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Abstract 

Although grasslands are crucial habitats for European butterflies, large-scale declines in 

quality and area have devastated many species. Grassland restoration can contribute to the 

recovery of butterfly populations, although there is a paucity of information on the long-term 

effects of management. Using eight UK data sets (9-21 years), we investigate changes in 

restoration success for (1) arable reversion sites, were grassland was established on bare 

ground using seed mixtures, and (2) grassland enhancement sites, where degraded grasslands 

are restored by scrub removal followed by the re-instigation of cutting/grazing. We also 

assessed the importance of individual butterfly traits and ecological characteristics in 

determining colonisation times. Consistent increases in restoration success over time were 

seen for arable reversion sites, with the most rapid rates of increase in restoration success 

seen over the first 10 years. For grasslands enhancement there were no consistent increases in 

restoration success over time. Butterfly colonisation times were fastest for species with 

widespread host plants or where host plants established well during restoration. Low mobility 

butterfly species took longer to colonise. We show that arable reversion is an effective tool 

for the management of butterfly communities. We suggest that as restoration takes time to 

achieve, its use as a mitigation tool against future environmental change (i.e. by decreasing 

isolation in fragmented landscapes) needs to take into account such time lags. 

 

Highlights 

 We assessed limiting factors for butterflies during grassland restoration.  



 For arable reversion restoration success increased to a plateau over time. 

 Restoration success did not change over time under grassland enhancement.  

 Restoration is promoted by rapid host-plants establishment. 

 Dispersal and the national distribution of host plants limit colonisation. 
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1. Introduction 

Across Europe, the wide-scale loss and degradation of species-rich grassland has created a 

pressing need to augment remaining areas using grassland restoration (Bakker and Berendse, 

1999, Blackstock et al., 1999, Pywell et al., 2003 and van Swaay, 2002). Grasslands are an 

important habitat not just for plants, but are also crucial to the conservation of UK and 

European butterflies (Brereton, 2004 and van Swaay, 2002), providing breeding and foraging 

habitat for more than 90% of UK species (Brereton, 2004). By restoring grasslands there is 

the potential to mitigate against extinction debts caused by long-term habitat fragmentation 

(Kuussaari et al., 2009), while increasing functional connectivity essential for climate change 

adaptation policies (Hodgson et al., 2009). 

Agri-environmental schemes represent the principal mechanism in Europe by which financial 

incentives are provided to restore grasslands (Critchley et al., 2003). For plants, the success 

achieved during restoration is often variable, with recruitment processes, competitive 

interactions and underlying abiotic factors limiting success (Bakker and Berendse, 1999, 

Bischoff, 2002, Fagan et al., 2008 and Pywell et al., 2003). Where restoration is on existing 

grasslands that have become degraded as a result of infrequent or absent management, 

restoration typically involves the removal of scrub and the re-instigation of extensive grazing 

and cutting regimes (Crofts and Jefferson, 1999 and Redhead et al., 2012). Overcoming 

dispersal limitation by sowing seeds is also an important approach used during grassland 

restoration, although is most often applied to sites that have been used for alternative land 

uses, such as arable agricultural (Bakker and Berendse, 1999, Bischoff, 2002, Edwards et al., 

2007 and Öster et al., 2009). Host-plant establishment during restoration is crucial for 

phytophagous invertebrate assemblages (Bakker and Berendse, 1999, Edwards et al., 2007, 

Pöyry et al., 2004, Woodcock et al., 2012 and Woodcock et al., 2010). This is particularly 

important as the artificial introduction of invertebrates during restoration is often too 

expensive to be widely used, and colonisation by invertebrates is therefore usually by natural 

immigration only (Littlewood et al., 2012 and Woodcock et al., 2010). 

The high cost of grassland restoration means that quantification of its success is of 

fundamental importance to policy makers and conservationists alike (Matthews et al., 2009). 



Grasslands are defined on the basis of their vegetation, and restoration success has generally 

been valued on the basis of plant species‘ establishment (Bakker and Berendse, 1999, 

Edwards et al., 2007, Matthews et al., 2009 and Rodwell, 1992). In contrast, quantification of 

restoration success for invertebrates, which tend to be more speciose than plants (Tscharntke 

and Greiler, 1995), has been largely ignored (Fagan et al., 2010, Littlewood et al., 2012, 

Pöyry et al., 2004 and Woodcock et al., 2010). This reflects the often limited information 

about what species are expected to establish, as well as a fundamental lack of knowledge 

about their expected relative abundances in target communities (Pöyry et al., 2004 and 

Woodcock et al., 2010). Assessments of long-term community level responses are vital to 

address this paucity of data and will allow us to understand which factors limit invertebrate 

restoration. Long-term data sets (>10 years) linked with restoration studies, while rare for 

plants, are almost entirely lacking for invertebrates. Butterflies represent one of the best 

recorded invertebrate taxa, and have well characterised life-histories and plant feeding 

associations (Asher et al., 2001). Their charismatic appearance and ecological suitability as 

indicator species also makes them a useful flagship group for promoting management in 

grasslands (Asher et al., 2001, New et al., 1995 and Thomas et al., 2009). Butterflies 

therefore represent a useful model for understanding, with the aim of overcoming, factors that 

limit restoration success for grassland invertebrates. 

