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Key point summary 

• Cerebellar ataxias are progressive debilitating diseases with no known treatment and 

are associated with defective motor function and, in particular, abnormalities to 

Purkinje cells. 

• Mutant mice with deficits in Ca2+ channel auxiliary α2δ-2 subunits are used as 

models of cerebellar ataxia.  

• Our data in the du2J mouse model shows an association between the ataxic phenotype 

exhibited by homozygous du2J/du2J mice and increased irregularity of Purkinje cell 

firing. 

• We show that both heterozygous +/du2J and homozygous du2J/du2J mice completely 

lack the strong presynaptic modulation of neuronal firing by cannabinoid CB1 

receptors which is exhibited by litter-matched control mice.  

• These results show that the du2J ataxia model is associated with deficits in CB1 

receptor signalling in the cerebellar cortex, putatively linked with compromised Ca2+ 

channel activity due to reduced α2δ-2 subunit expression. Knowledge of such deficits 

may help design therapeutic agents to combat ataxias. 

Word count: 147 
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Abstract 

Cerebellar ataxias are a group of progressive, debilitating diseases often associated with 

abnormal Purkinje cell (PC) firing and/or degeneration. Many animal models of cerebellar 

ataxia display abnormalities in Ca2+ channel function. The ‘ducky’ du2J mouse model of ataxia 

and absence epilepsy represents a clean knock-out of the auxiliary Ca2+ channel subunit, α2δ-2, 

and has been associated with deficient Ca2+ channel function in the cerebellar cortex. Here, we 

investigate effects of du2J mutation on PC layer (PCL) and granule cell (GC) layer (GCL) 

neuronal spiking activity and, also, inhibitory neurotransmission at interneurone-Purkinje cell 

(IN-PC) synapses. Increased neuronal firing irregularity was seen in the PCL and, to a less 

marked extent, in the GCL in du2J/du2J, but not +/du2J, mice; these data suggest that the ataxic 

phenotype is associated with lack of precision of PC firing, that may also impinge on GC 

activity and requires expression of two du2J alleles to manifest fully. du2J mutation had no clear 

effect on spontaneous inhibitory postsynaptic current (sIPSC) frequency at IN-PC synapses, 

but was associated with increased sIPSC amplitudes. du2J mutation ablated cannabinoid CB1 

receptor (CB1R)-mediated modulation of spontaneous neuronal spike firing and CB1R-

mediated presynaptic inhibition of synaptic transmission at IN-PC synapses in both +/du2J and 

du2J/du2J mutants; effects that occurred in the absence of changes in CB1R expression. These 

results demonstrate that the du2J ataxia model is associated with deficient CB1R signalling in 

the cerebellar cortex, putatively linked with compromised Ca2+ channel activity and the ataxic 

phenotype. 

 

Abbreviations 

CV, coefficient of variation; GPCR, G protein-coupled receptor; GC, granule cell; GCL, 

granule cell layer; IN-PC; interneurone-Purkinje cell, ISI, inter-spike interval; MWU, Mann-

Whitney U test; PC, Purkinje cell; PCL, Purkinje cell layer; WIN55,212-2; WIN55 
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Introduction 

Cerebellar ataxias comprise a group of progressive diseases associated with motor 

incoordination and are typically associated with dysfunction and/or degeneration of PCs, 

which represent the sole efferent output of the cerebellar cortex. A number of mutant mouse 

models exhibit specific ataxias with diverse behavioural phenotypes at different 

developmental stages (Green, 1981; Grüsser-Cornehls & Baurle, 2001), including the du2J 

mutation that exhibits behavioural traits consistent with cerebellar ataxia and absence 

epilepsy. du2J mice have mutations in the Cacna2d2 gene which encodes the α2δ-2 auxiliary 

Ca2+ channel subunit (Donato et al., 2006); one of four α2δ subunit isoforms (α2δ-1-4) that 

exert auxiliary effects on Ca2+ channel biophysical properties and physiological function 

(Gao et al., 2000; Hobom et al., 2000; Klugbauer et al., 2003; Bauer et al., 2010; Dolphin, 

2012; Hoppa et al., 2012). du2J mice are part of a group of mutant mouse strains together with 

either spontaneous (Cacna2d2entla and Cacna2d2du alleles) or targeted (Cacna2d2tm1NCIF) α2δ-2 

disruptions, all of which typically exhibit smaller than normal size, comparable ataxia 

phenotypes, absence seizures and paroxysmal dyskinesia (Barclay et al., 2001; Brodbeck et 

al., 2002; Inanov et al., 2004; Brill et al., 2004; Donato et al., 2006; Walter et al., 2006). The 

Cacna2d2entla allele predicts a full-length protein with an inserted region in the α2 moiety of 

α2δ-2 and is associated with reduced PC Ca2+ currents (Brill et al., 2004). The Cacna2d2du 

allele disrupts Cacna2d2 in intron 3, yielding a truncated α2δ-2 protein and resulting in 

reduced native and recombinant CaV2.1 Ca2+ channel expression (Barclay et al., 2001; 

Brodbeck et al., 2002). The Cacna2d2du2J allele used here has a 2 bp deletion in exon 9 of 

Cacna2d2 resulting in complete ablation of α2δ-2 expression and reduced PC Ca2+ currents 

(Donato et al., 2006). In du mutant mice, a reduction in Ca2+ influx, leading to compromised 

Ca2+-dependent K+
 channel (SK) activity and irregular pacemaking, was proposed to underlie 

the ataxic phenotype (Walter et al., 2006); similarly, the du2J mutation exhibits increased PC 
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firing irregularity, although this could not be normalised using SK blockers (Donato et al., 

2006).  

