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Abstract

The beneficial effects of cocoa on vascular function are mediated by the absorption of monomeric flavanols into the circulation from the

small intestine. As such, an understanding of the impact of the food matrix on the delivery of flavanols to the circulation is critical in asses-

sing the potential vascular impact of a food. In the present study, we investigated the impact of carbohydrate type on flavanol absorption

and metabolism from chocolate. A randomised, double-blind, three-arm cross-over study was conducted, where fifteen volunteers were

randomly assigned to either a high-flavanol (266 mg) chocolate containing maltitol, a high-flavanol (251 mg) chocolate with sucrose or

a low-flavanol (48 mg) chocolate with sucrose. Test chocolates were matched for micro- and macronutrients, including the alkaloids theo-

bromine and caffeine, and were similar in taste and appearance. Total flavanol absorption was lower after consumption of the maltitol-

containing test chocolate compared with following consumption of its sucrose-containing equivalent (P¼0·002). Although the

O-methylation pattern observed for absorbed flavanols was unaffected by sugar type, individual levels of unmethylated (2)-epicatechin

metabolites, 30-O-methyl-epicatechin and 40-O-methyl-epicatechin metabolites were lower for the maltitol-containing test chocolate

compared with the sucrose-containing equivalent. Despite a reduction in the total plasma pool of flavanols, the maximum time (Tmax)

was unaffected. The present data indicate that full assessment of intervention treatments is vital in future intervention trials with flavanols

and that carbohydrate content is an important determinant for the optimal delivery of flavanols to the circulation.
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Evidence suggests that the regular consumption of diets rich in

fruit and vegetables and/or beverages, such as tea and wine,

may have cardiovascular benefits(1–4) and that flavonoids

contained within these foods may be the components respon-

sible for function(4–10). Cocoa and cocoa-based products, such

as chocolate, are a potentially rich source of one flavonoid

subgroup called flavanols(11), and in certain settings, these

foods have been found to be important contributors to the

total dietary intake of flavonoids(5). Although the health

benefits of flavanols in humans are accumulating, there is

insufficient evidence to claim a clear and undisputed positive

health effect relating to their consumption, particularly with

regard to long-term ingestion and health. In addition, choco-

late products are usually rich in sugar and saturated fats,

which might counteract the beneficial effects exerted by the

flavanols they contain. At present, much of the strongest

data, particularly with regard to cardiovascular benefits, are

based on short-term, small-scale human studies; where appro-

priate, well-characterised controls have been utilised.

Considering the limitations mentioned above, cocoa-

derived flavanols have been shown to be capable of promot-

ing clinically significant improvements in cardiovascular

health through their potential to lower blood pressure(7,12–15),

improve endothelial function(16–21), inhibit platelet aggrega-

tion(22–24) and curtail the inflammatory response(25–27)

following oral intake. As such, there has been much interest

in understanding the factors that define the liberation (from

foods), absorption, metabolism, distribution and excretion of

flavanols in vivo (19,28–34), in order to better understand the

bioavailability of flavanols in the context of different food

matrices, and ultimately, to enable improved food design for

health. An important aspect of flavanol delivery relates to

the influence of the food matrix on the liberation of flavanols

from the food before absorption. For example, the physical
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composition of the cocoa-containing product might have an

impact on plasma flavanol kinetics(32). While the majority of

the published literature on the effects of food matrices on

cocoa flavanol (CF) absorption has focused on the influence

of dairy products on absorption and metabolism(34,35–38),

there has also been interest in the impact of carbohydrates

on the biotransformation of flavanols. Indeed, the extent,

and rate, of flavanol absorption appears to be affected by

concurrent consumption of bread, sugar or grapefruit juice,

whereas no specific protein–flavanol or lipid–flavanol

interactions have been reported with respect to flavanol

absorption/metabolism(29). In addition, co-administration of

flavanols with carbohydrate-rich foods appears to lead to a

significant increase in plasma flavanol concentrations and an

acceleration of their renal elimination(29). While these results

suggest that the presence of carbohydrate in the food matrix

may increase overall flavanol absorption, these studies were

not designed to specifically assess the impact of sugar on

flavanol absorption. The present study has been designed to

specifically investigate the impact of sugar type by use of

two solid chocolates matched for physical structure, lipid,

milk and flavanol content but differing in that one contains

sucrose and the other the carbohydrate substitute, maltitol.

Experimental

Materials

Unless otherwise stated, all chemicals and reagents were

obtained from Sigma-Aldrich Company Limited or Thermo

Fisher Scientific. Flavanol standards were a gift from Mars,

Inc. Specialised HPLC solvents were purchased from Hichrom

and HPLC columns were from Phenomenex.