Here we assess the success with which butterfly communities re-establish during the 

restoration of calcareous and mesotrophic grasslands. We compare two forms of management 

applied to restore grasslands, representing the complete re-establishment of grasslands on 

land previously under different land uses, and the enhancement of degraded grasslands that 

have been poorly managed. To achieve this we use data sets describing the development of 

butterfly populations over time in response to grassland restoration. We aim to identify time 

lags between the start of restoration and the establishment of butterfly communities typical of 

species-rich grasslands (Pöyry et al., 2004 and Woodcock et al., 2010). While the 

development of butterfly communities is our principal measure of restoration success, 

understanding factors that limit colonisation rates for individual species has important 

implications, for example by identifying species unable to disperse in response to climate 

change (Hodgson et al., 2009). We use a combination of species’ traits and ecological 

characteristics to determine which factors decrease the mean time taken to colonise. We 

predict that: (1) mobile species will be the first to colonise; (2) butterflies feeding on host-

plants that readily establish or are able to persist well during restoration will have a better 

chance of establishing early; (3) butterflies feeding on widely distributed host plants, or those 

butterflies that are widely distributed themselves, will be more likely to have source 

populations in the vicinity of restoration sites, and so more likely to colonise rapidly. 

 

2. Materials and methods 

We collected eight unpublished UK data sets, ranging in length from 9 to 21 years. Each data 

set records the establishment of butterfly communities during the restoration of either 

lowland mesotrophic hay meadows (three sites) or calcareous (five sites) grasslands (Table 



1). The bias towards calcareous grasslands reflects their high importance as habitats for 

European butterflies (van Swaay, 2002). The restoration of these sites fell into two main 

categories: (1) Four sites were restored from bare soil using seed addition in the first year to 

overcome plant dispersal limitation (Bakker and Berendse, 1999 and Edwards et al., 2007). 

We refer to this as ‘arable reversion‘ for consistency with published literature (Littlewood et 

al., 2012), however, the bare soil in this study originated from ex-arable (two sites), ex-

landfill (one site) and landscaping associated with road construction (one site). Arable 

reversion involves seed addition, as without this the impoverished seed banks would be 

unable to limit the establishment of weedy species (Bakker and Berendse, 1999 and Edwards 

et al., 2007). (2) Four sites were managed as ‘grassland enhancement‘. These were 

floristically species poor and dominated by competitive or shade tolerant species, with some 

level of scrub encroachment resulting from the cessation of historic management practices 

(Crofts and Jefferson, 1999 and Redhead et al., 2012). Enhancement involved scrub removal 

followed by the re-instigation of extensive cutting or grazing regimes. Long-term 

management differed among sites, reflecting historical management practices typical for a 

particular region and underlying soil type (see Table 1 for additional information). However, 

in all cases either grazing alone, or cutting combined with grazing were applied yearly. In no 

situation would inorganic fertilisers be applied to the restoration sites. Arable reversion and 

grassland enhancement represent two of the main forms of restoration currently undertaken to 

benefit butterflies in the UK (Brereton, 2004 and Crofts and Jefferson, 1999). 

The availability of semi-natural grassland in the landscapes surrounding these arable 

reversion and grassland enhancement sites could play a role in determining restoration 

success by promoting connectance to source populations of butterflies (Maes and Bonte, 

2006, Shepherd and Debinski, 2005 and Woodcock et al., 2010). However, the data sets used 

in this study are long-term (up to 21 years) and as such year by year changes in landscape 

structure are not available over their duration. As such detailed analyses of the effects of 

landscape structure are not practical. However, based on the 2000 UK Land Cover Map 

(Fuller et al., 2002) the proportions of semi-natural grassland at radii of 0.5 km, 1.0 km and 2 

km surrounding the restoration sites were determined (Table 1). Semi-natural grassland 

excluded all grasslands that had been agriculturally improved by the use of inorganic 

fertilisers. There were no significant differences in the proportion of semi-natural grassland 

between the grassland enhancement and arable reversion sites (Anova: 0.5 km: F1,6 = 1.49, p 

= 0.24; 1.0 km: F1,6 = 1.46, p = 0.27; 2 km: F1,8 = 0.34, p = 0.57). 

