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Efficient calculation of two-dimensional periodic and waveguide
acoustic Green’s functions
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New representations and efficient calculation methods are derived for the problem of propagation
from an infinite regularly spaced array of coherent line sources above a homogeneous impedance
plane, and for the Green’s function for sound propagation in the canyon formed by two infinitely
high, parallel rigid or sound soft walls and an impedance ground surface. The infinite sum of source
contributions is replaced by a finite sum and the remainder is expressed as a Laplace-type integral.
A pole subtraction technique is used to remove poles in the integrand which lie near the path of
integration, obtaining a smooth integrand, more suitable for numerical integration, and a specific
numerical integration method is proposed. Numerical experiments show highly accurate results
across the frequency spectrum for a range of ground surface types. It is expected that the methods
proposed will prove useful in boundary element modeling of noise propagation in canyon streets and
in ducts, and for problems of scattering by periodic surfaces2002 Acoustical Society of
America. [DOI: 10.1121/1.1460920

PACS numbers: 43.28.Mw, 43.20.El, 43.50[ NN |

I. INTRODUCTION facades and the impedance boundary conditioly-ab a
reflecting or sound absorbing road surface. Boundary ele-
In the last 10 to 20 years the popularity of numericalment discretization would only be required for additional
modeling of sound propagation has received a substantigkructures, e.g., balconies and building features, sound ab-
impetus as a result of the continuous increase in computeorbing treatments to building elements, noise barriers, etc.
speed and storage capacity. The boundary element methquhe actual finite height of building facades could be modeled
has emerged as a powerful numerical technique for mOde”ngccurately by imposing an absorbing boundary conditien
sound propagation in the presence of multiple scattering anguiring boundary element discretizatioon sections of the
diffracting objects with complex shapes. In outdoor acousticsvalls atx=0 andx=h, starting at the heights where the
two-dimensional versions of the boundary element methoduildings finish. The point of using the canyon/waveguide
have been exploited to predict the efficiency of noise barriergreen’s function is that, rather than discretizing the whole of
(e.g., Refs. 1-Band the effect of building faes! In prin-  the physical boundary, only those parts of the boundary
ciple, the method is not limited by the extent of the acoustioyhich are perturbations from the boundary conditions for the
region of interest. However, restrictions are imposed by th@sreen’s function need be discretized, leading to much
size of the available computer memory and execution timegmaller storage and computational requirements. Use of a
can be unacceptably slow if the discretization of largertwo-dimensional Green’s function implies that the geometry
boundaries at shorter wavelengths is required. must be a two-dimensional one, invariant in the horizontal
The number of boundary elements required can be redirection. For a completely 2D problem the sound sources
duced drastically by using a Green’s function in the bound-must also be invariant in the direction, so that the sources
ary integral equation formulation which incorporates analyti-of sound are coherent line sources. The applicability of 2D
cally many of the physical boundary conditions of the boundary element models can, however, be extended to more
problem. In this paper we propose methods for computatiogyeneral sound sources by partial Fourier transform tech-
of the Green's function for sound propagation in a two-niques. These are discussed, for example, in Refs. 2 and 3,
dimensional canyon/waveguide, occupying the part of thexnd predictions of outdoor sound propagation are made in
Oxy plane, 0<x<h, y>0, with rigid or sound soft bound- Ref. 2 for point and incoherent line sources of sound using a
ary conditions orx=0 andx=h for y>0 and an impedance 2D boundary element code. There has been considerable re-
boundary condition ory=0, 0<x<h. It is envisaged that cent interest in making predictions of noise levels, using
this Green’s function will prove useful for the efficient in- mathematical and experimental models, for the type of urban
vestigation by boundary element simulations of noise propaconfiguration described in this paragraph—see, e.g., Refs.
gation in city streets. In this application the infinitely high 4—8. In particular, work by Tarfgllustrates that the acoustic
walls atx=0 andx=h would represent high rise building field near a finitely high building facade at a low receiver
position can be predicted accurately using a model which

aEjectronic mail: k.horoshenkov@bradford.ac.uk assumes that the facade is infinitely high, so that the tech-
DElectronic mail: simon.chandler-wilde@brunel.ac.uk nique proposed above to model finitely high facades accu-
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FIG. 1. Sound propagation above an
impedance plane.
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rately may be unnecessary. Tang’s results are supported Ipedance case. It is also shown, adapting methods for the case
close agreement between his theory and scale modef a single source above an impedance bountfdmpw parts
experiments. of the integral, corresponding to poles of the integrand lying
Computing the canyon/waveguide Green’s function re-near the path of integration, can be evaluated explicitly in
quires calculation of the combined effect of the multiple re-terms of the complementary error function, leaving a much
flections in the vertical rigid or sound soft walls)>at:0 and  smaller and smoother integrand to evaluate numerically. Fi-
x=h. This leads to an initial study of computation of the nally, an explicit numerical integration scheme is proposed
field due to an infinite array of periodically spaced pointand its error analyzed, and it is shown how to select the
sources above a flat impedance boundary. The field due toumber of source contributions to be computed explicitly so
such a periodic array of sources, extending to infinity in bothas to ensure high accuracy of calculation for the integral
directions, is usually termed the periodic Green’s functionterms using only a 22-point quadrature rule. This attention to
This function is utilized widely in the solution by integral efficient evaluation is essential for the successful use of this
equation methods of problems of acoustic and electromagsreen’s function in boundary element calculations. The ac-
netic scattering by structures which are periodic in one dicuracy and efficiency of the calculation method is illustrated
mension only. It is usual to utilize, in the numerical solution by comparison with an alternative solution to the problem
of such problems, thizee field periodic Green’s functigthe  using normal mode decomposition.
solution to the calculation of the field due to an infinite pe-
riodic source array in free space, and there is a large litera-
ture on the computation of this function, reviewed recently inll. THE GREEN'S FUNCTION FOR SOUND
Ref. 9. In Secs. Il and IV we discuss the computation of PROPAGATION ABOVE AN IMPEDANCE BOUNDARY
what.may be termed_ the two—d|me_n3|onal periodic Green's Consider the fundamental situation in which a monofre-
function for propagation above an impedance plane. The ef-

