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Introduction

Activation of intracellular signalling pathways by endothelin-1.  

Cardiac myocytes are terminally-differentiated cells which withdraw from the cell

cycle soon after birth.  Subsequent growth results from an increase in size of individual

myocytes (i.e. hypertrophy) rather than an increase in cell number.  Various stimuli promote

cardiac myocyte hypertrophy including peptide growth factors which signal through receptor

protein tyrosine kinases (e.g. platelet-derived growth factor, PDGF (Clerk et al., 2006)) and

Gq protein-coupled receptor (GqPCR) agonists such as "-adrenergic agonists or endothelin-1



A. Clerk 2

(ET-1) (Sugden and Clerk, 1998).  These promote both morphological changes (increase in

cell size and myofibrillar content) and changes in gene expression [e.g. increased  expression

of immediate early genes (IEGs) including c-jun or c-fos] associated with the hypertrophic

response (Sugden and Clerk, 1998; Clerk et al., 2007a).  

In cardiac myocytes, ET-1 acts principally through ETA receptors.  These couple

through heterotrimeric Gq proteins leading to activation of phospholipase C$ which

promotes hydrolysis of phosphatidylinositol 4,5 bisphosphate to produce inositol 1,4,5

trisphosphate and diacylglycerol (DAG) (Clerk and Sugden, 1997).  This leads to activation

of DAG-responsive PKCs and, in cardiac myocytes, ET-1 particularly activates the novel

PKC isoforms, nPKC* and nPKC, (Clerk et al., 1994).  ET-1 also stimulates small G

proteins, with increased GTP-loading of Ras, Rac1 and RhoA (Chiloeches et al., 1999; Clerk

et al., 2001; Brown et al., 2006).  All these events can be detected within the first 1 min after

stimulation.  Downstream of these very early signalling elements, mitogen-activated protein

kinases (MAPKs) are activated and these include extracellular signal-regulated kinases 1/2

(ERK1/2), c-Jun N-terminal kinases (JNKs) and p38-MAPKs (Bogoyevitch et al., 1993;

Bogoyevitch et al., 1994; Bogoyevitch et al., 1995; Clerk et al., 1998).  Activation of all

MAPKs is associated with hypertrophic growth of cardiac myocytes, but evidence from

transgenic mice particularly implicates ERK1/2 in beneficial (compensated) cardiac

hypertrophy (Sugden and Clerk, 1998; Bueno and Molkentin, 2002).  Other cells also possess

ETA receptors including fibroblasts and glioma cells.  For example, in rat C6 glioblastoma

cells as in cardiac myocytes, ET-1 activates phospholipase C$, PKC, and ERK1/2 leading to

upregulation of c-jun and c-fos (Yin et al., 9920; Ambar, Sokolovsky, 1993; Chen, 1993;

Leach et al., 1999).  In these cells, ET-1 promotes DNA synthesis and cell cycle progression

rather than hypertrophy, and ET-1 may promote tumorigenic states (MacCumber et al., 1990;
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Shichiri et al., 1991; Clozel and Salloukh, 2005).  The acute signalling events triggered by

ET-1 presumably lead to the changes in gene/protein expression associated with cardiac

myocyte hypertrophy or cell cycle progression in proliferating cells.  However, activation of

intracellular signalling elements such as PKC and ERK1/2 occurs rapidly and, at least in

cardiac myocytes, this activation is transient.  Thus, activation of ERK1/2 by ET-1 in

cultured cardiac myocytes is maximal at ~5 min, returning almost to basal levels within ~30

min (Clerk et al., 1994; Clerk et al., 1996).  How these early transient signals are propagated

and lead to the phenotypic responses over many hours or even days is not often considered. 

Regulation of gene expression by ET-1.  

In any cellular response, activation of pre-existing transcription factors (TFs)

downstream of intracellular signalling events leads to the increased expression IEGs. 

Because IEG expression is driven by pre-existing TFs, there is no requirement for de novo

protein synthesis and the response is not inhibited by protein synthesis inhibitors such as

cycloheximide.  Some IEGs encode "structural" proteins such as ion channels or components

of the cytoskeleton which directly influence the cellular phenotype.  However, many IEGs

constitute a "regulatory" component, encoding transcriptional regulators including TFs.  At

least some of the IEGs encode negative regulators of gene expression which feed back to

limit the IEG response, whereas other combinations of TFs regulate downstream, second-

phase gene expression.  Since second phase genes require synthesis of IEG proteins, this

phase of the response is inhibited by cycloheximide.  In contrast, preventing the expression of

a negative feedback protein by cycloheximide results in enhanced expression of IEG

mRNAs.  Potentially, second phase TFs regulate expression of third-phase genes further

downstream, etc. (see Fig. 1 and (Clerk et al., 2007a)).  As the response progresses, the
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proportion of "regulatory" to "structural" proteins declines as the new steady-state phenotype

develops.  Throughout this time, cells remain responsive to the environment although the

response is probably modulated by changing expression of cell surface receptors and

intracellular signalling components.  The cells also influence the environment by producing

extracellular matrix components and secreted factors which signal to other cells in the

vicinity.  