Here, we extend previous studies to examine the effect of du2J mutation on basal 

neuronal network activity and synaptic transmission and, further, on G protein-coupled 

receptor (GPCR)-mediated presynaptic inhibition of synaptic transmission in the cerebellum. 

In particular, CB1 GPCRs are strongly expressed in the cerebellar cortex, where they 

modulate GABA transmission at IN-PC synapses to modulate PC total output (Ma et al., 

2008; Wang et al., 2011). We demonstrate that the du2J phenotype exhibits deficient CB1R 

signalling at the neuronal network level that reflects, at least in part, ablation of CB1R 

modulation of inhibitory neurotransmission at IN-PC synapses, but which does not result 

from reduced CB1R expression. These results suggest that α2δ-2 deficits in du2J mutants 

affect GPCR-mediated modulation of inhibitory transmission in the cerebellar cortex, with 

consequential effects upon PC spike firing activity; such deficits may be associated with 

ataxic phenotypes and, potentially, contribute to disease. 
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Methods 

Ethical approval 

All work was subject to Local Ethical Research Panel approval and was conducted in 

accordance with the UK Animals (Scientific Procedures) Act, 1986; every effort was made to 

minimise pain and discomfort experienced by animals. 

 

Electrophysiology 

Preparation of acute cerebellar slices. Breeding pairs of +/du2J mice (C57Bl/6 background) 

were originally supplied by Prof. Annette Dolphin (University College London, UK) from 

which progeny were bred in-house at the University of Reading and whose genetic 

classification was determined by the Sequencing & Genotyping Facility, University College 

London from ear-notch tissue samples. Acute cerebellar brain slices were prepared from 3-5 

week old male mice as previously described (Ma et al., 2008). Briefly, animals were 

sacrificed by a Schedule 1 method followed by immediate decapitation. The brain was then 

rapidly removed and submerged in cold, sucrose-based aCSF solution (sucrose 218 mM, KCl 

3 mM, NaHCO3 26 mM, NaH2PO4 2.5 mM, MgSO4 2 mM, CaCl2 2 mM and D-glucose 10 

mM) and 300 μm thick parasagittal cerebellar slices were prepared using a Vibroslice 725M 

(Campden Instruments Ltd, UK) or a Vibratome (R. & L. Slaughter, Upminster, UK). Slices 

were maintained under carboxygenated (95% O2/5% CO2), standard aCSF (NaCl 124 mM, 

KCl 3 mM, NaHCO3 26 mM, NaH2PO4 2.5 mM, MgSO4 2 mM, CaCl2 2 mM and D-glucose 

10 mM) at 37°C for <1 h before being returned to room temperature (22-24°C). Recordings 

were made at 22-24°C, 2-8 h following slice preparation. 

 

Multi-electrode array (MEA) recording. Spontaneous unit and multi-unit spikes were 

recorded from acute cerebellar slices with respect to a reference ground electrode using 
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substrate integrated MEAs (Multi Channel Systems, Reutlingen, Germany) that consisted of 

59 recording electrodes (30 μm diameter; 200 μm spacing) arranged in an 8×8 matrix minus 

corner electrodes as previously described (Ma et al., 2008). Briefly, slices were adhered to the 

MEA surface and imaged via a Mikro-Okular camera (Bresser, Germany); once placed, the 

slice was submerged in carboxygenated standard aCSF, maintained at 24oC and perfused at a 

rate of ~2 ml/min and allowed to equilibrate for at least 15 min prior to recordings. Signals 

were amplified (1100× gain) and high-pass filtered (10 Hz) by a 60-channel amplifier 

(MEA60 System, MultiChannel Systems, Reutlingen, Germany) and each channel 

simultaneously sampled at 10 kHz. Continuous recordings from each channel were made 

using MC_Rack software (MultiChannel Systems) where control spontaneous neuronal 

activity was first recorded for ≥10 min. In all experiments, each drug was bath-applied for 

≥25 min to achieve steady-state effects before 300 s duration continuous recordings were 

taken. Spike events within continuous recordings were identified using MC_Rack by 

threshold detection at 4.5x the standard deviation of the mean of a signal-free recording. 

All analyses included all detected spike events that occurred during the 300 s recording 

period. Individual spike timings were defined by the time at which the peak minimum 

for each spike occurred. Spike cut outs were taken for the period 1 ms prior to and 2 ms 

following each spike’s peak minimum (Figure 1Ai). Spike timings were exported to 

Neuroexplorer4 (Nex Technologies, USA) for analysis of spike firing rates. Mean spike 

amplitudes were determined from spike cutout data analysed using in-house code for 

MATLAB 7.1 (MathWorks, Natick, MA, USA). Regularity of firing was estimated using 

the coefficient of variation (CV) of interspike interval (ISI), where CV = standard 

deviation/mean and increases in CV reflect increases in firing irregularity. MEAs have 

previously been shown to be well suited to recording single unit activity from acute, 

cerebellar slices (Egert et al., 2002); the validity of such recordings was routinely confirmed 
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via per electrode autocorrelograms that reliably revealed troughs at t=0 s in PCs, indicative of 

single units. Stated replicates undertaken in MEA experiments represent the mean of 

electrodes for a given cellular population per slice as our unit measurement. Thus, for 

each slice, measured parameters (firing frequency, spike amplitude, CV) from a 

particular cell type were calculated for each electrode before averaging to provide a 

single value per cell type for a given slice. To avoid sampling bias, ≥6 separate slices 

were used for each treatment group. These data were normally distributed (P<0.05, 

D’Agostino and Pearson omnibus normality test). Given the slice-to-slice variability in 

activity under control conditions, drug effects were normalised by expression of change 

versus the starting control for each slice. Comparisons between raw measures obtained from 

wild-type +/+, +/du2J and du2J/du2J mice were performed using one-way analysis of variance 

followed by Tukey’s HSD test or Kruskal-Wallace with Dunn’s post hoc test as appropriate. 

