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Effect of shear rupture on aggregate scale formation in sea ice
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[1] A discrete element model is used to study shear rupture of sea ice under convergent
wind stresses. The model includes compressive, tensile, and shear rupture of viscous
elastic joints connecting floes that move under the action of the wind stresses. The
adopted shear rupture is governed by Coulomb’s criterion. The ice pack is a 400 km
long square domain consisting of 4 km size floes. In the standard case with tensile
strength 10 times smaller than the compressive strength, under uniaxial compression the
failure regime is mainly shear rupture with the most probable scenario corresponding to
that with the minimum failure work. The orientation of cracks delineating formed
aggregates is bimodal with the peaks around the angles given by the wing crack theory
determining diamond‐shaped blocks. The ice block (floe aggregate) size decreases as the
wind stress gradient increases since the elastic strain energy grows faster leading to a
higher speed of crack propagation. As the tensile strength grows, shear rupture
becomes harder to attain and compressive failure becomes equally important leading to
elongation of blocks perpendicular to the compression direction and the blocks grow larger.
In the standard case, as the wind stress confinement ratio increases the failure mode changes
at a confinement ratio within 0.2–0.4, which corresponds to the analytical critical
confinement ratio of 0.32. Below this value, the cracks are bimodal delineating diamond
shape aggregates, while above this value failure becomes isotropic and is determined by
small‐scale stress anomalies due to irregularities in floe shape.

Citation: Wilchinsky, A. V., D. L. Feltham, and M. A. Hopkins (2010), Effect of shear rupture on aggregate scale formation in
sea ice, J. Geophys. Res., 115, C10002, doi:10.1029/2009JC006043.

1. Introduction

[2] In the polar oceans, seawater freezes to form sea ice of
several meters thickness that can cover up to 15 · 106 km2 in
the Arctic and 20 · 106 km2 in the Antarctic. Sea ice plays a
significant role in determining polar and global climate and
Global Circulation Models (GCMs) used for climate pre-
diction incorporate representations of sea ice dynamics and
thermodynamics. Although GCMs use continuum sea ice
models, there is strong observational evidence of discon-
tinuous sea ice dynamics. At the scale of sea ice floes,
deformation is concentrated in leads and ridges but dis-
continuous deformation is also observed in bands that
extend from tens to thousands of kilometers, as illustrated in
3 year deformation maps over the western basin by Kwok
[2001]. Such bands are usually referred to as slip lines
[Erlingsson, 1991; Overland et al., 1998] or linear kine-
matic features [Kwok, 2001]. The slip lines frequently
intersect at acute angles apparently independent of the
spatial scale [Walter et al., 1995; Weiss, 2001] and delineate
regions of approximately diamond‐shaped floe aggregates.

[3] The floe aggregates, which we shall refer to as blocks,
consist of floes frozen together. Wilchinsky and Feltham
[2006] developed a model of sea ice dynamics that treated
the ice cover as a collection of diamond‐shaped blocks. In
this theory, the rheology of the ice cover depended upon the
orientation of the diamonds, which was allowed to evolve
according to kinematic and mechanical processes, including
fracturing. Here, we focus on the initial formation of the
blocks, i.e., the fracturing of an ensemble of frozen‐together
floes into floe aggregates. We follow Hopkins et al. [2004],
who studied the fracture of a sea ice cover using a discrete
element model that considered compressive and tensile
failure of interfloe joints as floe move under an applied wind
stress. When a crack starts to form, a relaxation wave travels
outward and reduces stresses in the surrounding pack.
Hopkins et al. [2004] found, under typical wind stress pat-
terns, that the model produced rectilinear blocks, in contrast
to the observed diamond‐shaped blocks.
[4] It has been argued [e.g., Schulson, 2001; Weiss and

Schulson, 2009], based upon a strong similarity between
sea ice leads and wing cracks observed in the laboratory,
that slip lines form through a mechanism of shear rup-
ture, i.e., failure/crack formation once sufficient shear
stress is reached. We accordingly extend the study of
Hopkins et al. [2004] by incorporating into the discrete
element model a representation of shear rupture. We find
that the modified discrete element model now reproduces
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the observed diamond‐shaped blocks under typical wind
stress patterns.
[5] The discrete element model, model of shear rupture,

wind forcing, and configuration of the numerical experi-
ments is described in section 2. In section 3, the discrete
element simulations of block formation are presented and
the results discussed in terms of the controls on the block
size and shape: subsection 3.1 describes uniaxial compres-
sion with varying wind stress; subsection 3.2 describes
uniaxial compression with varying tensile strength; and
subsection 3.3 describes biaxial compression as the con-
finement ratio is altered. Our main conclusions are sum-
marized in section 4.

2. Model Configuration

[6] We use a discrete element sea ice model originally
developed by Hopkins [1996] and expanded by Hopkins
et al. [2004]. Hopkins et al. [2004] used the model to
study fracture of a sea ice cover due to compressive and
tensile failure under the action of wind stress, and we will
closely follow this paper’s methodology, where details about
the model can be found. The model parameters used are
summarized in Table 1. In particular the elastic modulus and
Poisson ratio are around the values given by Evans and
Untersteiner [1971]. The ice pack is 400 km in size and
consists of a tiling of typically 4 km wide ice floes whose
shape is produced by a Voronoi tessellation. Initially the
floes are connected by frozen joints with a viscous‐elastic
rheology. The mean thickness of the floes is 3 m and the new
ice thickness determining the compressive strength of the
joints between the floes is 0.25 m. The floes are considered to
be rigid and any deformation at the joints is determined by
mutual motion of the adjacent edges of neighboring floes.
The joints can sustain compressive, tensile and shear forces.
It is assumed that the mutual floe displacement d = (dn, ds)
(normal and tangential to the joint, Figure 1) is distributed
over the whole floe average length L so that the normal and
shear stresses at a joint are given by

