂ (2)) srs v̂ar(δ̂(1,2)) v̂ar(δ̂(1,2)) srs

0 2574 (362) 366 (96) 366 (96) 244 (30) 244 (30)
25 2578 (319) 334 (90) 366 (96) 301 (62) 242 (37)
50 2579 (309) 300 (82) 364 (96) 352 (74) 360 (80)
75 2565 (276) 260 (67) 363 (96) 396 (75) 446 (86)
100 2566 (221) 218 (34) 364 (100) 418 (75) 515 (94)
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and so as the proportion retained from s(1) decreases the variance v̂ar(δ̂(1,2))
increases. The increase in the variance as n2 increases is less when the units
in s

(2)
2 are selected with inclusion probability proportional to µ̂

(2)
i than when

s
(2)
2 is selected using srswor . This is because in the new design the variance

of τ̂
(2)
2 reduces as n2 increases, whereas it remains constant under srswor.

3.3 Efficiency measure

From table 1 it is clear that the efficiency of τ̂ (2) increases as n2

n increases.
For a fixed n1 however the efficiency of the sampling strategy will depend

on the relationship between y
(t)
i and µ̂

(t)
i . If µ

(t)
i were known for all units in

the population, then the efficiency of the sampling strategy would depend

on the distribution of µ
(t)
i and the variability of y

(t)
i about µ

(t)
i . Simulations

have indicated that there is an increase in the relative efficiency of τ̂ (2) when

sampling with inclusion probability proportional to µ̂
(t)
i compared to under

srswor as var(y
(t)
i ) decreases and µ

(t)
i becomes more right-skewed.

In practice the µ
(t)
i must be estimated. A simple heuristic measure b where

µ̂
(t)
i = µ

(t)b
i describes how well µ̂

(t)
i estimates µ

(t)
i . Ignoring the superscript for

time, assume that the yi are generated from a Poisson distribution with mean
µi such that

log(µi) =

Q∑
j=0

βjxij

An estimate of µi, using the same auxiliary variables, will be of the form

log(µ̂i) =

Q∑
j=0

β̂jxij

If for simplicity we assume that parameter estimates are related in a linear
fashion to the parameters so that

β̂j = a∗j + b∗jβj

we can write

log(µ̂i) =

Q∑
j=0

(a∗j + b∗jβj)xij

For convenience, in particular to obtain a tractable expression, we assume
that the relationship between parameter estimates and parameters is such
that b∗j = b for j = 0, . . . , Q so

log(µ̂i) =

Q∑
j=0

a∗jxij + b log(µi) ⇒ µ̂i = aµb
i
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The parameter a =
∑Q

j=0 a
∗
jxij is a scaling parameter and will have no effect

on inclusion probabilities if sampling with probability proportional to µ̂
(t)
i . A

value of b close to 1 therefore indicates that µ̂
(t)
i is a good estimate of µ

(t)
i

when it is used to generate inclusion probabilities. As |b− 1| increases so µ̂
(t)
i

estimates µ
(t)
i less well, this could be classed as model misspecification. This

is, of course, a very large oversimplification as in practice b∗j will vary for each
auxiliary variable; the effect of b∗j on µ̂i will depend on the relative size of the
auxiliary variable; and b is likely to deviate from one when the set of auxiliary
variables used to estimate µ̂i are not the set of auxiliary variables that actually
describe µi.

The impact of model misspecification on v̂ar(τ̂ (2)) can be investigated using

the simulated population. The underlying abundance µ
(t)
i can be found using

the y
(t)
i to obtain a model of µ

(t)
i . Using µ̂

(t)
i = µ

(t)b
i for different values of

b = −0.5, 0, 0.5, 1, 1.5, 2 a sample s(2) is selected where s
(2)
2 of n2 units are

selected with probability proportional to µ
(t)b
i . This is repeated for each of

the B=1000 s(1) samples for n2 = 0, 25, 50, 75 and 100. For each value of b the
median variance and the 2.5 and 97.5 percentiles of the variance are calculated.
These are shown in figure 2.