Comparisons between multiple treatment groups were performed using Friedman’s followed 

by Dunn’s post hoc test. Throughout, all data are expressed as mean ± SEM unless stated and 

differences considered significant if P≤0.05. 

 

Patch-clamp recording. Individual cerebellar brain slices were placed in a recording chamber 

maintained at room temperature and superfused with carboxygenated standard aCSF. PCs 

were identified morphologically using an IR-DIC upright Olympus BX50WI microscope 

(Olympus, Tokyo, Japan) with a 60× numerical aperture 0.9, water immersion lens. Whole-

cell patch-clamp recordings from PCs were made in voltage clamp mode with an EPC-9 

patch-clamp amplifier (HEKA Electronik, Lambrecht, Germany) using Pulse software 

(HEKA) on a Macintosh G4 computer (Apple Computer, Cupertino, CA). Electrodes were 

fabricated from borosilicate glass (GC150-F10, Harvard Apparatus, Kent, UK) and had 

resistances ~5-7 MΏ when filled with an intracellular solution (CsCl 140 mM, MgCl2 1 mM, 
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CaCl2 1 mM, EGTA 10 mM, MgATP 4 mM, NaGTP 0.4 mM and HEPES 10 mM, pH 7.3). 

Series resistance was measured at 15-20 MΏ with 70-90% compensation. sIPSCs were 

isolated at IN-PC synapses in the presence of the non-selective ionotropic glutamate receptor 

antagonist, NBQX (5 μM), at a holding potential of -70 mV (Stephens et al., 2001). Data 

were sampled at 5 kHz and filtered at one-third of the sampling frequency. Drugs were 

diluted in aCSF and superfused ≥25 min and at least 150 s recording obtained during the 

steady-state period was used as raw data for event detection. 

Data were initially exported using Pulsefit (HEKA) to AxoGraph 4.0 software for 

event detection using a sliding template function. Data were normally distributed (P<0.05, 

D’Agostino and Pearson omnibus normality test). Comparisons between measures obtained 

from +/+, +/du2J and du2J /du2J mice were performed using a one-way ANOVA test followed 

by Tukey’s HSD test. Comparison of multiple treatment groups was performed using 

repeated measurement one-way ANOVA, followed by Tukey’s HSD test.  

 

Radioligand binding assays 

Membrane preparation 

Cerebellar tissue was dissected from +/+, +/du2J or du2J mice (3-5 week old, male) and stored 

separately at -80°C until use, as previously described (Jones et al., 2010). Tissue was 

suspended in a membrane buffer containing Tris-HCl 50 mM, MgCl2 5 mM, EDTA 2 mM 

and 0.5 mg/ml fatty acid-free BSA and complete protease inhibitor (pH 7.4, Sigma, UK) and 

subsequently homogenised using an Ultra-Turrax blender (IKA, UK). Homogenates were 

centrifuged at 1200 g for 10 min and supernatants decanted. Resulting pellets were 

homogenised and centrifugation repeated. Pooled supernatants were then centrifuged at 

39000 g for 30 min in a high-speed centrifuge (Sorvall, UK) and supernatants discarded. 

Remaining pellets were resuspended in membrane buffer and protein content determined by 
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Lowry assay (Lowry et al., 1951). 

 

Saturation binding assay. An initial saturation binding assay was carried out using increasing 

concentrations of the tritiated CB1R antagonist, [3H]SR141716A; the CB1R antagonist, 

AM251, was used as the non-specific competitor (as previously described in Jones et al., 

2010). All concentrations tested were performed in triplicate in assay buffer (20 mM HEPES, 

1 mM EDTA, 1 mM EGTA, 0.5%w/v fatty acid-free BSA, pH 7.4). All drug stocks and 

membrane preparations were diluted in assay buffer and stored on ice immediately prior to 

use. Assay tubes contained a final volume of 1 ml with [3H]SR141716A to final 

concentrations of (nM): 0.1, 0.2, 0.5, 1, 2, 5, 10, 20 and a final concentration of 10 μM 

AM251 to determine non-specific binding. Assays were initiated by addition of 30 μg 

membrane protein and were incubated for 1.5 h at 25°C for ligands to reach equilibrium and 

terminated by rapid filtration through Whatman GF/C filters using a Brandell cell harvester. 

This was followed by 4 washes with 3 ml ice-cold PBS (0.14 M NaCl, 3 mM KCl, 1.5 mM 

KH2PO4, 5 mM Na2HPO4; pH 7.4) to remove unbound radioactivity. Filters were soaked in 2 

ml scintillation fluid overnight. Radioactivity was quantified by liquid scintillation 

spectrometry using a Wallac 1414 scintillation counter where radioactivity bound to 

cerebellar membrane was quantified in DPM before conversion to pmol/mg. 