. X . L ) . quency line sourcele™'“' time dependendeis elevated
];:gte tnot ﬁ::,ceuﬁélg: ;géﬁlsssgzrg‘iﬁﬁﬁ;”&:}%ﬁgﬁﬂ S(aa?g);arsabove a flat boundary with normalized surface admittghice
the use of other half-plane periodic Green’s functjoirts {_he; Soﬁu(rr(’:goi)sdenft(i the ;1 c\tl)vlésrt:gtgrtis‘alsgr_eroaitf(?ﬁg)b\évcsg_
place of the free field periodic Green’s function has beenary is rigid V?Eié R?qé/io if the bound;ry is an energy-
recommended recently for problems of scattering by one: v orbin s,urface In the cage=0 the sound field can be
dimensional periodic surfacé$! In particular, use of the und asg the combination of a direct wave and a wave re-
impedance periodic Green'’s function in place of the free fiel Iecte;:i by the surfacéFig. 1), to be

function leads to integral equation formulations which are T

well-defined for all periods of the scattering surface. As is
well known and discussed in Sec. lll, the free field periodic

Green’s function is undefined for a sequence of values of the , . . .
periodicity. wherer’=(xq,—Yo) is the position vector of the image of

The method described for computing the impedance pet-he source in the plang=0, andHg " is the Hankel function

riodic Green’s function, proposed in the thesis of the firstOf thle f'}:St Kind of orderl Z€ero. hene 0. th | fieldG
author'? is to compute a finite number of the source contri- n the more general case wh@v0, the total fieldG,

butions explicitly and represent the contributions from the®an be written as
remaining (infinite number of source contributions as a Ga(r,ro)=Gy(r,ro)+Pg(r,ro), 2)

single Laplace-type integral. This technique, with just aWhere Pg(r,ro) is a perturbation term, accounting for the

single source contribution computed explicitly, has been pro- . PSR
posed for the much simpler free field periodic Green’s func-eﬁec_t of nonzero adm_lttance. Cleaify, =0 if p=0.To de-
tion in Ref. 13(and see Refs. 14, 15, and. The analysis termine the perturbation ter, fc_)r Rep>0, it is neces-
presented here derives, for the first time, integral represente%—ary to solve the Helmholtz equation

tions for the infinite sum of source contributions for the im- (A+Kk?) Ps=0, 3

i [
Go(r,ro)=— ZH(()l)(k|I'0_r|)_ ZH(()l)(k|r0_r’|)' @

J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 K. V. Horoshenkov and S. N. Chandler-Wilde: Waveguide Green'’s functions 1611

Downloaded 30 May 2013 to 134.225.101.60. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



Tmé throughé= 6,, whered, is the angle of incidence as shown
in Fig. 1. This path is given by co8 6y)=1+iv? —x<uv
<o, Then a pole subtraction technique is employed to
smooth the behavior of the integrand on this path.
The methods proposed in Sec. Il will make use of this
representation, but a further representationRgrwill also
Red pe required. To develop this expression the choice is made to
deform the path of integration to what is the steepest descent
i path in the case that the angle of incidencéds 7/2. This
° transformed path of integrationl connectsie to (7r—i),
cutting the real axis al= /2, and is defined by

L (sin® =s-cc<s< 4+ )
) [(sinf = 1+iv?,~0 < U < +0)

SDP for 6 = ’5'

NMERE

sind=1+iv?, vekR, (9)

with 0<Re 6</2 for v <0, m/[2<Re < for v >0, so that
cosf=—v\v?—2i, with Re\v?—2i>0. The patH and the
direction of integration ag increases from-o to +o are
with the impedance boundary condition & O, shown in Fig. 2. Making the deformation of the path of in-
tegration we obtain that

FIG. 2. The transformation of the integration path.

J .
@Pﬂ(r,ro)'i'”(ﬁpﬂ(r,ro) P(ﬁL):P(BF)+ Ps; (10)

. _ kB 4 Nammy: where P§) is the integral(7) with the path of integration
= ~ikBGo(r,ro) == 5 Hg (KV(X=X0)**+Yo)- (4 changed fromL to I' and P, is the contribution accounting

for the residue at the pol¢,, the only one which can be

This can be accomplished by Fourier transform methods, 38o0ssed in the deformation. Explicitly, wherél— 52 de-
discussed, for example, in Ref. 16. The solution3p and notes the square root with positive real part,
(4) which also satisfies the Sommerfeld radiation condition,

IP 4(1,To) ([ enf ile_|N1- g2
limrt2 —2 0 kP y(r,r ))=o, (5) B A
— ar g0 V1-8
16 if Im B<0 and ReJ1—8°>1,
= —inpB
iB (+= eimvlfs2 e Ps < gieilfflvl—ﬁz (1)
Pg(r,ro)==— e 'Sle-Ids, V1-p2
I o | i+ p) viop
(6) if Im B<0 and ReJ1- %=1,
whereé_=Kk(x—Xg), n+=k(y+Yo), and the square root is 0 otherwise.
taken with Re(/l—sz)>0 and |m(\/1—sz)20. Physically, this term is a surface wave which decays expo-

The representatioi) for P4(r,rq) is not suitable for nentially with height above the surface.
evaluation by numerical integration as the integrand becomes The first term on the right-hand side of E@.0) can be

increasingly oscillatory ak|r —ry|— . A standard first step represented, via the parametrizati@, as the integral
to a more suitable representation is to substitiesin 6.

This change of variable transforms expresdiéninto o ,Bei‘§*| +oo e—imwtzi e
— —|é_|v

i,B ei(r;+ cosf+|&_|sin 6) B = p . \/UZ—Zi(B—U\/UZ—Zi)e du.

