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ABSTRACT

A theory of available potential energy (APE) for symmetric circulations, which includes momentum con-
straints, is presented. The theory is a generalization of the classical theory of APE, which includes only
thermal constraints on the circulation. Physically, centrifugal potential energy is included along with gravi-
tational potential energy. The generalization relies on the Hamiltonian structure of the conservative dynamics,
although (as with classical APE) it still defines the energetics in a nonconservative framework. It follows
that the theory is exact at finite amplitude, has a local form, and can be applied to a variety of fluid models.
It is applied here to the f -plane Boussinesq equations. It is shown that, by including momentum constraints,
the APE of a symmetrically stable flow is zero, while the energetics of a mechanically driven symmetric
circulation properly reflect its causality.

1. Introduction

Lorenz (1955) proposed a diagnostic framework for
the energy cycle based on the concept of available po-
tential energy (APE). The APE is supposed to represent
that part of the total potential energy (the sum of the
gravitational potential and internal energy) of a system
that is available for conversion into kinetic energy. The
classical theory of APE accounts only for thermal (or
mass) constraints, but not for momentum constraints.
The natural question is whether there is any need to
redefine APE to include the latter. Regarding this issue,
Lorenz (1955) himself remarked, ‘‘There is no assurance
in any individual case that all the available potential
energy will be converted into kinetic energy. For ex-
ample, if the flow is purely zonal, and the mass and
momentum distributions are in dynamically stable equi-
librium, no kinetic energy at all can be realized. It might
seem desirable to redefine available potential energy, so
that, in particular, it will be zero in the above example.’’
Hence, one would conclude that, for reasons both aes-
thetic and practical, a theory accounting for both mo-
mentum and thermal constraints is required. The pur-
pose of this paper is to provide just such a theory, and
in particular, to show that the properly defined APE of
a symmetrically stable circulation is zero, as Lorenz
suggested it should be.

As examples of systems where the motion is con-
strained by momentum or angular momentum conser-
vation one may consider quasi-steady symmetric cir-
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culations, such as hurricanes, frontal systems, and the
zonal-mean flow in the atmosphere. The addition of
forcing and dissipation (including 3D effects) to these
systems leads to symmetric cross-stream circulations
(Eliassen 1951). The analysis of the energetics of such
circulations with Lorenz’s APE may then be misleading.

To exemplify this let us consider the mesosphere,
where we know that the meridional circulation is me-
chanically forced by wave drag and thermally damped
by radiation (see, e.g., Shepherd 2000). At solstice, there
is rising motion and diabatic heating over the summer
pole at the temperature TSP, say, and sinking motion and
diabatic cooling over the winter pole at the temperature
TWP. In the present mesosphere, TWP . TSP so we have
heating where it is cold and cooling where it is warm.
According to Lorenz’s APE, this implies a thermally
indirect circulation—which agrees with its mechanically
driven nature. But let us now imagine a situation with
less wave drag, such that TWP , TSP. The circulation is
still mechanically forced and thermally damped, but Lo-
renz’s theory now diagnoses it as being a thermally
direct circulation. Hence the inferred causality is in-
correct.

This paradox arises from the fact that in the meso-
sphere, in the absence of wave drag (and meridional
circulation) the zonal flow is not at rest, but in radiative
equilibrium, with zonal wind urad ± 0. The appropriate
reference state would then seem to be (urad, Trad). Rel-
ative to this, the radiative cooling (or heating) R is al-
ways a thermal damping since R(T 2 Trad) , 0 (Andrews
et al. 1987), which gives the correct causality. However,
this requires generalizing APE to a nonresting reference
state.
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It has been shown by Shepherd (1993) that Lorenz’s
APE arises generally within a Hamiltonian framework,
as the nonkinetic part of a disturbance pseudoenergy.
The system itself need not be conservative, but the con-
servative part determines the energetics (as with Lo-
renz’s theory). Shepherd (1993) also suggested that the
same Hamiltonian pseudoenergy approach could be
used to generalize the concept of APE to a nonresting
reference state, thereby incorporating momentum con-
straints. The physical requirement is that the reference
state be symmetrically stable, a natural generalization
of Lorenz’s statically stable reference state.

In the present paper, we develop a theory for the
energetics of a symmetric circulation, including mo-
mentum constraints. Eddy fluxes are treated as forcings.
For simplicity, we consider parallel flows within the
Boussinesq f -plane equations, to illustrate the approach.
The approach can be easily extended to axisymmetric
circulations, using angular momentum constraints.

The paper is organized as follows. In section 2 we
present the equations to be used. We then briefly review
the derivation of APE in section 3. In section 4 we
develop the small-amplitude version of the energetics,
taking into account the dynamical constraints on the
flow. Section 5 illustrates the small-amplitude theory
with an example. The theory is generalized to finite
amplitude in section 6. An extension of the theory to
include inertia terms describing the cross-stream cir-
culation is presented in section 7. Our conclusions are
presented in section 8.

