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[1] It is known that the empirical orthogonal function
method is unable to detect possible nonlinear structure in
climate data. Here, isometric feature mapping (Isomap), as
a tool for nonlinear dimensionality reduction, is applied to
1958–2001 ERA-40 sea-level pressure anomalies to study
nonlinearity of the Asian summer monsoon intraseasonal
variability. Using the leading two Isomap time series, the
probability density function is shown to be bimodal. A
two-dimensional bivariate Gaussian mixture model is then
applied to identify the monsoon phases, the obtained regimes
representing enhanced and suppressed phases, respectively.
The relationship with the large-scale seasonal mean
monsoon indicates that the frequency of monsoon regime
occurrence is significantly perturbed in agreement with
conceptual ideas, with preference for enhanced convection
on intraseasonal time scales during large-scale strong
monsoons. Trend analysis suggests a shift in concentration
of monsoon convection, with less emphasis on South Asia
and more on the East China Sea. Citation: Hannachi, A., and
A. G. Turner (2013), Isomap nonlinear dimensionality reduction
and bimodality of Asian monsoon convection, Geophys. Res. Lett.,
40, doi:10.1002/grl.50351.

1. Introduction
[2] The Asian summer monsoon (ASM) is one of the

largest seasonal atmospheric phenomena involving huge
moisture transports from ocean to land. This moisture trans-
port ultimately makes the monsoon special as the main
source of precipitation affecting livelihoods and infras-
tructure in the most populated region on Earth. Despite
interannual variability of the ASM being a relatively small
fraction of seasonal mean rainfall (e.g., for India, the coef-
ficient of variation is around 10%), society is so finely
tuned to the monsoon that variations on annual to intrasea-
sonal time scales can cause huge problems relating to flood
(infrastructure damage; health) and drought (crop dam-
age; public water supply; hydro-electric generation). The
shorter-time scale monsoon intraseasonal variations (MISV
hereafter) show the strongest variability, with active and
break conditions leading to more damaging impacts. While
slow variations of the atmospheric lower boundary forcing
such as snow cover and the El Niño-Southern Oscillation
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(ENSO) lend predictability to seasonal rainfall anomalies in
the tropics [Charney and Shukla, 1981], this predictability
is limited by MISV [Brankovic and Palmer, 2000]. Recent
assessments of state-of-the-art general circulation models
(GCMs) show that few show skill at simulating all impor-
tant characteristics of MISV [Sperber and Annamalai, 2008]
highlighting the importance of better understanding the
dynamics and predictability of the ASM. Furthermore, the
relationship between the intraseasonal component of mon-
soon variability, the seasonal mean, and large-scale forcing
conditions is unclear. Among the hypotheses put forward is
that of a Lorenz model [Palmer, 1994] with chaotic fluc-
tuations between active and break monsoon phases. While
some studies have suggested that total seasonal rainfall
may be broken down into a seasonal mean component
forced by lower boundary conditions and the statistics of
inherently unpredictable MISV [Krishnamurthy and Shukla,
2000, 2007], others suggest that MISV itself may be some-
how related to boundary conditions and thus predictable:
the large-scale forcing predisposing the system in a chaotic
model to reside in one regime more than the other [Webster
et al., 1998]. In fact, in relation to rainfall in central India,
Palmer [1994] suggested that, under a given forcing, one
of the predominant locations for convection (central India
and the equatorial Indian Ocean Tropical Convergence Zone
region) will be favored over the other according to the
large-scale forcing.

[3] The ASM is a highly nonlinear and high dimensional
phenomenon; one way to understand ASM dynamics is
to find ways to reduce the dimensionality of the system
in a way that could help capture the main features of its
nonlinear behavior. Sperber et al. [2000] (SP00 hereafter)
used empirical orthogonal function (EOF) analysis to reduce
the dimensionality of National Centers for Environmen-
tal Prediction-National Center for Atmospheric Research
reanalysis winds, identifying a common mode of variability
on intraseasonal and interannual time scales. SP00 showed
the interesting result that a probability density function
(PDF) of an intraseasonal principal component time series
could be translated towards negative or positive values
according to seasonal mean conditions. However, only a
small subset of MISV can be perturbed in this way by large
scale forcing, and SP00 found no bimodality, the PDF being
Gaussian, suggesting that the dominant modes of MISV
are due to (inherently stochastic) internal processes, hence
placing a limit on their predictability as part of the mon-
soon. Instead, Straus and Krishnamurthy [2007] showed
that bimodality only exists under certain conditions. Clear
bimodality of the South and East Asian summer monsoon
activity, however, has not been established with certainty.
In an earlier study by the authors [Turner and Hannachi,
2010, TH10 hereafter], one-dimensional Gaussian mixture
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model analysis was performed on the leading mode of an
intraseasonal outgoing longwave radiation (OLR) index of
ASM convection. The OLR was unimodal but skewed,
and the skewness was interpreted using a mixture model
in terms of two intraseasonal monsoon regimes, namely
active and break phases. TH10 suggested a preference for
break conditions over India during seasonally weak mon-
soons. Note that this is not simply a trivial point, since
the weak monsoon season may be caused by a country-
wide seasonal anomaly related to large-scale forcing such as
ENSO [Krishnamurthy and Shukla, 2000, 2007], even in the
absence of any active/break activity.

