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Validating the reported random errors of ACE‐FTS measurements
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[1] In order to validate the reported precision of space‐based atmospheric composition
measurements, validation studies often focus on measurements in the tropical stratosphere,
where natural variability is weak. The scatter in tropical measurements can then be
used as an upper limit on single‐profile measurement precision. Here we introduce a
method of quantifying the scatter of tropical measurements which aims to minimize the
effects of short‐term atmospheric variability while maintaining large enough sample sizes
that the results can be taken as representative of the full data set. We apply this technique
to measurements of O3, HNO3, CO, H2O, NO, NO2, N2O, CH4, CCl2F2, and CCl3F
produced by the Atmospheric Chemistry Experiment–Fourier Transform Spectrometer
(ACE‐FTS). Tropical scatter in the ACE‐FTS retrievals is found to be consistent with
the reported random errors (RREs) for H2O and CO at altitudes above 20 km, validating
the RREs for these measurements. Tropical scatter in measurements of NO, NO2, CCl2F2,
and CCl3F is roughly consistent with the RREs as long as the effect of outliers in the data
set is reduced through the use of robust statistics. The scatter in measurements of O3,
HNO3, CH4, and N2O in the stratosphere, while larger than the RREs, is shown to be
consistent with the variability simulated in the Canadian Middle Atmosphere Model. This
result implies that, for these species, stratospheric measurement scatter is dominated by
natural variability, not random error, which provides added confidence in the scientific
value of single‐profile measurements.

Citation: Toohey, M., K. Strong, P. F. Bernath, C. D. Boone, K. A. Walker, A. I. Jonsson, and T. G. Shepherd (2010),
Validating the reported random errors of ACE‐FTS measurements, J. Geophys. Res., 115, D20304, doi:10.1029/2010JD014185.

1. Introduction

[2] To date, validation of the Atmospheric Chemistry
Experiment–Fourier Transform Spectrometer (ACE‐FTS)
data set has focused primarily on the determination of sys-
tematic bias between the ACE‐FTS retrieved trace gas
profiles and those from numerous other instruments. These
studies have shown that, in general, ACE‐FTS retrieved
profiles show good agreement with other space‐based mis-
sions [Clerbaux et al., 2008; De Mazière et al., 2008; Dupuy
et al., 2009; Kerzenmacher et al., 2008;Mahieu et al., 2008;
Strong et al., 2008; Wolff et al., 2008].
[3] There has, however, to this point been little discussion

of the quality of the reported errors of the ACE‐FTS mea-
surements. Validation of the reported errors is desirable in

order to gain confidence in the scientific use and interpre-
tation of measurements in small sample sizes, such as in the
use of observed chemical data in atmospheric data assimi-
lation systems.
[4] Validating the reported errors amounts to showing

consistency between those errors and the measurement data.
While other methods have been described [e.g., Rodgers,
2000; von Clarmann, 2006; Toohey and Strong, 2007],
most studies that address the issue of random error valida-
tion do so through a comparison of reported errors and the
measured short‐term scatter in some latitude band, usually
the tropics, where natural variability is known or assumed to
be small. When random errors can be assumed to be inde-
pendent of latitude, a validation of the reported random
errors of tropical measurements leads to confidence in the
reported random errors over the full globe. For example,
Brühl et al. [1996] show sample standard deviation (SD)
profiles of Halogen Occultation Experiment (HALOE) O3

measurements over two‐day sample sizes, for summer 1992
and 1993, at low (10°, 14°N), middle (43°, 46°N) and high
(76°N) latitudes, and show that O3 SD profiles at low and
midlatitudes are comparable in magnitude with each other,
and with the ∼5% random errors reported for HALOE,
while the high latitudes show considerably higher variance.
Similarly, Abrams et al. [1996] quote SDs of profiles
measured by the Atmospheric Trace Molecule Spectroscopy
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(ATMOS) experiment for a number of species in tropical
zonal bands (latitudes not specified), and show their general
agreement with the reported random error estimates. Livesey
et al. [2005] use SDs of measurements between 10°S and
10°N in order to assess the realism of the reported Aura
Microwave Limb Sounder (MLS) precisions for a number of
species. Santee et al. [2007] show good agreement between
the SD of tropical (10°S–10°N) Aura MLS HNO3 measure-
ments (for single days) and reported precision estimates.
[5] The spectra measured by ACE‐FTS are typically of

very good quality, with signal‐to‐noise ratio (SNR) in
excess of 300 over most of the spectral band reported for
early measurements [Bernath et al., 2005]. In theory, high
SNR should lead to small random errors in retrieved volume
mixing ratios (VMRs), and in fact, the reported errors (as
currently estimated) for many ACE‐FTS retrievals reach
minima as low as 1%. This work aims to determine whether
or not the ACE‐FTS retrievals are as precise as is currently
reported. In section 2, we first introduce some background
theory on random error validation, and use climatological
data from HALOE to motivate the use of short‐term mea-
surement variability in the tropics as a proxy for random
error. In section 3 we then perform a statistical comparison
of the variability of ACE‐FTS tropical retrievals with their
reported random error. In section 4 we investigate the short‐
term tropical variability in a chemistry‐climate model to help
understand the role that natural short‐term variability plays
in our random error validation method. Finally, a summary
of results and conclusions is included in section 5.