2. Governing equations

The nonhydrostatic, f -plane Boussinesq equations
(e.g., Holton 1992) are

Du px2 f y 5 2 , (2.1)
Dt r 0

pDy y
1 fu 5 2 , (2.2)

Dt r 0

Dw p uz5 2 1 g , (2.3)
Dt r u0 0

Du
5 R, (2.4)

Dt

u 1 y 1 w 5 0. (2.5)x y z

In the above, R is the diabatic heating, u is the departure
of potential temperature from a constant basic-state val-
ue u0, and the other symbols have their usual meaning.
We assume no explicit dissipation, since the equations
will shortly be averaged and eddy flux terms will
emerge. The subscripts stand for partial derivatives, and
D/Dt [ ]/]t 1 u · =, with u [ (u, y, w) and = [ (]x,
]y, ]z)T. The Coriolis parameter is taken to be constant
( f . 0), as well as the basic-state density r0 and po-
tential temperature u0. Let us denote,

p 1
2 2m [ u 2 fy, p* [ 1 f y , (2.6)

r 20

and take the x average, denoted by an overbar, of (2.1)–
(2.5). Of course, on the f plane there is no inherent
distinction between the x and y directions; we choose
to average over x without loss of generality.

This yields

Dm
5 X, (2.7)

Dt

Dy
5 2p * 2 f m 1 Y, (2.8)yDt

Dw u
5 2p * 1 g 1 Z, (2.9)zDt u0

D u
5 R 1 T, (2.10)

Dt

y 1 w 5 0, (2.11)y z

where X, Y, Z, and T are eddy flux terms, and /Dt [D
]/]t 1 · , with [ ( , ) and [ (]y, ]z)T. Byv = v y w =
the nondivergence property (2.11) we can define a
streamfunction c in the meridional y–z plane such that

y 5 2c , w 5 c .z y (2.12)

The advection term can now be written /Dt [ ]/]t 1D
](c, · ), where ](g, h) [ gyhz 2 gzhy is the two-dimen-
sional Jacobian operator.

We now make the semigeostrophic approximation of
a nearly symmetric balanced flow, where (2.8) is re-
placed by geostrophic balance and (2.9) by hydrostatic
balance. These conditions will be relaxed in section 7.
This leads to a condition of thermal-wind balance

g
m 5 2 u . (2.13)z yf u0

Our system then consists of (2.7), (2.10), and (2.13).
In many applications it is useful to rewrite this system

in the transformed Eulerian mean (TEM) format (An-
drews et al. 1987), where the right-hand side (rhs) of
the thermodynamic equation consists only of the dia-
batic heating . A motivation for such a transformationR
is that the eddy flux terms in the thermodynamic equa-
tion can in any case be eliminated by working in is-
entropic coordinates (no analogue of this is possible for
the momentum equations, since m is not materially con-
served in 3D motion). Moreover, the rhs of the x mo-
mentum equation then becomes the convergence of
pseudomomentum flux, and is thereby connected to a
wave-activity conservation law.

In the quasigeostrophic (QG) case—where T 5
2( )y and X 5 2( )y, with the primes denotingy9u9 u9y9
departures from the zonal mean, and where, in the ad-
vection terms of (2.7) and (2.10), is replaced by 2 fym
and by a specified Q0(z)—this transformation can beu
made by replacing c with c* [ c 1 ( /Q0z). Theny9u9



15 AUGUST 2003 2021C O D O B A N A N D S H E P H E R D

T disappears from the rhs of (2.10), while X in (2.7) is
replaced by X* [ X 1 ( f /Q0z)z, which is the di-y9u9
vergence of the QG Eliassen–Palm (EP) flux. More gen-
erally, taking c* [ c 1 ( / z) implies (Andrews ety9u9 u
al. 1987) that T 5 2( )y 2 ( )z is replaced byy9u9 w9u9

y9u9 u 1 w9u9 uy zT* 5 2 . (2.14)1 2u z z

As long as the motion is along the mean isentropic
surfaces (this is true for quasi-hydrostatic dynamics),
then y 1 z 5 0 and T* vanishes. In whaty9u9 u w9u9 u
follows, we set T 5 0 in (2.10) and regard c as rep-
resenting the TEM circulation and X the EP flux di-
vergence. However, by reinterpreting X and R, other
physical interpretations are possible, and may be more
appropriate depending on the context (Plumb 1983). The
overbar is henceforth dropped from all symbols.