[4] In this paper, we advance on earlier studies by using
the isometric feature mapping (Isomap) method [Tenenbaum
et al., 2000] on sea-level pressure (SLP) to reduce the
dimensionality of the ASM while maintaining nonlinear
components. We then apply a multivariate Gaussian mix-
ture model to estimate the PDF of the ASM within the
obtained Isomap low-dimensional space. Isomap is based
on interpoint distances rather than explained variance (as
in EOFs) and is therefore more suited to study the nonlin-
ear structure of the ASM. The data and methodology are
described in section 2. Section 3 discusses the results and the
implications are presented in the last section.

2. Data and Methodology
2.1. Data

[5] We have used daily SLP and 850 hPa wind fields from
the ERA-40 project [Uppala et al., 2005] of the European
Centre for Medium-Range Weather Forecasts over the ASM
region (50–145ıE, 20ıS–35ıN) for the period 1958–2001.
Daily June–September (JJAS) anomalies to the seasonal
cycle are computed after first removing any linear long-term
trend. One degree gridded Indian rainfall data covering the
same period are also used [Rajeevan et al., 2006]. In addi-
tion, to characterize the large-scale seasonal mean ASM, we
have used the dynamical monsoon index (DMI) proposed by
Webster and Yang [1992]. The DMI is a proxy for the heating
of the atmospheric column over a broad region of the Asian
monsoon and is defined as the JJAS average of anomalous
zonal wind shear between the lower (850 hPa) and upper
(200 hPa) troposphere, averaged over 40–110ıE, 5–20ıN.
The index is scaled to zero-mean and unit-variance.

2.2. Isomap and Mixture Model
[6] Isomap is a technique for nonlinear dimensionality

reduction based on preserving geodesic proximities using a
non-Euclidean metric, and as such maintains nonlinear fea-
tures of the original data that are lost in traditional EOF
analysis [Tenenbaum et al., 2000]. If the data lie on a non-
linear manifold, the geodesic metric measures precisely the
interpoint distances between points on this manifold. The
Isomap algorithm has three main steps. The first step is to
use the available interpoint (usually Euclidean) distances,
dij, for all i and j, to construct neighboring points. This is
done here by selecting the K-nearest (for some value of K)
points to a target point. The neighborhood is then defined
as a weighted graph where the weight of the edges is repre-
sented by the distances dij, for all i and j. The second step
consists of defining the geodesic distance ıij between any
two points using the shortest path following the graph con-
structed in step 2. Once the dissimilarity matrix � = (ıij)

is obtained, the last step of Isomap consists of applying the
classical multidimensional scaling (MDS) procedure [Borg
and Groenen, 1997] to find the embedding space and the
associated principal coordinates.

[7] Multidimensional scaling is a geometric method for
reconstructing a configuration from its interpoint distances
and enables visualizing proximities in low-dimensional
spaces. Given a matrix of interpoint distances that are not
necessarily Euclidean, between different pairs of the n data
points xk:

D = (dij) = (kxi – xjk), (1)
where k = 1, : : : n within a high-dimensional space, the
objective is to find a low-dimensional embedding space of
the coordinates or configuration of the data points (i.e., of the
data matrix X = (x1, : : : , xn)T that produces the matrix D).
The solution according to the classical metric problem [Borg
and Groenen, 1997] is to compute first the double centered
distance matrix:

A = –
1
2

�
In –

1
n

11T
�

D2

�
In –

1
n

11T
�T

, (2)

where D2 =
�
d 2

ij
�
, In is the identity matrix of order n, and

1 = (1, : : : , 1)T is the vector of length n containing ones. A
singular value decomposition of A, i.e. A = UƒUT, is then
obtained and the principal coordinates (or data) matrix X can
be estimated using

X = Uƒ
1
2 . (3)

[8] Since, in general, the dissimilarities are not Euclidean,
the diagonal matrix ƒ will not be positive, and therefore
only the leading positive eigenvalues are considered in (3).
When the dissimilarities are Euclidean, the MDS problem
becomes equivalent to the standard empirical orthogonal
function (EOF) method.