Pe(riro)= oo J cosf+ B de. ™ (12

Here L is the path of integration from «{m/2+ix)  Splitting the range of integration ifl2) and changing the
— — 1/2— m/2— (r/2—i%) which is shown in Fig. 2. The sign of the variable of integration in the second integral, it is
integrand has an infinite number of simple poles which occupeen that, definingy=uv v - 2i,

at

Bei\§,| © efin+vvv272i
0=+ 0,+2mn, neZ, ® PY)= : e le-lv’gy
m 0 Vu?=2i(B—vv?—2i)
where 6, denotes the unique solution of cés =0 in /2 ‘ —
<Ref@<m. The pointd, lies above or below the real axis, ° glmvvvtoa e g
depending on whether >0 or Im 8<<0, respectively. * 0 V02— 2i T
. - Voe—2i(B+vve—2i
In Ref. 16, starting from Eq.7), representations fdp v (B+ov )
are derived which can be evaluated accurately and efficiently zﬁeilg_\ » B.cOg 7, W)—iW Sin( 7., W) 5
by Gauss—Laguerre quadrature rules. The method employed = . NEECTT R e le-lv?yy.
is to deform the path of integration to the steepest descent v H(B"—w")
path, which connects— 7/2+iw to w/2—iw, passing (13
1612 J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 K. V. Horoshenkov and S. N. Chandler-Wilde: Waveguide Green'’s functions
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To finish this section, a similar representation for theUsing a representation for the Hankel function as a Laplace-
total field from a line monopole placed above the impedanceype integral(Ref. 17 formulas 2.13.52 and 2.13)6Qhe

surface is obtained. The total field is given as function G, can be represented in a similar form(i8), as
Gp(r,ro)=Go(r,ro)+ Py +Pg. (14)
Further, in terms of the variables. and 7., wheren_ (Furo)=— ellé- J'oo cog 77, W) +cog 7-w) o le gy
=k(y—Yo), it holds that oo 0 Jo2—2i '
i (16)
i
Go(r.ro)= = 7 {HEI(VEL + 7)) +HE(JEx + 72)}.
(15 Combining(13), (14), and(16), it is seen that
|
e/lé-1 =l w?(cos 7. W) +cod 7-w)) —2i Bwsin( 7, w) ~B*(cos W) —cogn-w)| . o
Ga(r,ro)= f —— + —_—— e &-1"dv + Pg.
™ Jo Vui—=2i(B —w?) Vue=2i(B—w?)
17
|
IIl. PROPAGATION OF SOUND FROM AN INFINITE where the functionQ has the asymptotic behavidp(s)
NUMBER OF PERIODICALLY SPACED SOURCES ~as ass—0, where
Consider the problem of an infinite number of equidis- Py
tantly spaced sources elevated at the same height above an a= 2—182[4—4i,87;++,82( 72— 7%)].

impedance plane as shown in Fig. 3, at positians
=(X1,Yo), 1=0,1,..., wherex;=xo+2hl and Zh is the dis- | tg|lows from Watson’s lemmde.g., Ref. 19 p. 263that
tance between adjacent sources. Suppose that the sources
have the same unit strength but allow the possibility that GB(r,r|):O(|x—x||’3’2)
there is a phase shift of o between adjacent sources,
whereH=kh and « is some fixed real number. Using the as|x—x|— with y andy, fixed. This rate of decay en-
same notation as in Sec. Il, the resultant field at an arbitrargures that the infinite serigd8) is absolutely convergent,
observation point =(x,y) can be written as the superposi- which in turn ensures that the validity of the interchange of
tion of the contributions from all the sources as integration and infinite summation in the manipulations be-
low is valid, at least for the case Be-0.

The summation corresponding (@8) in the free-field
case is studied extensively in the literature: this work has

been clearly reviewed by LintohThis summation is
Provided Rgg>0 (the boundary is energy absorbjng y y

and the source and receiver remain close to the ground sur-
face, G4(r,r;) decays, as the distance between source and
receiver increases, at a rate which is faster than in free-field
conditions. A full far-field asymptotic expansion f@s,
quantifying this behavior, is given in Ref. 18. The leadingwhereG; is the standard free-field Green’s function, defined
asymptotic behavior can also be seen directly fraii). by G¢(r,r))=— (i/4)Hgl)(k|r—r,|). In contrast to(18), in
Note first thatP, decays exponentially dx—x,|—~. The the case R8>0, the serieg19) is only conditionally con-
integral in(17) has the form vergent, since the Hankel function has the asymptotic behav-
ior H{V(t) ~ V2/7te! =™ ast—oo. Indeed, ifa=0, (19) is
o 2 1 (= divergent to infinity if the wavelength divides the period, i.e.,
fo Qu?e & dv= 2 fo s~ HQ(s)e” ¢ Ids, if H is an integer multiple ofr. More generally, for an arbi-
trary value ofa, the serieq19) diverges ifH(1—a) is an
integer multiple ofw. The same restriction, that the series is

Gg(r,ro;a)zzo e 21HG 4(r,1)). (18)

[

G?’(r,ro;a>=|:20 e A1 MNG(r,r)), (19)

L2 2 % only conditionally convergent, or divergent in.the case that

# ﬁ[ ; <& H(1— «) is a multiple of, carries over td18) in the case
Z_P:ikﬂ,, ) v r Y y B=0. Physically, this divergence corresponds to cases where
- : - L the contributions from far source points are all in phase, and

* combine to give an infinite pressure field at the receiver po-

FIG. 3. The set of periodically spaced sources above the impedance boun§—iti0n- )
ary. The firstN terms can be extracted from the sh®) to
J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 K. V. Horoshenkov and S. N. Chandler-Wilde: Waveguide Green’s functions 1613
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be evaluated explicitly, using the efficient calculation method N-1 _

proposed in Ref. 16. The remaining sum, froito infinity, GR(r.ro;a)= > e 2alG (rr))
can be expressed as a single infinite integral by repla@ing =0
by its integral representatiofil7), reversing the order of 2el(én—2NaH) o )
summation and integration, and finally evaluating the sum- + —f f(v?)e N"du +PE,
mation under the integral sign, which is now a geometric

series. Provided\ is chosen large enough so that>x, the (20

resulting expression is whereéy=k(xy—X), the functionf is defined implicitly by

™ 0

w? cog 7W)cos W) — B2 Sin( 77oW) sin( 7w) — i Bw sin( 77, W)
\/UZ_—Zi(IBZ_WZ)(l_e*2H(v27i(lfa))) !