2. Random Error Validation

[6] The simplest measurement model describes a mea-
surement xi as being the sum of the true quantity being
measured, ti, and some zero‐mean random error "i:

xi ¼ �i þ "i: ð1Þ

In a general sense, the most straightforward way to assess
random error is to examine the results of repeated mea-
surements on a single static quantity. Due to random error,
the measured values will vary, and any quantification of the
scatter in repeated measurements represents a quantification
of the random error, or precision of the measurement. Given
enough measurements, the true value t is well estimated by
the mean value of the measurements, x. The differences
between xi and x, i.e., the deviations about x, then represent
estimates of the errors "i. In theory, any measure of the
scatter of x about x represents a measure of the scatter in ",
and so can be used to quantify the random error. In practice,
the scatter in a set of n measurements is most often quan-
tified by the SD:

�x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1ð Þ
Xn
i¼1

xi � xð Þ2
s

; ð2Þ

with sx serving as an estimate of s", the scatter in the ran-
dom error term ".
[7] In terms of the simple measurement model of

equation (1), assuming that the errors "i are uncorrelated
with the truth ti, the variance of any measurement set

(repeated or not) is equal to the sum of the variances of the
truth and the measurement error:

�2
x ¼ �2

� þ �2
": ð3Þ

Any set of trace gas measurements will exhibit scatter, or
measurement variability (sx

2), due to a combination of both
the natural variability of the true atmospheric state (st

2) and
scatter due to randommeasurement errors (s"

2). Nevertheless,
it is reasonable to expect agreement between the reported
random errors and the measurement scatter (i.e., sx ≈ s0) in
regions when and where the natural variability is significantly
less than the random error.
[8] Validation of random measurement errors using the

method of repeated measurements described above thus
depends on the identification of regions where natural var-
iability is small compared to the measurement errors. A
number of satellite validation studies, including those for the
solar occultation instruments HALOE [Brühl et al., 1996]
and ATMOS [Abrams et al., 1996], have shown good
agreement between reported errors and measured variability
in the tropical region, implying minimal natural variability
there.
[9] A long‐term examination of natural trace gas variability

within zonal bands can be extracted from a climatology of
trace gas measurements from the HALOE instrument [Grooß
and Russell, 2005]. In this climatology, monthly means and
SDs of trace gas VMRs of O3, H2O, CH4, NOx, HCl, and HF
measured by HALOE are calculated from all data spanning
the years 1991–2002. The climatology is reported for 5° bins
of latitude and equivalent latitude, where equivalent latitude
is a dynamical coordinate based on the contours of potential
vorticity [Butchart and Remsberg, 1986].
[10] The statistics of this overall climatology are calcu-

lated from multiple years of HALOE measurements for each
spatial bin and calendar month. The SDs of the climatology
thus contain the effects of both short‐term and interannual
natural variability (in addition to random measurement
errors). We have derived an estimate of the typical short‐
term (intramonthly) natural variability by averaging the SDs
of the individual months of HALOE observations.
[11] Figure 1 shows equivalent latitude‐pressure slices of

the overall average intramonthly SD for CH4 and O3, i.e., a
mean of all monthly SDs from the 11 year HALOE data set.
The trace gases CH4 and O3 are chosen here as two repre-
sentative but contrasting examples of stratospheric vari-
ability. CH4 is a long‐lived species with a tropospheric
source and horizontal gradients typical of other long‐lived
species, and is often used as a tracer of dynamical transport.
O3 is also relatively long‐lived in the lower stratosphere, but
is short‐lived in the upper stratosphere. Its horizontal gra-
dients are significantly different from those of CH4, due to
their different sources.
[12] The minimum percent SD for any pressure surface is

found (for both species) in a vertical band centered on the
equator. CH4 variability is less than 10% through a large
region of the lower tropical stratosphere. The measured
variability increases with height, reaching a local maximum
of about 12% at approximately 1 hPa, and decreases above.
For O3, tropical variability is less than 10% through all but
the lower stratosphere.
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[13] An examination of the temporal evolution of vari-
ability in the HALOE climatology [Toohey, 2009] shows
that the tropics exhibit weak variability for both CH4 and O3

throughout the year.
[14] As a final note regarding the short‐term SD clima-

tology from HALOE, it is notable that the minimum short‐
term variability reported by HALOE for O3 and CH4 in the
tropics is comparable in magnitude to the reported random
error of its measurements (∼5% for both species). We can
see from the preceeding analysis that natural variability is
minimal in the tropics, but our knowledge of the magnitude
of that natural variability is limited by the precision of the
HALOE measurements. A better description of the natural
variability in the tropics will be a byproduct of the efforts
toward the validation of ACE‐FTS RREs described in the
following sections.

3. ACE‐FTS Tropical Scatter Versus Reported
Random Errors

3.1. Data

[15] The Atmospheric Chemistry Experiment–Fourier
Transform Spectrometer (ACE‐FTS) onboard the SCISAT‐1
satellite, launched 12 August 2003 into a low‐Earth circular
orbit (altitude 650 km, inclination 74°), collects high‐resolution
(0.02 cm−1) infrared (2.2–13.3 mm, 750–4400 cm−1) spectra,
measuring atmospheric extinction by solar occultation
[Bernath et al., 2005]. ACE‐FTS performs approximately
15 sunrise and 15 sunset occultations per day, with a lati-
tudinal coverage that depends strongly on time of year. Over
a full year, the latitudinal coverage of ACE‐FTS covers
approximately 85°N to 85°S [Bernath et al., 2005].
[16] VMR profiles as a function of altitude for pressure,