When the model is well specified, that is b is close to one, the median vari-
ance decreases as the proportion selected with inclusion probability propor-

tional to µ̂
(t)
i increases. Furthermore when b is close to one, the 95% interval,

representing the variability in v̂ar(τ̂ (2)) is much greater under srswor than the
other sampling strategies. As misspecification, |b − 1|, increases, the median
variance and the variability in v̂ar(τ̂ (2)) increases. In particular the strategy
in which no units are retained from one survey to another has the greatest
increase in variability. The combined strategy in which part of the sample
is retained from one survey to another and part is selected with probability

proportional to µ̂
(t)
i makes the methods more robust to model misspecification.

4 Use of strategy for a long-term monitoring strategy

The original motivation for these designs was to use them in a long-term moni-
toring strategy which aims to estimate both τ (t) and δ(t

′,t). A basic monitoring
strategy would be of the form:

1. Survey 1:
(a) Take a sample s(1) using srswor of n units from U
(b) Develop a model ζ(1) that uses the data in s(1)

2. Survey 2:

(a) Predict µ̂
(2)
i ∀ i ∈ U using the model ζ(1) and relevant covariates

(b) Take a sample s(2) of n units of which

i. n
(2)
1 units are selected using srswor, from U or s(1)

ii. n
(2)
2 are selected using πpµ̂(2), from s

(2)
1 or s

(1)
c
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Fig. 2 Results from 1000 simulations of v̂ar(τ̂ (2)) for varying values of n2, where n = 100

and where µ
(t)
i is estimated to be µ

(t)b
i for different values of b compared to when s(2) is

selected using simple random sampling. Thick lines are median results and thin lines the 2.5
and 97.5 percentiles.
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(c) Develop a model ζ(2) using the data from s(2), and possibly the data
from s(1).

3. Survey t >2:

(a) Predict µ̂
(t)
i ∀ i ∈ U using the model ζ(t−1) and relevant covariates

(b) Take a sample s(t) of n units of which

i. n
(t)
1 units are selected, using srswor, from U or s

(t−1)
1

ii. n
(t)
2 units are selected using πpµ̂(t) from s

(t)
1c

or s
(t−1)
1c

(c) Develop model ζ(t) that uses the data in s(t), and possibly the data
from s(t−1), . . . , s(1)

Two key decisions in implementing the monitoring strategy are the propor-
tion of the sampling effort that is allocated to retaining units from previous
surveys and which data are used to construct the model ζ(t).

4.1 Simulation

A monitoring strategy for 10 surveys was simulated for the same survey area
as described in section 3. Populations were generated for the ten surveys using
the inhomogeneous Poisson process with intensity λL, as previously described
in the on-line information. The intensity was therefore the same for all ten
surveys. Hence the expected population total remained constant for all surveys,
although the realised population total, τ (t), did differ between the surveys.

Allocation of sampling effort In this simulation the overall sample size remains
fixed each year at n = 100. The allocation of effort to retaining units would
depend on the relative importance of τ (t) and δ(t

′,t) and the relative costs of
sampling new units compared to retaining old units . Here it is assumed that
the costs are the same for retaining units or sampling new ones. Furthermore
the same proportion of units are retained in each survey so that the proportion
of the sample retained in surveys t = 3, . . . , 10 is equal to the proportion

retained in survey t = 2 so that n
(t)
1 = n

(2)
1 for t = 3, . . . , 10.

Constructing ζ(t) . Two strategies were considered for constructing the model

ζ(t) from which µ̂
(t)
i is predicted. First, the model can be constructed using the

data from all previous surveys s(1), . . . , s(t). In this case it would be necessary
to allow for the possibility of a temporal trend in the construction of ζ(1).
Second, only the data from the last survey s(t) could be used to construct the
model. This strategy might be appropriate when the relationship between µi

and xi is changing rapidly, relative to the interval of the surveys and data from

previous surveys are only marginally useful in estimating µ̂
(10)
i .