IEGs (e.g. c-fos, c-jun, egr1) are upregulated in cardiac myocyte hypertrophy (Dorn et

al., 2003; Sugden and Clerk, 1998), and it is assumed that they regulate expression of

hypertrophic genes including classical markers of hypertrophy (e.g. atrial natriuretic factor,

ANF).  However, our knowledge has previously been limited to a few established IEGs and it

is not clear how the expression of these genes/proteins leads hypertrophy.  To start to clarify

these issues, we have been using microarrays to determine the changes in gene expression

induced by ET-1 in primary cultures of neonatal rat ventricular cardiac myocytes (NRVMs)

over the first 4 h (as the initial phases of the response develop) and to distinguish IEGs from

downstream gene expression (Cullingford et al., 2008b).  Our data demonstrate a multiphasic

response consistent with the model described above and in Fig. 1.  Early IEGs are induced

within 30 min, with later IEGs appearing at 1 - 2 h.  Surprisingly, the earliest of the second

phase genes are detected within 1 h.  At these early times, many of the genes are associated

with transcriptional regulation or with intercellular or intracellular signalling and are not

classically associated with hypertrophy.  This indicates that this phase is an intermediate

stage in the response.  Several families of TFs were subject to regulation by ET-1 within the

first hour, and these may be "master-switches" for downstream gene regulation.  For

example, there are significant changes in expression of many of the Krüppel-like factors

(Klfs), suggesting that Klfs play a major role in the response (Cullingford et al., 2008a;
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Cullingford et al., 2008b).  One example of a potential feedback inhibitor of IEG expression

is activating transcription factor 3 (Atf3) which is implicated in downregulation of expression

of interleukin 6 (IL6) in the context of endotoxin-induced inflammation (Gilchrist et al.,

2006).  Here, we present data for the regulation of three IEGs which are responsive to ET-1

in cardiac myocytes: Atf3, Klf2 and IL6.

Materials and methods

Preparation of neonatal cardiac myocytes and adenoviral infection

Myocytes were dissociated from the ventricles of neonatal Sprague-Dawley rat hearts

using collagenase and pancreatin as previously described (Iwaki et al., 1990; Bogoyevitch et

al., 1995).  Non-myocytes were removed by pre-plating onto uncoated tissue culture dishes

(30 min, 37/C).  The (non-adherent) cardiac myocytes were collected and plated in serum-

containing medium at a density of 1.4 × 103 cells/mm2 on Primaria tissue culture dishes

precoated with 1% (w/v) gelatin.  After 18 h, serum was withdrawn for 24 h prior to use. 

Agonists were added directly to the tissue culture medium.  For adenoviral infection, cardiac

myocytes were serum-starved for 4 h before adding 200 :l of virus stock in PBS to the

medium.  Cardiac myocytes were incubated for a further 48 h before experimentation.  

Semi-quantitative and quantitative reverse transcriptase polymerase chain reaction (RT-

PCR)

RNA was prepared and semi-quantitative RT-PCR performed as previously described

(Clerk et al., 2007b), using 100 pmol forward and reverse primers as follows: Atf3 (accession

no. NM_012912): forward 5'- GCTGCCAAGTGTCGAAACAAG -3', reverse
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5'-CAGTTTTCCAATGGCTTCAGG-3', 388 bp product; IL6 (accession no. NM_012589) :

forward 5'-CCGGAGAGGAGACTTCACAG-3', reverse 5'-

GAGCATTGGAAGTTGGGGTA  -3', 428 bp product; glyceraldehyde 3' phosphate

dehydrogenase (Gapdh): forward 5'-ACCACAGTCCATGCCATCAC-3', reverse 5'-

TCCACCACCCTGTTGCTGTA-3', 452 bp product).  For Gapdh, samples were subjected to

21 cycles of denaturation (94/C, 30 s), annealing (59/C, 30 s) and extension (72/C, 30 s). 

For Atf3 and IL6, samples were subjected to 27 cycles of amplification.  Bands were detected

under UV light and sizes were estimated by comparison to a NX174 RF DNA Hae III digest

DNA ladder (ABgene) or a 100 bp ladder (Invitrogen).  Densitometric analysis was

performed using Imagemaster 1D Prime, version 3.0 (GE Healthcare). 