 

    Table 1. Restoration site characteristics and management practices for the eight long-term 

data sets. Grassland habitat codes refer to those described by Rodwell (1992). Proportion of 

semi-natural grassland is derived from the 2000 UK Land Cover Map. 



Tables 

Site Grassland 

type 

Pre-restoration conditions Restoration management Duration  Proportion of semi-natural 

grassland surrounding site 

Grassland enhancement    0.5 km 1.0 km 2.0 km 

Yew Hill, Hampshire               
(51°02′11.44″N 01°21′06″W) 

CG2/CG3 

calcareous  

Scrubbed up grassland that had 

received no grazing or cutting. 

Scrub removal followed by long-term re-

instigation of low intensity sheep grazing. 

19 years 0.052 0.057 0.357 

Magdalene Hill Down 

Original,  Hampshire 
(51°03′40″N 01°16′43″W) 

CG2/CG3 

calcareous  

Scrubbed up grassland that had 

received no grazing or cutting. 

Scrub removal followed by long-term re-

instigation of low intensity sheep grazing. 

21 years 0.000 0.017 0.242 

Bentley Station 

Meadow,  Hampshire   
(51°10′47″N 00°51′47″W) 

MG5 Lowland 

Hay meadow 

Meadow had become 

overgrown with scrub and was 

infrequently managed. 

Scrub clearance followed by long-term re-

instigation of cutting management and 

aftermath cattle / sheep grazing. 

18 years 0.084 0.038 0.354 

Millhoppers pasture, 
Hertfordshire      
 (51°49′45″N 00°42′01″W) 

MG5 Lowland 
Hay meadow 

Rank grassland that had 
received no management for at 

least 5 years. 

Some scrub clearance followed by long-term 
re-instigation of cutting management and 

aftermath cattle / sheep grazing. 

12 years 0.133 0.105 0.532 

Arable reversion     

Magdalene Hill Down 

Ext., Hampshire  
(51°02′58″N    01°17′14″W) 

CG2/CG3 

calcareous  

Ex-arable land. Re-seeding with local provenance seed mix 

with plugs of horseshoe vetch and common 

rock-rose in chalk scrapes.  Long term sheep 

grazing. 

11 years 0.051 0.022 0.191 

A33 compensation area,  

Hampshire  
(51°02′54″N 01°18′45″W) 

CG2/CG3 

calcareous  

An abandoned road covered 

with top soil. 

Sown with a seed mixture derived from 

species rich calcareous grassland swards.  

Long term sheep grazing management. 

9 years 0.253 0.174 0.359 

M3 compensation area,    
Hampshire  
(51°02′27″N 01°18′53″W) 

CG2/CG3 
calcareous  

Ex-arable land Sown with a seed mixture derived from 
species rich calcareous grassland swards.  

Long term sheep grazing management. 

11 years 0.195 0.170 0.426 

Ryton Wood Meadows,    

Warick.  
(52°21′08″N 01°26′44″W) 

MG5 Lowland 

Hay meadow 

Ex-landfill site covered with top 

soil. 

Sown with a principally grass seed mixture 

with some key forbs butterfly host plants. 

Long term cutting and sheep / cattle grazing 

management. 

21 years 0.065 0.059 0.327 

 

Table 1.  Restoration site characteristics and management practices for the eight long-term datasets.   Grassland habitat codes refer to those 

described by Rodwell (1992).  Proportion of semi-natural grassland is derived from the 2000 UK Land Cover Map.



2.1. Butterfly monitoring 

Data on butterfly abundance were collected following the standard transect based recording 

methodology described in Pollard and Yates (1993). The length of transects varied on the 

basis of individual site area and within site habitat variability. Transects were typically c. 2 

km in length, and were always 5 m wide. Each year transects were walked from the 

beginning of April until the end of September (a maximum of 26 transects a year). Transect 

walks were undertaken between 10.45 am and 3.45 pm under dry conditions (>13 C) with 

wind speeds less than a Beaufort scale 5. To account for differences in the number of 

individuals sampled at sites and between years, butterfly species richness was rarefied to the 

lowest common number of individuals (75) using the VEGAN package (Dixon, 2003) in the 

R statistical environment (R Core Development Team, 2008). 