 Analyses of saturation binding assay data were conducted by non-linear regression and 

fitted to a one-binding site model (Jones et al., 2010) to determine the equilibrium 

dissociation constant Kd (nM) and maximal number of binding sites Bmax (pmol/mg) using 

GraphPad Prism software (version 4.03; GraphPad  Software Inc., San Diego, CA). One-way 

ANOVA was used to compare results obtained from +/+, +/du2J and du2J/du2J mouse tissues, 

followed by Tukey’s HSD test when appropriate.  
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Pharmacology 

NBQX, WIN55,212-2 (WIN55; each made up as 1000x stocks) and AM251 (made up as a 

5000x stock) were dissolved in DMSO and stored at -20°C. Drug stock solutions were diluted 

to final desired bath concentration using carboxygenated standard aCSF immediately before 

application.  
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Results 

We have investigated the effects of du2J mutation on cerebellar function by comparing +/+ 

wild-type litter-matched controls with heterozygous +/du2J, which have >50% reduction in 

α2δ-2 protein (Donato et al., 2006), and du2J/du2J mice, which exhibit complete α2δ-2 

ablation, reduced whole-cell PC Ca2+ current, an ataxic phenotype and fail to survive to 

adulthood (Donato et al., 2006). 

 

du2J mutation affects spontaneous neuronal spike activity in the cerebellum 

The cerebellum consists of the PCL, whose principal PC cells represent the sole output of the 

cerebellar cortex, the GCL and the molecular layer that, together, provide a well-defined 

architecture for acute brain slice investigations of spatio-temporal network activity using 

multi-electrode methods (Egert et al., 2002; Ma et al., 2008). Within the PCL, du2J mutation 

significantly increased spike firing irregularity in du2J/du2J compared with +/+ and +/du2J 

(both P<0.001; Fig. 1Aiv); PCL spike firing frequency (Fig. 1Aii) and spike amplitude (Fig. 

1Aiii) were unaffected. Within the GCL, du2J/du2J exhibited significantly more irregular 

firing compared to either +/+ or +/du2J (both P<0.01; Fig. 1Biv), with no genotype-specific 

difference in firing frequency (Fig. 1Bii) or spike amplitude (Fig. 1Biii). Overall, these initial 

results reveal changes in spontaneous network firing properties resulting from du2J mutation 

that most clearly manifest as globally increased PCL firing irregularity in homozygous 

du2J/du2J mice, and suggest that the major effect of du2J mutation was to reduce cerebellar PC 

firing precision, potentially with secondary effects on GCL firing, an effect requiring two du2J 

alleles to manifest fully. 

 

du2J mutation attenuates CB1R modulation of spontaneous neuronal spike activity in the 

cerebellum 
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CB1Rs are highly expressed in the cerebellum (Tsou et al., 1997), where they strongly 

regulate PC network activity and, consequentially, modulate the final output of the cerebellar 

cortex (Ma et al., 2008). Modulation of CB1R function can cause severe motor incoordination 

(including ataxia), as associated with cerebellar dysfunction (DeSanty & Dar, 2001; Patel & 

Hillard, 2001). CB1R modulation has been suggested as a precipitating factor for cerebellar 

ataxias (Smith & Dar, 2006). Therefore, we next examined CB1R ligand effects upon 

spontaneous neuronal activity in cerebellar slices from +/+, +/du2J and du2J/du2J mice. We 

first recapitulated our previous study (performed in TO strain mice, Ma et al., 2008) to 

confirm that the CB1R agonist, WIN55 (5 μM), significantly increased PCL spike firing 

frequency (P<0.05 vs control), an action fully reversed by subsequent application of CB1R 

antagonist, AM251 (2 μM), in the continued presence of WIN55 in +/+ (P<0.01 vs WIN55 

only; Fig. 2Ai,ii). In these experiments, neither WIN55 nor AM251 affected PCL spike 

amplitude (Fig. 2Aiii) or spike firing regularity (Fig. 2Aiv). We next investigated whether 

du2J mutation consequentially affected CB1R-mediated modulation of PC firing. Importantly, 

WIN55 (5 μM) and AM251 (2 μM) failed to affect PCL spike firing frequency, spike 

amplitude or regularity of firing in +/du2J (Fig. 2Bi-iv) or du2J/du2J (Fig. 2Ci-iv). 

We next examined CB1R ligand effects on GCL spontaneous spike firing in the du2J 

genotypes. In +/+, WIN55 (5 μM) and subsequent AM251 (2 μM) application in the 

continued presence of WIN55 had no effect on GCL firing frequency (Fig. 3Ai,ii), spike 

amplitude (Fig. 3Aiii) or firing regularity (Fig. 3Aiv). Similarly, WIN55 and AM251 did not 

affect GCL spike firing in +/du2J (Fig. 3Bi-iv) or du2J/du2J (Fig. 3Ci-iv). These results most 

likely reflect the reported lack of CB1R expression in GC neurones (Tsou et al., 1997; 

Egertova & Elphick, 2000). Overall, these findings show that that CB1R ligands predictably 

modulate cerebellar PCL network level activity in +/+, but not +/du2J or du2J/du2J, and are 

without effect on GCL firing, independent of genotype. 
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du2J mutation affects CB1R-mediated presynaptic inhibition at inhibitory IN-PC synapses 

We have previously shown that PC firing can be affected by CB1R-mediated modulation of 

presynaptic GABA release at IN-PC synapses (Ma et al., 2008). Given our data showing that 

CB1R-modulation of spontaneous neuronal firing is absent in du2J mutants, we next 

investigated whether du2J mutation affected CB1R modulation of inhibitory transmission at 

IN-PC synapses. Presynaptic Ca2+ channels (predominantly CaV2.1) underlie GABA release 

at IN-PC synapses (Forti et al., 2000; Stephens et al., 2001; Lonchamp et al., 2009) and the 

du2J mutation has been shown to impair PC Ca2+ channel function (Donato et al., 2006). 