Quantitative PCR (QPCR) was performed using a 7500 Real-Time PCR System

(Applied Biosystems). A master-mix containing (per reaction) 12.5 :l Sybr-Green Jump Start

Taq Readymix (Sigma-Aldrich) and 5 :l oligonucleotides (5 pmol each of forward and

reverse primers) was aliquoted into Optical 96-well reaction-plates (Applied Biosystems),

and the cDNA template added (7.5 :l, 1/15 dilution in Milli-Q filtered water).  PCR

conditions for all primer pairs were 50/C for 2 min, 95/C for 10 min, followed by 40 cycles

of 95/C for 15 s and 59/C for 60 s.  Following QPCR, a dissociation curve analysis was

performed to check for aberrant amplification products.  QPCR analysis of Gapdh was

performed in each 96-well plate as an endogenous control and the relative quantitation

protocol was used.  Primers for QPCR were as follows: Atf3 (accession no. NM_012912):

forward 5'-GAGCGAAGACTGGAGCAAAA-3', reverse

5'-AAGGTGCTTGTTCTGGATGG-3', 181 bp product; IL6 (accession no. NM_012589) :

forward 5'-CCGGAGAGGAGACTTCACAG -3', reverse 5'-

CAGAATTGCCATTGCACAAC-3', 136 bp product; epiregulin (Ereg; accession no.
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NM_021689): forward 5'-ACTGCAGATGTGAAGTGGGC-3', reverse 5'-

GAGGAAAACGAGAATCACGG-3', 113 bp product); leukaemia inhibitory factor (Lif;

accession no. NM_022196): forward 5'-TCAACTGGCTCAACTCAACG-3', reverse 5'-

ACCATCCGATACAGCTCGAC -3', 128 bp product); c-Jun (accession no. NM_021835):

forward 5'-GATCATCCAGTCCAGCAATG-3', reverse 5'-

TATTCTGGCTATGCAGTTCAG -3', 140 bp product).  

Western blotting

Cardiac myocyte nuclear extracts were prepared and immunoblotted as described

previously (Markou et al., 2008).  Blots were probed with primary rabbit polyclonal

antibodies specific for Atf3 (Santa Cruz Biotechnology Inc., Cat. no. sc-188; 1/1000 dilution)

or Atf2 (Santa Cruz Biotechnology Inc., Cat. no. sc-187; 1/1000 dilution), followed with

horseradish peroxidase-conjugated goat anti-rabbit immunoglobulins (DakoCytomation;

1/5000 dilution).  Immunoreactive bands were detected by enhanced chemiluminescence

(Santa-Cruz Biotechnology Inc.) and the bands analysed by semi-quantitative scanning

densitometry (Imagemaster 1D Prime version 3.0). 

Chromatin immunoprecipitation (ChIP)

Following stimulation, cardiac myocytes (16 × 106 cells per sample) were fixed in

formaldehyde [1 % (v/v) final concentration, 10 min].  The reaction was terminated by

addition of glycine (125 mM final concentration, 10 min).  Cells were washed with ice-cold

PBS, scraped into PBS containing protease and phosphatase inhibitors [0.2 mM leupeptin,

0.01 mM  trans-epoxy-succinyl-L-leucylamido-(4-guanidino)-butane (E64), 5 mM

dithiothreitol, 0.3 mM phenylmethylsulphonyl fluoride, 0.002 mM microcystin] and collected



A. Clerk 8

by centrifugation (3,000 g, 4/C, 5 min).  Cells were lysed in 0.5 ml Buffer A [50 mM Tris-

HCl pH 8.0, 2 mM EDTA, 0.1%  (v/v) NP40, 10% (v/v) glycerol] supplemented with

protease and phosphatase inhibitors (15 min).  Nuclei were pelleted (3,000 g, 4/C, 5 min),

resuspended in 200 :l Buffer B [50 mM Tris-HCl pH 8.0, 1% (w/v) SDS, 5 mM EDTA] and

the DNA was sheared into 200-800 bp fragments by sonication [5 × 30 sec, 4/C, amplitude

30% (Sonics Vibra-Cell™ sonicator with a 2 mm probe) followed by 2 min recovery in ice-

water].  Following centrifugation (4,000 g, 4/C, 5 min), the supernatants were taken.  A

volume (35 :l) was reserved to assess the input and the remaining sample diluted 1/10 in

RIPA buffer [50 mM Tris-HCl pH 8.0, 0.5% (v/v) NP40, 200 mM NaCl, 0.5 mM EDTA]. 

Samples were precleared with protein A-Sepharose (20 :l of 50% (v/v) suspension in RIPA

buffer; 15 min) then incubated without (controls) or with 10 :g Atf3 rabbit polyclonal

antibodies (Santa Cruz Biotechnology Inc., Cat. no. sc-188X) with rotation (4/C, overnight). 