Flavanol-containing test chocolates

The test chocolates were in the form of solid chocolate bars,

which were supplied by Mars, Inc. The serving size of each

bar was 25 g. All test chocolates were standardised for their

total CF content and profile, and aside from the energy and

carbohydrate content of the maltitol product, all test products

were closely matched for equal macro- and micronutrient

content, energy load, and theobromine and caffeine levels

(Table 1). All chocolate bars were similar in taste and were

supplied individually wrapped and labelled with a random

three-digit code. Each 25 g serving contained 48 mg (low-CF,

sugar-sweetened chocolate), 251mg (high-CF, sugar-sweetened

chocolate) or 266mg (high-CF, maltitol-sweetened chocolate) of

total CF. The amount of total CF is defined as the sum of all

monomeric flavanols and their oligomeric (dimer to decamer)

derivatives (Table 1). The amount of epicatechin, the major

flavanol monomer, present in the chocolates was 8mg for the

low-CF sweetened chocolate, 54mg for the high-CF sweetened

chocolate and 58mg for the high-CF, maltitol-sweetened choco-

late. In addition to the added sugar reported, a small amount

of endogenous carbohydrate from the chocolate liquor is present

in all the chocolate bars.

Intervention study subjects

A total of fifteen healthy volunteers (nine women and six

men) with a mean age of 26·9 (SEM 3·4) years and a BMI

between 18·1 and 26·9 kg/m2 (mean BMI 22·7 (SEM 3·5) kg/m2)

were recruited. All female volunteers were self-reported pre-

menopausal (stable and regular menstrual cycles). Volunteers

were assessed before the start of the trial for good health and

were selected according to certain inclusion and exclusion cri-

teria. Inclusion criteria for participation in the study were as

follows: signed consent form; aged between 18 and 40

years; in good general health; not pregnant or lactating; no

allergy to milk products or sensitivity to alkaloids/caffeine;

no gastrointestinal disorders (e.g. chronic constipation, diar-

rhoea, inflammatory bowel disease, irritable bowel syndrome

or other chronic gastrointestinal complaints); not diabetic or

suffering from hypertension (140/90 mmHg); no anaemia

Table 1. Compositional analysis of the cocoa flavanol bars

Analysis
Sucrose

low-flavanol bar
Sucrose

high-flavanol bar
Maltitol

high-flavanol bar

Energy values (kcal/100 g) 519 516 445
Energy values (kJ/100 g) 2163 2149 1839
Protein (g/100 g) 8·10 8·46 8·44
Fat (g/100 g) 35·3 34·5 34·3
Carbohydrates (g/100 g) 42·4 43·0 43·1
Sugars (g/100 g) 39·0–39·4 39·0–39·4 0·5–0·9
Sucrose (g/100 g) 39·0 39·0 0·5
Polyols (g/100 g) – – 43·5–46·0
Maltitol (g/100 g) – – 43·5
Fibres (g/100 g) 9·2 8·8 8·9
Moisture (g/100 g) 1·00 1·11 1·20
Ash (g/100 g) 3·18 2·41 2·21
Na (mg/100 g) 5·1 2·2 2·1
Caffeine (mg/100 g) 58 102 102
Theobromine (mg/100 g) 643 709 710
Cocoa flavanols (mg/100 g) 190 1005 1064
Epicatechin (mg/100 g) 32 216 232
Catechin (mg/100 g) 28 84 92
Procyanidin oligomers

(dimers to decamers) (mg/100 g)
130 705 740
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or gall bladder problems. Exclusion criteria were as follows:

those on a weight-reducing dietary regimen; taking any diet-

ary supplements; consuming more than fifteen units (120 g)

of alcohol per week; taking anti-inflammatory or blood press-

ure-lowering medication; smokers or those with sensitivities to

chocolate, reduced-energy sweeteners, dairy products, nuts or

gluten; vegetarians or vegans. Volunteers were instructed not

to alter their usual dietary or fluid intakes during their partici-

pation in the study. Those selected were required to refrain

from the following for 24 h before the start of the study: con-

sumption of flavonoid-rich foods including many fruits and

vegetables, cocoa, chocolate, tea, coffee and alcohol, and

were provided with a low-flavonoid meal (low-fat macaroni

cheese) for consumption the evening before the study days.

Study design

The study was conducted according to the guidelines laid

down in the Declaration of Helsinki and all procedures invol-

ving human subjects were approved by the University of

Reading Research Ethics Committee (reference no. 08/08).