3. Available energy

We first consider the conservative form of the system
(2.7), (2.10), (2.13), with X 5 0 5 R. We follow Cho
et al. (1993), except that, because of the suppression of
the inertia terms in the y and z directions, the energy
consists only of centrifugal and gravitational potential
energy given by

ugz
H 5 mfy 2 dy dz. (3.1)EE 1 2u0D

As a boundary condition we impose (for convenience)
c 5 0 on ]D, in which case H is conserved in time.
Considering H as a functional of m and u, we have the
functional (variational) derivatives (see, e.g., Shepherd
1990 for a definition)

dH dH gz
5 fy, 5 2 . (3.2)

dm du u0

Besides the energy itself there is also a class of Casimir
invariants of the form

C 5 C(m, u) dy dz, (3.3)EE
D

for arbitrary functions C( · , · ). Their conservation fol-
lows from the material conservation (for X 5 0 5 R)
of m and u expressed by (2.7) and (2.10). Evidently,

dC dC
5 C , 5 C . (3.4)m udm du

We next introduce a reference state (RS) with

c [ 0, m 5 M(y, z), u 5 Q(y, z), (3.5)

satisfying thermal-wind balance (2.13). The goal is now
to choose the arbitrary function C in such a way that
the conserved quantity H 1 C defines a positive definite
measure of disturbance energy relative to this RS. This
quantity is called the pseudoenergy (Shepherd 1990). In
order for H 1 C to be positive definite, the RS must be
a conditional extremum for H 1 C, which requires

dH dC dH dC
5 2 , 5 2 (3.6)

dm dm du du

when evaluated at the RS. From (3.2), (3.4), and (3.6)
we obtain

gz
C (M, Q) 5 2 fy, C (M, Q) 5 . (3.7)m u u0

In (3.7), y and z on the rhs are to be regarded as functions
of M and Q, namely y(M, Q) and z(M, Q). In order for
these functions to be well defined, the transformation
(M, Q) → (y, z) must be invertible, which requires

](Q, M )
Q [ ± 0. (3.8)

](y, z)

Here, Q is the potential vorticity. One may show that

]z ](z, M ) ](z, M ) ](z, y) ]M 1
5 5 5 2 ,) ) 1 2]Q ](Q, M ) ](z, y) ](Q, M ) ]y QM z

(3.9)

and the corresponding relations when replacing z ↔ y,
Q ↔ M. The second derivatives of C are given by

]y f ]Q
C 5 2 f 5 , (3.10)mm ]M Q ]z

g ]z g ]M
C 5 5 2 , (3.11)uu u ]Q u Q ]y0 0

]y f ]M
C 5 2 f 5 2 , (3.12)mu ]Q Q ]z

g ]z g ]Q
5 5 . (3.13)

u ]M u Q ]y0 0

The pseudoenergy is then given by

RS RSA 5 H 1 C 2 H 2 C , (3.14)

with H RS and C RS the energy and Casimir, respectively,
evaluated at the RS. Using (3.1) and (3.7), the pseu-
doenergy may be written as

A 5 [C(m,u) 2 C(M, Q) 2 C (M, Q)(m 2 M ) 2 C (M, Q)(u 2 Q) ] dy dz. (3.15)EE m u
| |D

|
APE
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Here, the integrand has been labeled APE—the density
of available potential energy. With our choice of Ham-
iltonian (3.1), there is no kinetic energy component in
the pseudoenergy, hence the above notation. In contrast,
Cho et al.’s (1993) Eq. (3.3) includes a kinetic energy
term. By construction, A is conserved and is quadratic
in the disturbance (m 2 M, u 2 Q). To ensure convexity
of A around the RS it is evidently sufficient that

2C . 0, C . 0, C C 2 (C ) . 0, (3.16)mm uu mm uu mu

with the derivatives evaluated at the RS. These are also
the conditions for symmetric stability (Cho et al. 1993;
Mu et al. 1996). They moreover imply Q . 0, so (3.8)
is satisfied.

Thus, while Lorenz’s APE is defined relative to a
stably stratified resting RS, our APE is defined relative
to a symmetrically stable nonresting RS. It would not
seem to make physical sense to define an APE relative
to a symmetrically unstable RS. In addition, while Lo-
renz’s RS is uniquely specified as the minimum potential
energy state obtained by adiabatic rearrangement of
mass, there are no such constraints on the RS here. In
a conservative problem, it is natural to choose an RS
that provides the minimum value of A , for a given state
of the system. However, this is not so clearly relevant
in the forced-dissipative context to be considered next.

4. Small-amplitude theory

One may write perturbations around the RS (3.5) as

m 5 M 1 m9, u 5 Q 1 u9, c 5 c9. (4.1)

These primes are not to be confused with the departure
from the zonal average associated with eddies, men-
tioned in section 2. The disturbance equations (2.7),
(2.10), and (2.13) then become, after linearization,

]m9
1 ](c9, M ) 5 X, (4.2)

]t

]u9
1 ](c9, Q) 5 R, (4.3)

]t

g
m9 5 2 u9. (4.4)z yf u0

The quadratic approximation to the integrand of (3.15)
is given by

1
2 2APE 5 [C (m9) 1 2C m9u9 1 C (u9) ]. (4.5)mm mu uu2

For the linearized conservative disturbance equations
(i.e., with X 5 0 5 R), it can be verified that the integral
of the quadratic APE (4.5) is an exact invariant. With
X ± 0 and R ± 0, we find instead,

d
APE dy dz 5 [C m9X 1 C (m9R 1 u9X ) 1 C u9R] dy dz [ S, (4.6)EE EE mm mu uudt D D

where S is the net source (or sink) of A . In deriving
(4.6), we used (4.2), (4.3), and (4.5), and assumed the
Cs not to be explicitly dependent on time. The local
form of (4.6) is (see appendix)

