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ABSTRACT

A nonlinear symmetric stability theorem is derived in the context of the f-plane Boussinesq equations, recov-
ering an earlier result of Xu within a more general framework. The theorem applies to symmetric disturbances
to a baroclinic basic flow, the disturbances having arbitrary structure and magnitude. The criteria for nonlinear
stability are virtually identical to those for linear stability. As in Xu, the nonlinear stability theorem can be used
to obtain rigorous upper bounds on the saturation amplitude of symmetric instabilities. In a simple example, the
bounds are found to compare favorably with heuristic parcel-based estimates in both the hydrostatic and non-

hydrostatic limits.

1. Introduction

Cho et al. (1993, hereafter CSV) have recently re-
visited the classical problem of symmetric stability in
the context of the f-planc Boussinesq equations. By us-
ing the energy—Casimir or pseudoenergy stability
methodology of Fjertoft (1950) and Arnol’d (1965,
1969) (see Holm et al. 1985; McIntyre and Shepherd
1987, section 6; Mu 1995 for a presentation of the
methodology) CSV were able to recover the sufficient
conditions for linear symmetric stability established by
Fjertoft (1950), Stone (1966), and Hoskins (1974).
They were also able to establish a normed stability the-
orem for finite-amplitude disturbances, but only under
somewhat more restrictive conditions on the basic flow.
In an earlier study—unknown to CSV—Xu (1986)
had derived a nonlinear symmetric stability theorem
using direct methods whose criteria were essentially
identical to the linear criteria. Xu (1986) went on to
derive rigorous upper bounds on the nonlinear satura-
tion of symmetric instability using his so-called ‘‘gen-
eralized energetics.”” Unaware of Xu’s work, CSV also
used their finite-amplitude stability theorem to obtain
rigorous saturation bounds. In a simple example, these
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bounds were compared with heuristic parcel-based es-
timates obtained following the method of Emanuel
(1983). In the nonhydrostatic limit, the rigorous bound
was found to be close to the heuristic estimate; but in
the hydrostatic limit, the rigorous bound was found to
be an enormous overestimate.

The purpose of this short paper is twofold: first, to
fill in the gap between the linear and nonlinear stability
criteria of CSV, thereby recovering the earlier result of
Xu (1986) within the more general energy—Casimir
framework, and second, to provide improved saturation
bounds for symmetric instability, especially in the hy-
drostatic limit.

2. Mathematical background

The system of equations to be considered (see CSV
for more details) is the nonhydrostatic, adiabatic, Bous-
sinesq equations on the f-plane, under symmetric con-
ditions where all fields are independent of the horizon-
tal coordinate y. This system may be written

w, = -0y, w) + 0(m, fx) + 8(6, gz/6,), (la)
m=-9(f,m), 6,=-0(,8), (lbe)

and is considered in a simply connected domain D with
the boundary condition

$=0 on &D. (1d)
Here ¢ is the streamfunction of the motion in the x-z
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plane, with associated velocity (u, w) = (¥, —¢,); w
= V% = u, — w, is the y-component of vorticity; m
= v + fx is the y-component of absolute velocity; # is
the potential temperature, with constant reference value
8y fis the constant Coriolis parameter; g is the con-
stant gravitational acceleration; and d(a, b) = a,b,
— a,b, is the two-dimensional Jacobian operator.

We consider disturbances to a steady baroclinic basic
flow (M, ©), with the disturbed flow written as

0=0+0"; (2)

the primed variables are not assumed to be of small
amplitude. CSV showed that the system (1) conserves
a disturbance pseudoenergy functional 4:

dd_ d Live
dt “dtffb{z Vel

+I(M, 0;,m, 0')}dxdz =0, (3)

w=w, m=M+mw,

where
IM,Om,8)Y=CM+m',0+80")

—CM,0)~C,(M,0)ym' ~ Co(M, 0)8" (4)

and C(m, 6) is the function defined (up to an irrelevant
constant) by C,,(M, ®) = fx, C((M, @) = gz/6,.

The small-amplitude approximation to 7 is given by
the quadratic form

I(M, ©;m', 8") =~ 2 { Cpon(M, ©)(m')?