Therefore, we recorded sIPSCs to allow us to determine the effects of du2J mutation on action 

potential-induced, Ca2+-mediated vesicular neurotransmitter release (Stephens et al., 2001) 

and, also, to investigate potential associations between effects at IN-PC synapses and the 

action potential-dependent spontaneous PC spike firing measurements described above. No 

significant differences in sIPSC frequency (Fig. 4A,Bi) or regularity (Fig. 4A,Biii) between 

+/+, +/du2J and du2J/du2J were observed, although +/du2J and du2J/du2J each exhibited 

significantly increased sIPSC amplitudes when compared with +/+ (+/du2J: P<0.05; du2J/du2J: 

P<0.01; Fig. 4Bii). 

We next confirmed the predicted CB1R modulation of sIPSC frequency at +/+ IN-PC 

synapses (Takahashi & Linden, 2001; Szabo et al., 2004). Thus, WIN55 (5 µM) significantly 

decreased sIPSC frequency (P<0.05), an effect that was reversed and increased beyond 

control levels by subsequent AM251 (2 µM) application in +/+ (P<0.01; Fig. 5Ai,ii). The 

latter result is consistent with the presence of endocannabinergic tone or constitutive CB1R 

activity in this system (Ma et al., 2008; Wang et al., 2011). Consistent with the lack of CB1R-

mediated effects on neuronal spiking activity described above, WIN55 and AM251 failed to 

significantly modulate sIPSC frequency in +/du2J (Fig. 5Bi,ii) or du2J/du2J (Fig. 5Ci,ii), 
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although both WIN55 and AM251 showed a marginal trend (P=0.07; repeated measurement 

one-way ANOVA) to modulate sIPSC frequency in +/du2J (Fig. 5Bii) not seen in du2J/du2J 

(P=0.19; Fig. 5Cii). In addition, WIN55 significantly increased sIPSC amplitude in +/+ 

(P<0.05; Fig. 5Aiii) and +/du2J (P<0.05; Fig. 5Biii), but not du2J/du2J (P=0.11; Fig. 5Cii). 

Subsequent AM251 application was without effect on WIN55-induced increases in sIPSC 

amplitude in +/+ (Fig. 5Aiii) and +/du2J (Fig. 5Biii). The inability of AM251 to block 

WIN55-induced increases in sIPSC amplitude suggests a CB1R-independent action here. 

Taken together, these results demonstrate an attenuation of CB1R modulation at IN-PC 

synapses in du2J mutants, such effects could contribute to the observed deficits in network 

level neuronal function. 

 

Investigation of CB1 receptor expression in du2J mice using [3H]SR141716A saturation 

binding assay 

The data above demonstrate that du2J mutants exhibit deficits in CB1R-mediated signalling in 

the cerebellum. Such deficits could occur as a consequence of reported defects in α2δ-2 Ca2+ 

channel subunit expression (Donato et al., 2006); however, an alternative hypothesis is 

reduced CB1R expression in the cerebella of du2J mutants. To further investigate the latter 

hypothesis, CB1R expression was investigated using radioligand saturation binding assays. In 

+/+, +/du2J and du2J/du2J mice, specific binding of the high-affinity CB1R antagonist, 

[3H]SR141716A, to cerebellar membranes was concentration-dependent and saturable (Fig. 

6). There was no significant difference in Kd between +/+, +/du2J and du2J/du2J (P=0.47; Table 

1) and the Hill coefficient (nH, the gradient of the Hill plot) approximated unity for all 

genotypes (Table 1), indicating that [3H]SR141716A bound at a single site to cerebellar 

CB1Rs. Most importantly, cerebellar membranes from +/+, +/du2J and du2J/du2J mice 

exhibited no significant differences in Bmax (P=0.3; Table 1), indicating that there was no 
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difference in CB1R expression between genotypes investigated. These data demonstrate that 

the reported deficit in CB1R signalling in du2J mutants was likely not to be due to reduced 

CB1R expression and, rather, may reflect defects in α2δ-2 expression, as discussed below. 
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Discussion 

α2δ-2 mouse mutants exhibit ataxia. Here, we use the du2J mutation, a reportedly clean α2δ-2 

knockout (Donato et al., 2006) permitting clear interpretation of phenotypic differences. In 

addition to studying homozygous du2J/du2J, we also examine heterozygous +/du2J to 

investigate potential progressive disturbances. We demonstrate that du2J mutants exhibit 

deficits in cerebellar CB1R-mediated signalling. 

 

Effects of du2J mutation on neuronal spike activity in the cerebellum 

PCL and GCL spike firing showed negative polarity (Ma et al. 2008; Egert et al. 2002). PCL 

spikes on a given electrode arose from single cells as supported by characteristic trough 

autocorrelograms and single distribution ISI histograms (data not shown). Conversely, GCL 

spikes produced variable distribution ISI histograms and autocorrelograms that suggested 

multi-cell signals (data not shown), accountable for by larger cell somata diameters in PCL 

than GCL (Egert et al., 2002). GCL spike recordings using MEAs show some differences in 

the literature, ranging from reports of regular activity consistent with the present findings 

(Egert et al., 2002) to recordings that are ‘usually silent’ and where sparse spontaneous 

activity seen was attributed to Golgi cell activity (Mapelli & D’Angelo, 2007). However, care 

should be taken when making comparisons between reports where experimental conditions 

vary (e.g. recordings made at 22-24oC here and in Egert et al. (2002) vs 32oC in Mapelli & 

D’Angelo (2007) and can have a profound effect upon basic firing properties. The above 

caveats for GCL notwithstanding, the major effect of the du2J mutation was to increase PCL 

irregularity without affecting firing frequency or spike amplitude. du2J/du2J, but not +/du2J, 

exhibited increased PC firing irregularity suggesting progressive dysfunction; this effect 

could be coupled to differential reduction of α2δ-2 protein expression between +/du2J and 

du2J/du2J (50% vs 100% respectively, Donato et al., 2006). We confirm that expression of two 
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du2J alleles is required for manifestation of increased PC irregularity and an ataxic phenotype. 