�n ¼ hE�n
L

� kn�n; ð1Þ

�s ¼ hG�s
L

� ks�s; ð2Þ

where E is the compressive elastic modulus, G = E/[2(1 + n)]
is the shear modulus where n is Poisson’s ratio, and h is the

mean ice thickness. Note that kn/ks = 2(1 + n). The elastic
stress is combined with a viscous stress, included to damp
elastic waves and model inelasticity of the ice. Hopkins et al.
[2004] used only tensile and compressive failure regimes of
the joints. The compressive failure stress (strength) sc is
based on unconfined buckling [Kovacs and Sodhi, 1980],

�c ¼ �1285h3=2min kPa m ¼ �160:625 kPa m; ð3Þ

for hmin = 0.25 m.
[7] The model also requires imposing a tensile strength at

a joint, st which should already account for the joint
thickness hmin. Laboratory experiments by Richter‐Menge
and Jones [1993] showed that sea ice tensile strength sig-
nificantly depends on temperature and porosity and can vary
from 0.2 MPa at −3°C up to 0.78 MPa at −20°C. Dempsey et
al. [1999] considered a crack propagation experiment on a
block of ice 0.5–80 m wide and concluded that the tensile
strength depends on this floe scale as 0.59/(1 + L/0.26)1/2

MPa and could range from 0.05 MPa for an 80 m wide floe
up to 0.5 MPa for a 0.5 m wide floe. This shows a high
sensitivity of the ice tensile strength to its temperature and
structure, e.g., crack density, without knowing which such
idealized experimental results cannot directly be applied to
our model. Assuming only one crack per joint (typically
4 km long) would determine only the lower limit of 5.5 kPa
for the tensile strength. During the Sea Ice Mechanics Ini-
tiative study on a 1.42 m thick floe, Lewis and Richter‐
Menge [1998] recorded tensile stresses up to 80 kPa. Weiss
and Schulson [2007] plotted stresses recorded during SHE-
BA expedition and found the largest tensile stresses to be
50 kPa, which would determine st = 12.5 kPa m for hmin =
0.25 m. For our standard case scenario we choose the
tensile failure stress (strength) of the joints st to be 10
times smaller than the compressive strength as this pro-
duces block shapes similar to those usually observed.
However, we also perform simulations in which we vary
the tensile strength between 0.1 and 1 times the com-
pression strength, which includes the median value of
Richter‐Menge and Jones [1993]. We relate the compres-
sive and tensile strengths through a parameter r, st = −rsc,
not because there is any physical evidence of a linear
dependence between the compressive and tensile strengths,
but because, as will be seen from our calculations, the ratio

Figure 1. Adjacent floe interaction.

Table 1. Model Parameters

Parameter Symbol Value

Average floe thickness h 3 m
Minimum ice thickness hmin 0.25 m
Average floe size L 4 km
Pack width Ld 400 km
Elastic modulus E 1 GPa
Poisson ratio n 0.3
Ice compressive strength sc 1285hmin

3/2 kPa m
Ice tensile strength st −rsc, r = 0.1 (standard case)
Ice density ri 920 kg m−3

Air density ra 1.2 kg m−3

Seawater density rw 1010 kg m−3

Air and water drag coefficients 0.0012, 0.0055
Shear rupture coefficient m 0.6 (standard case)
Ice sliding friction coefficient k 0.32
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between st and sc, expressed through r, crucially determines
the model behavior.
[8] In the original model of Hopkins et al. [2004] as the

mutual floe displacement increases, the joint stress increases
proportionally, and when the stress reaches the failure stress,
the joint starts to fail. As the displacement increases further,
the stress decreases (weakens) linearly until it reaches zero
and a crack is formed locally. When a crack extends beyond
95% of the joint length, the joint fails. After this the floe
edges can separate forming a lead or overlap making a ridge
with the ridging force determined by Hopkins [1994] as F =
928hmin

2 l + 26126hmin (in N per meter along the ridge),
where l is the length of ice pushed into the ridge.
[9] The ice sliding friction coefficient is taken here as 0.32

as was shown by several meter scale rafting experiments
[Hopkins and Tuhkuri, 1999]. This value of the sliding
coefficient is smaller than the static coefficient of friction
found by Schulson et al. [2006] over a Coulombic fault,
where the typical values were in the range 0.7–0.9. How-
ever, the latter were measured on a scale which is small in
comparison with the floe scale, and we expect small‐scale
anomalies to reduce due to abrasion and their effect to be
less prominent. Indeed, Schulson et al. [2006] state that their
measured static coefficient of friction is greater than the
kinetic coefficient of friction. Several meter scale floe edge
sliding experiments also gave values between 0.3 and 0.4 at
velocities when no stick and slip behavior occurred
[Lishman et al., 2009]. Generally, the sliding coefficient is
expected to play a role only when there is significant in-
terblock sliding, whereas during initial failure of the sea ice
cover, which is studied here, its variation was shown by
Hopkins and Thorndike [2006] not to produce any signifi-
cant effect.
[10] Here we incorporate a simple model of shear rupture

into the discrete element model. Based on laboratory derived
fractural failure stress envelopes [Schulson and Nickolayev,
1995; Schulson, 2001; Schulson et al., 2006], we assume
that shear rupture occurs when the tangential (shear) com-
ponent ss of the traction along a joint reaches the Coulomb
limit (Figure 2),

j�sj ¼ � �t � �nð Þ; �n > �c; �n � �t; ð4Þ

where sn is the normal component of the traction at the
joint, and m is the shear rupture coefficient. Generally m is

not the slope of the failure envelope expressed in the co-
ordinates of standard stress invariants sI and sII, but if we
assume that the stress components along the lead (which are
not determined in the model) and across the leads are equal
(i.e., sss = snn, ssn = sns), then m becomes the same as the
slope of the failure envelope in sI, sII coordinates and the
results of Schulson et al. [2006] imply