+ 2C(M, ®Ym' 0’ + Copo(M, ©)(8)2}. (5)

Whenever (5) is positive definite, it follows that the
quadratic approximation to .4 (which is conserved by
the linearized dynamics) is also positive definite—
which in turn implies normed stability of the linearized
equations. As shown by CSV, the necessary and suf-
ficient condition for this to be the case is that the ei-
genvalues of the matrix

<m%Cmm(M, 0)

moBoCrns( M, @) (6)
mooCra( M, © ) ’

95Co(M, ®)

which we denote by \; (M, ®) and N\, (M, ®), are both
positive for all (x, z) € D. (The factors m, and 6, have
been introduced for dimensional consistency and do not
affect the sign of the eigenvalues; m, is an arbitrary
positive constant with the same dimension as m.) When
my = g/ f, the matrix (6) is proportional to the inverse
of Xu’s (1986) stability matrix IT;.

3. Nonlinear symmetric stability

In this section it is shown that linear symmetric sta-
bility implies nonlinear (normed) symmetric stability.
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a. A special case

First consider the special but important case where
M and © are linear functions of x and z (cf. Hoskins
1974 ), namely

N?6, Bob
M=—ax+bz, @=22, L%,
where N2, a, and b are arbitrary constants.' (Note that
thermal-wind balance of the basic flow requires f6,M,
= g ®,.) In this case the functional relationship between
(M, ©) and (x, z) implied by (7) may be inverted to
give

L NM ~ (gb16,)©

_ (gal6,)® — fbM
N?a — fo*  °

N’a — fb*> °
(8)

provided N%a — £b? + 0. Using (8), it follows that the
function C(m, 8) defined by C,.(M, ©) = fx, Co(M,
0) = gz/8, is the quadratic form

1 l 2,2
Na —be{szm

2
(B 2] o

and the exact invariant .4 is therefore given by

C(m, 8) =

v4=” {%1V¢’12+C(m’,9’)}dxdz. (10)

In this special case, the small-amplitude approximation
(5) is thus seen to be exact.

If my is a positive constant having the same dimen-
sion as m, then

m

1 I\ 2
C(m',0") = 5 Cn<;‘1—>
0

ml 07 1 01 2
+ep|l— )7 )+tzelz), (11
012<m0><00> 5 6'22(90) (11)

where
fN*m3 fbgmy
C11=N2a_fb27 C12=_N2a_f2’
g’a
Cp = m . (12)

The quadratic form (11) is positive definite if and only
if the eigenvalues of the matrix

! Although @, is not required to be positive on mathematical
grounds, we have introduced the positive factor N because the prob-
lem of symmetric stability and instability is geophysically relevant
only for statically stable basic flows with g®, > 0.
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(13)

are both positive. Since
i = m%Cmm(M, ®)7 Ci2 = mOHOCmQ(M9 ®)’
622:0%C99(M’ ®)’ (14)

the eigenvalues of (13) are in this case just the {con-
stant) eigenvalues \; (M, ®) and \,(M, ®) of (6). As
noted by CSV, these eigenvalues are both positive if
and only if

f

. N?

Ri = V2 > C > 0,
where { = f+ V, is the z-component of the basic-flow
absolute vorticity, and V = M — fx is the basic-flow
meridional velocity. In the present special case, (15)
reduces to N*/b* > fla > 0, so that N%a — fb* # 0,
as required.

We now prove nonlinear stability, as follows. If the
eigenvalues are ordered according to 0 < A\, < \,, then
we have the convexity condition

)\1 ml 2 9’ 2 , ,

() (3 <o
MmN (0
[+ (5)] o

which applies at every point (x, z) € D. Now introduce
the norm

||x'|§sffD{§|vw'|2
A ml 2 9/ 2
+5|:<;0) +<5;> ]}dxdz (17

with A; < A < \,. Using (10) and (16) with (17) then
yields

(15)

A A "
Ix (DI < N X" (DI, < N A1) = N A(0)

A A
< T IKOIF, = Ik OIR. (18)
1 1

This establishes nonlinear Liapunov (normed) stability
in the norm (17) for any basic flow of the form (7)
whenever (15) is satisfied.