Although du2J cerebella are smaller than +/+, du2J mutants show no differences in dendritic 

morphology (Donato et al., 2006), arguing against PC degeneration underlying differences in 

firing regularity. Both PC firing precision and activity patterns play important roles in 

cerebellar motor control (Womack & Khodakhah, 2002, De Zeeuw et al., 2011), potentially 

by time-locking PC spiking activity (Person & Raman, 2012). Such precision is affected by 

behavioural state and tactile stimulation (Shin et al., 2007). Importantly, many Ca2+ channel 

mutants, including du and du2J, increase PC firing irregularity (Hoebeek et al., 2005; Donato 

et al., 2006; Walter et al., 2006; Ovsepian & Friel, 2010; Alviña & Khodakhah, 2010), 

predicted to adversely affect cerebellar function; for example, PC firing irregularity in 

tottering mutants functionally reduces compensatory eye movement amplitude (Hoebeek et 

al., 2005). Donato et al. (2006) reported reduced spontaneous PC firing frequency in +/du2J 

that was further reduced in du2J/du2J, although this was not observed here or in studies using 

du mutants (Walter et al., 2006). These differences may be developmental, as supported by 

the younger animals used by Donato et al. (2006) in comparison to those used here and by 

Walter et al. (2006); however, it is clear that the major, consistent effect of the du2J mutation 

is to increase firing irregularity.    

It has been proposed that GCL firing, driven by mossy fibre inputs, manifests as 

precisely timed spike bursts limited by Golgi cell-mediated feedforward inhibition to form 

discrete time-windows (~5 ms) for control of distinct motor domains; thus GC spike firing 

dysfunction could contribute to ataxic symptoms (e.g. hypermetria) (D'Angelo & De Zeeuw, 

2009). Here, GCL firing irregularity was increased in du2J/du2J, although to a far lesser extent 

than in PCL. During development, GC survival depends upon connectivity with PCs (Lossi et 

al., 2002) and PC disturbances adversely affected GC (Goldowitz & Hamre, 1998), with PC-

dependent GCL degeneration also proposed (Ivanov et al., 2004); this phenomenon is also 
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reported for ataxic lurcher mice (Wetts & Herrup, 1982). Interestingly, α2δ-2 subunits are 

barely expressed in GCL, and GC Ca2+ currents were normal in du mutants (Barclay et al., 

2001; Donato et al., 2006), consistent with GC changes reflecting secondary consequences of 

PC dysfunction. Overall, although connectivity deficiencies between cerebellar layers in du2J 

mutants remain unproven, our results provide evidence for a role of α2δ-2 in correct PC-GC 

signalling and suggest that the impact of α2δ-2 loss on the GCL should not be ignored. 

 

Effects of du2J mutation on inhibitory synaptic transmission in the cerebellum 

Whilst effects of du2J mutation on synaptic transmission are unknown, ataxic mouse models 

exhibit differences in excitatory transmission in some studies (Matsushita et al., 2002; Liu & 

Friel, 2008), but not others (Zhou et al., 2003); leaner mutants exhibit enhanced inhibitory 

transmission, proposed to underlie reduced PC firing and increased irregularity (Liu & Friel, 

2008). In addition to intrinsic properties, tonic inhibitory inputs also regulate PC output and 

synchronization (Hausser & Clark, 1997; de Solages et al., 2008). Here, sIPSC frequencies 

were unaffected between genotypes, suggesting that action potential-mediated, basal GABA 

release is unaltered by du2J mutation. Interestingly, sIPSC amplitude was significantly 

increased in +/du2J and du2J/du2J (c.f. +/+ littermates). A similar increase has been 

reported for leaner mutants and attributed to increased presynaptic GABA release 

(Ovsepian & Friel, 2012); such effects are unlikely here due to the reported lack of 

change to sIPSC frequency. An alternative hypothesis is an increase in postsynaptic 

GABAA receptor responsiveness. Increased intracellular Ca2+ ([Ca2+]i) can suppress 

postsynaptic GABAA receptor function, potentially by decreasing GABA affinity for GABAA 

receptors (Inoue et al., 1986; Martina et al., 1994); therefore, reduced [Ca2+]i, as predicted for 

decreased PC α2δ-2 expression in du2J mutants (Donato et al., 2006), may relieve Ca2+-

mediated suppression of GABAA receptor function. 

) by Gary Stephens on June 7, 2013jp.physoc.orgDownloaded from J Physiol (

http://jp.physoc.org/


20 
 

 

CB1R modulation is abolished in du2J mutants 

Whilst we found no changes to basal IN-PC inhibitory transmission, it remains possible that 

du2J mutation disrupts presynaptic regulatory mechanisms, including GPCR-mediated 

inhibition (Zhou et al., 2003). Here, no CB1R-mediated modulation was seen in +/du2J and 

du2J/du2J, as demonstrated by an absence of CB1R agonist-mediated increases in PC spike 

firing and lack of reductions in inhibitory transmission at IN-PC synapses compared to +/+. 

These findings suggest that deficits in CB1R presynaptic inhibition of GABA release is 

associated with this model of ataxia and could contribute to compromised normal regulation 

of total PC output and, potentially, the aberrant motor phenotype associated with deficient PC 

function. 