2.2. Similarity to target grasslands 

To assess restoration success, extant examples of species-rich grassland were used to define 

target butterfly communities. Different target communities were used for lowland 

mesotrophic hay meadows and calcareous grasslands, reflecting differences in the butterfly 

communities that may be expected to establish (Asher et al., 2001). Each target community 

(mesotrophic and calcareous) was created by averaging the abundance of butterfly species 

from three sites, representing examples of good quality species rich grassland from the same 

region. Targets for the calcareous grassland were Holtspur Bottom 5136‘22‘‘N 0040‘35‘‘W, 

St. Catherine‘s Hill 5102‘39‘‘N 0118‘36‘‘W and Catherington Down 5055‘31‘‘N, 

10‘57‘‘W. Targets for mesotrophic hay-meadows were Wendleholme 5051‘48‘‘N 

0117‘55‘‘W, Ashford Hill Woods and Meadows 5121‘10‘‘N 0111‘37‘‘W, Bubbenhall 

Meadow 5220‘33‘‘N 0127‘16‘‘W. There was no significant difference in the distance from 

restoration sites to respective target grasslands between arable reversion and grassland 

enhancement sites (Anova: F1,22 = 0.16, p = 0.69; mean distance between grassland 

enhancement and each target grasslands = 56.3 km SE  12.1; mean distance between arable 

reversion and each target grasslands = 48.6 km  15.3). Butterflies at these sites were 

recorded in the same way as the restored sites. 

Restoration success was assessed by calculating the Euclidean distance between the summed 

abundance of butterfly populations present at a restoration site for a particular year and the 

target grassland communities. The target community was based on an average across multiple 

years at the target sites. While a year by year comparison would have been preferable there 

was insufficient data from the target communities to make this possible. Euclidean distance 

has been used in previous studies to measure successional trajectories relative to target 

communities for both plants and insects (Fagan et al., 2008 and Woodcock et al., 2010). 

Individual species abundance within a particular site and for a particular year was expressed 

as a proportion of the summed yearly abundance at that site. This proportional abundance 

corrected for different numbers of butterfly observations from transects of different lengths. 

Euclidean distance was defined as: 



(1) 

 

  



n

i
ikij

ED XXjk

1

2

 

        

where EDjk is the Euclidean distance between sites j and k, Xij is the proportional 

abundance of species i in sample j, and n is the number of butterfly species. There is an 

inverse relationship between the Euclidean distance and the similarity of samples. As the 

Euclidean distance between different restoration sites and their respective target communities 

often varied reflecting differences in the species numbers present at different sites, we used a 

scaled measure of Euclidean distance (EDS) to define restoration success for the butterflies 

(Woodcock et al., 2012). 

(2) EDS =1-(EDtn/EDMax) 

where EDMax is the maximum recorded Euclidean distance between the butterfly 

communities of a restoration site and that of the target community. Typically this was found 

in the first year of restoration; EDtn is the Euclidean distance between the restoration site and 

its target community in the nth year after the start of restoration. EDS ranges from 0 to 1, with 

this highest score being achieved if the restoration site and target communities share the same 

species with the same proportional abundances. Achieving an EDS of 1 is biologically 

unrealistic as complete replication of target communities is unlikely. Note, the presence of 

species within restoration sites that were not common to the target community would reduce 

EDS, even if restoration sites and target grasslands otherwise shared the same species with 

similar relative abundances. However, as a conservative estimate we suggest that EDS > 0.7 

represents a high degree of restoration success. 

2.3. Butterfly ecological characteristics and traits 

The time taken for butterfly species to colonise each site (i.e. the time to the first record at the 

site) was recorded in years, and then averaged for each species across all sites that the species 

colonised. This average colonisation time was related to individual species traits and 

ecological characteristics. Following Reich et al. (2003), traits represent species 

characteristics that have evolved in response to competitive interactions and abiotic 

environmental conditions, and are defined as any attribute likely to influence establishment, 

survival or fitness. For butterflies we used the following traits. (1) Mobility, based on 

published values in Cowley et al. (2001) which used expert opinion to rank butterflies from 

low to high mobility. This scoring was square root transformed. Ideally mobility would have 

been assessed on the basis of mark recapture experiments (Stevens et al., 2010), however, 

such information was only available for a sub-set of the species considered and so this 

preferred approach was rejected as impractical. (2) Host-plant specialisation, by which 

species were defined as monophagous, strict oligophagous (feeding within a single plant 

genus), loose oligophagous (feeding within the same plant family), and polyphagous (BRC, 

2009). In the case of host plants we focused on species that represent the main established 

feeding relationships of individual species. (3) Voltinism, with butterflies defined as having 

either single or multiple generations per year (Asher et al., 2001 and Cowley et al., 2001). 