By using a generalized potential energy [ denoted by
A in his (4.1)] that turns out to be identical to (9) in
this case, Xu (1986, lemma 2) proved nonlinear Lia-
punov stability, in a norm rather similar to (17), for
basic flows of the form (7) satisfying the same criterion
(15). However, while (18) implies a maximum am-
plification factor for the norm of YA,/\;, Xu’s (1986)
maximum amplification factor B, is rather more com-
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plicated—and for m, = g/f it can be shown to always
be larger. For example, if A, = A\, = \ (so that our
maximum amplification factor is unity), then B,
=max{1l +0,3,1+ (2/0)}, where 6> = (N + f{)/
2. For weak stability, with N%a — fb? — 0 and \; <€ \,,
then B, goes like the square of the (large) maximum
amplification factor Y\,/\, implied by (18).

b. The general case

We now consider the general case and return to (3)
and (4). Suppose first that the initial disturbance
(m'(0), 8’'(0)) satisfies
{(M+m'(0),0 +60'(0)|(x,2) € D}

c{(M,0)|(x,2) €ED}; (19)
in other words, the disturbance introduces no new val-
ues (m, 6). Since by (1b,c) m and # are Lagrangian
invariants, the condition (19) will be satisfied for all
time if it is satisfied at £ = 0. Then Taylor’s remainder
theorem implies that at each point (~x, z) € D there
exists some € (M, M +m')and § € (0,0 + 6')
such that

1M, ©;m',0") = 5 { Coun(01, ) (m')?

+ 2G4, Ym' 8" + Cop(rit, 8)(6")*}.  (20)

If we suppose further that the (M, @) distribution is

convex, then (19) ensures that { (71, 9)|(x, z) € D}

c {(M,®)|(x,z) € D}. The eigenvalues of the matrix

mlz)cmm(rﬁy é) mOGOCmH(’/ﬁW a) (21)
mOOOCmﬂ(rﬁ’ é) H%CHB(’%v é)

are evidently given by \, (s, 8) and X\, (7, 8). Define

Ay = min {\(M, @), \(M, 9)},
(M,0)

Ay = max (M (M, 0), (M, 0)}.  (22)
(M,0)

The sufficient condition for linear stability is that N, (M,
®) and \, (M, @) are everywhere positive; for nonlin-
ear stability, we require further that they are every-
where bounded away from zero and infinity, namely

O< A s A, <o, (23)
[This subtle distinction between the linear and nonlin-
ear criteria is entirely analogous to the familiar case of
the barotropic vorticity equation (Arnol’d 1965, 1969;
Holm et al. 1985; McIntyre and Shepherd 1987).] Un-
der these conditions, I(M, ®; m’, 6') is bounded at
every point (x, z) € D according to the convexity con-
dition

MmN\ (0°V] g
7[<m) +(90)]\1<M,@,m,9>
A2 mr 2 ZZ
A @) e
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The proof of nonlinear stability now follows according
to (18), with \;, \, replaced by A,, A, and with A,
s A=A
2 Ay ’ 2
Ix" (DX = n lIx" COMIX- (25)
Note that the stability condition A, > 0 is equivalent
to (15).

Xu (1986, Lemma 4 ) also proved nonlinear stability
for general basic flows satisfying (23), though without
providing explicit bounds on the disturbance amplifi-
cation. The marginal case A; = 0 was also treated by
Xu (1986, Theorem 6).

CSV established a nonlinear stability result analo-
gous to {25) but that applied to a more restricted class
of basic flows and that had a different (in general
larger) amplification factor. It is interesting to see the
connection between the two results. The eigenvalues of
(21) are given by

1 ~ ~
)\1,2 = 5 {m(z)cmm + G[Z)CBO

+ [(mGCom ~ 03C00)> + 4(moBoCr)*1'"*}, (26)

where the tilde indicates that the function is evaluated
at (1, ). Now the square root in the above expression
can be bounded according to

[(mECom — 03Co0)? + 4(me86C,p)? 1>
9(2)C~99‘ + 2 ‘ mOGOCrnG‘ ) (27)

which leads to the following bounds on the eigenval-
ues:

= ‘ m(z)émm -

Ao = % {(m2Cp + 03Cs5 — |MECm

— 03Co] — 2|1moBoCoisl}, (28a)
M2 <3 {m3Con + 03Ca + (m3Cn

— 03Cp| + 2|mBeCrsl}. (28b)

Under the stability assumptions C,,,, > 0, Cy > 0, (28)
is equivalent to

min(m3C,,, 03690) - lmoeoémel < Mg

< max (m§Cm, 05Ca0) + 1meBoCsl. (29)

It is easy to verify that using these bounds on A; and
A; in (25), with my = g/N, CSV’s corresponding
normed stability result (3.12) is obtained. Thus, while
the present results involve the actual eigenvalues of the
Hessian of C, CSV’s results— while not presented that
way—effectively used bounds on those eigenvalues.
This explains why CSV’s results are weaker than the
present ones.