] ] g ]
(APE) 1 u9c9 1 ( fm9c9) 5 S, (4.7)1 2]t ]y u ]z0

where S is the density of S defined in (4.6).
In the source–sink term for A , we make the partition

S 5 SX 1 SR, where

S 5 (C m9 1 C u9)X dy dz, (4.8)X EE mm mu

D

S 5 (C m9 1 C u9)R dy dz. (4.9)R EE mu uu

D

Because S 5 0 under steady conditions, we have either
SX . 0 and SR , 0 (mechanically driven circulation),
or SX , 0 and SR . 0 (thermally driven circulation). In
the former case let us define the thermodynamic effi-
ciency as

SRh [ 2 . (4.10)
SX

Clearly, h so defined equals unity for a steady flow. But
there may be viscous damping in a system, or one may
wish to regard certain parts of X as the ‘‘forcing’’ (e.g.,
planetary wave drag in the stratosphere) and other parts
as the ‘‘response’’ (e.g., gravity wave drag). Similarly,
one might only wish to regard part of R as the output
(e.g., departure from radiative equilibrium) and other
parts as losses (e.g., thermal diffusion). In such cases,
one may anticipate h , 1.

5. An example

In order to make the above theory concrete, let us
consider a symmetric zonal flow with a meridional cir-
culation. The situation is as depicted in Fig. 1a, with a
negative zonal force driving a positive meridional flow
in the upper part of the domain, and a compensating
positive zonal force allowing a return flow in the lower
part of the domain. The scenario models (from the point
of view of causality) a mechanically driven circulation
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FIG. 1. (a) A mechanically driven meridional circulation, diagnosed
with respect to (b) a resting RS and with respect to (c) a nonresting
RS. Here, urad is the radiative equilibrium potential temperature dis-
tribution, and urad is the zonal wind in thermal-wind balance with urad.
The arrows denote the sense of the circulation. It is assumed that uP

, uE, so the meridional temperature gradient is weakened by the
circulation, but not actually reversed.

with thermal damping, but with the forcing not strong
enough to reverse the meridional temperature gradient.
It is thus a demonstration of the thought experiment for
the mesosphere considered in the introduction (albeit,
here, on the Boussinesq f plane), interpreting the lower
part of the domain as the troposphere. We analyze this
circulation with respect to two different reference states.

For a resting RS (the Lorenz picture), the circulation
is described by Fig. 1b. We have U 5 0 so M 5 2 fy,
and m9 5 u9 . 0 for z . 0. The RS has Q 5 const
with latitude (uP , Q , uE) so u9 has the signs shown
on the diagram. With a nonresting RS in which Q 5
urad, M 5 mrad, the circulation is described by Fig. 1c.
We now quantitatively analyse the above-described cas-
es under the small-amplitude approximation.

Let us consider the domain defined by 0 # z # H,
2L/2 # y # L/2. We assume that X is given, and that
R is described by the Newtonian cooling approximation

R 5 2r(u 2 u ) 5 2r(u9 1 Q 2 u ).rad rad (5.1)

We assume a linear vertical variation of the radiative
equilibrium potential temperature urad (constant static
stability) and a negative meridional gradient:

2f u l N u0 0u (y, z) 5 2 y 1 z, (5.2)rad g g

for some l . 0. The circulation in this system is clearly
mechanically forced; if X 5 0, then y 5 0 5 w, R 5
0, and u 5 urad.

a. Nonresting reference state

In the case of the nonresting RS, we choose Q 5 urad,
and by using (2.13), the RS is then defined as

Q 5 u , M(y, z) 5 lz 2 fy,rad

U(y, z) 5 U(z) 5 lz. (5.3)

Here we choose U(z) to satisfy U(0) 5 0. In this case
the potential vorticity Q, defined by (3.8), is given by
the expression

fu0 2 2Q 5 (N 2 l ); (5.4)
g

for a symmetrically stable flow we need fQ . 0—that
is, N 2/l2 5 N 2/ [ Ri . 1—where Ri is the Rich-2U z

ardson number (Stone 1966). Then, by using (3.10)–
(3.13) and (5.4),

2N g l
C 5 , C 5 2 ,mm mu2 2 2 2N 2 l u N 2 l0

2g 1
C 5 . (5.5)uu 2 2 2u N 2 l0

We assume a steady circulation, so ]/]t 5 0. If we
impose X, then everything else should follow. The mo-
mentum and thermodynamic equations (4.2) and (4.3)
now become

w9M 1 y9M 5 X, (5.6)z y

w9Q 1 y9Q 5 R. (5.7)z y

For the case of a steady circulation we have the follow-
ing global constraints expressing the fact that we cannot
have a net mass transport across any vertical or hori-
zontal surface:

L /2 H

w9 dy 5 0, ∀z; y9 dz 5 0, ∀y. (5.8)E E
2L /2 0

Substituting w9, y9 from (5.6) and (5.7), the global con-
straints (5.8) become
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L /2 L21 1
X Q dy 5 R M dy, ∀z; (5.9)E y E y1 2 1 2Q Q

2L /2 2L /2

H H1 1
X Q dz 5 R M dz, ∀y. (5.10)E z E z1 2 1 2Q Q0 0

With our particular choice of RS, (5.9) and (5.10) take
the form

L /2 L /2lu0 X dy 5 R dy, ∀z; (5.11)E Eg
2L /2 2L /2

H H2N u0 X dz 5 l R dz, ∀y. (5.12)E Eg 0 0

Let us now take the forcing as

k
X 5 a f cos(kz) cos(ny) 2 l sin(kz) sin(ny) . (5.13)[ ]n

Here, we have denoted for the sake of conciseness k [
p/H and n [ p/L, and a represents the magnitude of
the forcing. The choice of X is motivated by Fig. 1, as
well as the desire to obtain an analytical solution. For
this RS, (5.6) gives

lw9 2 fy9 5 X. (5.14)

We impose as boundary conditions w9 5 0 at z 5 0, H
and y9 5 0 at y 5 6L/2. Using (2.11), the solution of
(5.14) is

k
y9 5 2a cos(kz) cos(ny),

n

w9 5 2a sin(kz) sin(ny). (5.15)

From the thermodynamic balance (5.7), it follows that

au0 2R 5 2N sin(kz) sin(ny)[g

k
1 f l cos(kz) cos(ny) . (5.16)]n

We observe that the global constraints (5.11) and (5.12)
are fulfilled. Now, since Q 5 urad, we have R 5 2ru9,
and hence,

R au0 2u9 5 2 5 2 2N sin(kz) sin(ny)[r gr

k
1 f l cos(kz) cos(ny) . (5.17)]n

Finally, from (4.4) and (5.17) the disturbance momen-
tum is found to be

an
2m9 5 u9 5 2 N [1 2 cos(kz)] cos(ny)5r fk

k
1 f l sin(kz) sin(ny) , (5.18)6n

where we have imposed the lower boundary condition
u9 | z50 5 0. It then follows that the expressions for the
source–sink terms (4.8) and (4.9) are

2 2a HL L
4 2 2 2 2S 5 2 N 1 2N l 1 f l , 0,R 2 2 21 24r(N 2 l ) H

(5.19)
2 2a HL L

4 2 2 2 2S 5 N 1 2N l 1 f l . 0.X 2 2 21 24r(N 2 l ) H
(5.20)

We see that the circulation is always diagnosed as me-
chanically driven and thermally damped.

b. Resting reference state

For the resting RS, we choose Q to be independent
of latitude and follow the same steps, but with a few
changes.

We let the forcing X be different from the case of a
nonresting RS but keep the velocities the same in both
cases. The purpose of doing so is to show that, for a
given circulation [i.e., a given (y9, w9)], the diagnostic
for the resting RS may be opposite to what causality
would suggest.

The resting RS has

2N u0Q 5 z, U 5 0. (5.21)
g

The disturbance velocities are given by (5.15). Hence,
from (5.6), we obtain

k
X 5 a f cos(kz) cos(ny), (5.22)

n

while from (5.7), we obtain

2aN u0R 5 2 sin(kz) sin(ny), (5.23)
g

which, with the Newtonian cooling approximation (5.1),
implies

2aN u f lu0 0u9 5 sin(kz) sin(ny) 2 y. (5.24)
rg g

By using (4.4) the momentum disturbance is then

2aN n
m9 5 u9 5 [cos(kz) 2 1] cos(ny) 1 lz, (5.25)

r fk

again setting u9 | z50 5 0. With the RS defined by (5.21)
we obtain

2g
C 5 1, C 5 0, C 5 . (5.26)mm mu uu 2 2u N0

It then follows that
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2 2N a 4a f lL
S 5 2HL 2 , (5.27)R 31 24r p

2 2N a 4a f lL
S 5 HL 2 . (5.28)X 31 24r p

We see that the circulation is diagnosed as thermally
driven and mechanically damped for sufficiently small
a (i.e., for sufficiently weak forcing), which contradicts
causality. As a increases the temperature profile is re-
versed and the circulation is diagnosed as being me-
chanically driven and thermally damped.

c. Inclusion of Rayleigh drag

In order to examine the effects of explicit mechanical
damping, let us now assume that there is Rayleigh drag
acting on the zonal flow perturbation. We shall show that
in this case h , 1 for a steady flow, as was argued
heuristically in section 4. We work with the nonresting
RS (5.3). To simplify the calculation, we keep the me-
ridional circulation as in (5.15); in this way, the global
constraints (5.8) are automatically satisfied. Consequent-
ly, (5.14) becomes lw9 2 fy9 5 X 2 mu9, with Rayleigh
drag (m . 0) acting in addition to the EP flux divergence.
Then R, u9 and u9 are given by (5.16)–(5.18) as before,
SR is again given by (5.19), but SX is now given by