� ¼ q� 1

qþ 1
; q ¼ �2

i þ 1
� �1=2þ�i

h i2
; ð5Þ

where mi is the coefficient of internal friction. Based on
stress failure envelopes Schulson et al. [2006] obtained
mean values q = 3.48 at −3°C and q = 5.69 at −10°C which
correspond to m = 0.55 and 0.7, respectively. For our cal-
culation we will use a value of 0.6 and also show results as it
varies between 0.4 and 1.
[11] The shear rupture criterion (4) assumes a linear

Coulomb curve for all shear stresses. Such extension of the
linear Coulomb curve until the sn axis itself is crossed at a
positive tensile joint strength st is a mathematical conve-
nience which leads to collapsing of the common tensile
failure truncation onto only one point of zero shear stress at
the tip of the envelope (sn = st). In this case, the value of
tensile strength st is linearly proportional to the cohesive
strength (the value of ss at sn = 0) through the shear rupture
coefficient for the Coulomb failure curve assumed. Ana-
lyzing SHEBA stress data Weiss and Schulson [2007]
showed that the tensile failure strength, which determines
the tensile stress truncation, occurs at about 0.8st, and to this
level of numerical approximation the value of st can be
associated with tensile failure integrated over the joint
thickness.
[12] Rearranging (4) we see that given a shear traction

component ss, the normal traction component determining
shear rupture is

�n ¼ �t � 1

�
j�sj � �*t : ð6Þ

Thus the presence of the shear traction effectively modifies
the tensile strength to s*t. Note that for high‐shear traction
components s*t can become compressive (negative).
Equation (6) determines a similar relationship between the
normal and shear displacements in shear rupture

�*t ¼ �t

kn
� ks
�kn

j�sj: ð7Þ

A joint starts to fail in regions where either the compressive
or modified tensile strengths are reached (Figure 1) but the
modified tensile strength depends upon the shear traction at
the joint and is found at every time step. As it is difficult to
implement simultaneous weakening for normal and shear
stresses consistently when the normal floe displacement
exceeds d*t, we do not incorporate stress weakening and
assume in this paper that a crack forms where the elastic
stresses reach the failure stresses sc or s*t.
[13] The model starts from an initial configuration of

floes at rest. The sea ice pack then undergoes deformation
under the action of a gradient of wind stress t, with stress

Figure 2. Failure criterion for the joints.
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varying linearly in the x (eastward) and y (northward)
directions,

r� ¼ 0:0012�a
2U2

wind

Ld
e; ð8Þ

where ra is the air density, Uwind is the eastward speed of
wind blowing at the western end of the model pack,
while an equal, but opposite wind blows at the eastern
end; Ld is the domain size, and the tensor e determines
the relative values of the wind stress components with
exx = −1 and the confinement ratio Rc = eyy/exx ≤ 1. The
wind drag applied to a floe is

Fwind ¼ Ar� � x� 1

2
1Ld

� �
; ð9Þ

where A is the floe area, x is its position, and 1 is a unit
tensor. The effect of subtracting 1

2Ld from the position
vector is to make the wind drag symmetrical about the

center of the domain. The action of the wind drag force
gives rise to a momentum contribution aligned with the
force. If the ice pack is homogenous, the linear variation
of the wind force leads to the same mutual displacement
of all the floes and to a homogenous stress distribution.
Boundary effects are minimized by calculating the aver-
age stress in the central region and applying it to the
boundaries every 10 s. All boundary blocks belonging to
the same side of the domain then move simultaneously
under the imposed stresses. The time step was pL(ri/E)

1/2/8
ensuring that the energy balance between the wind drag
work, fracture energy, inelastic dissipation (including ridge
building), frictional dissipation and water drag work has an
error of less than 1%.

3. Simulations and Discussion

[14] In the following subsections we present simulations
of the break up of the sea ice cover into blocks, or floe
aggregates. We analyze and discuss these simulations,
focusing on which failure mechanisms dominate, the

Figure 3. Ice cover for different wind speeds under uniaxial compression. Black color shows joints
delineating blocks used in our statistical analysis. The arrows show the compression direction with wind
stress gradient being constant across the domain. Cracks filtered out in our statistical analyses are shown
in white. The cracks are filtered out to exclude damage zones by retaining only those cracks separating
different ice blocks of which at least one is more than ten times the average floe area. We also remove
cracks around the rectangular boundary floe joints. Cracks that surround blocks completely contained
within another larger block are also filtered out.
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anisotropy of the blocks formed, and the controls on the
block size.

3.1. Uniaxial Compression With Variation in Wind
Stress

[15] We consider a uniaxial compressive wind stress
along axis x, i.e., the only nonzero component of e is exx = 1.
The wind speeds Uwind considered were 3.5, 5, 7.5, 10, 12.5
and 15 m s−1, which correspond to the wind drag gradients
of 4.87 · 10−8, 1.8 · 10−7, 4.05 · 10−7, 7.2 · 10−7, 1.13 · 10−6

and 1.62 · 10−6 Pa m−1. For each wind speed the model was
run until an established ice block configuration had devel-
oped. From the plots of the ice field (Figure 3) it can be seen
that the ice cover splits into blocks that are on average
elongated along the x axis. The simulation result for Uwind =
3.5 m s−1 especially clearly shows the roughly diamond
shape of the blocks. The blocks themselves are permeated
by cracks. The model does not include crack refreezing, and
some of the cracks could be expected in reality to freeze
over, especially those lying within the blocks. From histo-
grams showing the distribution of block‐delineating crack
length with regard to angle for different values of the shear
rupture coefficient m (Figure 4) we see that the cracks are
distributed bimodally around the critical flaw angle in wing‐
crack formation [Jaeger and Cook, 1979; Ashby and
Hallam, 1986; Schulson, 2004],