temperature, and over 30 trace gases are retrieved from these
spectra. The details of ACE‐FTS processing are described in
the work of Boone et al. [2005]. The altitude spacing of the
FTS measurements, controlled by the scan time and the orbit
of the satellite, is typically 3–4 km. ACE‐FTS retrievals
used here are from the version 2.2 data set, with O3 from the
v2.2 O3 update, reported on a 1 km vertical grid. The results
of a number of v2.2 validation studies are collected in a special
issue of Atmospheric Chemistry and Physics (available at

http://www.atmos‐chem‐phys.net/special_issue114.html),
including articles validating measurements of the species
used in this study, including O3 [Dupuy et al., 2009], N2O
[Strong et al., 2008], HNO3 [Wolff et al., 2008], CH4 [De
Mazière et al., 2008], and NO and NO2 [Kerzenmacher
et al., 2008], and the CFC species CCl3F and CCl2F2
[Mahieu et al., 2008].
[17] Each individual VMR profile retrieved from an

ACE‐FTS limb sequence of spectra is reported along with a
statistical 1s random error. These errors are calculated from
the square roots of the diagonal elements of the covariance
matrix in the least squares fitting process [Boone et al.,
2005].
[18] In addition to random errors from the VMR retrievals

themselves, there is the potential for random error contri-
bution from an initial step of the retrieval process. Infor-
mation on pressure, temperature, and measurement tangent
heights are derived prior to performing VMR retrievals
through fitting of CO2 lines in each spectrum, with CO2

VMR fixed to an assumed profile. Thus, components of
random error in pressure, temperature, and tangent height
information will propagate forward, and compound the
random errors from the VMR retrievals. The random errors
associated with the pressure/temperature retrievals are,
however, small by design. CO2 lines employed in the
analysis are situated in regions of the spectrum with very
high SNR (typically 300), and many CO2 lines (more than
100 microwindows) are used to reduce the effects of spectral
noise on the CO2 lines, the primary source of the random
errors. It is therefore assumed that random errors carried
forward from the pressure/temperature retrievals can be
neglected in comparison to the dominant source of random
errors: the statistical fitting error in the VMR retrievals,
henceforth referred to as the reported random error (RRE).
Validation of the RREs is therefore a validation of this
assumption.
[19] It is important to point out that these RREs do not

include any estimate of systematic errors. The systematic errors
carried forward from the pressure/temperature retrievals
would not be negligible. Only random errors are considered
here.

Figure 1. Average intramonthly percent SD of HALOE (left) CH4 and (right) O3 measurements, i.e., the
mean of all monthly SDs in 5° equivalent latitude bins from the 11 year HALOE data set.
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[20] Since the ACE‐FTS RREs are related only to the
SNR of the spectral measurements, they do not in general
vary systematically with latitude or season. The only
exception is that due to the variation of tropopause height
with latitude: at tangent heights below ∼20 km, the relative
RREs of species with small tropospheric VMRs can be
much larger in the tropics than in the extratropics.
[21] The following analysis of ACE‐FTS data will focus

on the measured scatter of trace gas species in the 10°S–10°N
tropical region. The orbit geometry of the ACE‐FTS satellite
platform allows sampling of the tropical latitudes four
times per year, in February, April, August and October.
The period of each tropical observation window is short:
ACE‐FTS samples latitudes between 10°S and 10°N during
approximately eight days in each month of coverage. The
sampling is split into periods of sunrise and sunset occul-
tations, each of approximately four days length, with sunsets
measured in the first half of each month, and sunrises in the
second, with approximately 13 days separating the sunset
and sunrise measurement periods.
[22] Due to restrictions on data downlinking and mea-

surement frequency, the number of retrieved profiles is
significantly less than what would be expected based on the
orbit of the satellite platform. Table 1 lists the number of
retrieved profiles produced as a function of month and year
for the years 2004–2008. The number of retrieved profiles
per month ranges from 8 to 55, with an average of
approximately 25. The full data set of ACE‐FTS tropical
measurements, to be analyzed in the following, is made up
of 432 retrieved profiles.

3.2. Method

[23] Two main difficulties arise in the attempt to properly
quantify the scatter in tropical ACE‐FTS measurements: the
presence of gross outliers in the tropical data set, and the
small data set resulting from the sparse coverage of mea-
surements in the tropics.
[24] The presence of outliers in a data set poses a chal-

lenge for random error validation. On the one hand, unless
data can be excluded on independent grounds, such as
knowledge of anomalous conditions during the measure-
ment, all data should be used in the precision validation,
since the results of the validation should apply to the full
data set. On the other hand, commonly used measures of
scatter, like SD, are heavily influenced by outliers. A small
number of outliers can drastically affect the SD, pulling it
away from a value representative of the majority of the data.
[25] Statistics that are relatively insensitive to the presence

of outliers in data are known as robust. One of the most

robust estimates of scale (or scatter) is the median absolute
deviation (MAD) [Huber, 2004]. The MAD was first pro-
moted by Hampel [1974], who attributed it to Gauss. The
following description is based on that given by Maronna
et al. [2006]. Given a sample x = (x1, …, xn), the MAD is
defined as:

MAD ¼ med x�med xð Þj jð Þ; ð4Þ

where med(x) denotes the sample median of x. This esti-
mator uses the sample median twice, first to get an estimate
of the center of the data in order to form the set of absolute
residuals about the sample median, (∣x − med(x)∣), and then
to compute the sample median of these absolute residuals.
[26] The MAD represents the interval around the median

that contains 50% of the data [Rousseeuw and Croux, 1993].
As such, the MAD ignores the values of 50% of the data
outside this interval. The “robustness” of the MAD is
defined by this property: up to 50% of the data can be
composed of extreme outliers, and the MAD will still give a
value representative of the scatter of the central 50% of the
data distribution. Throughout the following presentation of
results, both SDs and MADs will be shown to help illumi-
nate the behavior of the central portion (MAD), and the full
set (SD) of the ACE‐FTS measurement distributions.
[27] When examining the scatter of the tropical data set,

time restriction is important in order to minimize any vari-
ance due to temporal natural variability (such as the seasonal
cycle or interannual variability). On the other hand, temporal
restriction must be chosen so as to result in sample sizes that
lead to statistically significant results. The calculation of
empirical random error estimates from the ACE‐FTS data
must then strike a balance between reducing natural vari-
ability and reducing sampling error: tighter temporal sam-
pling bounds decreases the natural variability, but reduces
the sample size, thus increasing the sampling error.
[28] In order to investigate the effects of reducing the

temporal bounds of data taken to quantify the scatter in
tropical measurements, Toohey [2009] partitioned the full
ACE‐FTS tropical data set based on a selection of temporal
bounds, and calculated scatter statistics (SD and MAD) for
each of the resulting subsets.
[29] The temporal partitions used were:
[30] 1. All: data from all months (February, April, August

and October) and years (2004–2008).
[31] 2. Months/All Years: the full data set partitioned by

calendar month. The partitioning thus removes the mean
annual cycle of variability from the full data set, but retains
any interannual variability for each month. This level of
partitioning is thus equivalent to that of the HALOE SD
climatology produced by Grooß and Russell [2005].
[32] 3. Months: data partitioned by year and month, thus

removing both interannual and seasonal variability from the
full data set. This level of partitioning is thus approximately
equivalent to that produced by averaging the monthly SDs
of HALOE measurements given by Grooß and Russell
[2005], as used as a climatology of short‐term variability
in section 2.
[33] 4. SR/SS: data partitioned by occultation type within

each month of each year. Given the tropical sampling pat-
tern of the ACE‐FTS occultations, this amounts to temporal
partitions of approximately four days in length. Separating

Table 1. The Number of Retrieved ACE‐FTS Profiles Between
the Latitudes 10°S and 10°N as a Function of Year and Montha

Feb Apr Aug Oct

2004 0 27 33 18
2005 13 53 55 29
2006 29 21 15 18
2007 22 21 22 15
2008 29 8 19 0

aThe lack of measurements in February 2004 reflects the fact that the first
ACE‐FTS measurements were made near the end of this month. The lack
of measurements in October 2008 reflects the fact that this analysis was
done before retrievals for this month were completed.
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sunrise occultations from sunsets removes the effect of any
diurnal variability.
[34] 5. Day: data partitioned by year, month, and finally

into single days. Since sunrise and sunset occultations do
not occur in the same day in the tropics, Day partitioning
also removes diurnal variability. (While not true of the
global ACE‐FTS occultation set, the local solar time (LST,
see equation (5)) of tropical occultations corresponds with
expectations of typical sunrise and sunset times, with sun-
rises occurring between approximately 5:00 and 6:15, and
sunsets between 17:00 and 18:15.)
[35] At each level of temporal partitioning, the sample

sizes of each subset become progressively smaller. Table 2
details the relationship between the number of partitioned
subsets (m), and the average sample size of each subset
(ntot/m). An arbitrary threshold of eight samples has been
used as a minimum for each subset: when there are less than
eight samples within a subset, it is excluded from the
analysis. This sample size criterion leads to the exclusion of
a handful of subsets for the SR/SS partitioning, taking the
total number of measurements used from 432 to 378. A
more drastic example is seen for Day partitioning, for which
82% of the retrieved profiles are excluded based on the fact

that there are only 8 single days with 8 or more tropical
measurements.
[36] For each level of temporal partitioning, deviations are

produced by subtracting from each measurement the mean
(or median) of its respective subset. For example, when
partitioning by Month, deviations were produced based on
the difference between each profile and its respective
monthly mean. The RMS of all deviations is then used as a
composite measure of the overall scatter. The composite
RMS is equivalent to the square root of a weighted mean of
the subset variances, with weights equal to the ratio of the
sample size of each subset to the total sample size. Based on
this interpretation, and for the sake of simplicity, the RMS
of the full set of deviations from the subset means will be
referred to in the following as a composite standard devia-
tion, denoted SD*. Note that the SD* for the All partition is
equal to the SD of the full data set. A composite MAD, or
MAD*, is produced analogously by calculating the median
absolute value of the deviation of each profile from its
respective median. The advantage of a composite measure
of scatter, such as the SD* or MAD* described above, is
that it reflects the measurement variability using all of the
data, and thus avoids the philosophical issue of trying to
validate the RREs of a large data set based on the scatter of
only an extremely small subset of measurements. The
disadvantage of the composite scatter statistic is that it
retains the effect of outliers in the data set, which can be
removed through selection when only using small subsets
of measurements.
[37] The process of partitioning the data into subsets

based on temporal bounds, and calculating the SD* (and
MAD*) based on deviations from the mean (median) of
each subset, is performed for each of the partition bounds
described above. Figure 2 shows the scatter statistics (SD*
Figure 2 (top), MAD* Figure 2 (bottom)) calculated on
ACE‐FTS tropical measurements of O3 at the different levels

Table 2. The Effect of Temporal Partitioning on the Sample Sizes
of the Created Subsetsa

ntot m ntot/m

All 432 1 432
Month/all years 432 4 108
Month 432 18 24
SR/SS 378 26 14.5
Day 77 8 9.6

aAt each level of partitioning, the total number of retrievals ntot is
partitioned into m subsets. ntot/m then gives the average sample size of
each subset. ntot may change since any subsets with less than eight
samples are excluded.