f(v?)=

(21)

with 7o=ky, and =Kky, andPL is the sum of the surface error function of complex argument. In these expressions, in

wave contributions, given by contrast to the original integral i(R0), the integrand is a
smooth function for all values g8 andH.
( o7+ Bei(énV1-B2—2NaH) _ ; Substitutingt = &yv? in the integral in(20), this equation
i [1-e2HO1-F2-a)]-1 becomes
Vi-p N-1 i
' gi(én—2NaH)
if Im <0 and Re/1— 82>1, Gh(r.roia)= > e 21eHG (r,r)+ —Jf_l +PP,
I=0 T N
P_ —in, Bai(énV1i—B2—2NaH)
Ps { Ee 17+ bl (EN [1_eZiH(Vr—ﬁ2—a)]—1 (23)
2 V1—p? where
. —_ .
if Im ﬁ<.0 and ReJ1— %=1, sz Ft gt Ve tdt. (24
\ 0 otherwise. 0

(22 This integral can be approximated by Gaussian quadrature
with weight functiont ~Y%e!, in other words, by generalized
A discussion of the choice df in (20) follows in Sec. Il B. Gauss_Laguerre quadratl}P%_nd this will be accurate, us-
ing a rule with a small number of points, providé@/&y) is
smooth as a function of on the interval of integration, 0

A. Pole subtraction <t<e. This will be the case providef(t/ &) does not have
] ) ) singularities close to the positive real axis.
. As mentioned glregdy, in the representatléﬁﬁ_)) for From (21), the functionf is given explicitly by
Gg(r,ro; @) the contributions from the ternGy(r,r)) in the
finite summation can be evaluated using the method pro- f(2)= F(2)
posed in Ref. 16. This method represe@sg(r,r) as the Jz=2i(B2+2iz—2%)(1— e 2H(z-i(1=a))y’

sum of an expression involving the complementary error (25)
function of complex argument and a Laplace-type integra(ghere

which, as shown in Ref. 16, can be evaluated accurately an

efficiently using a 22-point Gauss—Laguerre quadrature rule.  F(z)=2z(z—2i)cod 779Vz(z—2i) )cog nyz(z—2i))

To evaluateG'y(r,rq; @) using Eq.(20), it remains to con- . — —
B 10 ’ _ 2 _ i
sider the evaluation of the integral on the right-hand side of B sin(oV2(z=21))sin(72(2=21))
that equation, for which a similar integration scheme will be —iB\z(z—2i) sin( p.\z(z— 2i)). (26)
developed.

It is necessary first to examine the singularities of theThe functionF, the numerator in25), is an entire function,

function f(z) and their proximity to the path of integration €., 1S analypc |n.the whole (?omplex plgne. PrOVId.e.d the
(the positive real axjs This is important because the accu- square rpot in25) is chosen with Rg/z—'2|>0, Vz-2i IS
racy of numerical integration methods is seriously affected ne_malytlc n t_he half-plang |_rn<2_, Wh'ch _mcludes the posi-
a singularity in the integrand lies on or near the integrationt've re_al axis. _The remaining s_lngulantles bfare_ poles at
path. It will become apparent that the only singularitiesthe pointsz which are the solutions of the equations
which may lie close to the path of integration are poles.  z2—2iz—32=0 (27)
Further, a method of subtraction of the poles nearest to thg

positive real axis will be described leading to alternative rep- CoHz

resentations of the integral i20) as the sum of a Laplace- 1-qe =0, (28)
type integral and expressions involving the complementaryvhereq=e?H( -,

1614 J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 K. V. Horoshenkov and S. N. Chandler-Wilde: Waveguide Green'’s functions

Downloaded 30 May 2013 to 134.225.101.60. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



The solutions of(27) are z=i(1*=1—8?%). One of
these solutions lies in the half-plane #a1. Choosing the
square root so that R&L—B82=0, the other solution, in
Imz<1, is

Z,=i(1- 1= %) =ip%(1+1-B?).

(29

Noting that|z,|<|B|?, it becomes clear that this root may lie

on or arbitrarily close to the positive real axis, though

#0 providedB+0. In the numerical results reported in this

paper, the effect of this pole will be ignored|Re1— 52|
=0.75 or Im (:-1—B%)=0.75, in which case, lies at

least distance 0.75 from the positive real axis. Otherwise the

effect of this pole will be subtracted, i.e., the integrakill
be rewritten as

I= f:ga(tIEN)t‘l’ze—th 5af:tt/;—2_ez;dt, (30)
where
ga(2)=1(2)~ Zfaza a1
and
€ai=Res_; f(2)
F(za)
T 2z 2i(z-i)(1—e M @)y (32)
with
F(z,) = B[ cog 7708)cog 78) — sin( 7o8)sin( 78)
—isin(7,B)]. (33)

The point of the pole subtraction i(80) is that the second
integral can be evaluated exactly. From Ref. 21, Eg4.3
and(7.1.4), it follows, for arbitrary complexz+ 0, that

oot*l/Ze*'[ gN
fo gz Ot i g o8 e —iNze —Y )
N

(34)

. argq
Zb:| AT -

2H 37

The other poles have imaginary parts satisfyifighZ
=mx/(2H), and so lie at least this distance from the real axis.
In the numerical results shown below the polezatz, is
subtracted if G<argg=m/4, in which case €|Imz,)
<7/(8H). [If argq=0, then the apparent singularity, at
=Zz,=0, is removable sinc&(0)=0.] The same technique
for removing the pole is utilized as has been described above
for the pole atz=z,, noting that

F(z,)
2\/z,—2i(B?—Z2+2izp)H

If only the pole atz=z, is to be subtracted, the resulting
expression for the integral, E¢44), is similar to (30), but
with g,(t/&y) replaced bygy(t/&y), where the functiomy, is
defined by

ep:=Res_, f(2)= (39

€b
z—-z,

On(2)="1(2)— (39

In the case that both the poles zt and z, are to be sub-
tracted, therg,(t/&y) is replaced byg,,(t/&y), Where

€a €p
2—2y 72—,

Jan(2)=f(2) - (40)

To sum up, the following expressions for the integradre
proposed for R@>0, the different expressions below de-
pending on whether the poleg, and z, are, or are not,
“close” to the positive real axis, where, as mentioned above,
it is proposed to treat, as lying close to the positive real
axis if Rez,>—0.75 and |Imz|<0.75, i.e., if Im(1
—1-%)>0.75 and|Re\1— 3%|<0.75, andz, as lying
close to the real axis ifim z,|<w/(8H), i.e., if |argq|<=/4.