Sampling strategies used in simulation In survey 1 a simple random sample
s(1) of n = 100 units was selected. This was repeated B = 1000 times. The
model ζ(1) was obtained using the method described in section 3.1. In survey
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t = 2 the subsample s
(2)
1 was selected using srswor from s(1) and in surveys

t = 3, . . . , 10 the subsample s
(t)
1 = s

(2)
1 . Thus the subsamples s

(2)
2 was selected

from s
(1)
c and subsample s

(t)
2 for t > 2 from s

(2)
1c

. For each of the initial 1000
samples three difference scenarios were considered for selecting samples in
future surveys s(t) for t = 2, . . . , 10.

1. s
(t)
2 is selected with inclusion probability proportional to µ̂

(t)
i . The model

ζ(t−1) from which µ̂
(t)
i is calculated is created using data from survey t− 1

only

2. s
(t)
2 is selected with inclusion probability proportional to µ̂

(t)
i . The model

ζ(t−1) from which µ̂
(t)
i is calculated is created using data from all previous

surveys 1, . . . , t− 1.

3. s
(t)
2 is selected using srswor .

Because covariate values remained fixed throughout the survey and no tempo-

ral trend was assumed µ̂
(t)
i was obtained from the model ζ(t−1) by predicting

µ̂
(t−1)
i = µ̂

(t)
i for all units in the survey region. As previously Sunter’s method

(Sunter, 1977a,b) was used to select units with inclusion probability propor-
tional to predicted abundance.

4.2 Results

The ratios r
(10)
τ = v̂ar(τ̂(10))

var(τ̂(10))
and r

(1,10)
δ = v̂ar(δ̂(1,10))

var(δ̂(1,10))
were calculated where

var(τ̂ (10)) and var(δ̂(1,10)) are the known variances obtained when new samples
s(1), . . . , s(10) were selected using simple random sampling without replace-
ment. The estimated variances were calculated for each of the three scenarios
described above.

Figure 3 shows the distribution of these ratios for n2 = 0, 25, 50, 75 and
100. When at least part of the sample is retained from s(1), ie n2 < 100,
both the mean and spread of the estimated variance of the total, v̂ar(τ̂ (10)),

decreases as n
(10)
2 increases when s

(10)
2 is selected with inclusion probability

proportional to µ̂
(10)
i . Furthermore the ratio is generally less than 1 suggesting

that the method is more efficient than selecting s(t) using srswor. The decrease

in variance as n
(10)
2 increases is not observed when s

(10)
2 is selected using srswor.

In comparison the estimate of δ̂(1,10) is generally better when s
(2)
2 is selected

using srswor than when it is selected using inclusion probability proportional

to µ̂
(t)
i .
When n2 = 100, and so all of the sample is selected with inclusion proba-

bility proportional to µ̂
(10)
i , the variability in v̂ar(τ̂ (10)) can be very large. In

some simulations v̂ar(τ̂ (10)) was more than five times the known variance from
selecting s(10) using srswor. This is because the sample s(t) has two purposes.
First it must provide an estimate of τ̂ (t) but second it must provide data to

construct a model ζ(t) to predict the µ̂
(t+1)
i that are then used to determine
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inclusion probabilities for s(t+1), the following survey. A sample selected with

inclusion probability proportional to µ̂
(t)
i does not tend to give good coverage

of the sample space because it favours units with large values of µ̂
(t)
i . The

model ζ(t+1) would then be constructed using a restricted part of the sample

space so that predictions µ
(t+1)
i may be extrapolations from the model for some

parts of the sample space, those where µ̂
(t)
i was low, and so may be poorly

estimated. Thus the inclusion probabilities in survey t + 1 will be less highly

correlated with y
(t+1)
i leading to less efficient estimation of τ̂ (t+1), because of

poor estimation of τ̂
(t+1)
2 . This effect is especially large when only data from

the previous survey are used to estimate µ̂
(t)
i .

In a long-term monitoring study each survey needs a sample that can esti-

mate τ (t) and δ(t
′,t) efficiently and contributes to estimating µ̂

(t+1)
i effectively

to ensure a precise estimate of τ (t+1) . The strategy proposed here gives a
balance between increasing the precision of τ̂ (t) and δ̂(t

′,t) in survey t and pro-

viding coverage of the sample space to estimate µ
(t+1)
i sufficiently accurately

that selecting part of the sample with inclusion probability proportional to

µ̂
(t+1)
i in survey t+ 1 will lead to high precision in the estimate of τ (t+1).