The study was also registered with the National Institutes of

Health-randomised trial records held on the National Institutes

of Health ClinicalTrials.gov website (NCT01292967). The study

was a randomised, double-blind, three-arm cross-over study

design and consisted of three intervention arms of 5 h each,

separated by a 1-week washout period. Each arm was pre-

ceded by a 24 h low-flavonoid diet and subjects were asked

to fast for 12 h before each intervention day. During each

intervention period, participants consumed a high-flavanol

chocolate containing maltitol, a high-flavanol chocolate

containing sucrose or a low-flavanol chocolate containing

sucrose. The order of administration was randomly assigned.

On each study day, subjects were cannulated and baseline

blood samples were collected. After consumption of the test

chocolate, blood samples (20 ml) were collected at 1, 2 and

4 h post-consumption. All chocolates were well tolerated by

the volunteers and there were no reports of gastrointestinal

problems related to the ingestion of any of the products,

including the maltitol-containing product. Indeed, total malti-

tol ingestion was approximately 10 g, which was below the

40 g where adverse gastrointestinal effects have been

reported(39).

Plasma sample preparation

Due to the lack of authentic flavanol metabolite standards,

plasma samples were prepared using enzymatic hydrolysis

with b-glucuronidase and sulfatase, as described previously(40).

After enzymatic hydrolysis, glucuronidated and sulphated

flavanols were converted into unmethylated, 30-O-methylated

and 40-O-methylated flavanol metabolites. To ensure that

the hydrolysis of the flavanol metabolites was complete, this

procedure was validated with the use of 4-nitrophenyl-

b-D-glucuronic acid and nitrocatechol sulphate (data not

shown). The validation with authentic flavanol standards has

also been reported previously(40). Briefly, blood samples

were immediately processed to isolate plasma and ascorbic

acid (1 mg/ml) was added to each before storage (at 280 8C).

Before analysis, 1 ml of plasma was defrosted on ice and

subjected to b-glucuronidase and sulfatase treatment

(10 000 units b-glucuronidase, 300 units sulfatase, 40 min;

378C) to produce non-glucuronidated and non-sulphated

metabolites for analysis. Then, samples were mixed with

2 ml of acidified ice-cold methanol (0·5 % acetic acid in

methanol, v/v) containing 30-O-ethyl-(2)-epicatechin (500 nM)

as a recovery standard. Samples were centrifuged at 17 000 g

for 15 min at 48C and the supernatant was collected. The

pellet was extracted again with 2 ml of acidified ice-cold

methanol (0·5 % acetic acid in methanol, v/v) containing

30-O-ethyl-(2)-epicatechin (500 nM), and then with 1 ml of

50 % methanol acidified with 0·5 % acetic acid and containing

30-O-ethyl-(2)-epicatechin (500 nM). Combined supernatants

underwent concentration (to approximately 50ml) using a

Speedvac system (Thermo Fisher Scientific, Inc.) and were

mixed with resorcinol (300 pmol) and catechol (300 pmol)

(internal standards) before analysis by HPLC.

Flavanol quantification by HPLC-fluorescence
detection/UV

Plasma samples were analysed for flavanol metabolites by the

HPLC-fluorescence detection/UV technique, as described

previously(40). Flavanol monomers and O-methylated

metabolites were analysed using a Hewlett-Packard 1200

series HPLC (Hewlett-Packard) equipped with a diode array

and fluorescence detector. Samples (50ml) were injected

onto a reversed-phase Phenomenex Luna C18(2) column

(4·6 £ 150 mm) with 3mm particle size. The mobile phase con-

sisted of (A) HPLC-grade water, (B) 200 mM-sodium acetate

(pH 4·4)–methanol (84:16) and (C) acetonitrile, and the

following gradient protocol was run: 0 min, 75 % A, 25 % B;

5 min, 75 % A, 25 % B; 20 min, 65 % A, 25 % B; 28 min, 63 %

A, 25 % B; 34 min, 55 % A, 25 % B; 41 min, 45 % A, 25 % B;

45 min, 25 % B, 75 % C; 55 min, 25 % B, 75 % C; 56·1 min,

75 % A, 25 % B; 60 min, 75 % A, 25 % B. The flow rate was

0·8 ml/min. Detection of flavanols and their metabolites was

performed using a fluorescence detector with an excitation

wavelength of 276 nm and an emission wavelength of

316 nm. The concentration of each compound was deter-

mined using an external calibration curve produced with the

use of authentic standards.