In each of the cases the integral to be calculated takes the
form [5g(t/ &\t Y% tdt, for some functiong. The pole
subtraction carried out ensures that, in each case, the inte-
grandg(t/&y) is bounded and analytic, as a functiontpin

a neighborhood of the positive real axis, namely the strip

Ret>—3&/4, |Imt|<minG,7/(8H))&y. Thus it can be

where, ifz is not on the positive real axis, then the squareensured that in each case singularities of the integrand do not
roots in(34) are to be taken with positive imaginary part. In lie closer than distancé from the positive real axis by
Eq. (34), erfc is the complementary error function of com- choosingN so thatéy=max(1,64/7). In other words, since

plex argument, defined by enftz(Z/\/F)f\Tve*‘zdt, and

1, z>0,

0, otherwise. (35

‘I’(Z)I[

native in Eq.(22).
The solutions 0f28), which are the other poles of are

_argq+2mn

=1 >H , nheZ,

(36)

where argj denotes the principal argumentafin the range

— a<argq<m. The closest of these poles to the positive real

axis is that at
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En=E&p— €+ 2HN, where §g=kx, and é=kx, N is to be
chosen in the range

2H' 7 2H

;[he four cases to be considered and the respective integral
representations to be used for numerical evaluation are as
follows. Recall that, in Eqs(43)—(45), the square roots
VzZ,€n andy/zpéy are to be taken with argument in the range
[0,7).

I. Neither of the poles are close to the positive real axis
(or z,=0 andz, is not close to the positive real axis

| = Ff(t/gN)rl’ze*‘dt. (42

0
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Il. The polez, is close to the positive real axis and either <n, J, , is an approximation to the Gauss—Laguerre rule

z,=0 or z, is not close to the real axis: obtained by neglecting the last- m weights and abscissae.
Since the weightsv; , become extremely small fgrandn
I—f ga(t/Et Yo tdt+ ——= leamén o Zaén large, Jyn can be just as accurate ds, while needing
VZaén fewer terms in the summatigd6) and thus being cheaper to
evaluate.
xX[erfd —ivzaén) —W(za) . (43 The error in the numerical integration scheme proposed
Ill. Only the polez, is close to the real axigout z, will now be exami_ned. For b_revity this error will be esti-
£0): mated only for the integra#2) in case |, wherg=f andz,
is at least distancer/(8H) andz, is at least distance 0.75
- epméN from the positive real axis. However, a similar analysis and
|—f Op(t/En)t %™ dt+ 7t i nearly identical criteria for accuracy apply in the other three
pEN cases—cf. Ref. 16, Appendix B, and Ref. 23.
X erfo —izyéy). (44) The error, |J=Jy,nl, in the numerical integration

method has two components. One component arises from the
neglect of the lash —m weights and abscissae. The effect of
this is equivalent to setting the integrand to zero beyond the
o mth abscissax, . For this to be accurate it is necessary that
|:f Qap(t/En)t™ Yoo tdt+iméy the integrand (t/&y)t~ Y%~ be small fort>x, ,. To sim-
0 plify the task of bounding the assumption will be made that

IV. Both the poles, andz, are close to the positive real
axis (but z,#0 andz,# z,):

| B|=<1, which range ofB includes the values usually of in-
X ezt erfo —ivzaén) — V(Za)] terest in applications of the impedance boundary condition in
Za$N outdoor sound propagation, whegeis the relative surface
c impedance of the ground surface. Recalling that the case
+ 2 e winerfo —iVZpéy) |- (45)  considered is that in whicla, and z, are not close to the
Zpén positive real axis, it then follows that, fa=0,

The above formulas apply if R&>0 (the boundary is 1
energy absorbing An important special case not covered |1—e 2HE 1A= — | |z—2i|=v2,
above is that of a rigid boundary witg=0. In this case, as V2
noted earlier, the seried9) is divergent ifH(1—a) is a 5
multiple of =, in other words, ify=1. If q# 1, then it can be |8%+2iz—2%|= 3,
shown, via arguments similar to those used to derive th%md wherep=|z(z— 2i)|,
representatior(20), that the summatiori19) is (condition-

ally) convergent, and has the value given @p) and (24), N 2 o 2 ¢ 7
with the functionf simplifying in this case to |2(z=20)1(p%+ 2iz= 2] < max 3,¢—1) 3
fg)= 5 70\2(2— 2i))cog \2(2—2i)) Further,
Vz—2i(1—e 2HET1-a)) |coS 7o\Z(z—21))|<e7oP@,
B. Numerical integration and choice of the parameter where p(z) =|Im z(z—2i)|. The same bound applies to
N |sin(7\z(z— 2i))|, and analogous bounds apply to the other

o L ine and cosine terms i26). Applying the above inequali-
As indicated earlier, it is proposed to evaluate each Oﬁes tof defined by(25), it follows that
the integrals in EQs.(42)—(45) by generalized Gauss-— ’

Laguerre quadrature. Let, ,, Xz, - - - X, denote the ab- |f(2)|<6e7+P@, 47)
scissae anav,,,W;,, ... Wy, the weights of then-point - _ .
Gauss—Laguerre quadrature rule for the weight functlor%cor z=0 and|B|<1, with

t~ %!, These weights and abscissae are tabulatech for 112
=1,2,...,15 inRef. 20 and fom=1,2,3 in Ref. 16, or can p(z)=|Im+z(z—2i)|= J— <min(1,2?).
be calculated using a standard subroutine libfaryet g z+

denote one of the functions, g,, gy, Or gap. Then the  Thys, fort>0,

numerical integration method employed will be to approxi-
mate [f(t/&ut™ e <6t M2exp 7. min(1yt/&y) ).