tan 2�ð Þ ¼ 1=�: ð10Þ

The maxima, however, are not very prominent, presum-
ably due to the limited number of discrete angles deter-
mined by the floe edges, along which the critical flaw can
only form.
[16] It should be noted that the crack angle is determined

by the shear rupture coefficient m rather than the sliding
coefficient k. Equation (10) was derived by considering
failure of brittle ice when flaws are present. In this case the
resistance to shear at the flaw comes from friction and it is
the coefficient of internal friction that should enter (10). In
our model, however, the joint stretches elastically until the
failure stress is attained. Right before the joint failure,
resistance to shearing deformation at the joint coming from
its elastic stress is effectively given by the shear failure
stress determined by the shear rupture coefficient, so that the
latter naturally determines the critical flaw angle (10).

3.1.1. Block Size Distribution
[17] As the block size becomes smaller with increasing

wind speed (Figure 5), the block shapes become more
erratic as their perimeter is delineated by a relatively small
number of joints. This is because the small number of joints
prevent the cracks from propagating in certain directions.
Similar to Hopkins and Thorndike [2006] in Figure 6 we
show a cumulative block area distribution function

FA Að Þ ¼ N

Ad

Z 1

A
P Að ÞdA; Ad ¼ L2d ; ð11Þ

where P(A) is the probability distribution function of num-
ber of blocks with regard to their area A, and N is the
number of blocks within the domain. FA(A) describes the
number of blocks whose area is not smaller than A and
generally it looks similar to those found by Hopkins and
Thorndike [2006]. The most interesting feature is a similar
power law distribution for areas less than 300 km2. How-
ever, our results differ as our slope is around −1, while
Hopkins and Thorndike [2006] obtained −0.68. Other ob-
servations show −0.65 [Rothrock and Thorndike, 1984], or a
range of −0.5 to −0.9 [Weiss, 2003], or −0.65 and −0.77
[Weiss and Marsan, 2004].
[18] It is difficult to exactly determine the reason for the

power law for block area as well as the difference between
our result and that of Hopkins and Thorndike [2006]. Weiss
and Marsan [2004] considered a general multifractal model
to explain the scale invariance. A power law distribution of
ice floe area can be a result of self‐similarity such as in the

Figure 4. The histograms of the normalized crack length distribution against the angle around the
compression direction, x, for different m under uniaxial compression. The bin width is 3°, and the
results are averaged over 10 different initial Voronoi tessellations. The imposed wind speed ranges
from 3.5 to 5 m s−1 for different m to ensure the block size is of order 40 km. The cracks are filtered
as described in Figure 3. The dotted lines show the critical flaw angle in the wing crack theory
determined by tan(2�) = 1/m [Jaeger and Cook, 1979; Ashby and Hallam, 1986; Schulson, 2004].

Figure 5. The normalized block size (square root of the
block area) for different wind speeds under uniaxial com-
pression. The standard deviation is derived from mean block
size for 10 different ice field configurations. Blocks 10 times
smaller than the average floe area are filtered out.

WILCHINSKY ET AL.: SEA ICE SHEAR RUPTURE C10002C10002

5 of 13



Apollonian gasket [Rothrock and Thorndike, 1984]. We, in
turn, want to focus on the physics of the process, and con-
sider a very idealized model that could give us some hints
on the nature of our block size distribution. The power law
distribution is observed at scales less than the mean block
sizes (Figure 5), and is effectively independent of the wind
stress gradient, apart from the case of Uwind = 3.5 m s−1

(Figure 6), where the difference probably comes from the
block size approaching the domain size.
[19] Hopkins et al. [2004] showed that the size of large

blocks is determined by the wind stress gradient inducing
elastic stress accumulation leading to failure. This will be
discussed in more detail in the following subsection. Since
the small block size distribution does not depend on the
wind stress gradient (Figure 6), we assume that the smaller
blocks do not form under the direct action of the wind stress,
but rather through the force exerted on their sides by the
larger blocks, which leads to the production of damage
zones. We illustrate this in Figure 7 where a large block
exerts a force F on a side of a region of frozen floes of size
D. For simplicity we consider the same failure regime for all
the joints. The force is transmitted across the region through
the elastic joints, therefore in order for any of the elastic
joints to fail all surrounding joints should also approach the
same failure strength, e.g., sc in compression. Therefore

failure of a block of area A would require work linearly
proportional to the area A itself. In this case, failure of the
region shown in Figure 7 through formation of blocks of
size L or just one block of size D requires the same work,
while there will be AD/AL times more blocks of size L than
D, where Ad = D2 and AL = L2. Since the formation of a
block of the floe length L would require AD/AL less energy
than formation of a block of size D, we shall assume that the
formation of a block of area AL is AD/AL times more likely
than formation of a block of area AD. This leads us to
conclude that the probability density function of block
number must satisfy P(AL) = (AD/AL)

2 P(AD), which, after
integration, leads to FA / A−1 in correspondence with our
simulations. It is now necessary to note that under uniaxial
compression our model with shear failure produces a two‐
dimensional failure pattern, while if only compressive fail-
ure is modeled (as in the work of Hopkins and Thorndike
[2006]), a one‐dimensional failure pattern is produced, as
will be seen in subsection 3.2. In a two‐dimensional failure
regime, the whole force F can be transmitted onto one small

Figure 6. The accumulated block size distribution, FA (A)
for different wind speeds. The curves are averaged over 10
different configurations.

Figure 7. An idealized sea ice area of size D broken up
into blocks of size L.