[9] In addition, to estimate the ASM PDF, we have used
the multi-Gaussian mixture model (TH10) within the Isomap
low-dimensional ASM space. Within this framework, the
PDF F(x) is written as the convex combination of two
bivariate Gaussian distributions g1,2(x) as

F(x) = ˛g1(x) + (1 – ˛)g2(x) (4)

with ˛ being the mixing proportion of the first component
and where g1,2(x) are characterized each by its mean and
covariance matrix (see TH10 for more details).

[10] EOFs, which maximize variance, and also MDS,
which is a proximity-preserving method, are linear projec-
tive techniques and are therefore unable to detect nonlinear
structures in the data. The idea is then to compute inter-
point distances between data points using, not the global
Euclidean metric, but the geodesic distances based on neigh-
boring points. All the data points are then linked by a graph,
using the nearest points, and the distance between any pair
of points is computed by looking for the shortest path, on
this graph, linking these points. The classical example in
Isomap is that of the Swiss Roll [Tenenbaum et al., 2000],
for which the shortest Euclidean distance between two points
that are far apart on the manifold does not represent the
real geodesic distance. Here, the interpoint distance matrix
D between all JJAS daily observation pairs of the SLP
anomalies is first computed based on the Euclidean distance.
To construct the neighborhood graph, we connect the data
using the nearest K = 12 points to define neighborhood.
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Figure 1. (a) Gaussian kernel PDF estimate using the leading two PCs of SLP anomalies. (b) Residual variance obtained
from Isomap (continuous) and EOFs (dashed) versus the embedding dimension. (c) The Gaussian kernel PDF of the leading
two Isomap time series x1 and x2.

Once computed, the geodesic dissimilarity matrix � = (ıij)
is submitted to an MDS decomposition.

3. Results
3.1. Isomap Structure of the Monsoon

[11] As in earlier studies examining principal components
of 850 hPa wind and OLR in the monsoon domain (SP00 and
TH10, respectively), the PDF of the two leading PCs of SLP
anomalies (Figure 1a) is also unimodal. We next investigate
the Isomap time series, which still contains nonlinearities.
Figure 1b shows the Isomap residual variance of the SLP
anomalies as a function of the embedding dimension. The
residual variances associated with the leading two Isomap
components are 69% and 44%. The same residual variance
is also plotted for the leading 10 EOFs (Figure 1b). These
values are larger than their Isomap analogs, because Isomap
attempts to follow the nonlinear manifold of the data, unlike
the EOFs that are obtained by looking for optimal linear
subspaces. Therefore, Isomap is more suited to extracting
nonlinear features compared to EOFs. Figure 1b shows also
a clear elbow at embedding dimension d = 2. This elbow
is normally taken [Tenenbaum et al., 2000] as the dimen-
sion of the nonlinear manifold of the data. Accordingly,
and for simplicity, we focus on two-dimensional Isomap
embedding to look for possible nonlinearity in the ASM.
Figure 1c shows the Gaussian kernel PDF estimate of the
leading two Isomap time series to be clearly bimodal, unlike
that of the leading two PCs (Figure 1a). We have used the
optimal kernel width [Silverman, 1981] for the PDF esti-
mation. The bimodality of the obtained PDF (Figure 1c) is
robust to changes in the smoothing parameter, the number K
used in the Isomap as well as changes in the ASM domain
(not shown). We have also investigated other fields such
as OLR where the bimodality was particularly strong, but
we avoided using this field here due to uncertainties, espe-
cially prior to the satellite era when it is wholly modeled.
Further support is provided by the mixture model (TH10)
discussed next.

[12] To explain the above results further, we show in
Figure 2a the Gaussian kernel estimate [Silverman, 1981]
of the PDF within the Isomap plane along with a two-
component mixture model (dashed line). The centers of the
individual bivariate Gaussians of the mixture model are also
shown, as small filled circles, along with their associated

covariance ellipses. Each ellipse delimits around 84% of the
total mass of the corresponding component. The weights of
the left and right components (Figure 2a) of the mixture
model are respectively ˛ = 0.45 and 1 – ˛ = 0.55.