Protein A-Sepharose was added [100 :l; 50% (v/v) suspension in RIPA buffer containing 1

:g/ml sonicated salmon sperm DNA] and samples incubated with rotation (4/C, 2 h).  The

beads were pelleted by centrifugation (1,000 × g, 4/C, 3 min) and washed (4/C, 3 min, with

gentle mixing by rotation) in 1 ml high salt buffer [20 mM Tris-HCl pH 8.0, 0.1% (w/v) SDS,

1% (v/v) NP40, 2 mM EDTA, 500 mM NaCl] followed by 10 mM Tris-HCl pH 8.0

containing 1 mM EDTA.  Immune complexes were eluted (10 min, 65/C) in 250 :l elution

buffer [10 mM Tris-HCl pH 8.0, 1 mM EDTA, 1% (w/v) SDS], samples were centrifuged

(200 g, 1 min) and supernatants collected.  The elution procedure was repeated and the

supernatants pooled.  Crosslinks in input and immunoprecipitated samples (500 :l) were

reversed by incubation (65/C, overnight) with NaCl (0.2 M final concentration).  Samples

were incubated (5 min, 4/C) with 500 :l phenol:chloroform:isoamyl alcohol (25:24:1, pH

8.0) and the phases were separated by centrifugation (15,300 g, 4/C, 10 min).  The upper
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aqueous phases were retained and DNA precipitated by incubating with 500 :l isopropanol

(-80/C, 3 h).  Following recovery by centrifugation (15,300 g, 10 min, 4°C), DNA was

washed [70% (v/v) ethanol] and resuspended in 25 :l Milli-Q water for subsequent PCR.  

PCR reactions (2 :l DNA in 20 :l final volume) were performed in 1 × Buffer IV® (AB

Gene, 25 :l) containing Taq polymerase (1 U), dATP, dCTP, dGTP and dTTP (0.2 mM

each) and 50 pmol primers.  Promoter-specific primers for rat IL6 were: forward,

5'-TGCTCAAGTGCTGAGTCACT-3'; reverse 5'-AGACTCATGGGAAAATCCCA-3'). 

PCR amplification conditions (32 cycles) were: denaturing, 95/C, 45 s; annealing, 52/C, 45

s; extension 72/C, 1 min.   The resulting RT-PCR products were analysed by ethidium

bromide-agarose gel electrophoresis and the bands captured under UV illumination. 

Production and preparation of adenoviruses

Replication-deficient adenoviruses expressing full-length rat Atf3 antisense RNA (AS-Atf3)

or shRNA for Klf2 were prepared using the AdEasy™ XL Adenoviral Vector System

(Stratagene).  For Atf3, the coding sequence was isolated by PCR from rat cDNA using Pfu

polymerase and primers designed to the 5' ATG start site and 3' stop codon regions.  Primers

were designed to include sites for restriction enzymes for insertion into the multiple cloning

site of the pShuttle-CMV vector.  Control samples were prepared with empty vector.  For

Klf2 knockdown by siRNA, pShuttle vectors were prepared containing shRNA-generating

U6 promoter and annealed oligodeoxynucleotides for Klf2 shRNA.  A 19 base sequence for

an siRNA-generating construct against Klf2 (5'-AGACCTACACCAAGAGTTC-3') was

selected using the siRNA Target Finder and Design tool

(www.ambion.com/techlib/misc/siRNA_finder.html), siDESIGN center 

(http://www.dharmacon.com/designcenter/DesignCenterPage.aspx), and based on Lim et al.,
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2005.  A random control sequence was also used (5'-ATGAACGTGAATTGCTCAA-3';

targeted to luciferase (Dekker et al., 2005)).  Complementary oligodeoxynucleotide pairs

were synthesized (Integrated DNA Technologies) containing the sense sequence, a loop

linker sequence and antisense sequence.  Flanking sequences were included to generate

BamH1 and HindIII restriction endonuclease overhangs on pairing for cloning into the

pShuttle vector with the U6 promoter.  Oligodeoxynucleotides (1 nmol each) were annealed

in annealing buffer (10 mM Tris-HCl pH 8.0, 50 mM NaCl, 10 mM MgCl2; 20 :l final

volume) by heating to 95/C (5 min) then cooling to room temperature over 4 h.  Following

ligation into pShuttle, sequences and orientation were confirmed.  The pShuttle plasmids

were linearized and transformed into BJ5183-AD-1 competent cells for homologous

recombination between the shuttle vector and pAdEasy-1.  Recombinant pAdEasy-1 was

produced in bulk in a recombination-deficient bacterial cell line (e.g. XL10-Gold®).  Purified

recombinant pAdEasy-1 plasmid DNA was linearised and transfected into HEK293 cells to

generate recombinant adenoviruses.  After 7 - 10 days, cells were collected by centrifugation

(600g, 5 min) and washed (10 ml PBS), then resuspended in 2 ml of PBS and subjected to

freeze-thaw cycles.  Following centrifugation (600 g, 5 min), virus-containing supernatants

were collected. 