Ecological characteristics of butterflies describe aspects of individual species distribution or 

attributes of their host-plants. We used the following characteristics. (1) The number of 10 

km squares in England and Wales in which the butterfly species had been recorded (Asher et 

al., 2001). (2) The number of 10 km squares in England and Wales in which the most 

common of a butterfly species main host plants had been recorded (Preston et al., 2002). (3) 

Host-plant regeneration strategy, defined as reproducing by seeds only, or reproducing at 

least in part clonally (Hill et al., 2004). Where multiple principal host plants were present, a 

butterfly was considered to feed on a clonal plant if at least one of its food plants was clonal; 

(4) Annual or perennial host-plants (Hill et al., 2004). (5) The competitive ability of the host 

plants, based on Grime et al. ‘s (1988) ‘C‘ index (Dennis et al., 2004). Where multiple host 

plants were present, we use the ‘C‘ index for the most competitive of the principal food 

plants. (6) Success of establishment of main host plant. This was based on Pywell et al. 

(2003), which considered the success of plant establishment over the initial 4 years of 

grassland restoration, and represents a corrected index derived from multiple sites and 

grassland types. Success of establishment uses the corrected mean population size (Nc) of the 

host-plant in the first year of restoration. Based on this, species are classified as either (i) not 

being a target for grassland restoration (e.g. ubiquitous plants or pernicious weeds), or targets 

for restoration that have either (ii) good (Nc > 0.5), (iii) neutral (Nc = 0.1-0.5) or (iv) bad (Nc 

< 0.1) establishment in year one. (7) Persistence of main host plant following restoration. 

This is also based on the Pywell et al. (2003) data and uses a regression showing the trend in 

population growth over the first 4 years of restoration for the main host plant. As before, this 

is derived for multiple sites and grassland types. Main host plants are classified as being 

either (i) not a target for restoration, or either (ii) increasing (slope > 0.1), (iii) remaining 

constant (slope between -0.1 and 0.1) or (iv) declining (slope < -0.1) in cover following 

establishment. Note that for both success of establishment and persistence of host plant, 

thresholds used to define the categories above were based on expert opinion, and as such are 

arbitrary. 

2.4. Data analysis 

Following Matthews et al. (2009), the response of rarefied butterfly species richness (SR) and 

restoration success (EDS) to the number of years of restoration were tested against three 

competing models. These were: (1) a null model, which assumed that species richness or 

restoration success did not change in response to the number of years of restoration, (SR or 

EDs = ); (2) a negative exponential function, which predicted that the temporal change in 

either species richness or restoration success would increase over time until an asymptote, 

where it would thereafter remain (SR or EDS  = α(1-exp.
-β·year

)); (3) a double exponential 

function, which predicted that species richness or restoration success would increase initially 

over time, but would then decline (SR or EDS= α(exp.
-c·year

 - exp.
-β·year

)).  The fit of these three 

models to the data was assessed using non-linear mixed models (Proc NLMIXED) in SAS 

9.01. Restoration site was included as a subject classification within the random effects to 

account for the repeated measures over time. Differentiation between the best fit models (i.e. 

the null model, negative exponential or double exponential) for either species richness or 

restoration success was achieved using Akaike‘s Information Criterion (AIC), which allows 



the comparison of models with different numbers of parameters. Separate analyses were run 

for the arable reversion and grassland enhancement sites. The duration over which butterfly 

communities were recorded differed between sites, ranging from 9 to 21 years (Table 1). To 

confirm the validity of parameter estimates for the tested models we repeated the analysis for 

a temporally reduced data set, restricted to a sampling period of less than 10 years of butterfly 

monitoring. 

Typically, species‘ traits and ecological characteristics will show correlations and trade-offs 

as a result of biophysical limitations on structure and function (Weiher et al., 1999). Such 

inter-correlated traits and ecological characteristics may individually have biological 

meaningful relationships with colonisation time. To fully explore relationships univariate 

responses of mean butterfly colonisation times to each of the 10 traits and ecological 

characteristics were performed. This was achieved using either simple regressions or 

ANOVA models, depending on whether explanatory variables where continuous or 

categorical. This was used as a sifting process to exclude traits or ecological characteristics 

that did not have a significant effect on mean butterfly colonisation time. Of those 

traits/ecological characteristics that were retained, a subsequent set of general linear models 

were run containing all possible combinations of these fixed effects, excluding interaction 

terms. This included models containing single explanatory variables up to one containing all 

retained traits and ecological characteristics. These models were again ranked using AIC to 

identify the single best model that explained butterfly colonisation times. 

 

3. Results 

A total of 277,175 individual butterflies were recorded using transect walks, representing 36 

of the UK resident and regular migrant species (Asher et al., 2001). As many UK butterflies 

are not grassland specialists this list represents a large proportion of species that might be 

expected to colonise during grassland restoration. 