[13] In order to identify the ASM conditions associated
with the PDF modes, we have used a composite analysis of
the nearest 300 ASM states to the centers of these compo-
nents. The obtained ASM composites based on SLP data are
shown in Figures 2b and 2c. Superimposed on these maps
are the associated 850 hPa wind composites. The first ASM
phase (Figure 2b) corresponds to the left-hand ellipse of
Figure 2a and shows high pressure anomalies over most of
the domain with particular enhancement over the East China
Sea and also at the head of the Bay of Bengal in the South
Asian monsoon trough region. This is accompanied by an
anticyclonic low-level circulation over the East China Sea,
weakening of the monsoon trough and obvious weakening of
the Somali jet. As seen in Figure 2d, this phase corresponds
to monsoon break conditions over India, with negative rain-
fall anomalies over the Western Ghats and in a band across
central India, while there are positive anomalies near the
Himalayan foothills.

[14] The second ASM phase (Figure 2c), which corre-
sponds to the right-hand ellipse in Figure 2a, shows low
pressure anomalies over much of the domain, most notably
the anomalously strong low pressure trough and associated
cyclonic circulation over the Philippine and East China Seas.
In the Indian Ocean region, the flow regime is consistent
with the active phase of the South Asian monsoon, with an
enhanced Somali jet and circulation around the monsoon
trough. Opposite rainfall conditions to those in the break
phase are shown in Figure 2e, with wet anomalies over
the Western Ghats and central India, and those of opposite
sign to the north and south. The break and active rainfall
conditions shown in Figures 2d and 2e are well consistent
with observed composites [e.g., Krishnamurthy and Shukla,
2000, 2007]. The strong center of action of variability over
the Western North Pacific shown in Figures 2b and 2c is con-
sistent with analysis performed by Sperber and Annamalai
[2008], regressing OLR against an ISV index (their Figures
5d and 5h indicating reduced and enhanced convection over
the Western North Pacific, respectively).

[15] TH10 used an OLR index over the same domain
and identified similar circulation regimes over the Western
North Pacific using EOF analysis. However, no signals were
noted in the Somali jet (the fundamental characteristic of the
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Figure 2. (a) Kernel (continuous) and mixture model (dashed) PDFs of x1 and x2. The centers of the mixture components
and associated covariance ellipses are also shown. The composites of the 300 closest points to the left and right centers
shown in Figure 2a of the SLP, and 850 hPa wind anomalies are shown in Figures 2b and 2c, respectively, and for rainfall
anomalies in Figures 2d and 2e, respectively. The SLP contour interval 0.5 hPa and the maximum speed is 1.8 m/s. Rainfall
units are mm/day.

South Asian monsoon circulation) and indeed rainfall con-
ditions over India were associated with opposite phases of
the Western North Pacific circulation shown here. The result
presented here is more consistent with current understanding
relating the monsoon wind and precipitation, with rainfall
anomalies over South Asia in some way related to perturba-
tions in the Somali jet. The difference between the results
in this study and those in TH10 may be due to the meth-
ods used. As we have described earlier, the use of Isomap
is advantageous over the use of EOFs, particularly in the
context of nonlinearities in the ASM. In addition, the intro-
duction of satellite data to the reanalysis product in the late
1970s may have affected OLR (used in TH10) far more than
SLP (used here).

3.2. Relationship Between Intraseasonal Regimes and
the Seasonal Mean Monsoon

[16] SP00 did not find bimodality in the monsoon
intraseasonal variability (MISV). However, they found that
the PDF mean of the third PC time series was systemati-
cally perturbed left or right during weak and strong monsoon

years categorized in terms of seasonal mean all-India rain-
fall. Here, we investigate the relationship between MISV and
the large-scale seasonal mean monsoon using the DMI. To
characterize this relationship, we simply stratify, as in TH10,
the daily SLP anomalies within Isomap space, according to
whether the DMI is larger (smaller) than 1 (–1) standard
deviations from the mean.

[17] Figures 3a and 3b show the Gaussian kernel estimate
of the two-dimensional PDF using the leading two Isomap
time series during weak (Figure 3a) and strong (Figure 3b)
seasons as measured by the DMI. Although the PDF dur-
ing both phases combined (not shown) is not bimodal but
skewed towards the right-hand mode of Figure 2a, i.e.,
the active phase, it is clear that during strong DMI sea-
sons (Figure 3b) we have a maximum value of probability
of the active monsoon phase. During weak DMI seasons
(Figure 3a), on the other hand, we have maximum proba-
bility associated with an increased frequency of the break
monsoon phase. In addition, the skewness of the PDF shows
that beside the peak probability being associated with active
(break) conditions, we still observe finite and relatively
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Figure 3. Kernel PDF estimate of the monsoon during weak (a) and strong (b) DMI seasons, and the two-dimensional
PDF estimates of the Isomap time series obtained using the non-detrended SLP anomalies for the (c) first and the (d) second
halves of the record.

large probabilities of break (active) conditions. In particular,
the maximum probabilities erring towards active or break
phases agree well with the conceptual paradigm put forward
by Palmer [1999] regarding the change of regime frequency
under forcing changes in a chaotic system. Palmer [1994]
also postulated that seasonal mean conditions relate to pref-
erence for a particular phase of MISV, a result confirmed
here. So our results suggest a reconciliation between the
conceptual model proposed by Palmer [1994], which sug-
gests an idealized upper bound on monsoon predictability,
and SP00, which suggests a lower bound (namely that only
a subset of the intraseasonal variability can be perturbed by
the large scale).