S 5 S 1 (C m9 1 C u9)mu9 dy dz, (5.29)X X EE mm mu0

D

where equals the SX of (5.20), and Cmm and Cmu areSX0

given by (5.5) as before. Since SR 5 2 , the ther-SX0

modynamic efficiency becomes

1
h 5

1 1 (C m9 1 C u9)mu9 dy dzEE mm mu

D

SX0

1
5 , 1. (5.30)

2 2 2 4 2 2 23mn N (n N 1 f k l )
1 1

2 2 2 2 2 2 2 2 2f k r[ f k l 1 n N (N 1 2l )]

We may note that h is independent of a (the forcing
amplitude) and is a monotonically decreasing function
of m, as expected.

If the Rayleigh drag is instead assumed to act on the
total zonal flow u 5 U 1 u9, then h may be negative
or may exceed unity. These unphysical results arise be-
cause the drag on U is nonzero and drives a circulation
even when a 5 0; that is, there is a nonzero response
for zero forcing.

6. Finite-amplitude theory

The expressions derived in sections 4 and 5 were
obtained under a small-amplitude approximation. The

small-amplitude approximation works well if the actual
temperature profile u is close to Q. One may have such
a situation for both the resting and nonresting RS (e.g.,
in the limit of weak mechanical forcing and with the
urad profile almost flat), but this is not the case in general.
Therefore, it is important to be able to generalize the
theory to finite amplitude. The possibility of doing so
is ensured by the underlying Hamiltonian structure, as
is clear from section 3.

The finite amplitude analogue of (4.2)–(4.4) is

]m9
1 ](c9, M 1 m9) 5 X, (6.1)

]t

]u9
1 ](c9, Q 1 u9) 5 R, (6.2)

]t

g
m9 5 2 u9. (6.3)z yfu0

The criterion for the small-amplitude theory to be valid
is | ](c9, m9) | K | ](c9, M) | and | ](c9, u9) | K | ](c9,
Q) | . The first condition is true for u9 K M ; f l, or u9/
f l [ Ro K 1, where l is a characteristic horizontal length
scale and Ro is the Rossby number. The second condition
is true if u9 K (dQ/dz)h ; u0N2h/g, where h is a char-
acteristic vertical length scale. But thermal-wind balance
implies u9/h ; (g/u0f )(u9/l), so

2 2u9 gu9 h N
5 . (6.4)

2 2 2f l u N h f l0

Hence, the criteria are essentially the same, because, in
(6.4), the second factor on the rhs is the Burger number,
which is assumed to be O(1) in QG scaling. Thus, for
the small-amplitude theory to be valid, one needs Ro
K 1, but with Ro defined by u9, not by u itself. In
particular the nonresting RS can have large Ro, so long
as the forcing is sufficiently weak that the induced cir-
culation does not cause the zonal flow to depart strongly
from the RS.

It is important to note that the small-amplitude ex-
pressions in section 4 are exact at finite amplitude, pro-
vided the RS is linear in y and z (Mu et al. 1996). For
the general case, though, the quadratic pseudoenergy
density (4.5) is replaced by the integrand of (3.15),
namely

RS RS RSAPE 5 C 2 C 2 C m9 2 C u9. (6.5)m u

Here, for conciseness we have denoted C [ C(m, u)
and CRS [ C(M, Q); , stand for the derivativesRS RSC Cm u

of C taken at the RS. The RS and CRS are assumed not
to be explicitly dependent on time.

As in the small-amplitude case, if X 5 0 5 R then
A is an exact invariant. With X ± 0 and R ± 0, we find
instead,
dA

RS RS5 [(C 2 C )X 1 (C 2 C )R] dy dz [ S,EE m m u udt D

(6.6)
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with the derivatives of CRS given by (3.7). The local
form of (6.6) is (see appendix)

] ] g
(APE) 1 ](c9, APE) 1 u9c91 2]t ]y u0

]
1 ( fm9c9) 5 S, (6.7)

]z

where S is the density of S defined in (6.6). One may
perform the partition of S as in section 4 and obtain the
analogue of (4.8) and (4.9):

RSS 5 (C 2 C )X dy dz, (6.8)X EE m m

D

RSS 5 (C 2 C )R dy dz. (6.9)R EE u u

D

7. Inclusion of inertia terms

We now return to (2.7)–(2.11) to consider the effect
of retaining the inertia terms in the meridional and ver-
tical momentum equations. The conservative form of
this system is still Hamiltonian, with the Casimirs (3.3),
but the energy now includes the kinetic energy of the
meridional vertical cross-stream motion; it is given by

1 ugz
2H 5 |=c | 1 mfy 2 dy dz. (7.1)EE 1 22 u0D

We again take the RS to be a steady baroclinic flow
defined by (3.5); this remains a steady solution of the
unforced system (2.7)–(2.11) and must obey thermal-
wind balance, although now the disturbances are not in
thermal-wind balance. The equations (2.7)–(2.11) then
become (neglecting for now any forcing terms in the y9
and w9 equations)