Figure 8. The normalized histogram of the crack length
distribution against the normalized tensile failure displace-
ment dr for the tensile strength 10 (r = 0.1) and 5 (r =
0.2) times smaller than the compressive strength for varying
m under uniaxial compression. The bin size is 0.1. The
dashed line shows the dr values of (15) determining the
minimum failure energy. The imposed wind speed ranges
from 3.5 to 5 m s−1 for different m to ensure the block size is
of order 40 km. The presence of cracks due to compressive
failure gives rise to a singular large value of the distribution
function at the first histogram bin (dr = −1), whose value is
shown as f(−1). The cracks are filtered as described in
Figure 3.
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block only, whereas in a one‐dimensional regime only the
force (L/D)F will be transmitted to any one particular
block. We account for this by postulating that when the
failure regime is one‐dimensional, the smaller block is D/L
less likely to fail than when the failure regime is two‐
dimensional. In this case P(AD) = (AD/AL)

3/2 P(AD), which

determines FA / A−1/2 which is closer to the result of
Hopkins and Thorndike [2006].
3.1.2. Block Size Evaluation
[20] We follow Hopkins et al. [2004] to obtain a rough

estimate of the block size under a uniaxial compressive wind
stress. While Hopkins et al. [2004] considered a one
dimensional model under divergence, our failure pattern and
the flow motion involved are two‐dimensional and more
complicated. In particular, as there is no confining stress,
under a uniaxial compressive stress gradient the floes are
expected to move perpendicular to the compression direc-
tion since the floe edges are inclined with respect to the
compression direction. Regardless of the direction of motion
we estimate the floe speed as u = ∣t∣t/(rih) and the relative
floe displacement with the typical floe size of L as

� ¼ jr� jL
2�ih

t2; ð12Þ

where ∣rt∣ = 0.0024raUwind
2 /Ld. The work required to

deform a unit length joint by d = (dn, ds) is determined by the
stresses (1) and (2) as

W ¼ kn
2
�2n þ

ks
2
�2s : ð13Þ

Figure 9. The normalized block size (square root of the
block area divided by Lb

s ) for different wind speeds under
uniaxial compression. The standard deviation is derived
from mean block sizes for ten different ice field configura-
tions. Blocks 10 times smaller than the average floe area
are filtered out. The estimated block size Lb

s is 33, 27.6,
22.6, 19.5, 17.5, and 16 km for a wind speed of 3.5, 5,
7.5, 10, 12.5, and 15 m s−1, respectively.

Figure 10. Ice cover for a varying relative tensile strength r and a wind speed of 10 m s−1 under uniaxial
compression. Joints filtered out in the same way as before are shown in white. The black color shows
joints delineating blocks used in our statistical analysis.
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For a particular dn the joint fails when ds reaches m(st −
kndn)/ks, therefore the failure energy of a unit length
crack is

Wf ¼ kn�2n
2

þ �2

2ks
�t � kn�nð Þ2: ð14Þ

The minimum failure energy (at which dWf /ddn = 0) is
attained by the following displacements

�min
n ¼ 2 1þ �ð Þ�2

1þ 2 1þ �ð Þ�2

�t

kn
; ð15Þ

�min
s ¼ 1

�
�min
n : ð16Þ

Given a shear stress at a joint, the normal modified tensile
strength (6) determines a tensile failure displacement d*t =
s*t/kn that must be reached for the joint to fail. We
normalize the tensile failure displacement to dr = d*t/∣dc∣,
where dc = sc/kn is the compressive failure displacement.
dr can be interpreted as a failure regime parameter: for a
tensile strength being r times the compressive strength it
varies from −1 (pure compressive failure) through 0 (pure
shear rupture) to r > 0 (pure tensile failure). Figure 8 shows
histograms of the normalized crack length distribution
during joint failure against dr from which it can be seen
that the most probable shear rupture regime is determined
by minimizing the failure energy Wf. This failure regime
involves a tensile shear rupture of the joints through local
opening at wing cracks. From (13) we find d2W/ddn

2 =
kn[1 + 2(1 + n)m2], which for n = 0.3 gives kn times 1.42,
1.94, 2.66 and 3.6 for m = 0.4, 0.6, 0.8 and 1, respec-

tively. Therefore as m decreases the joint failure energy
of an arbitrary failure mode differs less from the mini-
mum failure energy, which makes it likelier for the
failure mode to deviate from the minimum energy regime.
This leads to the histogram peaks smoothing out as m
decreases.
[21] It follows from the simulations presented above that

the minimum energy failure mode could be used as the
typical failure mode of shear rupture, at least for zero con-
finement. Due to (12) and (16) we assume that

�s ¼ r�L

2�ih
t2; ð17Þ

�n ¼ ��s: ð18Þ

Multiplying the unit length strain energy (13) by the typical
joint length L, dividing it by the typical floe area L2, using
(18) and differentiating with regard to time, we can find the
rate of change of strain energy per unit area

_W ¼ ks þ �2kn
2L

r�L

�ih

� �2

t3: ð19Þ

Given (17) and (18), the failure displacements (15) and (16)
are attained at time

tf ¼ 4 1þ �ð Þ�
1þ 2 1þ �ð Þ�2

�t

kn

�ih

r�L

� �1=2
: ð20Þ

If we assume that during failure the rate of change of strain
energy per unit area _W is converted into crack failure with

Figure 11. The normalized histogram of the crack length distribution against the normalized tensile
failure displacement dr for varying relative tensile strength r. The wind speed is 10 m s−1 under uniaxial
compression. The presence of cracks due to compressive failure gives rise to a singular large value of the
distribution function at the first histogram bin (dr = −1), whose value is shown as f(−1). The fraction of
crack length due to compressive failure is 0.07, 0.29, 0.54, and 0.71 for r = 0.1, 0.4, 0.7, and 1, respectively.
The same filtering as before is applied.