Figure 2. Tropical ACE‐FTS O3 measurement scatter quantified by the statistics (top) SD* and (bottom)
MAD* as defined in the text, shown for All (orange), Month/All Years (red), Month (blue), SR/SS
(green), and Day (cyan) partitioning on separate plots, with 95% confidence intervals shown by horizontal
lines. The statistics for All are repeated in all plots to aid comparison.
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of partitioning. To aid comparison, each panel also contains
the All partition statistic. Confidence intervals at the 95%
level are produced through the bootstrapping technique
[Efron and Tibshirani, 1994], wherein the calculation used to
produce a statistic is performed on a large number of random
resamplings of the full data set, producing an ensemble of
statistic estimates. The width of the resulting distribution of

statistic estimates can then be used to define a confidence
interval for the statistic. Here we produce confidence inter-
vals based on 1000 resamplings.
[38] The scatter in deviations steadily decreases with

tighter temporal partitioning, as seen in Figure 2. It should
be noted that the SD* of the full O3 data set, which includes
variability on time scales of interannual, seasonal, and short
term, is only a few percent larger than that based on Day
partitioning, although the 95% confidence intervals imply
that these differences are significant. All levels of parti-
tioning give SD*s that are below 8% between the altitudes
of roughly 25 and 55 km. Partitioning the data, and in so
doing removing different scales of temporal variability,
reduces the scatter by the order of a few percent. Notable
reductions in scatter occur between 25 and 60 km due to the
removal of seasonal and interannual variability and above
55 km due to the removal of diurnal variability. The
reduction in scatter produced by partitioning by SR/SS
subsets, in so doing removing the effect of diurnal varia-
tions, is displayed most clearly by the MAD* statistic. It
should also be noted that the SR/SS MAD* profile is con-
sistent with that produced by Day partitioning (with a much
smaller sample size) for all but a few altitudes. The SR/SS
MAD* profile is also quite close to the Month MAD*
profile below 55 km. It would appear that there is only a
small reduction in scatter produced by moving from Month
to tighter levels of partitioning below 55 km where diurnal
variations are insignificant.
[39] The confidence intervals shown for O3 are of rela-

tively equal size for All, Month/All Years, Month and SR/
SS partitioning for altitudes between 20 and 50 km. For
SD*s, the confidence intervals have widths ranging from
approximately 1 to 3% between 22 and 60 km for these
levels of partitioning. The Day SD* has somewhat larger
confidence intervals, ranging in width from 2 to 5% between
22 and 60 km, due to the smaller total sample size resulting
from the minimum subset size threshold. Confidence inter-
vals for the MAD* are in general smaller than those for the
SD*s, as would be expected given the robust nature of the
MAD*, with widths ranging from 0.6 to 1% between 22 and
60 km for all but Day partitioning. At low altitudes for the
Day MAD*, very small sample sizes lead to confidence
intervals that have a minimum of zero.
[40] The confidence intervals show that while the Month/

All Year SD* is not significantly different from the All SD*,
the SD*s for the other levels of partitioning are (at the
vertical levels shown).
[41] The scatter in tropical ACE‐FTS measurements,

quantified by SD* and MAD* statistics, has been calculated
for a number of trace gas species measured by ACE‐FTS. In
general, the short‐term partitioned statistics, SR/SS and
Day, show the smallest values. The SR/SS and Day statistics
are for the most part not significantly different from each
other (i.e., their 95% confidence intervals overlap), although
typically the SR/SS confidence intervals are significantly
smaller than those for the Day statistics. Therefore, in order
to compare the measured scatter with the RRE, SR/SS sta-
tistics will be used as a best measure of short‐term scatter.

3.3. Results

[42] Agreement between SR/SS scatter statistics and RREs
is examined in Figure 3, with each panel showing the dif-

Figure 3. Differences between percent short‐term scatter
measured by ACE‐FTS and the percent RREs. Each plot
shows the SR/SS partition SD* ‐ RMS(RRE) (blue) and
MAD* ‐ med(RRE) (red). Confidence intervals, based on
the confidence intervals calculated for the scatter statistics
through bootstrapping are shown as horizontal bars every
2 km.
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ference between scatter and RRE (i.e., SD* ‐ RMS(RRE) and
MAD* ‐ med(RRE)) for ten sample trace gas species mea-
sured by ACE‐FTS. Confidence intervals at the 95% level,
based on the confidence intervals calculated for the SR/SS
scatter statistics, are shown as horizontal lines.
[43] The results of the comparisons of scatter with RREs

can be grouped into three cases. In “Case 1,” differences
between scatter and RREs are less than or approximately
equal to zero (within error bars) for both the SD* and
MAD* comparisons. Such is the case for H2O at altitudes
above 25 km, and for CH4 between 20 and 30 km. For CO,
differences between scatter and RREs are less than 1%
above 20 km. For these species and altitude regions, this
comparison amounts to a successful validation of the
ACE‐FTS RREs, in a manner similar to previous validation
studies for other missions. The random measurement error
can be no larger than the short‐term measurement variability
observed, thus it can be concluded that the true random
measurement error for these species and regions is equal to,
or less than the RREs.
[44] The second comparison result, “Case 2,” describes