]m9
1 ](c9, M 1 m9) 5 X, (7.2)

]t

]y9
1 ](c9, y9) 5 2p9 2 fm9, (7.3)y]t

]w9 u9
1 ](c9, w9) 5 2p9 1 g , (7.4)z]t u0

]u9
1 ](c9, Q 1 u9) 5 R, (7.5)

]t

y9 1 w9 5 0. (7.6)y z

Here, p9 [ p* 2 , and the theory is developed atp*RS

finite amplitude.
It is of interest to derive a criterion for the inertia

terms to be negligible. The most stringent constraint is
expected to come from (7.3) rather than (7.4); namely,
that ]y/]t ; (y9)2/l K fu9. From (5.15) and (5.18), one
has y9 ; al/h, u9 ; ahN 2/ frl, and so we require

2 2 2 2 3(y9) al r ahN r l f
; ; ·

2 3 4 4fu9l N h frl N h

2 22 2u9 f l r
; K 1. (7.7)

2 21 21 2 1 2f l N h f

One recognizes in the last expression the Ro factor and
the square of the inverse of the Burger number, as de-
fined in section 6. For relatively weak thermal damping,
we expect also r K f (certainly, this holds in the middle
atmosphere).

With our choice of Hamiltonian (7.1), the pseudoe-
nergy density becomes

A 5 KE 1 APE

1
2 RS RS RS5 |=c9| 1 C 2 C 2 C m9 2 C u9, (7.8)m u2

where KE and APE are the kinetic energy and available
potential energy densities, respectively. The APE is the
same as before, (6.5). We note that, in the conservative
case (when X 5 0 5 R), we have

d
A dy dz 5 0, (7.9)EEdt D

as follows from the construction of A, but [from (7.3)
and (7.4)]

d
KE dy dz 5 2 [y9](c9, y9) 1 w9](c9, w9)] dy dz 2 (p9y9 1 p9w9) dy dzEE EE EE y zdt D D D

| | | |
| |

5 0 5 0

g
1 u9w9 2 fm9y9 dy dz, (7.10)EE 5 6u0D

| | | |
| |

C CT M
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where CT and CM are the densities of the thermal and
mechanical energy conversion terms. The first and the
second integrals on the rhs of (7.10) vanish due to the
boundary conditions and the continuity equation (7.6).
From (7.9) and (7.10), one obtains

d d
APE dy dz 5 2 KE dy dzEE EEdt dtD D

5 2C 2 C , (7.11)T M

where CT, CM stand for the integrals over the domain of
the corresponding conversion densities. With X ± 0 and
R ± 0, (7.10) and the conversion terms are unchanged,
but (7.11) is replaced by

d
APE dy dz 5 2C 2 C 1 S, (7.12)EE T Mdt D

where S is the net source (or sink) of the integral of
APE and is given by (6.6). Since there are (by hypoth-
esis) no sources or sinks of KE, S is also the source (or
sink) of A itself. For steady conditions, both CT 1 CM

and S must separately vanish. Thus, the inclusion of the
inertia terms does not change the source–sink terms in
the energetics, but introduces a kinetic energy compo-
nent (of the flow in the y–z plane) with thermal and
mechanical conversion terms between the kinetic and
available potential energy.

Inclusion of mechanical damping

We now consider mechanical damping of the merid-
ional circulation, denoted by Y and Z, as terms to be
added on the rhs of (7.3) and (7.4), respectively. In this
case, the tendency equation for KE becomes

d
KE dy dzEEdt D

5 C 1 C 1 (y9Y 1 w9Z ) dy dz,T M EE
D (7.13)| |

|
F

while (7.12) is unchanged. Under the assumption that
Y and Z act as friction on y9 and w9, it follows that F
, 0.

For a steady flow without friction, S 5 0 and the
thermodynamic efficiency defined by (4.10) is unity. But
if friction as defined in (7.13) is present, then from
(7.12) and (7.13), we have S 5 CM 1 CT 5 2F . 0 for
a steady flow, whence

F
h 5 1 1 , 1, (7.14)

SX

assuming SX . 0 (i.e., a mechanically driven circula-
tion).

The local forms of (7.12) and (7.13) are (see appen-
dix)

]
(APE) 1 ](c9, APE) 5 2C 2 C 1 S, (7.15)T M]t

]
(KE) 1 ](c9, KE 1 p9) 5 C 1 C 1 F, (7.16)T M]t

where F is the density of F defined in (7.13).

8. Conclusions

We have shown that one can construct an APE for
symmetric circulations incorporating momentum con-
straints, by considering the pseudoenergy relative to a
nonresting symmetrically stable reference state. The un-
derlying Hamiltonian structure of the conservative dy-
namics guarantees that this APE is defined at finite am-
plitude. The analysis was limited to symmetric circu-
lations (with 3D eddy fluxes treated as forcings), be-
cause momentum is not a Lagrangian invariant for 3D
motion, and therefore, one cannot have a fully 3D theory
(like Lorenz’s theory).