Unlike changes to PC firing regularity, which were confined to homozygous du2J/du2J, 

heterozygous +/du2J showed CB1R signalling deficits similar to du2J/du2J. However, WIN55 

and AM251 showed a statistical trend to modulate sIPSC frequency in +/du2J mice not seen in 

du2J/du2J, offering some support to a progressive deficit in modulation of presynaptic 

inhibition. Somewhat unexpectedly, WIN55 increased sIPSC amplitude in +/+ and +/du2J, 

this increase may reflect a postsynaptic phenomena; in this regard, the lack of AM251-

induced reversal of WIN55 effects (Wang et al., 2011) suggests that this WIN55 effect is 

CB1R-independent, consistent with the reported lack of postsynaptic CB1R expression (Tsou 

et al., 1997; Yamasaki et al., 2006). For example, WIN55 inhibits CaV2.1 channels in PCs at 

concentrations used here (Fisyunov et al., 2006; Lozovaya et al., 2009), such actions could 

reduce [Ca2+]i to overcome Ca2+-mediated suppression of GABAA receptor function (Inoue et 

al., 1986; Martina et al., 1994) in +/+ and +/du2J; the lack of effect in du2J/du2J may reflect 

reduced PC Ca2+ current levels in homozygotes (Donato et al., 2006). Overall, whilst 

expression of two du2J alleles is required for increased PC irregularity and ataxia, our results 

) by Gary Stephens on June 7, 2013jp.physoc.orgDownloaded from J Physiol (

http://jp.physoc.org/


21 
 

demonstrate that expression of a single du2J allele compromises CB1R signalling, prior to any 

measurable change in PC firing regularity and any clear ataxic phenotype. Here, disrupted 

cannabinergic signalling may represent a useful diagnostic biomarker of early or 

asymptomatic cerebellar dysfunction. 

 

Consequences of du2J mutation on CB1R signalling 

We show, for the first time, that α2δ-2 deficits caused by du2J mutation are associated with 

aberrant CB1R signalling and suggest links between impaired Ca2+ channel function and 

consequential impairment of GPCR-mediated presynaptic inhibition. We also show that 

CB1R expression is unchanged in du2J mutants, suggesting that deficiency occurs downstream 

of receptor activation. α2δ-2 is the major isoform expressed in PCs (Cole et al., 2005) and 

reduced α2δ-2 expression in du2J affects Ca2+ current levels (Donato et al., 2006). Moreover, 

α2δ-2 is predominantly associated with CaV2.1 (Barclay et al., 2001), the major CaVα 

subunit mediating presynaptic GABA release at IN-PC synapses (Stephens et al., 2001). 

Importantly, PC-specific conditional CaV2.1 knock-out causes cerebellar ataxia (Todorov et 

al., 2012). The association of α2δ-2/CaV2.1 subunits suggest that deficits in either subunit 

could equally cause motor deficits, as supported by similarities in ataxic phenotypes in α2δ-2 

mutants, including du2J and CaV2.1 knockouts. The most parsimonious explanation for our 

results is that altered α2δ-2 expression in axon terminals of basket and stellate interneurones 

in du2J mutants leads to deficits in CB1R-mediated signalling. Although the expression of 

α2δ-2 in interneurone terminals in cerebellum has not been studied specifically, α2δ-2 is 

highly expressed in the molecular layer and in GABAergic interneurones throughout the CNS, 

as well as in PCs (Barclay et al., 2001; Cole et al., 2005). Recent studies have shown that α2δ 

subunits affect release properties of the Ca2+ channel complex at presynaptic terminals by 

improving spatial coupling between Ca2+ influx and exocytosis (Hoppa et al., 2012; Dolphin, 
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2012), in addition to protecting against block of exocytosis by intracellular Ca2+ chelators 

(Hoppa et al., 2012). Such findings are consistent with the hypothesis that proper α2δ-2 

expression is required for correct modulation of presynaptic release. Presynaptic CB1R 

activation limits transmitter release via generation of Gβγ subunits which inhibit Ca2+ 

channels (Twitchell et al. 1997; Stephens, 2009). Here, reduced α2δ-2 in du2J mutants could 

alter G protein/Ca2+ channel interaction to limit direct effects upon channel gating and so 

dysfunctionally affect modulation of GABA release onto PCs. 

 

Functional impact of CB1R deficits in cerebellar ataxia 

We propose that CB1R signalling deficits in du2J mutants occur as a consequence of reduced 

α2δ-2 expression, which impairs Ca2+ channel function and affects normal GPCR presynaptic 

inhibition in ataxic phenotypes. Under normal conditions, CB1R inhibition of GABA release 

at IN-PC synapses reduces inhibitory drive onto PCs to increase PC spike firing (Ma et al., 

2008). Regulation of PC spike firing and regularity modulates activity of deep cerebellar 

nuclei to control motor function. CB1R signalling also contributes to presynaptically-

expressed synaptic plasticity in the cerebellar cortex. Whilst long-term depression of 

transmitter release is typically associated with the excitatory parallel fibre (PF)-PC pathway, 

endocannabinnoid-mediated short term plasticity, in the form of depolarization-induced 

suppression of inhibition, is prominent at IN-PC synapses (Kano et al., 2009). Notably, CB1R 

immunoreactivity is reportedly five times higher at IN than at PF terminals; in particular, at 

basket cell terminals at the PC axon initial segment (Kawamura et al., 2006). Therefore, 

deficits in CB1R signalling may directly influence PC output in ataxic phenotypes, both in 

terms of spike firing and regularity, and, also, synaptic function; such deficiencies may 

contribute to disease. 
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Tables 

Table 1. [3H]SR141716A saturation binding data for cerebellar membrane in du2J 

mutants. Kd and Bmax were obtained from the saturation binding curves plotted between 

specific binding vs free [3H]SR141716A radioligand concentration. No significant differences 

in Kd (P=0.47) or Bmax (P=0.3) were seen; one-way analysis of variance. Hill slope (nH) was 

obtained from the Hill plot of the data transformed from saturation binding plot. 