Results and Discussion

Identification of candidate IEG  mRNAs likely to be subject to negative feedback regulation

by IEG proteins.

We previously identified 45 IEG mRNAs upregulated in cardiac myocytes by ET-1
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 Fig. 2 

(100 nM) within 30 min of stimulation (i.e. early IEGs) (Cullingford et al., 2008b).  To

identify IEG mRNAs which may be under negative feedback control by other IEG proteins,

we selected mRNAs which were maximally upregulated at 0.5 - 1 h but whose expression

decreased by 2 h (Table 1).  Since cycloheximide inhibits the translation of negative feedback

IEG proteins, any IEG mRNAs which are subject to negative feedback by these proteins

should exhibit enhanced expression in the presence of cycloheximide, particularly as the

response decays (i.e. at 2 h).  For 22 of the 31 mRNAs selected, the increase in expression

induced by ET-1 was further enhanced by cycloheximide (20 :M) by at least 5-fold, with an

enhancement of >10-fold for activity regulated cytoskeletal-associated protein (Arc), Atf3,

cholesterol 25-hydroxylase (Ch25h), early growth response 2 (Egr2), epiregulin (Ereg), c-

Fos, immediate early response 2 (Ier2), IL6, c-Jun, Krüppel-like factor 2 (Klf2) and Lif (Fig.

2).  Of these, Atf3 negatively regulates its own expression (Wolfgang et al., 2000) and

suppresses expression of IL6 induced in macrophages by lipopolysaccharide (Gilchrist et al.,

2006).  Klf2 is also implicated in negative regulation of IEG expression (Amit et al., 2007). 

We therefore focused on the potential role of Atf3 and Klf2 in termination of IEG expression. 

Table 1.  

Early IEGs upregulated by ET-1 in cardiac myocytes.  Data from Cullingford et al. 2008b were

mined to identify early IEGs whose mRNAs were upregulated within 0.5 h of stimulation with

ET-1 (100 nM), with maximal increases in expression at 0.5 - 1 h and significant decreases in

expression by 2 h.  Data were collated to present the fold stimulation (relative to unstimulated

controls) for cardiac myocytes exposed to ET-1 for 0.5, 1 or 2 h, or to ET-1 for 1 or 2 h in the

presence of 20 :M cycloheximide (CX).  The increase in expression of Group A mRNAs by ET-

1 at 2 h was enhanced >10-fold by cycloheximide.  Group B mRNAs exhibited a lesser
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 Fig. 3 

enhancement.  Within each group, IEGs are listed alphabetically.  Results are means for n = 3

(ET-1 0.5 h; CX+ET-1, 1 or 2 h), n=6 (ET-1 2 h) or n=8 (ET-1, 1 h).

Gene symbol ET-1 ET-1 ET-1 CX+ET-1 CX+ET-1
0.5 h 1 h 2 h     1 h      2 h

Group A
Arc 7.4 5.4 1.7 18.8 19.7
Atf3 4.0 10.6 2.8 24.7 36.6
Ch25h 8.5 9.2 1.3 18.6 23.1
Egr2 12.7 8.5 1.4 25.2 42.1
Ereg 2.0 3.1 1.3 5.1 15.4
c-Fos 27.9 9.8 1.3 52.2 67.4
Ier2 5.3 3.4 1.7 23.2 29.4
Il6 4.6 5.6 2.4 22.1 53.4
c-Jun 2.8 2.6 1.2 15.0 20.6
Klf2 3.5 3.2 1.0 8.7 13.3
Lif 3.8 4.9 2.6 12.0 26.2

Group B
Btg2 4.7 6.1 2.8 13.4 15.7
Cyr61 4.2 5.9 3.7 19.7 15.7
Dusp1 4.0 3.1 2.4 12.0 16.5
Egr1 4.6 4.5 1.0 6.1 7.6
Has2 2.5 7.5 2.4 5.4 9.8
Junb 4.1 1.7 1.9 9.3 8.9
Klf4 2.0 3.6 2.7 5.1 6.4
Klf6 2.4 4.2 2.1 7.5 11.8
Nfil3 2.2 3.4 2.9 5.0 9.4
Nfkbiz 2.3 3.0 2.3 10.7 17.7
Nr4a1 13.6 17.5 3.7 22.4 28.9
Nr4a2 3.7 5.1 1.4 10.4 13.5
Nr4a3 8.4 26.0 13.8 43.3 65.5
Phlda1 2.6 6.2 4.1 5.2 10.9
Plk2 2.4 3.5 1.9 6.3 6.9
Ptgs2 5.1 10.6 3.4 19.3 31.1
Rgs2 2.9 5.1 3.5 4.3 6.1
Slc25a25 3.3 3.4 1.9 7.0 15.7
Tnfaip3 2.5 2.4 1.6 7.1 14.0
Zfp36 5.8 2.8 2.3 14.0 16.8

Regulation of expression of Atf3 and IL6 in cardiac myocytes.