instances where differences between the MAD* and median
RRE are equivalent to or less than zero, while the SD* is
significantly larger than the RMS RRE. Such is the case for
O3 between 20 and 40 km, NO between 30 and 50 km, NO2

in two bands centered at 20 and 40 km, N2O between 20 and
30 km, CH4 below 20 km, and for most of the full range of
measurements for the CFC species. Since the MAD* ignores
the outlying 50% of the input data, agreement between the
MAD*s and the median RREs shows that the width of the
central 50% of the deviation distribution is in good agree-
ment with the RREs. In other words, the RREs are repre-
sentative of the scatter in 50% or more of the data. The
larger differences between the SD*s and the RMS RREs are
then understood to be a result of outliers in the data set,
whose deviations are larger than their respective RREs.

[45] The third and final comparison result, “Case 3”,
describes instances where both the SD* or MAD* are sig-
nificantly larger than the RREs. Such is the case for O3

between 40 and 50 km, for HNO3 over all but the very
highest retrieved altitudes, for CO below 20 km, for NO2

between 25 and 35 km, for both N2O and CH4 above 30 km,
and for H2O below 25 km.
[46] It is clear from the differences in results based on

SD* and MAD* that outliers are present in the tropical ACE
data set. Figure 4 shows CH4 deviations from the SR/SS
medians, as a function of Julian day and latitude for the full
ACE‐FTS tropical data set. These deviations are normalized
by the MAD*, and the symbol size and color are used to
convey the magnitude and sign of the deviation.
[47] At 17.5 km, there exist many large deviations, with

absolute deviations greater than 10 MAD*. It is known that
the quality of ACE‐FTS retrievals below ∼20 km suffers
from the presence of high cirrus clouds. This is especially an
issue in the tropical measurements. As a result of this a
priori knowledge, an ACE‐FTS data user could conceivably
choose to discard ACE‐FTS measurements below 20 km
that showed large normalized deviations from the MAD.
[48] At 29.5 km, CH4 deviations are predominantly neg-

ative, and located mostly in the winter/spring hemisphere.
Since CH4 mixing ratios decrease with latitude away from
the tropics at this height, it is conceivable that these negative
deviations are due to the intrusion of extratropical air into
the 10°S–10°N latitude band due to vigorous mixing epi-
sodes in the surf zone. Instances of negative CH4 deviations
are well correlated with negative N2O, and positive NO and
NO2 deviations (not shown), which supports this hypothe-
sis. At 49.5 km, the picture is similar: negative deviations
are clustered at the winter/spring edges of the latitude
band, but there are also positive deviations at the summer
edges. Inspection of the HALOE CH4 climatology [Grooß
and Russell, 2005] shows that above 10 hPa (∼30 km)
the mean CH4 mixing ratios are sloped across the equatorial

Figure 4. ACE‐FTS measured CH4 deviations from SR/SS medians, at 49.5, 29.5, and 17.5 km, shown
as a function of measurement Julian day and latitude. Deviations are normalized by the MAD*. The sym-
bol size and color are used to convey the magnitude and sign of the deviations, with red colors for positive
deviations and blue for negative.
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region, with higher VMR values in the summer/fall hemi-
sphere. Thus, the deviations shown in Figure 4 are consistent
with a strong gradient in VMR across the equatorial band,
and perhaps mixing or sloshing across the 10°S and 10°N
latitudes.
[49] In the light of the preceding characterization of

ACE‐FTS measurement scatter, it appears likely that dis-
crepancies between scatter and RREs, in the form of either
Case 2 or Case 3 described above, may be produced, at least
in part, by short‐term natural variability. The variability of
chemical fields simulated in a chemistry‐climate model will
be used in the next section in order to investigate the pos-
sible extent of tropical natural variability.
[50] Before doing so, however, it is instructive to compare

the tropical scatter observed by ACE‐FTS to that reported in
the HALOE climatology. In section 2, it was postulated that
the minimum SD values of HALOE measurements in the
tropics may have been representative of the random error in
those measurements, and that the true natural variability
may have been less. If so, and if the random errors of
ACE‐FTS measurements are smaller than those for HALOE
(as reported), one would expect the scatter in ACE‐FTS
measurements to be smaller than those from HALOE.
Figure 5 compares O3 and CH4 SD*s from ACE‐FTS
measurements, partitioned by Month, to the average SD
profile from the HALOE time series of monthly SDs for the
four months of ACE‐FTS tropical coverage. There is
excellent agreement between the scatter statistics for both
instruments. This close agreement supports the idea that
natural variability, not random measurement error, is the
dominant source of the scatter in both measurement sets.