Figure 12. The histograms of the normalized crack length distribution against the angle around the com-
pression direction, x, for varying r and a wind speed of 10 m s−1 under uniaxial compression. The same
filtering as before is applied.
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failure energy per unit length being Wf, the crack propaga-
tion speed per unit area becomes

Vf ¼
_W

Wf
¼ 4

Ltf
¼ 4

L

1þ 2 1þ �ð Þ�2

4 1þ �ð Þ�
Er�

�i�t

� �1=2
; ð21Þ

where we used kn = hE/L from (1). In a floe train of length
Lb
s and unit width, it takes time 2/(Lb

sVf) for a crack to
propagate across the unit width, where the factor 2 is
introduced in order to account for the bimodality of the
crack propagation under a unidirectional wind stress gra-
dient. On the other hand it takes time Lb

s /Ve for the elastic
relaxation wave to travel along the train length, where Ve =
(E/ri)

1/2 is the elastic wave speed. When these times are
equal, the crack has just enough time to delineate a block
without breaking it up further before the elastic stress

disappears through relaxation. Therefore, equating these
times we can find the block length scale

Lsb ¼
2Ve

Vf

� �1=2

¼ 1þ �ð Þ�
1þ 2 1þ �ð Þ�2

�tL2

r�

� �1=4
: ð22Þ

The mean block size normalized by Lb
s is shown in Figure

9 for different wind speeds and is generally close to 1. It
is, however, slightly higher for a 3.5 m s−1 wind speed as
the block size becomes significant relative to the domain
size. The number of blocks accounted for as the wind
speed approaches 15 m s−1 also decreases, as more and
more blocks are split by incidental damage of a small
number of joints and get filtered out.

3.2. Uniaxial Compression With Variation in Tensile
Strength

[22] The ratio of the minimum shear rupture energy (14)
to the corresponding compressive failure energy Wc =
kndc

2 / 2 is

Wf

Wc
¼ r2

2 1þ �ð Þ�2

1þ 2 1þ �ð Þ�2
; ð23Þ

where r = dt/∣dc∣ is the normalized tensile strength. As the
normalized tensile strength increases, the compressive
failure energy Wc (being 200 times larger than the mini-
mum shear rupture energy Wf at r = 0.1) gradually be-
comes comparable with Wf and in particular Wf /Wc =
0.08, 0.24 and 0.48 for r = 0.4, 0.7 and 1, respectively.
Since uniaxial compression is considered, as r increases
shear rupture becomes harder to attain, hence compressive
failure gradually starts to prevail: the fraction of the total
crack length due to compressive failure g becomes 0.07,
0.29, 0.54 and 0.71 for r = 0.1, 0.4, 0.7 and 1, respec-
tively. From the simulation results for the ice field failure
(Figure 10) it can be seen that the block size increases
with r. The failure regime (dr) histogram (Figure 11)
shows that failure occurs through the compressive regime

Figure 13. The normalized block size (square root of the
block area divided by Lb

s ) for varying r under uniaxial
compression. The standard deviation is derived from mean
block size values for 10 different configurations. Blocks
smaller than 10 times the average floe area are filtered
out. The estimated block size due to shear rupture only
is Lb

s is 19.5, 27.6, 31.8, and 43.7 km for the relative ten-
sile strength r = 0.1, 0.4, 0.7, and 1, respectively. The
normalized length scale Lb

m with a = 1.6 is shown by
the dotted line.

Figure 14. Ice cover for different confinement ratios Rc. Snap shots with Rc = 0.8 and 1 are similar to
that of Rc = 0.6. No filtering was applied. Run duration is 3000 s.
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and shear rupture regime, with a peak situated close to the
regime of the minimum shear rupture energy similar to the
case of small r. From the crack orientation distribution
(Figure 12) it can also be seen that as the normalized tensile
strength increases, the failure angle distribution has three
local maxima: two at the usual critical flaw angle in wing
crack formation, and one perpendicular to the compression
direction. Since at r = 0.1 the blocks consist of a relatively
small number of floes, and there is less possibility for cracks
to propagate along a specific direction, the angle distribution
is almost uniform in this case. As the block size increases
the local maxima in the angle distribution become more
pronounced.
[23] The block size normalized by the shear rupture scale Lb

s

versus r is shown in Figure 13. The low values of standard
deviation in the block size show consistency in the block
size formation. The normalized block size increases as r
increases. The blocks become elongated perpendicular to
the compression direction as the compressive failure mode
becomes dominant (as r increases). Due to the high
anisotropy of the blocks it is difficult to estimate the block
size rigorously, and we will consider a very simple model.
The length scale during compressive failure derived by
Hopkins et al. [2004] takes the following modified form

Lcb ¼
�cL2

8r�

� �1=4

: ð24Þ

(The reason this expression is slightly different from that
in the work of Hopkins et al. [2004] is that we ignore

strain weakening in this paper.) As the tensile strength
increases, compressive failure perpendicular to the com-
pression direction becomes dominant, so that the maxi-
mum block scale along the compression direction is given
by the compressive failure scale above. If we assume that
the shear failure angle � is determined by (10) then the
mean angle of crack propagation would be 	 = (1 − g) � +
gp/2, where g is the compressive failure fraction discussed
above. The across compression direction block scale can
then be found as Lb

a = Lb
c tan 	, which determines the

sought length scale of the blocks as the square root of the
area of a rhombus with semiaxis lengths Lb

c and Lb
a:Lb

m =
a(Lb

aLb
a/2)1/2, where a accounts for irregularity of both

compressive failure, which could be expected to lead to a
positive correction to (24) as was found by Hopkins et al.
[2004], as well as the block shape, which could be more
convex than a rhombus due to a nonuniform distribution
of compressive and shear failure perpendicular to the
compression direction, as can be seen from Figure 10.
The normalized values of this block scale Lb

m/Lb
s with

a = 1.6 are presented in Figure 13 as a dashed line.
It can be seen that for r ≤ 0.4 the block size is properly
described by the shear rupture scale Lb

s as the block size
is mainly determined by the shear rupture mechanism. As
the normalized tensile strength r increases, despite some
quantitative difference, the found block size scale Lb

m

describes the block length change rather well. Increasing
of r beyond unity was not considered as this would make
the block length become comparable with the domain
size.