5 Discussion

The design-based sampling strategy developed in this paper uses information
from previous surveys to change the design of the next survey. The mecha-
nism by which the design adapts is more general than existing design-based
adaptive sampling strategies where the sample s(t) is adapted to estimate τ̂ (t)

(Thompson and Seber, 1996; Jolly and Hampton, 1990; Brown et al, 2008),
or τ̂ (t+1) (Haines and Pollock, 1998). In these designs, rules for adding new

sample units to the initial sample s(t) are based on the observed y
(t)
i . The new

units are typically adjacent (defined by a neighbourhood for the specific situ-
ation) to the units in s(t). In the strategy proposed here adaptation is based

on model-based predictions, µ̂
(t)
i ∀ i ∈ U , so that new units can be selected

from anywhere in the survey region. The model and therefore future survey
design can continue to adapt through time as data from each survey become
available although inference remains design-based.

The strategy provides a simple evidence-based mechanism for determining
inclusion probabilities when there are multiple potential auxiliary variables

that could affect y
(t+1)
i . Observations from previous surveys are used to con-

struct a model ζ(t) that describes the relationship between observed y
(t)
i and

auxiliary variables for i ∈ s(t), either for the most recent survey or all previ-
ous surveys t = 1, . . . , t. From this model ζ(t), predicted expected abundance

for the next survey time µ̂
(t+1)
i ∀ i ∈ U can be obtained and this determines

the inclusion probabilities for part of the sample s(t+1). Inclusion probabil-
ities therefore have the potential to vary smoothly over the survey region -
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Fig. 3 Distributions from 1000 simulations of ratio r
(10)
τ (first two columns) and r

(1,10)
δ

(last column), compared to results taking a new simple random sample. Top to bottom:

n2 = 0, 25, 50, 75, 100. First column shows results of r
(10)
τ when only units from the last

survey are used to estimate µ̂
(10)
i . Second and third columns show results of r

(10)
τ and

r
(1,10)
δ when data from all surveys are used to estimate µ̂

(10)
i . Black are results when s

(2)
2

is selected with inclusion probability proportional to µ̂
(10)
i . Grey are results when s

(2)
2 is

selected using simple random sampling. Grey solid line indicates one and dashed lines are
the 0.025, 0.50 and 0.975 quantiles of the black distribution. Results are truncated at 5 times
the variance from simple random sampling. This occurs in the bottom row (n2 = 100) only.
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unlike stratification - and the effects of many auxiliary variables are easily
incorporated in the design.

Estimates of τ (t) using the strategy developed in this paper were more pre-
cise than those obtained from standard rotating panel designs; where both the
retained and the new part of the sample are selected using srswor. However
for rotating panel designs, model-assisted estimators are often used to improve

the efficiency of τ̂ (t) and δ(t
′,t). These estimators include observed y

(t)
i from

previous surveys. An advantage of these estimators is that the efficiency of

other parameters, including those using data other than just y
(t)
i can be im-

proved whilst the design, determined at the start of the monitoring program,
remains inefficient. A disadvantage of the proposed strategy is that parameters

that are functions of variables other than y
(t)
i may be poorly estimated unless

y
(t)
i is correlated with them.

In the proposed sampling strategy part of the sample is retained from one
survey to another and the rest is selected with inclusion probability propor-

tional to predicted abundance, µ̂
(t)
i . As the proportion of the sample that is not

retained increases, the precision of τ̂ (t) increases. The strategy is robust if at
least some units are retained from one survey to another. A strategy in which
everything is selected with probability proportional to predicted abundance
is not recommended - even for one survey. This is because the variability in

v̂ar(τ̂ (t)) is large if µ̂
(t)
i is poorly estimated. The importance of using a robust

strategy is particularly important in a long-term monitoring project where the

implications for estimating µ̂
(t+1)
i in the future must also be considered.