4. Tropical Variability in the CMAM

[51] In this section, the variability of tropical chemical
species simulated by the Canadian Middle Atmosphere
Model (CMAM) is compared to the scatter measured by

ACE‐FTS, and the reported random errors of the ACE‐FTS
measurements. By making the assumption that the CMAM
accurately reproduces, in a statistical sense, the natural
variability of the true atmosphere, the variability of CMAM
chemical fields can be used as a lower bound on the vari-
ability of any measurement set, itself subject also to random
measurement error. We focus specifically on species (O3,
HNO3, N2O, and CH4) that showed significant dis-
crepancies between measured scatter and reported random
errors (i.e., those classified as “Case 3” in section 3) at
altitudes above 20 km, and which are long‐lived (since
the temporal resolution of model output makes model‐
measurement comparisons of rapidly varying species diffi-
cult). Modeled and measured scatter will be compared at the
level of SR/SS partitioning, since this level of partitioning is
the shortest time span for which the confidence intervals of
the measurement scatter remain small.
[52] The CMAM is an extended version of the Canadian

Centre for Climate Modelling and Analysis spectral General
Circulation Model (GCM). The dynamical core and chem-
istry scheme are described by Beagley et al. [1997] and de
Grandpré et al. [1997], respectively. The distributions of
chemical species in the CMAM have been seen to generally
compare well with observations [e.g., de Grandpré et al.,
2000; Farahani et al., 2007; Hegglin and Shepherd, 2007;
Jin et al., 2005; Jin et al., 2009; Melo et al., 2008]. Simu-
lated chemical fields from the last ten years (1995–2004) of
the CMAM REF1 simulation described by Eyring et al.
[2006] are used here. The specifications of the simulations
follow or are similar to the “reference simulation 1” (REF1)
of CCMVal [Eyring et al., 2005] and include anthropogenic
and natural forcings based on changes in sea surface
temperatures, trace gases, and aerosol effects from major
volcanic eruptions. While this version of CMAM does not
simulate the quasi‐biennial oscillation and thus under-
estimates interannual variability in the tropics, the intramonth
variability appears to be of realistic magnitude [see SPARC

Figure 5. Variability in tropical ACE‐FTS O3 and CH4 retrievals, compared to that from the HALOE
climatology.
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CCMVal, 2010, Chapter 7]. The chemical fields are avail-
able for every model grid point, in intervals of 18 h, with
this high sampling frequency (i.e., compared to monthly
means) allowing the calculation of short‐term variability.
[53] Quantification of atmospheric variability depends on

resolution: the larger the air volumes associated with each
sampling point are, the smaller the variability will be (and
vice versa). When comparing variability between different
sources (observations and/or models) it is therefore impor-
tant that the resolutions of the compared fields are similar.
ACE‐FTS observations have a horizontal resolution of
∼500 km, while CMAM has a horizontal resolution of
roughly 3.75°, or 400 km. Tropical ACE‐FTS retrievals
have a vertical resolution of ∼3 km, while the CMAM
vertical resolution in the tropopause region is around 900 m,
coarsening to around 2 km in the upper stratosphere. Since
stratospheric variability is dominated by processes (mixing
and transport) that occur on quasi‐horizontal surfaces, we
expect that the similar horizontal resolution of ACE‐FTS
and CMAM justifies a direct comparison between the two.
In order to facilitate the comparisons, CMAM chemical
fields have been interpolated from pressure coordinates onto
the ACE‐FTS 1 km altitude grid using the model geopo-
tential field.
[54] In order to best reproduce the sampling of the tropical

ACE‐FTS measurements, the CMAM data is sampled based
on the local solar time (LST), defined as:

LST ¼ UTCþ 24
�

360�

� �
; ð5Þ

where UTC represents the universal (Greenwich Mean)
time, and l the longitude. In the tropics, the LSTs of
ACE‐FTS occultations are generally consistent, with sun-
rises occurring between approximately 5:00 and 6:15, and
sunsets between 17:00 and 18:15. In the following analysis,
only CMAM fields with LSTs within the bounds corre-
sponding to ACE‐FTS sunrises and sunsets are used. Further-
more, only the months February, April, August, and October,
corresponding to the months of ACE‐FTS tropical coverage,
are used. Lastly, CMAM SR/SS partitions are constrained to a
length of four days, in order to match the length of ACE‐FTS
SR/SS partitions.

[55] Scatter statistics for tropical O3 modeled by CMAM
and measured by ACE‐FTS are shown in Figure 6, along
with the RMS RRE of the ACE‐FTS measurements. Both
the CMAM O3 variability and the ACE‐FTS measurement
scatter are generally larger than the ACE‐FTS RMS RRE.
The CMAM variability is comparable to the ACE‐FTS
measured scatter in vertical shape, with a maximum in
absolute variability (Figure 6a) at approximately 35 km, and
percent variability (Figure 6c) that increases relatively lin-
early between 30 and 60 km. Below 20 km, CMAM O3

variability decreases to negligible amounts, due to the lack
of any tropospheric chemistry in the model. The ACE‐FTS
SD* here is significantly larger than the RMS RRE, due to
outliers resulting from clouds. The MAD* below 20 km is,
however, consistent with the RREs, suggesting that the
precision of retrievals not affected by clouds is well
described by the RREs. There is very good agreement
between the CMAM and ACE‐FTS MAD*s throughout the
stratosphere, especially in terms of percent. The large
increase in CMAM variability above 65 km compared to
ACE‐FTS variability is due to differences in sampling.
Whereas ACE‐FTS samples the diurnally varying O3 at
exactly sunrise and sunset, i.e., at solar zenith angles (SZAs)
of 90°, the CMAM has been sampled based on the window
of local solar times determined by the ACE‐FTS tropical
data set. Therefore, in terms of SZA, the CMAM O3 values
are sampled from a finite window which includes 90°, and
since O3 VMRs change very rapidly as a function of SZA in
the mesosphere [Allen et al., 1984], the CMAM fields dis-
play a larger variance.
[56] Comparisons of scatter statistics for modeled and

measured HNO3 are shown in Figure 7 (top). The CMAM
variability between 20 and 35 km agrees well with the
scatter measured by ACE‐FTS, especially in terms of the
MAD* statistic. In terms of percent, the CMAM variability
is larger than the ACE‐FTS scatter: this is a result of a low
bias in CMAM HNO3. Below 20 km, where CMAM vari-
ability is small, the ACE‐FTS statistics are dominated by
random error. Once again, the effect of clouds is apparent:
the difference between the ACE‐FTS SD* and the RMS
RRE is relatively large, while the median RRE is within the
95% confidence intervals (not shown) of the absolute
MAD*.