Figure 15. The histograms of the normalized crack length distribution against the angle around the com-
pression direction, x, for varying confinement ratio Rc. The imposed wind speed is 4 m s−1 for Rc = 0.2
and 5.2 m s−1 for the others. The case of Rc = 1 is similar to that of Rc = 0.8 with even higher uniformity in
distribution. No filtering was applied. Run duration is 3000 s.

Figure 16. The normalized histogram of the crack length distribution with regard to the normalized ten-
sile failure displacement dr for varying confinement ratio Rc. The imposed wind speed is 4 m s−1 for Rc =
0.2 and 5.2 m s−1 for the others. The presence of cracks due to compressive failure gives rise to a singular
large value of the distribution function at the first histogram bin (dr = −1), whose value is shown as f(−1).
The fraction of crack length due to compressive failure is 0.07, 0.1, 0.1, and 0.11 for Rc = 0.2, 0.4, 0.6,
and 0.8, respectively. The case of Rc = 1 is similar to that of Rc = 0.8. The dashed line shows the dr values
of (15) determining the minimum failure work. No filtering was applied.
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3.3. Confinement Ratio Variation Under Compression

[24] Here we fix the wind stress gradient along axis x and
vary the compressive stress in the perpendicular direction
along axis y. The confinement ratio Rc is the ratio between
the principal wind stress gradients components, Rc = rtyy/
rtxx = eyy/exx, so that the stress gradient variation comes
from imposing eyy = Rc, exx = 1 in (8). We consider our
standard case scenario of the tensile strength being 10 times
smaller than the compressive strength (r = 0.1). From the ice
field snap shots in Figure 14 it can be seen that within 0.2 <
Rc < 0.4 the sea ice failure regime changes: at Rc = 0.2 the
failure mode is similar to that of uniaxial compression where
the primary failure direction is determined by wing‐crack
formation (Figure 15) whereas for Rc ≥ 0.4 the sea ice cover
effectively breaks down into floes with only occasional
blocks remaining. In this latter case (Rc > 0.4), if the wind
stress is reduced, then no ice field failure occurs, so that the
ice block size cannot be increased by decreasing the wind
stress as is in the case for smaller confinement ratios.
[25] In our model a joint breaks in shear rupture at a shear

traction linearly dependent on the normal traction, similar to
a Coulomb’s friction criterion. Shear rupture will be sup-
pressed if the confinement ratio between the large‐scale
stresses reaches a level where the effective shear stress
across any direction becomes zero [e.g., Schulson, 2001;
Jaeger and Cook, 1979],

R*c ¼ �2 þ 1ð Þ1=2��

�2 þ 1ð Þ1=2þ�
: ð25Þ

For m = 0.6 used in our model R*c = 0.32 which corresponds
to our numerical results. As the confinement ratio exceeds
R*c the failure mode changes. From Figure 15 it can be seen
that failure starts to occur at arbitrary angles with only a
slight bias to the y direction along which compressive failure
is easiest. However Figure 16 shows that the failure mode at
joints is mainly due to shear rupture with the most probable
failure regime determined by the minimum failure energy
(15) requiring local divergence. When R*c is exceeded, the
large‐scale wind stress pattern cannot ensure large‐scale
shear failure anymore. As the wind stress increases, the

compressive strength is still too high to induce any signifi-
cant failure. However, the irregularity of the floes ensures
local shear stress (along the joints) which eventually makes
sea ice failure possible locally, so that the ice field breaks up
into floes.
[26] If the tensile strength increases (Figure 17) under a

homogeneous compressive wind stress gradient (confine-
ment ratio of unity), shear rupture becomes more difficult to
attain, and the fraction of compressive failure increases from
12% at r = 0.1 to 17%, 44%, 48% and 60% for r = 0.3, 0.5,
0.7 and 0.9, respectively. The shear rupture regime is again
determined by the minimum failure energy (not shown)
similar to other cases with dr = 0.145, 0.242 and 0.338
determining the minimum for r = 0.3, 0.5 and 0.7. The block
size normalized by the shear rupture scale Lf

s increases with
r (Figure 18) as the compressive failure determining a larger
block scale becomes more important. For a small normal-
ized tensile failure r, the block size is smaller than that given
by the shear rupture estimate (22) even though the failure
regime is mainly shear. This, we believe, is caused by the
fact that while in the case of uniaxial compression the shear
rupture work is supplied by the shear elastic strain energy, in
the case of uniform convergence the shear‐regime failure

Figure 17. Ice cover for purely convergent wind stress (Rc = 1) and varying tensile strength r. The wind
speed is 5 m s−1. Run duration is 3000 s.

Figure 18. The block size normalized by Lb
s for varying r

under uniform convergence (Rc = 1). The standard deviation
is derived from mean blocks sizes for nine different config-
urations. Blocks smaller than 10 times the average floe area
are filtered out. The estimated block size due to shear rup-
ture only, Lb

s , is 33.35, 37.89, 41.22, and 43.89 km for the
relative tensile strength r = 0.3, 0.5, 0.7, and 0.9, respec-
tively (Uwind = 5 m s−1).
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work is supplied by normal elastic strain energy during
failure due to small‐scale irregularity of floe shape. From
Figure 19 it can be seen that during uniaxial compression
both normal and shear strain energy (calculated as work
done by elastic deformation over all joint segments that
remain unbroken) grow until failure starts, and during fail-
ure they both decrease contributing to normal and shear
rupture energies that, in turn, grow. In uniform compression
the normal strain energy mainly grows, however after failure
both normal and shear rupture energies (given by (14)
integrated over all broken joint segments) increase, simi-
larly to the uniaxial compression case. This implies that part
of the normal strain energy is converted into shear rupture
energy. The normal strain energy is higher than the shear
strain energy. Therefore if a higher normal strain energy rate
is accounted for instead of the lower shear‐failure strain rate
in (23), then the block size scale would be smaller.