Statistical analysis

Mixed models were fitted to analyse the data using

SAS version 9.1 (SAS Institute). The outcome variables were

epicatechin, 30-O-methyl-epicatechin (3ME) and 40-O-methyl-

epicatechin (4ME). The subject was considered a random

effect to explain the correlation of the observations at different

times within subjects. For 3ME, a logarithmic transformation

was needed in order to validate the model. For 4ME, a

Box–Cox transformation was applied with a ¼ 0·3 (the out-

come variable 4ME was transformed to 4ME0·3). The AUC

and the peak plasma concentration of flavanols (maximum

Impact of sugar type on cocoa flavanols 2245
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concentration, Cmax) were calculated according to non-

compartmental models.

Results

No flavanols were detected in the plasma samples of any of

the subjects at baseline or following the consumption of the

low-flavanol chocolate, suggesting that all volunteers com-

plied with the 24 h low-flavonoid diet before the study day

(Fig. 1). Unmethylated epicatechin, 3ME and 4ME metabolites

were detected in all plasma samples of subjects who had

consumed either of the high-flavanol test chocolates (Figs. 1

and 2). In contrast, no catechin, 30-O-methyl-catechin or

40-O-methyl-catechin metabolites were detected following

the consumption of any of the test chocolates. The plasma

levels of unmethylated epicatechin metabolites (P¼0·0002),

3ME (P¼0·0304) and 4ME (P¼0·0397) metabolites were

significantly higher at 1 and 2 h after consumption of the

sugar-containing test chocolate compared with following

the consumption of the maltitol-containing test chocolate

(Fig. 2). Furthermore, consumption of the sucrose-containing

test chocolate resulted in a 19 % higher total AUC and 17 %

higher Cmax for plasma unmethylated epicatechin compared

with its maltitol equivalent (Table 2). However, this was not

the case for 3ME or 4ME derivatives, where there were no

significant differences (P.0·05). There was no significant

difference in the maximum time (Tmax) between the two

high-flavanol containing test chocolates with respect to

epicatechin, 3ME and 4ME (P.0·05; Table 2).

The differences in absorption characteristics between the

sucrose-containing and maltitol-containing chocolates were

also reflected in the total plasma flavanol levels (Fig. 3). At 1
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Fig. 1. HPLC chromatograms of (a) standards of unmethylated (peak 1), 30-O-methylated (peak 2) and 40-O-methylated (peak 3) (2 )-epicatechin and the recovery

standard 30-O-ethyl-(2 )-epicatechin (peak 4); enzymatic treated plasma samples (b) before and (c) after 2 h of consumption of the sugar-containing high-flavanol

chocolate bar. Detection of flavanol metabolites was performed using a fluorescence detector with an excitation wavelength of 276 nm and an emission wave-

length of 316 nm.
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and 2 h post-consumption, the total plasma flavanol concen-

trations were 26 and 17 % higher, respectively, after consump-

tion of the sucrose-containing chocolate compared with

following the maltitol-containing one (P¼0·0001 and

P¼0·0102, respectively). However, this difference was no

longer evident at 4 h post-consumption (P¼0·6830).

Discussion

The general kinetics of absorption, metabolism and plasma

concentration of flavanols reported here are consistent with

previous studies using similar chocolate/cocoa interven-

tions(19,41–44). However, despite these similarities, there were

significant differences in the relative absorption of flavanols

as a function of the type of chocolate product consumed.

The sugar alcohol maltitol is a commonly used sucrose

alternative, as it delivers less energy per g (8·8 kJ/g (2·1 kcal/g)

compared with 16·8 kJ/g (4·0 kcal/g)) and does not contribute

to tooth decay(45). The present data indicate that consumption

of flavanols in a product containing maltitol rather than sucrose

results in a significantly lower level of total flavanol absorption

and a lower peak plasma concentration of unmethylated epica-

techin metabolites. As the primary difference between the two

high-flavanol-containing test chocolates used in the present

study was their carbohydrate content and thus their total

energy load (Table 1), the present data suggest that the

carbohydrate composition of the food matrix is an important

determinant for total flavanol absorption in the small intestine.

However, carbohydrate type and/or energy did not have a

significant impact on the O-methylation pattern observed for

absorbed flavanols, suggesting that while total absorption was

affected, catechol-O-methyltransferase metabolic activity was

unchanged. Previous investigations into the influence of

carbohydrate on flavanol absorption were inconclusive(29,32),

primarily due to the use of inadequate control interventions or

the relatively low amounts of flavanols in the test materials.

With respect to the latter, flavanol absorption appears to be

influenced by the food matrix to a greater degree if flavanol

levels are low (6·7 mg epicatechin, 70 mg procyanidins per

cocoa drink)(28). However, in the case of most commercially

available dark chocolates, the level of CF is indeed closer to

that used in the present study (54 mg epicatechin, 251 mg of

total CF per bar)(46,47).