If &y is chosen such thaty= ni/xm n, It then follows that

m
Ji= /gt Yo ldt=J,, = | inl€n)-
Jo gtiet e mn jzl Wi.n8 (X0l En) [f(t/E)t Ve <6xp, 2 expl 7, min(L,\Xmn/En) —Xmn),

(46) (48)
For m=n the approximationJ,, ,, is the n-point Gauss— for t=x, .
Laguerre rule approximation to the integrdl For 1<m In the numerical results the values
1616 J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 K. V. Horoshenkov and S. N. Chandler-Wilde: Waveguide Green'’s functions
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n=40, m=22, (49 V. THE PERIODIC AND CANYON GREEN'S
FUNCTIONS
are chosen, for whicl, ,=30.26. Then the criterio48)

The previous section details formulas and a numerical
ensures that

scheme for computing the field due to the infinite array of

[f(t/ &yt Y% t|<107°, sources(18). As discussed in the Introduction, it is much
more frequently of interest to be able to compute the field
for t=Xq, ,, providedn, <9.4 or due to an array of sources extending to infinity in both di-
rections, that is, to be able to compute the function
£n=0.3472 . (50) -
The other contribution to the errdd—J,, |, is that inherent Ggp(r,ro;a)zlzx e 21MNGy(r,r). (54)

in the Gauss—Laguerre quadrature formula. In the gase . )

=y,=0, whenzy= 7= 7, =0, provided the criteriot41) is ~ Of course, the summatiai®4) can be written as two sums of
satisfied so that the integrand is analytic within at least disthe form (18). Precisely, lef:=2x—x_, and¥;:=(X;,yo)
tance 0.75 of the positive real axis, it is not difficult to apply =(2X—X_,yo), for 1=0,1,..., sothat¥, is the reflection
Ref. 16, Theorem @), to show that the error in the-point ~ Of r— in the vertical line through. Then

Gauss—Laguerre rulg]—J,, |, tends to zero as—, uni- %

formly with respect taN and 3, for |8|<C, whereC>0'is  G(r.rg;a)= —Gy(r,ro)+ >, e 21eHG 4(r,r)

a positive constant. As remarked above, we adopt the values 1=0

of n andm given by (49), whose values proved accurate in %
Ref. 16 for very similar integrands. + >, e?leHG(rT)
When 7, >0, the integrand has additional oscillatory =0
terms: a typical such term is sin(\z(z—2i)), the oscilla- e GA(T I +GP(r P )+ GP(r o —
tory behavior of which is determined, fae0, by pllfo) + GplMroia) +GylrFoi —a).
(55
_ W z+\Z°+4 Without loss of generality it will be supposed in the
q(z)=ReV(z(z—2i)=z — remainder of this section thag is the closest of the sources
r,=0,x1,..., tor, so that
As 7, increases the integrand becomes more oscillatory and |E— &l <H. (56)
a greater density of quadrature points is needed to sample ~ b
this oscillation. A heuristic criterion for the choice Nfisto ~ Thenx;>x andX,>x, so that, foN=1,2,..., Gg(r.,ro; @)

insist that&y be chosen large enough so that the Nyquis@d G(r.To:—a) have the representations given (38)
sampling criterion is amply satisfied in an average sense. ThaNd (24). The calculation of the integral24) in the four
abscissae, sampling the integrand4@), are distributed on  different cases, using Gauss—Laguerre quadrature, has been
the interval[0xy,,/£y] and the number of oscillations in discussed in the last two subsectiof®f course, for the
this interval is 7., q(Xmn/&n)/(27). Choosingéy so that —~ computation ofGy(r,To;—a), &y must be replaced with
there are, on average, at least 11 integration points per oscifn:=K(Xy—X)=£—£,+2HN and a with — «.] Given that
lation leads to the heuristic criterion for the choicetgfthat  (56) holds, the criterior{53) proposed for the choice ™ is
satisfied for the computation of botﬁ;Z(r,rO;a) and
CA(Xm,n/én) <1, (5D GJ(r,To;—a) if N is chosen so that
wheret=117%_/(27m). Now, for z=0, N>1.5+ima>(l,§*). 57
2H
ZY?max1,24?)<q(z)<%(z)<1.52"?’max1,z2*?,

The functionGPP(r,r,;a) may be termed theeriodic im-
whereq(z) :=z"4z%+ 4)Y4. Thus a simpler and only slightly pedance Green's functiofor the Helmholtz equation in the
stricter criterion is obtained by replacing the functipiby G upper half-plane, since it satisfies the impedance boundary
in (51). This slightly stricter criterion holds if and only if condition on the ground surface and, clearly, has the period-

icity property that

§N>§* :=men’é \IZE2+ \/1+4E4. (52) GDP(r+2hi,ro;a):e—ZiQHGDP(r,rO;a,),

Clearly §*>2xm'nT:2. With the values oh andm proposed wherei is a unit vector in thex direction. The periodic
in Eq. (49), X,,=30.26 so that¢é* >2x,,,t2=0.387%.  Green’s functionGP"(r,ry;a), has applications in its own
Thus(50) is satisfied if(52) holds. Therefore, for the values right, notably to problems of plane wave scattering by peri-
n=40 andm=22 suggested, the various proposed criteriaodic structures(in which applicationa is the sine of the
for the choice oN, Egs.(41), (50), and(52), are all satisfied angle of incidencg but can also be used to construct solu-

by choosing tions to problems of sound propagation in waveguides.
Consider the sound field generated by a point source of
1 0= & : :
N=1+ — max(1&*)— 0—¢ (53 spynd atrg in the.canyon formed by two parallel vertical
2H 2H rigid walls emerging from an impedance ground surface.
J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 K. V. Horoshenkov and S. N. Chandler-Wilde: Waveguide Green'’s functions 1617
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y To sum up, to compute the solutioB,;*(r,ro), to the
canyon problem, the Green’s function is expressed in terms
of the periodic Green’s function via E@58). The periodic
. 1 % ) Green’s function is, in turn, expressed in terms @ﬁ
4: :3> %i %‘; %’%’ through Eq(55). Provided(56) holds, the term@Z(r,ro;a)
and GZ(r,’r‘O;— a) in (55) can be calculated using EqR3)
P kg and (24), with the Green’s functiorG, in (23) calculated
using the method of Ref. 16. The calculation of the integral
(24) is carried out via four different representations, dis-
FIG. 4. The 2-D canyon/waveguide, showing the source and its images igussed in Sec. lll A. Specifically, it has been proposed that
the vertical walls. the representationt2)—(45) be used in the four different
cases, with the integrals in these formulas evaluated using