4. Conclusions

[27] A Coulomb shear rupture mechanism for crack for-
mation similar to that found in the laboratory [Schulson and
Nickolayev, 1995] was incorporated into the sea ice discrete
element model of Hopkins et al. [2004]. The original model
included only compressive and tensile failure of interfloe
joints and produced predominantly rectilinear‐shaped floe
aggregates, which is in contrast to many observations of
diamond‐shaped floe aggregates in the Arctic. As wind
exerts drag on the floes, the floes move and their displace-
ment leads to accumulation of elastic strain energy in the
connecting viscous elastic joints. The mutual floe dis-
placement is roughly uniform if the wind stress gradient is
constant. The shear strength is related to a particular amount
of mutual floe displacement tangential to the edge and is
linearly dependent on the elastic force normal to the edge. In
particular, a compressive normal elastic force suppresses
shear rupture. When the stress reaches the compressive,
tensile or shear strengths, local failure occurs and a crack is
initiated. Further increase in the elastic strain energy is
converted into crack propagation, delineating floe ag-
gregates of a size determined by competition between the
rate of crack propagation and the elastic relaxation wave
speed. In all cases considered here it has been found that
while there is a large degree of variability in shear rupture
regimes, the most probable scenario is that when the mini-

mum failure energy is attained, which involves local open-
ing. This minimum failure work was used in our aggregate
size evaluation.
[28] In our standard case scenario we consider a tensile

strength 10 times smaller than the compressive strength. In
this case, when the wind stress describes uniaxial com-
pression, the ice field breaks up into elongated aggregates
delineated by cracks with a bimodal maxima distribution at
angles determined by the critical flaw angle in the wing
crack theory, tan(2�) = 1/m. The aggregates are roughly
diamond shaped and are surrounded by smaller floes in
damage zones. As the wind stress gradient increases, the
elastic strain energy grows faster leading to a quicker crack
propagation speed per unit area, and consequently smaller
generated ice block sizes. At the same time the blocks
become less anisotropic as their size becomes comparable
with the floe size so that there are fewer available floe
joints for the crack to propagate along. The aggregate scale
found based on minimum failure work agrees with the
block size found from simulations. Similar to Hopkins and
Thorndike [2006] and different observations [Rothrock and
Thorndike, 1984; Weiss, 2003; Weiss and Marsan, 2004]
our model produces a power law distribution of smaller‐
size ice block numbers versus their area. A simple model
that associates the energy necessary to form a block to the
probability of finding it could explain the power exponent.
[29] As the tensile strength increases relative to the com-

pressive strength under uniaxial compressive wind stress,
the block size increases as shear rupture becomes harder to
attain and compressive failure becomes more important,
determining a higher failure energy and slower crack
propagation speed per unit area. The generated ice blocks
also become elongated perpendicular to the compression
direction as the emerging compressive failure is more likely
across the compressive direction. The typical aggregate size
in this case is estimated by assuming that the length scale
along the compressive direction is determined by compres-
sive failure, while the length scale across the compression
direction is determined by the mean failure angle. The mean
block size as a square root of the product of these length
scales then suitably describes the simulated aggregate size as
the tensile strength approaches the compressive strength.
[30] If in the standard case scenario the confinement ratio

of the wind stress gradient increases, the failure mode
changes when the confinement ratio is between 0.2 and 0.4,

Figure 19. The stored elastic strain energy normal to the joints (solid line) and tangential to the joints
(dashed line) versus time for a particular ice field configuration shown in Figures 3 and 14. The accu-
mulated failure (elastic) energy normal to the joint (dot‐dashed line) and tangential to the joints (dotted
line) are also shown for comparison. (left) The uniaxial compression case (Rc = 0). (right) The uniform
convergence case (Rc = 1) for Uwind = 5 m s−1.
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which is in agreement with the theoretical prediction of
failure mode change at the critical confinement ratio of 0.32
for the shear rupture coefficient m = 0.6. Below this range
the failure occurs similar to the uniaxial compression case,
where diamond‐shaped aggregates are produced. Above this
range the ice field starts to fail isotropically since the Cou-
lomb failure criterion cannot be attained on the large scale.
Local stress anomalies arising due to the irregularity of the
floes lead to shear rupture of the ice field with block sizes
smaller than that predicted by the shear rupture estimates.
We argue that this is due to conversion of a higher, normal
strain energy to shear rupture energy. As the tensile strength
increases, compressive failure become more prevalent and
the aggregate size increases.
[31] Our simulations have shown that shear rupture is an

important factor in determining sea ice block shape and size.
The observed diamond shape of the blocks can be produced
by low confinement ratio wind stress patterns if sea ice
tensile strength is much smaller than the compressive
strength. When the confinement ratio increases, the blocks
become isotropic. When the tensile strength increases, the
block shape also changes becoming elongated across the
uniaxial compression direction. While the tensile strength of
sea ice is still ambiguous, results of our, albeit idealized,
simulations show that in order for the diamond shape
structures to exist, the tensile strength should be much
smaller than the compressive strength.

[32] Acknowledgment. D. L. Feltham acknowledges financial sup-
port made available by the Leverhulme Trust by the award of a research
prize.
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