 

Genotype Kd (nM) Bmax (pmol/mg) nH  

+/+ (n=3) 3.1 ± 0.2 2.15 ± 0.08 0.99 ± 0.01 

+/du2J (n=3) 2.9 ± 0.3 2.34 ± 0.12 0.99 ± 0.02 

du2J/du2J (n=4) 2.4 ± 0.3 2.03 ± 0.21 1.01 ± 0.01 
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Figure legends 

 

Figure 1. Region-specific comparison of basal spontaneous spike firing properties in 

du2J mutants.  

Ai) Sample traces of continuous MEA recording from a single electrode in PCL in +/+ and 

du2J mutants where inset shows overlay plot of 50 spikes (grey) and mean spike shape (black) 

from +/+. Summary bar graph of (Aii) spike firing frequency, (Aiii) spike amplitude and (Aiv) 

coefficient of variation of interspike interval (CV of ISI). du2J/du2J firing was more irregular 

compared with +/+ and +/du2J. Bi) Sample traces of continuous MEA recording from a single 

electrode in GCL in +/+ and du2J mutants where inset shows overlay plot of 50 spikes (grey) 

and mean spike shape (black) from +/+. Summary bar graph of (Bii) spike frequency, (Biii) 

spike amplitude and (Biv) CV of ISI. du2J/du2J firing was more irregular compared with +/+ 

and +/du2J.  **= P<0.01; ***= P<0.001; Kruskal-Wallis test followed by Dunn’s test. 

 

Figure 2. Differential effects of CB1R ligands on spontaneous PCL spike activity in du2J 

mutants. 

Sample traces of continuous MEA recording from a single electrode in PCL showing effect of 

WIN55 (5 μM) and subsequent application of AM251 (2 μM) (in the continued presence of 5 

μM WIN55) on spontaneous spike firing in (Ai) +/+, (Bi) +/du2J and (Ci) du2J/du2J. Summary 

bar graph showing that WIN55 significantly increased normalised spike firing frequency and 

subsequent application of AM251 caused a significant decrease in normalised spike firing 

frequency in +/+ (Aii). By contrast, WIN55 and subsequent application of AM251 had no 

significant effect on normalised spike firing frequency in (Bii) +/du2J or (Cii) du2J/du2J. CB1R 

ligands had no effect on spike amplitude in (Aiii) +/+, (Biii) +/du2J or (Ciii) du2J/du2J or on 
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normalised CV of ISI in (Aiv) +/+, (Biv) +/du2J or (Civ) du2J/du2J. *= P<0.05; **= P<0.01; 

Friedman test followed by Dunn’s test. 

 

Figure 3. Lack of effect of CB1R ligands on spontaneous GCL spike activity in du2J 

mutants.  

Sample traces of continuous MEA recording from a single electrode in GCL showing lack of 

effect of WIN55 (5 μM) and subsequent application of AM251 (2 μM) (in the continued 

presence of 5 μM WIN55) on spontaneous spike firing in (Ai) +/+, (Bi) +/du2J and (Ci) 

du2J/du2J. Summary bar graph showing that CB1R ligands had no effect on normalised spike 

firing frequency in (Aii) +/+, (Bii) +/du2J or (Cii) du2J/du2J, or on spike amplitude in (Aiii) 

+/+, (Biii) +/du2J or (Ciii) du2J/du2J, or on normalised CV of ISI in (Aiv) +/+, (Biv) +/du2J or 

(Civ) du2J/du2J; as assessed by Friedman test followed by Dunn’s test. 

 

Figure 4. Comparison of basal spontaneous inhibitory transmission at IN-PC synapses 

in du2J mutants.  

A) Raw sIPSC traces from representative PCs from +/+, +/du2J and du2J/du2J. Summary bar 

graph showing that there was no significant differences in (Bi) mean sIPSC frequency and 

(Biii) CV of ISI, but that mean sIPSC amplitude was significant increased in +/du2J and 

du2J/du2J compared to +/+. *= P<0.05; **= P<0.01; one-way analysis of variance followed by 

Tukey’s HSD test.  

 

Figure 5. Differential effects of CB1R ligands on inhibitory transmission at IN-PC 

synapses in du2J mutants. 

A) Raw sIPSC traces from representative PCs from (Ai) +/+, (Bi) +/du2J and (Ci) du2J/du2J 

showing effect of WIN55 (5 μM) and subsequent application of AM251 (2 μM) (in the 
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continued presence of 5 μM WIN55). B) Summary bar graph showing that WIN55 

significantly reduced and AM251 significantly increased normalised sIPSC frequency in (Aii) 

+/+, but was without effect in (Bii) +/du2J or (Cii) du2J/du2J. WIN55 significantly increased 

normalised sIPSC amplitude in (Aiii) +/+ and (Biii) +/du2J, but was without effect in du2J/du2J 

(Ciii). Subsequent application of AM251 was without effect in each case. *= P<0.05; **= 

P<0.01; repeated measurement one-way ANOVA followed by Tukey’s HSD test.  

 

Figure 6. Saturation binding of [3H]SR141716A to cerebellar membranes in du2J 

mutants. 

Representative saturation binding curve for [3H]SR141716A in cerebellar membranes from 

(A) +/+, (B) +/du2J and (C) du2J/du2J. 
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Figure 5. Wang et al
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Figure 6. Wang et al
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