A limitation of the present study is that plasma flavanols

were quantified only 4 h post-consumption. As such, it is

unclear whether plasma flavanol levels post-4 h would

follow the same profile. However, the maximum level of

plasma epicatechin metabolites was found between 1 and

2 h after flavanol intake, and by 4 h, plasma epicatechin

metabolites were low (Fig. 2), suggesting that it is unlikely

the plasma flavanol levels post-4 h will greatly contribute to

the total plasma flavanol load. The well-reported laxative

effect of maltitol may be one explanation for the decrease in

flavanol absorption(48), although no gastrointestinal problems

were reported among the volunteers of the present study.

Polyols undergo negligible absorption in the small intestine,

thus causing symptoms of gastrointestinal intolerance, such

as increased intestinal transit times, bloating or diarrhoea(49).

Despite this, maltitol, when used at a dose three times

higher than the present study (30 g), has been found not to

induce gastrointestinal symptoms(39,48,50). Nevertheless, malti-

tol may act to limit flavanol absorption due to its effect on the

osmolarity of the small-intestinal contents. In the jejunum,

nutrient absorption is the major driving force for water absorp-

tion(51) and non-absorbable solutes that remain within the

intestinal lumen produce an osmotic pressure that may limit

water absorption. For example, lactulose, a non-digestible

sugar commonly used as a laxative, has been shown to

impair drug absorption in healthy volunteers, something that

was partially reversed by the co-administration of sucrose(51).

Maltitol has previously been reported to reduce the absorption
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Fig. 2. (a) Unmethylated, (b) 30-O-methylated and (c) 40-O-methylated

epicatechin metabolites in the plasma before (0 h) and after (1, 2 and 4 h)

consumption of the sugar-containing ( ) and maltitol-containing ( )

high-flavanol chocolate bar. Values are mean plasma concentrations, with

their standard errors represented by vertical bars (n 15). *,** Mean values

were significantly different for non-methylated epicatechin (P¼0·002),

30-O-methyl-epicatechin (P¼0·0304) and 40-O-methyl-epicatechin (P¼0·0397)

plasma metabolites between the sugar-containing and maltitol-containing

high-flavanol chocolate bars.
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of nutrients in the small intestine(52), thus the absorption of

flavanols may also be affected by the presence of maltitol.

Lastly, although the absorption of flavanols, and, indeed,

other flavonoids, is considered to occur by a process of pas-

sive absorption(53,54), we cannot rule out that the greater

amount of energy delivered with the sugar-containing food

may have an impact on metabolic events in enterocytes,

thus facilitating greater transfer from the lumen to the portal

blood. Further research is needed to elucidate the precise

mechanisms by which maltitol limits the absorption of CF in

the small intestine.

As the vascular benefits of flavanol-containing foods

are dependent on the delivery of flavanols to the systemic

circulation(21,31,18,55), factors affecting their absorption and

metabolism, including food matrix components such as

carbohydrate, represent important considerations in the

design of new products aimed to support cardiovascular

health. However, while the present data suggest that the use

of a replacement sugar, such as maltitol, may reduce flavanol

absorption, at present, it is unclear as to whether this approxi-

mate 20 % reduction in flavanol absorption would have an

impact on beneficial vascular responses. Although plasma

flavanol levels were not measured, previous data suggest

that sugar-free cocoa may improve endothelial function in

overweight adults to a greater degree than regular or sugar-

sweetened cocoa(31,56). While this result may appear to be

counter-intuitive to the present findings, there is also clear

evidence that flavanol-induced improvements in endothelial

function are dose-dependent with respect to plasma levels

of (2)-epicatechin(18). Furthermore, sugar-free cocoa might

be expected to induce a greater vascular effect than a

maltitol-containing equivalent, as it would not be expected

to influence intestinal osmolarity and thus flavanol absorption.

Further work is warranted in order to investigate the impact

of low-energy, sucrose replacements on the vascular efficacy

of a food in addition to its effects on the absorption of CF.

Despite the findings reported here and elsewhere in the

literature, from the point of view of public health nutrition,

recommending chocolate consumption, as part of a healthy

diet, is controversial, as chocolate, while potentially high in

flavanols, is also high in sugar and saturated fats. An increase

in chocolate consumption might lead to detrimental effects in

cardiovascular health and increases in body weight. As such,

any future exploitation of the health effects of CF requires

additional work in order to develop nutritionally responsible

food matrices designed with optimal flavanol delivery to the

vascular system in mind.
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