What can be done if the condition (19) is not satis-
fied? In this case, the disturbance introduces new (m,
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#) values beyond those present in the basic flow. The
expression (20) is still well defined, and the conser-
vation law (3) is still valid provided one suitably ex-
tends the domain of definition of the function C(m, 8).
Such extension is clearly always possible; the question
is whether it can be done in such a way that (22) re-
mains true. In the case of one-dimensional functions,
such extension can always be done (cf. Arnol’d 1969).
But for two-dimensional functions, it remains to our
knowledge an open question. (It is, however, not a
problem in the example considered in section 4 below,
which follows section 3a.) This means that in any par-
ticular application, one would have to determine the
eigenvalues of (21) for the range of (m, 8) values pres-
ent in the initial flow [based on a suitable extension of
C(m, 8)] and use those values in (25).

c. Extension to moist adiabatic flow

A brief remark may be made concerning the exten-
sion of this analysis to moist adiabatic flow. Section 2b
of CSV showed that the linear symmetric stability cri-
teria extended to moist adiabatic flow (cf. Bennetts and
Hoskins 1979), with 8 replaced by the equivalent po-
tential temperature 8, = 6,(6, z). In the finite-amplitude
context, (3) remains valid but the function / now de-
pends explicitly on z as well as on m and 8,. This means
that the eigenvalues of the moist adiabatic version of
(21) will not be simply related to the eigenvalues of
the moist adiabatic version of (6), or even to the ei-
genvalues of (21) at t = 0. However, one could still
determine the minimum and maximum eigenvalues of
the moist version of (21) over all possible m, 4,, and
z (the range of those values being determined by the
initial conditions) and use those values as A, and A,.
When A; > 0, nonlinear stability would hold. But this
would certainly be a much more restrictive condition
than that for linear stability.

4. Nonlinear saturation of symmetric instability

CSV used the method of Shepherd (1988) to obtain
rigorous upper bounds on the saturation amplitudes of
symmetric instabilities. The method is very simple and
is based on the fact that, from (3), the kinetic energy
in the x-z plane is bounded in terms of the initial con-
ditions according to

[ L 1vuias:
D
= ff % |V [*(1)dxdz < A(t) = A(0)  (30)
D

for any stable basic state. Given an initial condition
consisting of an arbitrary perturbation (m ", 8, "))
to an unstable steady flow (m'®, 8 ?), we may regard
this initial condition as a disturbance (m’, 8', w’) to a
stable basic flow (M, ®). The initial disturbance is then
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givenby m' () = m'® — M+ m", 8" (0) =6 - 0
+ 8 and w'(0) = w™, and (30) becomes

”.D% [V |2(t)dxdz < ffD {% MROE

+ I(M, ©; m'(0), 6'(0))}dxdz. (31)

For any given initial condition, the right-hand side of
(31) is a functional of the basic flow, and one may seek
to minimize it over all possible stable basic flows.

To demonstrate the method, CSV analyzed the ex-
ample of an infinitesimal initial perturbation to a pure
baroclinic flow

m® =N(l +e)z+fx, w=0, (32ab)
ON? BN
9<0)=ﬂ—z+ﬂ(l+e)x, (32¢)
4 8
considered in the rectangular domain
L L H H
_Esxs—i, —ESZSE. (33)

The flow (32) is unstable for € > 0, so we may regard
€ as a “‘supercriticality’’ parameter.
Now introduce the basic flow

M=N(1-6)z+ (1 + a)fx,
- 5
fol (1 +vy)z+ —-—givf (1 - 8)x,

(34a)

O =

(34b)

with potential vorticity

Q=6(®,M)=f9;N

[v+a+ya+ 862 -—56)].
(35)

(This is a more general form than that used by CSV.)
This basic flow is stable to symmetric disturbances pro-
vided that

y>—1 and (1-8)2<(L+ )1 +a). (36)

The initial disturbance relative to this basic flow is then
(apart from the infinitesimal part) given by

m' (0) = m® — M = N(e + 6)z — afx,

OolNf 8N’
g g

(37a)

' () =00 -0 = (e + 6)x — vz.