We validated the microarray data for Atf3 and IL6 using semi-quantitative RT-PCR.  ET-
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1 (100 nM) promoted a very rapid (within 15 min) and potent increase in Atf3 mRNA expression

in cardiac myocytes, with maximal expression at ~0.5 h (Fig. 3A).  An increase in protein

expression was detected within 1 h of stimulation (data not shown).  In a previous microarray

study, we also detected simultaneous increases in expression of Atf3 and IL6 in cardiac

myocytes by H2O2 (as an oxidative stress) (Clerk et al., 2007c).  The upregulation of Atf3 in

response to 0.2 mM H2O2 (Fig. 3B) was delayed relative to that induced by ET-1, with maximal

expression of the mRNA at 1 - 2 h and maximal protein expression at ~2 h (data not shown).  IL6

mRNA expression was rapidly increased by either ET-1 (Fig. 3C) or H2O2 (Fig. 3D) with similar

kinetics for upregulation as Atf3 (Fig. 3, A and B).  However, downregulation of IL6 mRNA

appeared to be more rapid than that of Atf3 mRNA with almost complete attenuation of the

response to ET-1 within 1 h.

To determine whether the increase in Atf3 expression induced by ET-1 downregulates

the increase in expression of IL6 in cardiac myocytes, cardiac myocytes were infected with

adenoviruses encoding full-length antisense RNA to Atf3 to prevent the increase in expression

of Atf3 mRNA.  With this system, we obtained ~70% inhibition of the increase in Atf3 protein

induced by ET-1 (Fig. 4A).  The knockdown of Atf3 was specific since there was no effect on

expression of the related transcription factor Atf2 (Fig. 4A).  Consistent with the proposed role

for Atf3 in inhibiting IL6 mRNA expression, knockdown of Atf3 protein by antisense RNA

caused superinduction of IL6 mRNA expression by ET-1 (Fig.  4B).  We hypothesized that other

IEG mRNAs may be subject to regulation by Atf3 in a similar manner as IL6.  Of the IEGs we

identified (Table 1), Ereg and Lif showed the most similar pattern to IL6 for increased

expression by ET-1 and enhancement of expression by cycloheximide (Fig. 2).  Interestingly,

of the genes tested, Atf3 antisense RNA enhanced the increase in expression of Ereg (Fig. 4C)

and Lif (Fig. 4D), but not c-Jun (Fig. 4E), c-Fos or Ier2 (data not shown).  
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Fig. 5

Fig. 6

An Atf3 consensus sequence has been identified in the mouse IL6 promoter (Gilchrist

et al., 2006).  A similar sequence is present in the rat IL6 promoter (Fig. 5, A and B).  To

determine whether Atf3 may exert a direct negative regulatory effect on IL6 transcription by

binding to this sequence, we used chromatin immunoprecipitation (ChIP) with antibodies to Atf3

to isolate DNA fragments associated with the protein and performed RT-PCR across the putative

binding site in the IL6 promoter (Fig. 5B).  ET-1 did indeed increase the association of Atf3 with

the IL6 promoter at 1 h (Fig. 5C), indicating that Atf3 acts directly on the IL6 promoter to

downregulate its mRNA expression.

Regulation of Klf2 and its potential role in downregulating IL6 expression.

Of the other IEGs in our selected group, Klf2 also negatively regulates IEG mRNA

expression (Amit et al., 2007).  Like Atf3, expression of Klf2 mRNA is detected very rapidly

(within 15 min) with maximal expression at ~30 min and expression levels decline thereafter

(Cullingford et al., 2008a).  To investigate the role of Klf2 in downstream signalling, cardiac

myocytes were infected with adenoviruses encoding shRNA for siRNA knockdown of Klf2

expression prior to stimulation with ET-1.  We obtained ~56% inhibition of Klf2 mRNA

expression in the absence of any effect on the related protein Klf6 (Fig. 6A).  Interestingly,

knockdown of Klf2 enhanced the increase in expression of IL6 (Fig. 6B) or Ereg (data not

shown) induced by ET-1 in the absence of any effect on Ptgs2 (cyclooxgenase 2).  Both IL6 (Fig.

5A) and Ereg promoter regions contain consensus binding sites for Klfs.  It remains to be

determined whether Klf2 directly binds to the promoters to inhibit expression of IL6 or Ereg, or

if the effect may be indirect. 