Clearly (see Fig. 4, the problem can be solved by computing the Gauss—Laguerre quadrature r@#g), with n and m

the positions of the infinite array of image sources formed bygiven by(49), and the parameté chosen to be the smallest

reflection in the rigid walls. It can be seen in Fig. 4 that thesgPOsitive integer satisfying57).

images form two doubly infinite periodic arrays, so that the

effect of the rigid walls is to introduce additional sources aty NUMERICAL RESULTS

r,l=+x1,+2,..., and ar{, for|=0,+1,+2,..., where . . _

r*=r*+2hli andr? is the image ofr, in the wall atx Results are presented first of all illustrating the effect of
=0, i.e.,r§=(—Xo.Yo). Thus the solution to this problem of the choice ofN, the number of source contributions to be

noise propagation in a canyon can be given in terms of th€valuated explicitly in Eq(20), on the accuracy of the cal-

<4
+,;1

X

periodic Green's functionGgP(r,ro;a), with =0, as culationg. The fieIcGZ(r.,ro;a) due. to an.infinite array of
can op oP sources is evaluated using Eg83), with the integral evalu-
G (r,rg)=Gg (r,ro;0)+Gg (r,r5 ;0). (58)  ated using Eqsi42)—(45), the evaluation carried out as pro-

In the case where the vertical walls are sound §adt, the ~POosed in Sec. Il B by the numerical integration form(4)
sound field vanishes on the vertical surfacabe solution  With the choiceg49) for m andn. Results are shown for the

can be given in terms of the periodic Green's functiéfy”, ~ casea=0. Plotted in Fig. 5 IsAG , the absolute value of
as the difference between two calculatlons(é);(r,ro;a) using
op —_— different values foN (N=N; andN=N,). Having in mind
G (r,ro;0)=Gg (r,rg;0), applications in outdoor sound propagation, the surface im-
and, in the case when one wall is ridithat atx=0) and the ~P€dancedis chosen to be that appropriate to a rigidly backed
other sound soft, the solution is 100-mm layer of porous road surface. The acoustical prop-
op - erties of the porous layer as a function of frequency are cal-
Gg (r,ro;m/(2H)) =Gz (1,15 ;ml/(2H)). culated using the Attenborough modé&f>This model speci-

FIG. 5. Absolute error as a function of
the parameteN calculated for sound
propagation above 100-mm layer of
porous road surface.

Frequency, Hz
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TABLE I. Values of the nonacoustic parameters used in the calculations.

Flow resistivity, Porosity, Tortuosity, Shape factor, Thickness,

Material R, (Pasm?) Q q? Sp d (m)
Reflective 2x10 0.1 1.06 0.5 0.1
ground
Porous road 3500 0.335 1.91 0.21 0.1
surface
Highly absorbing 2x10* 0.9 1.06 0.5 0.1
ground

fies the acoustical admittancgy) and wave numberk) of
the porous layer in terms of its porosit@, tortuosity @2),
flow resistivity (R,), and a pore shape factos,), giving®

Q
Bbzagﬁ( \/__”\A)a Kp=akgg( \/__i)\A),

where\ ,= (1/25,) (8po0w/Q o) Y2 andp, is the air density.
The functions g; and g, are defined by gg(2)
=10:(2)/9,(2) and gy(2):=v9:(2)g,(2), in terms of the
auxiliary functionsg,,(z) =[1-S(2)] ! andgc(2) =1+ (y
- 1)S(N,%,’r ). In these last expressions= 1.4 is the ratio of
specific heats antlp,=0.708 is the Prandtl number, whi
is the function defined by

) 2J4(i2) _ 214.(2)
2=i23G2)  2ly(2)

with J,, the Bessel function of order andl , the correspond-
ing modified Bessel function. In terms @, and k, the
impedance of the layer is

B= Bptanh( —ikyd),

and the values of the nonacoustical parameters for the poro

where y,=1 whenn=0, y,=2 for all other values on,
ko=n/h, andZ,=1—k2/k?, with Im £,>0 for k,>k. In
Eqg. (59 R, is the reflection coefficient for mode from the
impedance ground, given by

_ I B
It B
Values of G3*'(r,ro) calculated using the method described
in Sec. IV, withn and m given by (49), and N selected
according to the criteriori57), are compared in Figs. 6—8
with the predictions of normal mode decomposition calcula-
tions, using the first 2000 terms i%9). Precisely, what is
plotted in these figures is a sound pressure level given by

L=20logi(VK|GE"(r.ro))). (61)

(The factor\k ensures that the sound pressure level close to
the source is approximately constant across the frequency
range) The three figures show predictions for different
ground types(and so different variations oB with fre-
quency, namely a reflecting boundary, a porous road sur-
face, and a highly absorbing ground, with parameter values
gs shown in Table I. The positions of the source and the

R,

(60)

road surface are given in Table I. The positions of the sourckeceiver were chosen to bE,=5.75m, y,=2.0 m, x

and the receiver were chosen toxg=5.75 m,y,=2.0 m,
x=1.5m, andy=1.5 m. The value oh was setto 17 m, so

that there is a spacing of 34 m between adjacent sources.
The error in Fig. 5 is mainly confined to the range
10 *<AGR<10""2 but increases at high frequency where

7. =k(y+Yyp) is large (5, ~640 at 10000 Hg Results ac-

curate to 10'2 are obtained at almost all frequencies up to

2000 Hz withN=2, at frequencies up to 5000 Hz witk
=4, and across the frequency range with- 8. At the high-
est frequency each doubling & reduces the error by a

factor of about 1000. The criterion proposed to ensure hig

accuracy, (20), suggests thaftN should increase approxi-
mately in proportion top? /H=k(y+Yy,)%/h. Specifically it
recommends, for this geometrjy=5.9 at 2000 Hz,N
=13.5 at 5000 Hz, antl=26.2 at 10000 Hz.