(37b)

Upon using CSV’s relations (3.6) together with (34),
the second derivatives of C are found to be

foN*

Com(M, 0) =
( ) 20

(1+vy), (38a)
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Cee(M,('D):gJO%(l + a), (38b)
Cmg(M,®)=—f—Q]—v(1—6). (38c)

These second derivatives are constants, which means
that I(M, ®; m’, 6') is a quadratic form in m' and §';
in other words, the small-amplitude expression (5) is
exact in this case, and the nonlinear analysis of section
3a applies. One may therefore substitute (5), with (37)
and (38) inserted, into (31) to obtain

”D% |V |2(8)dndz

_ HL
T 24y ta+ ya+ 62 -6))
X {N?H?[(1 + y)(e + 6)?
+2(1 = 8)(e+ 8y + (1 +a)y?]
+ fIL(1 + a)(e + 8)*
+2(1 = 8)(e +8a+ (1 +y)a?]}. (39)

The rigorous upper bound on the kinetic energy rep-
resented by (39) is a function of the parameters of the
initial unstable flow, as well as of the free parameters
o, ¥, and 6, and one may seek to minimize the bound
over all values of those free parameters that are con-
sistent with the constraints (36).

The general analysis of this minimization problem
appears to be complex and is of little intrinsic interest,
but two particularly simple bounds may be obtained as
follows. First, take § = —e and « = 0, leaving only vy
free; this corresponds to modifying only 8'(0) with
m' (0) = 0. In this case the right-hand side of (39) takes
the simple form

2
= H3L1\72( u (40)

24 v —e(2 + e)> ’
which is minimized for the choice y = 2¢(2 + ¢) and
yields the rigorous upper bound

.UD% |V |2(1)dxdz <

This bound is similar to the analogous bound (4.20) of
CSV but is smaller by a factor of (2 + ¢). It may be
compared with the heuristic parcel-based saturation es-
timate of Emanuel (1983), which is based on the as-
sumption of mixing of A along m-surfaces (thereby re-
leasing gravitational potential energy) and might be
thought to be relevant in the nonhydrostatic limit f2L?
> N2H?. This estimate is given by CSV’s (4.31),
namely

HPLN?(2 + ¢). (41)

=

1—12H3L1\726(2 +e). (42)

Evidently (41) is just twice (42) for all e.
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Xu (1986) derived an upper bound on the transverse
kinetic energy in the case of a horizontally unbounded
domain, which falls within this context of f2L?
> N?H?. It may be shown that Xu’s (1986) bound
(4.9) —taking K§ = 0—is exactly twice (41).

A second simple bound obtains on taking 6 = —e¢
and y = 0, leaving only « free; this corresponds to
modifying only m' (0) with 8'(0) = 0. In this case the
right-hand side of (39) takes the simple form

1 a’
—HL f ———— |,
24 f<a—6(2+6)>
which is minimized for the choice « = 2¢(2 + ¢) and
yields the rigorous upper bound

” S|V (0)dxdz < S HL'f2e(2 + ). (44)

(43)

This bound has no counterpart in CSV since the param-
eter & was not used there. It may be compared with the
heuristic parcel-based saturation estimate obtained on
the assumption of mixing of m along #-surfaces
(thereby releasing centrifugal potential energy ), which
might be thought to be relevant in the hydrostatic limit
f?L* < N’H*. This estimate is given by CSV’s (4.33),
namely

13 F2%(2 + ¢). (45)
Evidently (44) is just twice (45) for all €. This is an
enormous improvement on CSV’s best bound (4.15)
in the hydrostatic limit.

Xu’s (1986) bound (4.7) on the transverse kinetic
energy, when applied to this case with h® = 0 and v°®
= 0, is rather complicated.” But for ¢ < 1, it is approx-
imately given by

f 2
f 2"
If we make the further (not unreasonable ) assumptions

N?> f2and L2 > H?, then (46) is roughly three times
the right-hand side of (44).

(L* + HY)LH ———— (46)

2N.B. There is a typographical error in Xu’s (4.7): wnmi, should
be Wi
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In the intermediate regime f2L2/N?H? = O(1), par-
cel-based estimates are difficult to obtain due to a lack
of knowledge about the slope of the parcel trajectories.
In contrast, the upper bound (39) is rigorously valid
throughout this regime and may be minimized using
numerical methods if necessary.
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