The strategy is flexible and so the proportion retained from one survey
to another does not need to remain fixed throughout a long-term monitoring
programme. Each survey in a monitoring programme could be tailored to meet
both the short-term objectives of that survey and the long-term objectives of
the monitoring programme. For example some surveys might be aimed at

providing good estimates of µ
(t)
i and others at precise estimates of τ (t) and

others of δ(1,t). Further exploration of this and development of alternative
estimators needs to be done.
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A Estimating τ (t) and δ(t
′,t) and their variances

Details of estimators for τ (t) and δ(t
′,t) and their variances are described below for the

general sampling strategy in which in survey t the sample s
(t)
1 is selected using simple ran-

dom sampling without replacement from s
(t′)
1 and s

(t)
2 is selected with inclusion probability
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proportional to µ̂
(t)
i from s

(t′)
1c

= U − s
(t′)
1 . When t′ = 1 and t = 2 then, s

(t′)
1 = s(1) and

s
(t′)
1c = s

(1)
c . More generally s

(t′)
1 ⊆ s(1).

A.1 Estimating τ (t) and its variance

For ease of notation the superscript (t) will be omitted in this section so only superscripts
relating to the previous survey t′ are included.

Let τ = ωτ1 +(1−ω)τ2 where ω = n1
n

and τk is estimated using the data from sk only,
then an unbiased estimator of τ1 can be obtained by using the standard Horvitz-Thompson
estimator and its variance is estimated using the Sen-Yates Grundy variance estimator so
that:

τ̂1 =
∑
s1

yi

πi
=

N

n1

∑
s1

yi

var(τ̂1) =
1

2

∑
U

∑
U

(πiπj − πij)(
yi

πi
−

yj

πj
)2 =

N(N − n1)

n1

∑
U (yi − ȳU )2

N − 1

v̂ar(τ̂1) =
1

2

∑
s1

∑
s1

(πiπj − πij)

πij
(
yi

πi
−

yj

πj
)2 =

N(N − n1)

n1

∑
s1
(yi − ȳs1 )

2

n1 − 1

where ȳU =
∑

U
yi
N

and ȳs1 =
∑

s1
yi
n1

.

An unbiased estimator of τ2 is

τ̂2 =
∑
s2

yi

π†
i

where π†
i = Pr(i ∈ s2|s(t

′)
1 )Pr(i ∈ s

(t′)
1c

) = π
i2|s

(t′)
1

π
(t′)
i1c

If Iik =

{
1 if i ∈ sk
0 otherwise

and I
(t′)
ik

=

{
1 if i ∈ s

(t′)
k

0 otherwise
then by taking expectations over

s
(t′)
1c

, and over s2 given that s
(t′)
1c

has been selected it can be shown that τ̂2 is an unbiased
estimator of τ2

E[τ̂2] =E
s
(t′)
1c

E2|s(t
′)

1c

∑
i∈s2

yi

πi
2|s(t

′)
1c

π
(t′)
i1c




=E
s
(t′)
1c

∑
s1c

yi

πi
2|s(t

′)
1c

π
(t′)
i1c

E
2|s(t

′)
1c

[I
(t)
i
2|s(t

′)
1

]



=E
s
(t′)
1c

∑
s
(t′)
1c

yi

π
(t′)
i1c

 =
∑
U

yi

π
(t′)
i1c

E
s
(t′)
1c

[
I
(t′)
i1c

]
= τ

Joint inclusion probabilities are required to calculate the variance. For simplicity the notation
for these are denoted

π†
ij =Pr(i&j ∈ s2|s(t

′)
1 )Pr(i&j ∈ s

(t′)
1c

) = π
(ij)2|s

(t′)
1

π
(t′)
(ij)1c

and specific differences are

∆
(t)†
ij =π

(t)†
ij − π

(t)†
i π

(t)†
j
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and

∆
(t′)
(ij)k

=π
(t′)
(ij)k

− π
(t′)
ik

π
(t′)
jk

The variance of τ̂2 is

var(τ̂2) =var
s
(t′)
1c

(
E

2|s(t
′)

1c

[τ̂2]

)
+ E

s
(t′)
1c

[
var

2|s(t
′)

1c

(τ̂2)