 

3.1. Species richness 

Rarefied species richness of butterflies was not shown to change with the number of years of 

restoration for either the arable reversion or grassland enhancement sites. In both cases mean 

rarefied species richness was similar at c. 12-14 butterfly species. This lack of a response to 

year was indicated by the null model (SR = ) having a better fit to the data (arable reversion: 

AIC = 208.1,  = 12.4; enhancement: AIC = 296.1,  = 13.1) than either the negative 

exponential (arable reversion: AIC = 214.7; enhancement: AIC = 325.6) or double negative 

exponential functions (arable reversion: AIC = 216.2; enhancement: AIC = 348.8). When the 

analysis was repeated using the restricted data set limited to sampling points from less than 

10 years (a sampling period common to all sites), the null models remained the best fit to the 

data for both seed addition and no-seed addition sites (arable reversion:  = 12.3; 

enhancement:  = 13.7). The results presented her are for the scaled Euclidean distance 



(EDS), reflecting the need to correct for differences in the numbers of species between 

restoration sites. However, see Electronic Appendix S1 for trends over time for raw 

Euclidean distances. 

3.2. Similarity to target grasslands 

Where arable reversion was used to restore the grasslands, the success of restoration in the 

butterflies increased to an asymptote, following the form of a negative exponential function 

(EDS =0.72×(1-exp
-0.24×year

); Fig. 1a). Restoration success tended to show a sharp increase 

within an initial 10 years of arable reversion. The asymptote for EDS was at c. 0.72 and 

indicates a relatively high degree of similarity to the target butterfly communities under 

arable reversion. The negative exponential function (AIC = 4.0) had a better fit to the data 

than either the null hypothesis (AIC = 9.4) or the double exponential function (AIC = 21.8). 

When the data set was restricted to data collected under 10 years, the negative exponential 

model remained the best fit to the data and retained parameter estimates comparable to those 

derived from the model based on longer term data set (EDS =0.73×(1-exp
-0.30×year

)). 

 

   

  Fig. 1. Success in restoring butterfly communities typical of species-rich grasslands during 

grassland restoration by either arable reversion (a) or grassland enhancement (b). For arable 

reversion sites the negative exponential functions for the change in restoration success with 

years since the start of restoration management has been fitted. For the grassland 

enhancement sites there was no change in restoration success with year. 

 

In contrast, restoration by grassland enhancement showed no evidence of an increase in 

restoration success over time, so that the null model gave the best fit to the data (EDS = 0.35, 

AIC = -25.2) (Fig. 1b). The null model was superior to either the negative exponential 

a)   Arable reversion b) Grassland enhancement 
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function (AIC = -6.5) or the double exponential function (failed to converge in its parameter 

estimates). Restoration success was highly variable, and while restoration success was 

comparable to values seen under arable reversion in some years it did not remain consistently 

high. Using the restricted temporal data set (<10 years) the null model remained the best fit to 

the data (EDS = 0.36). 

3.3. Colonisation times for butterfly species 

Initial univariate tests were undertaken to identify which of the explanatory traits and 

ecological characteristics showed significant correlations with butterfly mean colonisation 

times. Colonisation time reduced linearly in response to increasing national frequency of the 

butterflies host-plants (F1,31 = 43.9, p < 0.001; Fig. 2a). Butterfly colonisation was fastest 

where host-plants were either not actively encouraged during restoration (i.e. widespread 

species) or were characterised by good initial establishment or positive population growth 

following this establishment period. However, where host plants had poor initial 

establishment or showed negative population growth, colonisation times were slower. Both 

these responses were demonstrated by significant responses to both the establishment success 

of host-plants (F2,30 = 8.86, p < 0.001; Fig. 2b) and their subsequent trends in population 

growth during restoration (F3,29 = 5.92, p < 0.01; Fig. 2c). Colonisation times were lowest for 

the butterflies feeding on host plants that were not dependent on seed production, but could 

reproduce clonally (F1,31 = 7.12, p < 0.01; Fig. 2d). Finally, as butterfly mobility/dispersal 

decreased so did the mean colonisation times (F1,31 = 7.57, p < 0.01; Fig. 2e). None of the 

remaining traits or ecological characteristic were significantly correlated with mean 

colonisation times (p > 0.05). After testing all possible model combinations of the five traits 

and ecological characteristics identified as significant in the univariate tests, a model 

containing both the national frequency of host plants and host plant establishment success 

had the best fit to the data (AIC = 163.6). 