The role of negative feedback on IL6 expression in modulating cardiac function.
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IL6 family cytokines (which includes cardiotrophin-1 and Lif) stimulate gp130 receptors

(Müller-Newen, 2003) to activate JAK/STAT signalling and signalling through the ERK5

cascade (Heinrich et al., 2003).  Cardiotrophin 1 or Lif act via gp130 receptors to promote a form

of cardiac myocyte hypertrophy in which sarcomeres are laid down in series rather than in

parallel, resulting in myocyte elongation (Wollert et al., 1996; Nicol et al., 2001).  However,

serum levels of IL6 are elevated in pathological hypertrophy, and high, sustained expression of

IL6 may contribute to the development of heart failure (Mann, 2003).   It is therefore possible

that part of the response induced by ET-1 may be mediated by IL6.  However, limiting its

production is probably necessary to prevent the deterioration of cardiac function associated with

high level, sustained production of IL6.  Thus, negative feedback modulators such as Atf3 and

Klf2 are potentially key components of a system designed to facilitate the beneficial aspects of

cardiac myocyte hypertrophy.  Dysregulation of these systems may contribute to the

development of heart failure.

Summary

Overall, our studies are consistent with Atf3 acting directly on the IL6 promoter to inhibit further

transcription of IL6 mRNA following stimulation with ET-1, given that Atf3 protein binds

directly to the promoter (Fig. 5) and knockdown of the protein enhances IL6 mRNA expression

(Fig. 4).  Klf2 also appears to operate in a negative feedback system to limit IL6 mRNA

expression since its knockdown also enhances IL6 mRNA expression (Fig. 6), although further

studies are required to determine whether its effects are directly mediated at the level of the IL6

promoter.  Interestingly, Ereg appears to be co-regulated with IL6 with a similar pattern of

expression in response to ET-1 and similar enhancement of expression by cycloheximide (Fig.

2), Atf3 knockdown (Fig. 4) or Klf2 knockdown (Fig. 5).  However, for both IL6 and Ereg, other
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factors may further contribute to the downregulation of mRNA expression following the increase

induced by ET-1, possibly by increasing its rate of degradation.  It is interesting that ET-1 also

increased expression of Zfp36 (Table 1) which is associated with regulation of mRNA stability

(Carrick et al., 2004).  This and other factors may be required to limit the expression of IL6, Ereg

and other selected IEGs responding to stimuli such as ET-1, and ensure that they are expressed

only transiently.  Understanding how these early changes associated with intercellular or

intracellular signalling and gene/protein expression relate to the changing environment of a cell

will help us understand how a complex phenotypic response such as cardiac hypertrophy may

develop in vivo and how such an initially beneficial response may deteriorate into (for the heart)

cardiac failure.
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Legends for figures

FIG. 1.  Model of regulation of gene expression.  Various stimuli regulate the phosphorylation

status of pre-existing proteins leading to transcription of IEGs and changes in mRNA

stability/translation.  IEG proteins may be “structural” (directly influencing cell function) or

“regulatory” encoding further transcription/ translation factors.  These feed back negatively to

terminate IEG expression, and feed forward positively to drive second phase gene expression.

Second phase genes encode further “structural” and “regulatory” proteins to modulate third

phase genes etc.  The cells continually adjust their responsiveness with different cell surface

receptors.  Cells also modulate their environment through secretion of extracellular matrix

components and autocrine paracrine factors.  Further stimuli feed into the cell to modulate the

functional changes until eventually a new steady state is reached. 

FIG 2. Upregulation of immediate early genes in cardiac myocytes by ET-1.  Cardiac myocytes

were unstimulated or exposed to 100 nM ET-1 for 0.5, 1 or 2 h in the absence (solid circles, solid

lines) or presence (open circles, dashed lines) of 20 :M cycloheximide and RNA expression

assessed globally using Affymetrix rat genome 230 2.0 microarrays.  The data were mined from

Cullingford et al., 2008b to identify IEGs with maximal expression at 0.5 - 1 h, a decline in

expression by 2 h and whose expression at 2 h was enhanced >10-fold by cycloheximide.

Results are expressed relative to unstimulated controls and are means for n=3 (0.5 h), n=8 (1 h)

or n=6 (2 h) independent myocyte preparations.

FIG. 3. Regulation of expression of Atf3 and IL6 mRNA by ET-1 or H2O2 in cardiac myocytes.