The remaining figures show calculations of the canyo
waveguide Green’s functio*"(r,ro). A method for com-
puting G
alternative expression fdB"" can be obtained as a norma

mode decompositiofNMD),252” namely,

o0

> X0 coskyxo)cog ko)

n=0 &n

G%an(rvro) = 2|H

x[eikin\V*yOu_Rneik{n(y+yo)], (59

J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 K. V. Horosh

efficiently has been proposed in Sec. IV. An

=1.5m andy=1.5 m and the width of the canyon was set
to h=17 m. Figures 6—8 demonstrate excellent agreement
between the results of the two methods throughout the spec-
tral range considered.

Regarding the relative computational efficiency of the
two methods the following comments can be made. In Sec.
IV a specific quadrature rule for numerical integration has
been suggested, witih=22 (m is the number of evaluations
of the integrand requirgdWith m fixed the cost of the cal-
culation method depends only o, the number of source
ieontributions calculated explicitly. The criterigh?7), for se-
lecting N to ensure a high accuracy, forcBsto increase
approximately in proportion ton?/H=k(y+y)?h, al-
though with a small constant of proportionality, and we have
seen in Fig. 5 that witiN=8 very accurate result&rror
/10*12) are obtained at even the highest frequency when
+yo~100 wavelengths anki(y+y,)?/h~130.

The representatiot9) as a normal mode decomposi-
| tion is to some extent complementary. For accurate results all

the propagating modeshose for whichk,<1) and at least
some of the evanescent modés ¥ 1) must be included in
the summation. There arekh/ 7 propagating modes so that
this is the minimum number of mode contributions to be
included, and so the cost is at least proportionakio In
addition, wherk|y —y,| is small the series converges slowly:

n
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10 T T

-—6-- New calculation method
—t— Normal mode decomposition

FIG. 6. Comparison of predictions us-
_ ing the method proposed in Sec. IV

and the method of normal mode de-
composition for sound propagation
over reflective ground.
J
_50 1 1
10' 10° 10° 10*

Frequency, Hz

when k|y—y,|=0 this convergence is very slow so that a decomposition representation is proportional to the number
very large number of evanescent modes need to be includesf normal modes required for accurate results. Thus the new
in the summation, though this additional difficulty can be method will be faster when the ratibl/(No. of normal
ameliorated by applying a Kummer’s transformafiovhich ~ modes requiredis small enough. In view of the above re-
accelerates the convergence of the series and reduces subarks, this ratio is <C[k(y+Yyo)?/h]/[kh]=C[(y
stantially the number of evanescent modes that need to bey,)/h]?, for some positive constar®, so that the new
summed explicitly’?’ method of Sec. IV should be more effective for problems
The new representation proposed has a cost linearly devhereh is large compared tg+y,. To illustrate this, com-
pendent orN while the cost of evaluating the normal mode putational times required by the two methods are given in

30 T T

i New calculation method
L e Normal mode decomposition

20 ¢ -

FIG. 7. Comparison of predictions us-
ing the method proposed in Sec. IV
and the method of normal mode de-
composition for sound propagation
over a porous road surface.

_50 1 i
10 10° 10° 10
Frequency, Hz
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20 T

-—-— New calculation method
——t— Normal mode decomposition

10%

FIG. 8. Comparison of predictions us-
ing the method proposed in Sec. IV
and the method of normal mode de-
composition for sound propagation
over a highly absorbing porous sur-
face.

-40 ! 1

Frequency, Hz

Table Il. The CPU times tabulated are for the same geometrgf modes is required, the new calculation method does in-

as for Fig. 5, i.e.,xg=5.75m, yp=2.0m, x=1.5m, y deed require less CPU time to compute accurate results.
=1.5m, andh=17 m. As indicated above, the normal

mode decomposition requires calculation of all the propagat\—/l_ CONCLUSIONS

ing modes and at least some of the evanescent modes for

accurate calculations, how many depending on the size of In this paper mathematical expressions for two-
kly—Yyol and on the acceleration procedure used. The thirdlimensional calculations of the sound field due to a mono-
column shows CPU times for normal mode decompositiorfrequency point source in a canyon/waveguide have been
calculations using the same number of evanescent as propderived, the canyon occupying the strip<@<H, y>0 in
gating modes, so that approximatelgt 7= modes are com- the Oxy plane, and having rigid or sound soft walls »at
puted and thus the CPU time increases approximately lin=0 andx=H and an impedance boundary condition yn
early with frequency. The remaining columns show the CPU=0. In the expressions proposed for this Green’s function,
times required for the method described in Sec. IV, with and for the related periodic Green’s function, the infinite
andm given by (49). Specifically, the fourth column shows sums of source contributions due to the multiple reflections
calculations withN=2, which was found in Fig. 5 to give from the walls are reduced to single integral terms. Further
errors at most 10 for frequencies up to 2000 Hz, and the representations are proposed in which poles close to the in-
fifth column shows results withN=4, which gave errors at tegration path are removed and their contributions evaluated
most 10 2 up to 5000 Hz. It can be seen that, for this ge-analytically, which greatly improves the accuracy of numeri-
ometry, which has a small value pfy +y)/h]? of approxi-  cal integration. The error in numerical integration has been
mately 0.04, and at higher frequencies where a large numbe&xamined carefully, a specfic 22-point quadrature rule has

TABLE II. CPU times for the canyon problem of Fig. 5, wifg=5.75 m,y;,=2.0 m,x=15m,y=15m,
h=17 m, and a 100-mm layer of porous road surface.

Normal mode decomposition New calculation method
Frequency N=2 N=4
(Hz) No. modes CPU timéms) CPU time(ms) CPU time(ms)
125 25 1.46 2.93 3.91
250 50 1.95 2.83 3.91
500 100 2.68 2,92 3.91
1000 200 4.15 2.93 3.90
2000 400 6.83 2.93 3.90
4000 800 12.21 2.93 3.91
8000 1600 38.08 2.92 3.90
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been proposed, and a criterion for selection of the parametefe. walerian, R. Janczur, and M. Czechowicz, “Sound level forecasting for
N (the number of source contributions to be treated explic- city-centres. part 1: sound level due to a road within an urban canyon,”
itly) has been suggested. Numerical experiments show thatAPP!- Acoust.62, 359-380(2001.

. . . L . 'S. H. Tang and K. M. Li, “The prediction of facade effects from a point
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