 

 

 

    Fig. 2. Effect of butterfly traits and ecological characteristics in predicting the mean 

colonisation times of butterflies during grassland restoration. In univariate tests colonisation 

time responded significantly to all the presented traits, however, the best fit model based on 

AIC includes ‘national frequency of host-plants‘ and ‘Host plant establishment success‘ only. 
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4. Discussion 

4.1. Species richness 

Quantification of grassland restoration success is crucial to the development of management 

practices that will benefit declining butterfly populations and inform policy makers on how to 

maximise biodiversity gains from financially limited resources (Benayas et al., 2009 and 

Matthews et al., 2009). While species richness represents a fundamental measure of the 

complexity of a community, it is of questionable value as an indicator of restoration success 

(Fagan et al., 2010 and Woodcock et al., 2012). For any site undergoing restoration, some of 

the species that become established will not be characteristic of the target habitat type, and 

their use in the valuation of restoration success is potentially misleading. It would be possible 

to restrict measures of species richness to butterflies known to be indicator of high quality 

semi-natural grasslands. However, such an approach requires a priori knowledge of what 

these indicator species are; information which may vary according to local species pools and 

is not necessarily available in all regions. Such an approach that uses a sub-set of target 

species could be used to improve the resolution of the restoration success metric (i.e. EDs). 

However, in the case off the current study the numerical dominance of grassland specialist 

species made such an approach unwarranted. Species richness also takes no account of the 

relative abundance of a particular species and so does not distinguish between those with a 

robust population size and those on the edge of local extinction (Hanski and Singer, 2001). 

Finally, we found no suggestion that rarefied butterfly species richness change in response to 

the number of years of restoration for either the arable reversion or grassland enhancement 

sites. 

4.2. Similarity to target grasslands 

The measure of restoration success used (EDS) quantified changes in similarity between 

restoration sites and target grasslands in terms of both species composition and relative 

abundances of individuals. For the arable reversion sites, restoration success increased 

rapidly over the first 5-10 years, while grassland enhancement showed no change in 

restoration success with time. Rapid increases in restoration success for the arable reversion 

sites could in part be linked to these communities being established on bare ground, with no 

existing butterfly species. In contrast grassland enhancement sites started as grasslands, albeit 

of low quality, and so would have contained some grassland butterfly species. However, 

these species would have been principally ubiquitous grassland species that were typically 

present in the first year of arable reversion. 

An alternative possibility is that a rapid increase in restoration success for arable reversion 

sites was linked to the establishment of target plant communities resulting from seed addition. 

There are, however, multiple confounding factors between the management of arable 

reversion and grassland enhancement sites, so it is not possible to isolate seed addition as the 

factor driving restoration success. The establishment of butterflies, or any phytophagous 

insects, will require the presence of host-plants for larval development (Maccherini et al., 

2009, Pöyry et al., 2004, Tscharntke and Greiler, 1995, van Swaay, 2002 and Woodcock et 



al., 2010). For this reason, seed addition combined with scarification to create germination 

niches, warrants further consideration as an approach for introducing butterfly host-plants 

during grassland enhancement (Edwards et al., 2007). Host-plant occurrence is not the only 

limiting factor that must be overcome by establishing butterflies, for example larvae of many 

species exploit only a sub-set of their food plant(s), being limited to specific microhabitats or 

particular management regimes (Asher et al., 2001, New et al., 1995, Pöyry et al., 2004, 

Thomas et al., 2009 and van Swaay, 2002). Indeed this may be a key difference between 

restoration successes achieved under arable reversion as opposed to grassland enhancement. 

For example, where competitively dominant grasses persist during enhancement, their 

shading of the ground may affect microclimate conditions required for larval development. 

Without appropriate host-plants present in the sward the achievement of other environmental 

requirements, such as microclimate, is likely, however, to be of secondary importance (New 

et al., 1995 and van Swaay, 2002). Responsive management intended to promote the 

establishment and persistence of plants could be used to benefit butterfly restoration on a site 

by site basis, for example, by using multiple sward cuts to reduce the dominance of some 

plant species (Crofts and Jefferson, 1999). While useful in promoting plant establishment, 

such intensive practices could have a catastrophic effect on butterfly and other invertebrate 

assemblages already established (Humbert et al., 2009 and New et al., 1995). Rotational 

management should be considered as a tool to promote multi-taxa restoration, where species 

differ in sensitivity to management (Crofts and Jefferson, 1999 and New et al., 1995). 