Figure 6. Tropical variability in CMAM O3 (green dashed lines), compared to the scatter measured by
ACE‐FTS (green solid), both for SR/SS partitioning, and the ACE‐FTS RREs (black) for (a) absolute
SD*, (b) absolute MAD*, (c) percent SD*, and (d) percent MAD*.
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[57] Comparisons of scatter statistics for modeled and
measured N2O are shown in Figure 7 (middle). The vari-
ability of the CMAM simulated N2O agrees well with the
scatter in ACE‐FTS measurements between 25 and 50 km,
especially for the absolute scatter statistic comparison. The
relative scatter statistic comparison is affected by a slight
low bias in the model mean fields at heights above 40 km.
Below 20 km, where the CMAM variability decreases to
zero, the ACE‐FTS MAD* show excellent agreement with
the RREs, and the differences between SD* and RMS RRE
are often smaller than the 95% confidence intervals (see
Figure 3). The results for the CH4 comparison (Figure 7,
bottom) are similar.
[58] In summary, the variability in tropical chemical fields

simulated by the CMAM is in good agreement with the
measured scatter in tropical stratospheric (∼25–60 km)
ACE‐FTS measurements. Based on the CMAM variability

results, it would appear likely that differences between the
short‐term scatter in ACE‐FTS measurements and the
RREs, at altitudes above ∼25 km, shown in Figure 3 are due
to the presence of real short‐term natural variability in the
tropical stratosphere.
[59] For contrast, we turn now to examine the variability

of CMAM H2O, as comparisons for H2O showed consis-
tency between ACE‐FTS scatter and RRE. CMAM vari-
ability, ACE‐FTS scatter, and the ACE‐FTS RRE for H2O
are shown in Figure 8. In terms of the SD* statistic, the
CMAM variability is comparable to (20–40 km), or smaller
than (above 40 km) the ACE RMS RRE. The ACE‐FTS
SD* is seen to agree well with the RMS RRE, except below
25 km. The ACE‐FTS MAD*, on the other hand, is sig-
nificantly smaller than the median RRE, and is in closer
agreement with the CMAM variability than with the RRE.
In other words, while the scatter of the full set of ACE‐FTS

Figure 7. As in Figure 6 for (top) HNO3, (middle) N2O, and (bottom) CH4.
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measurements (i.e., the SD*) agrees well with the RREs, the
scatter of the central portion of the measurements (i.e., the
best 50%, quantified by the MAD*) is significantly less than
the RREs for this portion of data. It would appear that the
RREs of the “well behaved” retrievals may actually be
overestimated.

5. Conclusions

[60] This work has focused on validating the reported
random errors (RREs) of the ACE‐FTS trace gas measure-
ments through a comparison of RREs with the variability (or
scatter) of measurements in the tropical latitude band 10°S–
10°N, where natural variability is minimal. The scatter in
tropical ACE‐FTS measurements has been quantified based
on a series of successively tighter temporal bounds. The
scatter present in short‐term (4‐day) subsets of the data is
compared directly with the ACE‐FTS reported random
errors.
[61] The measured scatter in CO and H2O is found to be

consistent with the RREs in terms of the standard deviation
(SD), and to be smaller than the RREs in terms of the
median absolute deviation (MAD). For these two species,
this represents a validation of the random measurement
errors in the manner of previous satellite validation studies,
in the sense that the RREs are not underestimated. However,
the results suggest that if outliers are excluded through the
use of the MAD, then the CO and H2Omeasurements may be
more precise than their RREs would indicate. This hypoth-
esis is supported in the case of H2O by the fact that the
measured scatter of H2O is consistent with the variability
simulated by the CMAM, implying that the measured scatter
is dominated by real natural variability.
[62] Tropical scatter in measurements of NO, NO2,

CCl2F2 and CCl3F is roughly consistent with the RREs as
long as the effect of outliers in the data set is reduced
through the use of the robust scatter statistic MAD rather
than the SD. This result encourages the use of caution in the
scientific use of the measurements in small sample sizes, but
also suggests that the majority of the data is consistent with
the RREs. The MAD, or other robust statistics may be quite
useful in identifying outliers in this data set, and thereby
screening the data.
[63] The scatter in measurements of O3, HNO3, CH4 and

N2O, while significantly larger than the RREs in some
regions of the stratosphere, is shown to be consistent with

the variability simulated in the CMAM. This result strongly
supports the hypothesis that the scatter in the stratospheric
ACE‐FTS measurements of these species is due to real natural
variability, not randomerror. The implications of this result can
be taken in two ways. Firstly, if the true random errors of the
measurements are smaller than the minimum variability of
the atmosphere, then the RREs cannot be validated through
the method used here. On the other hand, this result should
increase confidence in the utility of the measurements, since
it implies that differences between measurements are domi-
nated by differences in the true atmospheric state.
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