In this paper, for simplicity, we derived the APE di-
agnostics for the Boussinesq f -plane equations in both
the small- and finite-amplitude cases, but the theory
clearly generalizes to other systems. In the case of a
mechanically driven circulation with thermal relaxation
to a (stable) ‘‘radiative equilibrium’’ state, by choosing
the reference state to equal the equilibrium state we
always diagnose the correct causality of the circulation.
This is in contrast to the traditional APE diagnostics
(relative to a resting reference state), which might in-
correctly diagnose such a circulation as being thermally
forced and mechanically damped. A worked example
was provided. The effects of certain viscous terms were
discussed, as well as the inclusion of the inertia terms
for the meridional circulation.
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APPENDIX

Mathematical Derivations

We derive here the local forms of the conservation
laws given by (4.7), (6.7), (7.15), and (7.16).

In order to get (4.7), we differentiate (4.5) with re-
spect to time and use (4.2), (4.3). We obtain

5 S
|

| |]
(APE) 5 C m9X 1 C (m9R 1 u9X ) 1 C u9Rmm mu uu]t

2 m9[C ](c9, M ) 1 C ](c9, Q)]mm mu

2 u9[C ](c9, M ) 1 C ](c9, Q)]. (A.1)mu uu
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Expanding the ](c9, · ) terms, and using (3.8) and
(3.10)–(3.13), we get

] g
(APE) 5 S 2 fm9c9 2 u9c9z y]t u0

]
5 S 2 ( fm9c9) 1 fm9c9z]z

] g g
2 u9c9 1 u9c9. (A.2)y1 2]y u u0 0

By using thermal-wind balance (4.4), the last equation
reduces to (4.7).

In order to get (6.7), we differentiate (6.5) with re-
spect to time and use (6.1), (6.2). We obtain

]
(APE)

]t
5 S

|
| |

RS RS5 (C 2 C )X 1 (C 2 C )Rm m u u

RS2 (C 2 C )](c9, M 1 m9)m m

RS2 (C 2 C )](c9, Q 1 u9)u u

RS5 S 2 C ](c9, m) 2 C ](c9, u) 1 C ](c9, M )m u m

RS RS RS1 C ](c9, Q) 1 C ](c9, m9) 1 C ](c9, u9)u m u

RS RS5 S 2 ](c9, C) 1 ](c9, C ) 1 ](c9, C m9)m

RS RS RS1 ](c9, C u9) 2 m9](c9, C ) 2 u9](c9, C )u m u

5 S 2 ](c9, APE)
RS RS2 m9[C ](c9, M ) 1 C ](c9, Q)]mm mu

RS RS2 u9[C ](c9, M ) 1 C ](c9, Q)]. (A.3)mu uu

Apart from the ](c9, APE) term, the last equation is just
the small-amplitude equation (A.1) but with the finite-
amplitude S. Thus, the finite-amplitude form of (4.7) is
seen to be (6.7).

The derivation of (7.15) follows as in the finite-am-
plitude case up to (A.3). However, there is no longer
thermal-wind balance between u9 and m9. Thus, the final
step of (A.2) cannot be used to transform the quadratic
terms. This then yields (7.15).

The derivation of (7.16) is straightforward, because
the integrand of the first term of (7.10) is just
2](c9, KE), while the integrand of the second term
is 2](c9, p9).

REFERENCES

Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle At-
mosphere Dynamics. Academic Press, 489 pp.

Cho, H.-R., T. G. Shepherd, and V. A. Vladimirov, 1993: Application
of the direct Liapunov method to the problem of symmetric
stability in the atmosphere. J. Atmos. Sci., 50, 822–836.

Eliassen, A., 1951: Slow thermally or frictionally controlled merid-
ional circulation in a circular vortex. Astrophys. Norv., 5 (2),
19–60.

Holton, J. R., 1992: An Introduction to Dynamic Meteorology. Ac-
ademic Press, 511 pp.

Lorenz, E. N., 1955: Available potential energy and the maintenance
of the general circulation. Tellus, 7, 157–167.

Mu, M., T. G. Shepherd, and K. Swanson, 1996: On nonlinear sym-
metric stability and the nonlinear saturation of symmetric insta-
bility. J. Atmos. Sci., 53, 2918–2923.

Plumb, R. A., 1983: A new look at the energy cycle. J. Atmos. Sci.,
40, 1669–1688.

Shepherd, T. G., 1990: Symmetries, conservation laws, and Hamil-
tonian structure in geophysical fluid dynamics. Advances in Geo-
physics, Vol. 32, Academic Press, 287–338.

——, 1993: A unified theory of available potential energy. Atmos.–
Ocean, 31, 1–26.

——, 2000: The middle atmosphere. J. Atmos. Solar-Terr. Phys., 62,
1587–1601.

Stone, P. H., 1966: On non-geostrophic baroclinic instability. J. At-
mos. Sci., 23, 390–400.