Neonatal cardiac myocytes were exposed to 100 nM ET-1 (A and C) or 0.2 mM H2O2 (B and D)

for the times indicated and RNA prepared.  Expression of Atf3 mRNA (A and B) or IL6 mRNA
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C and D) was assessed by semi-quantitative RT-PCR.  Representative images from a single

experiment are shown for Atf3 or IL6 mRNA in the upper panels with images for the

corresponding Gapdh mRNA in the centre panels.  Densitometric analysis of the data are

presented in the lower panels and are means ± SEM for n=3 (H2O2) or n=4 (ET-1) independent

myocyte preparations.  Control PCR reactions were carried out in the absence of reverse

transcriptase (- RT).  #p<0.01, * p<0.001 relative to unstimulated controls, one way ANOVA

with Tukey post-hoc test.

FIG. 4.  Knockdown of Atf3 expression enhances the increase in expression of IL6, Ereg and Lif

(but not c-Jun) by ET-1.  Cardiac myocytes were infected with "empty vector" adenoviruses as

controls or with adenoviruses encoding full-length antisense RNA to Atf3 (AS-Atf3), then

unstimulated or exposed to 10 nM ET-1 for 1 h.  A, Cardiac myocyte extracts were

immunoblotted with antibodies to Atf3 or Atf2.  Representative images are shown in the left

panel (Atf3, upper image; Atf2, lower image) with densitometric analysis of Atf3 expression in

the right panel.  Results are means ± SEM for n=3 independent myocyte preparations.  B-D,

RNA was prepared and expression of IL6 (B), Ereg (C), Lif (D) or c-Jun (E) mRNAs analysed

by QPCR.  Results are expressed relative to unstimulated cardiac myocytes infected with empty

vector viruses and are means ± SEM for n=3 independent myocyte preparations.  * p<0.001

relative to ET-1 stimulated, empty vector controls, one way ANOVA with Tukey post-hoc test.

Fig. 5.  Atf3 binds directly to the IL6 promoter.  A, Schematic diagram of potential transcription

factor binding sites in the IL6 promoter.  B, Sequence of the rat IL6 promoter.  The

transcriptional start is indicated in bold italics, the putative Atf/Cre consensus sequence for

binding of Atf3 is in bold and outlined and the positions of two potential Sp1/Klf binding sites
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are in italics.  Forward and reverse primers used for ChIP analysis are indicated in bold.  C,

Chromatin immunoprecipitation of Atf3 with PCR amplification of the rat IL6 promoter as

indicated in B.  Cardiac myocytes were unstimulated or exposed to 100 nM ET-1 for 1 h and

Atf3 immunoprecipitated (Atf3 IP).  Additional control samples were exposed to ET-1 and 

processed in the absence of Atf3 immunoprecipitating antibodies (no Atf3 IP).  RT-PCR was

performed for input DNA and immunoprecipitated DNA.  Representative images are shown in

the left panel [immunoprecipitated (ChIP) DNA, upper image; input DNA, lower image] with

densitometric analysis in the right panel.  Results are means ± SEM for n=3 independent

preparations of myocytes.  * p<0.001 relative to unstimulated controls with Atf3 IP or to ET-1

no Atf3 IP, one way ANOVA with Tukey post-hoc test.

FIG. 6.  Knockdown of Klf2 expression enhances the increase in expression of IL6 by ET-1.

Cardiac myocytes were infected with adenoviruses for siRNA to a random protein (luciferase,

Rndm) as controls or with adenoviruses for siRNA to Klf2 (siKlf2), then unstimulated or

exposed to 100 nM ET-1 for 1 h.  RNA was extracted and mRNA expression of Klf2 (A), Klf6

(B) or IL6 (C) assessed by QPCR.  Results are expressed relative to Rndm unstimulated controls

and are means ± SEM for n=3 independent myocyte preparations.  * p<0.001 relative to Rndm

+ ET-1, one way ANOVA with Tukey post-hoc test.
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Immediate early genes, interleukin 6, activating transcription factor 3, Krüppel like factor 2,

epriregulin, endothelin-1, gene expression, siRNA, antisense, microarrays, chromatin

immunoprecipitation, transcription factors, cycloheximide, signal propagation, cardiac myocytes.
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Rat IL6 promoter sequence (NC_005103)

GCATTTCAGTTTTTCCCCCTATCAAGTGCTCAAGTGCTGAGTCACTTTTAAAGAAAGAAAAAGA
GTGATCAGGCTTCTTAAGGATAGCCTCAAGGATGACTTAAACACACTTTCCCCCTCCTAGCTGTGATT
CTTTGGATGCTAAATGACGTCACATTGTGCAATCTTAATAAGGTTTCCAATCAGCCCCACCCACTC

TGGCCCCACCCCCACCCTCCAACAAAGATTTTTATCAAATGTGGGATTTTCCCATGAGTCTCAAA
AGTAGAGAGTCGACTCCCAATAAATATGAGACTGGGGATGTCTGTAGC
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