]

=var
s
(t′)
1c

∑
s
(t′)
1c

yi

π
(t′)
i1c

+ E
s
(t′)
1c

E
2|s(t

′)
1c

∑
s2

∑
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Although this cannot be calculated explicitly, its unbiased estimator
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can. By taking expectations of the estimated variance it can be shown that it is an unbiased
estimator of var(τ̂2)
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The covariance is defined as
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rewritten as
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so that an unbiased estimator of this covariance is:
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Taking expectations of this estimator over s1|s(t
′)

1 and s
(t′)
1 gives
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 = cov(τ̂1, τ̂2)

Because this estimator only uses data in s1 then when t′ = 1 and t = 2 this can be written
as
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A.2 Estimating the variance of δ̂(t
′,t)

The difference δ̂(t
′,t) is calculated as δ̂(t

′,t) = τ̂ (t) − τ̂ (t
′) and its variance is var(δ̂(t

′,t)) =

var(τ̂ (t)) + var(τ̂ (t
′))− 2cov(τ̂ (t), τ̂ (t

′)). The general form of the covariance term is

cov(τ̂ (t
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2 , τ̂
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although this reduces to two terms, described in section A.2.1, when t′ = 1 and t = 2. When
it is not the case that t′ = 1, t = 2 then the covariance is estimated using the strategy of
Holmes and Skinner (2000) in which only the first term

cov(τ̂ (t
′), τ̂ (t)) ≈ω(t′)ω(t)cov(τ̂

(t′)
1 , τ̂1)

is estimated. This is a reasonable strategy because most of the covariance is expected to
be due to a positive correlation between observations from the matched units between the
two time periods; indeed the reason for retaining units in the sample from one survey to

another is because the y
(t)
i and y

(t′)
i are expected to be correlated. Other terms would be

expected to contribute little to the covariance because they relate to the covariance between
different units surveyed in the two surveys. At worst, the estimated covariance may be an
underestimate of the true covariance so that the estimated variance overestimates the true
variance, this is preferable to underestimating the true variance. Further work to obtain the
full set of covariance terms is required; the covariance terms are complex and it is difficult
to see how to derive their estimators.

Both τ̂
(t′)
1 and τ̂

(t)
1 are estimated using the Horvitz-Thompson estimator and so the

covariance and its estimator are of the form:
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The exact form of the inclusion probabilities will depend on the strategy used to select s
(t′)
1

and s
(t)
1 . The joint inclusion probability will be of the form π

((t′,t))
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1 )Pr(i&j ∈ s

(t′)
1 ).

A.2.1 Estimating cov(τ̂
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When t′ = 1 and t = 2 the covariance reduces to two terms so that cov(τ̂
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and so the covariance and its estimator are
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It is also possible to estimate the covariance
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This is the same form as cov(τ̂1, τ̂2) so that
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B Estimators when s
(t)
2 is selected using simple random sampling

When s
(2)
2 is selected using simple random sampling without replacement then the inclusion

probability π
(t)
2 can be calculated unconditionally because:

π
(t)
2 =Pr(i ∈ s

(2)
2 |i ∈ s

(1)
1 )Pr(i ∈ s

(1)
1 ) + Pr(i ∈ s
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=
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n

n

N
+

n2

N − n

N − n

N
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n

N

The same holds for the joint inclusion probabilities and so τ̂ (2) and τ̂ (t) when t > 2 can
be estimated using the Horvitz-Thompson estimator with its corresponding variance and

variance estimator. The covariance cov(τ̂ (t
′), τ̂ (t)) required for calculating the variance of

δ̂(t
′,t) is of the form of equation (1) and its corresponding estimator equation (2).
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Tillé Y (2006) Sampling Algorithms. Springer series in Statistics, Springer
Venables W, Ripley B (2002) Modern Applied Statistics with S, 4th edn. Springer, London
Wood SN (2006) Generalized Additive Models: An Introduction with R. Chapman and

Hall/CRC
Yates F, Grundy PM (1953) Selection without replacement from within strata with proba-

bility proportional to size. Journal of the Royal Statistical Society, B 15:235–261