4.3. Colonisation times for butterfly species 

Understanding the factors that determine the time scales over which individual species 

colonise provides a knowledge-base for the development of strategies that target high risk 

butterfly species establishing poorly during restoration. For butterflies, responses to 

landscape scale changes in habitat structure are well known, in particular the negative effects 

of isolation and fragmentation on population establishment and persistence (e.g. Hanski et al., 

1994, Öckinger et al., 2010, Steffan-Dewenter and Tscharntke, 2000 and Thomas, 2000). It is 

therefore unsurprising that colonisation during grassland restoration was slowest for low 

mobility species. To counteract such effects, a landscape scale perspective should be 

considered during restoration, whereby sites are strategically positioned close to existing 

grasslands to minimise isolation (Öckinger et al., 2010, Steffan-Dewenter and Tscharntke, 

2000 and Woodcock et al., 2010). An alternative approach for more isolated sites could 

involve the artificial introduction of butterflies, however, this is expensive and would not 

ensure the survival of species persisting as metapopulations (New et al., 1995 and Steffan-

Dewenter and Tscharntke, 2000; but see Thomas et al., 2009). 

Dispersal ability was the only butterfly trait that had strong support as a factor limiting 

colonisation times. However, other aspects of the biology and distribution of host-plants were 

also identified as limiting factors. Species utilising nationally widespread food plants 

colonised more rapidly, probably because they were more likely to have source populations 

in the vicinity of restoration sites. The importance of this is likely to interact with the 

dispersal abilities of individual species (Cowley et al., 2001, New et al., 1995 and Steffan-

Dewenter and Tscharntke, 2000). It is not clear why the national frequency of the butterflies 



themselves was not a better predictor of colonisation times, although this may in part be due 

to some under-recording of butterflies relative to plants (Asher et al., 2001 and Preston et al., 

2002). It is also possible that the spatial scale at which distribution maps record butterfly 

occupancy (i.e. presence or absence within 10 km2) represents too large an area relative to 

the distances travelled by low mobility species to predict colonisation rates effectively. 

The ability of host-plants to establish and persist dictates whether or not a larval food 

resource will be present during restoration (Bakker and Berendse, 1999, Littlewood et al., 

2012, Pywell et al., 2003 and Woodcock et al., 2010). We show that faster butterfly 

colonisation times are to be found where host-plants establish well and/or show positive 

population growth during restoration. Similarly, butterfly colonisation times are lower where 

host plants reproduce clonally, and so are likely to be better adapted to persisting in closed 

and competitive sward than species dependent on seeds for reproduction (Edwards et al., 

2007, Pywell et al., 2003 and Woodcock et al., 2011). All three factors point to the need to 

establish and maintain host-plants populations during restoration if butterflies are to colonise 

rapidly. While the sowing of seeds represents an obvious method to introduce host-plants, 

this approach typically only occurs in the initial year of management (Edwards et al., 2007). 

It may be necessity to consider incorporating subsequent sowing events or to use plug plants 

to get hard to establish species into restoration sites (Pywell et al., 2003). The importance of 

host-plants may also extend beyond their immediate value as food. For example, butterfly 

traits that could affect colonisation times have been linked to aspects of host-plant biology, 

specifically the competitive ability of the plant. Dennis et al. (2004) showed that butterflies 

feeding on competitive host plants tended to be more mobile, have longer flight periods and 

be characterised by rapid larval development. While this highlights the often inter-correlated 

nature of traits (Weiher et al., 1999), it does point to the need to consider host-plant biology 

when identifying butterfly species likely to be poor colonisers during restoration. 

 

5. Conclusions 

Given the dependence of many insects on grasslands (Tscharntke and Greiler, 1995 and van 

Swaay, 2002), their often declining population status (e.g. van Swaay, 2002) and their role in 

ecosystem service provision (Losey and Vaughn, 2006), invertebrates need to be considered 

during development of grassland restoration methodologies. However, long term data sets 

detailing invertebrate restoration are absent from the literature for most groups, and as such 

butterflies make an important model system on which to make inferences about the 

consequences of grassland restoration. While a period of 10 years between recreation and its 

subsequent utility as a habitat for butterflies is not unexpectedly large, policy makers still 

need to incorporate these time lags into strategic planning. For example, if grassland 

recreation is to promote functional connectivity to mitigate against climate change, then at 

least a 10 year delay between the implementation of restoration and its realised value for 

butterflies needs to be accounted for (Hodgson et al., 2009). While butterflies are used as a 

model group to give an idea of potential time lags between the start of management and 

successful restoration, for other invertebrate taxa with very low mobility (e.g. snails) such 



time periods could be much longer (Knop et al., 2011 and Woodcock et al., 2012). For such 

groups, wide scale grassland restoration may simply occur too late to have any tangible 

benefits to be of value as a mitigation measure against future environmental change. 
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