3.3. Trends in Monsoon Regimes
[18] We also examine evidence for the existence of any

trend in the nonlinearity of the monsoon phases by consider-
ing (non-detrended) SLP anomalies for pre- and post-1979
separately. An Isomap analysis of these two data sets is
performed, and the kernel and mixture PDFs are computed
(Figures 3c and 3d). The bimodality is clear in the first
period, with 79% and 21% weights for the break and active
phases, respectively (Figure 3c). In the second period, how-
ever, the PDF is unimodal (Figure 3d), but we have fitted a
two-Gaussian mixture because it provides a better fit. The
weights are now 33% and 68% for the top left and bottom
right phases, respectively (Figure 3d). The top left regime
(not shown) is similar to the break phase. The other regime
(not shown) has a low pressure center over eastern China
and the Philippine Sea, the pattern looking rather like the
quadrupole of MISV convection seen in observations by
Annamalai and Slingo [2001]. The trend itself could be
described as an eastward shift of the region of intensive
monsoon conditions, similar to that seen in Annamalai et al.
[2013] who saw increases in convection in the Western
North Pacific at the expense of the South Asian monsoon.

We note caution however, in describing trends as a result of
the reanalysis product, given the changes in methodology of
its composition over time. However, there are no compre-
hensive directly-observed daily SLP products available for
the region.

4. Summary and Discussion
[19] We have investigated monsoon intraseasonal vari-

ability using nonlinear dimensionality reduction based on
Isomap of ERA-40 daily SLP anomalies over the ASM
region for summer (JJAS) 1958–2001. The Isomap pro-
jection technique is based on computing local geodesic
distances between atmospheric states. The data points are
first connected by a graph based on the 12 nearest points,
then distances between any two states are computed based
on the previous graph. MDS is then used to get an Isomap
embedding. A kernel PDF estimate is fitted to the leading
two embedded Isomap time series and reveals bimodality. A
two-component bivariate Gaussian mixture model is fitted
to the data, and the two monsoon phases are obtained via a
composite analysis using the 300 closest points to the cen-
ters of this mixture model. The bimodality obtained here is
important in understanding monsoon predictability. It sug-
gests, for example, a probabilistic way to define active and
break phases. It also suggests that monsoon dynamics may
be explained by low-order chaos. In addition, the bimodality
can be used to assess interaction between modes of monsoon
variability in GCMs.

[20] The first mode corresponds to suppressed monsoon
conditions, associated with high SLP anomalies particularly
over the monsoon trough regions of the East China Sea and
head of the Bay of Bengal. Anticyclonic circulation anoma-
lies over the East China Sea lead to reduced flow across
Southeast Asia. The Somali jet is notably weakened and
rainfall over India is typical of a monsoon break. The second
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mode is associated with enhanced conditions, with low
pressure anomalies in the South Asian monsoon trough
and East China Sea, where they are particularly deep. The
low-level flow is characterized by a cyclonic circulation
over these low pressure centers and an anomalously strong
Somali jet that extends across Southeast Asia.

[21] We have also investigated the relationship between
intraseasonal regimes of preferred monsoon convection and
the large-scale seasonal mean monsoon heating using the
DMI. Besides the expected increase in probability of active
and break phases of MISV during strong and weak DMI
years, respectively, we still maintain non-negligible prob-
abilities of large events in the other direction. The trend
analysis of the ASM indicates that in the second half of
the record, there has been a change in the nonlinear struc-
ture of the monsoon phases, the active phase being replaced
by a dipolar phase which has the structure of active con-
ditions over east China and the East China Sea, and with
break conditions over India. This suggests that if the present
trend in SLP is to continue, then we may witness a shift in
the preferred location of active monsoon convection from
India further east, to east China and the East China Sea.
This is somewhat consistent with observed trends and mod-
eling projections shown in Annamalai et al. [2013], who
suggested that enhanced convection in the Western North
Pacific was concurrent with sea surface temperature warm-
ing there, leading to Rossby-forced circulation changes over
South Asia. However, we restate our earlier caution in the
interpretation of trends from reanalysis data sets.
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