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Nonlinear Saturation of Baroclinic Instability. Part III: Bounds on the Energy
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Department of Physics, University of Toronto, Toronto, Ontario, Canada

(Manuscript received 14 August 1992, in final form 19 November 1992)

ABSTRACT

" Rigorous upper bounds are derived on the saturation amplitude of baroclinic instability in the two-layer
model. The bounds apply to the eddy energy and are obtained by appealing to a finite amplitude conservation
law for the disturbance pseudoenergy. These bounds are to be distinguished from those derived in Part I of this
study, which employed a pseudomomentum conservation law and provided bounds on the eddy potential
enstrophy. The bounds apply to conservative (inviscid, unforced) flow, as well as to forced-dissipative flow
when the dissipation is proportional to the potential vorticity.

Bounds on the eddy energy are worked out for a general class of unstable westerly jets. In the special case of
the Phillips model of baroclinic instability, and in the limit of infinitesimal initial eddy amplitude, the bound
states that the eddy energy cannot exceed ¢82/6 F, where € = (U — Uy )/ Us is the relative supercriticality.
This bound captures the essential dynamical scalings (i.e., the dependence on ¢, 8, and F) of the saturation
amplitudes predicted by weakly nonlinear theory, as well as exhibiting remarkable quantitative agreement with
those predictions, and is also consistent with heuristic baroclinic adjustment estimates,

1. Introduction

In Part I of this study (Shepherd 1988a), rigorous
upper bounds were derived on the nonlinear saturation
of baroclinic instability in a two-layer quasigeostrophic
fluid. These bounds were obtained through the use of
a Liapunov (normed) stability theorem, which'is the
finite amplitude generalization of the well-known
Charney-Stern theorem. This stability theorem is based
on conservation of the disturbance pseudomomentum
and proves stability in the potential enstrophy norm;
the rigorous upper bounds that were obtained from
this theorem provide bounds on the growth of the po-
tential enstrophy of the nonzonal part of the flow.
Comparison of the bounds with the weakly nonlinear
theory of Pedlosky (1970) for the special case of the
Phillips (1954) model of baroclinic instability, showed
very similar parameter dependences as well as remark-
able quantitative agreement.

While potential enstrophy is an important measure
of disturbance amplitude, especially because it can be
associated (at small amplitude at least) with meridional
particle displacements, more emphasis has traditionally
been placed on the energy. The distinction between
energy and potential enstrophy is certainly not pedantic
since for a continuous system, such as a fluid, all norms
are not equivalent. For example, the temporary am-
plification of nonmodal disturbances (e.g., Farrell 1982
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et seq.) is quite different when viewed from the per-
spective of different norms: in the canonical case of
linear Couette flow (e.g., Shepherd 1985 and refs.), the
energy norm can amplify by an arbitrarily large amount
(depending on the initial condition ), while the enstro-
phy norm cannot amplify at all.

It was pointed out in Shepherd [1988a, Eq. (8.2)]
that the potential enstrophy saturation bounds can be
turned into energy bounds based on the finite width
of the channel. However, these latter bounds can be
expected to be very weak (i.e., much too large) when
the Rossby deformation radius is small compared with
the channel width. It is, therefore, of interest to see
whether more useful upper bounds on the energy may
be obtained by some other route. It turns out that there
is another Liapunov stability theorem avatlable for two-
layer quasigeostrophic flow, namely the finite ampli-
tude generalization of the Fjortoft theorem, alterna-
tively the quasigeostrophic version of Arnol’d’s (1965,
1966) first stability theorem (Holm et al. 1985; Swaters
1986; Mclntyre and Shepherd 1987, appendix B). This
stability theorem is based on conservation of the dis-
turbance pseudoenergy and proves stability in a norm
consisting of a weighted combination of energy and
potential enstrophy.

At first sight, the above-mentioned theorem would
not appear to be too promising for the purpose at hand.
First, stability requires the basic flow to satisfy U/Q,
< 0, where U is the zonal velocity and Q, is the me-
ridional gradient of potential vorticity; and as Andrews
(1984) has noted this is not the usual situation for
atmospherically relevant flows—including all the clas-
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sical models of baroclinic instability. Second, even
when the stability criterion is satisfied, Liapunov sta-
bility is not provable in the energy norm (cf. McIntyre
and Shepherd 1987). Fortunately, however, it turns
out that neither of these difficulties is fatal when it
comes to obtaining saturation bounds on the eddy en-
ergy in baroclinic instability, at least within the context
of the two-layer model. In this paper, explicit deriva-
tions of such bounds will be presented, based on pseu-
doenergy conservation.

The plan of the paper is as follows. The governing
equations for conservative (inviscid, unforced) flow are
reviewed in section 2, in order to fix notation. In section
3 a brief derivation of the pseudoenergy conservation
law is presented for disturbances to steady basic states,
as well as the basis for its use in the nonlinear saturation
theory. The theory is applied in section 4 to the classical
case of the Phillips ( 1954) model of baroclinic insta-
bility. The rigorous upper bounds obtained for that
case are then compared with the weakly nonlinear the-
ories of Pedlosky (1970) and Warn and Gauthier
(1989) (section 5) and with heuristic baroclinic ad-
justment estimates (section 6). Finally in section 7 the
theory is worked out for a general class of unstable
westerly jets. The paper concludes with a discussion.

2. Governing equations for the two-layer model

The system to be considered in this paper is the sim-
plest possible one capable of representing baroclinic
instability: the two-layer model. A thorough treatment
of the system can be found in Pedlosky (1987, sections
6.16 and 7.9), whose notation is largely followed here.
This is also the system treated by Shepherd (1988a),
though in the present case the possibility of different
layer depths is allowed. The flow is governed by ma-
terial conservation of quasigeostrophic potential vor-
ticity in each layer, namely

D;P; OP;

Di 5 +3(®;, P;) =0,
where { = 1 and { = 2 refer, respectively, to the upper
and lower layers, ®; is the geostrophic streamfunction,
d(/f, &) = fx8 — 1,8 is the two-dimensional Jacobian
operator, and

P =V + (—1)'Fi(®, — &)+ f+ B8y (2.2)

is the potential vorticity in each layer. Here V2 is the
two-dimensional Laplacian operator, fis a constant
representative of the midlatitude value of the Coriolis
parameter, 8 is a constant representative of the mid-
latitude value of the meridional gradient of the Coriolis
parameter, and F; is the internal rotational Froude
number for each layer (a measure of the static stability ).
Let the layer depths be given by D, and D,; it follows
from the definition of F; that

DlFl = D2F2.

=12, (2.1)

(2.3)
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The domain is taken to be infinite in the zonal coor-
dinate x but bounded in the meridional coordinate y,
with boundary conditions at the channel walls of no
normal flow:

9%,
—=0 at y=90,1, (2.4a2)
ax
and conservation of circulation:
dok| _ a3 _ 4w _dzl_,
dt 9y |,_, dt Codt oyl a ’
_ (2.4b)
the overbar refers to a zonal average
_ 1 +X
cim A [ G
S=lim 5= ) S(x)dx (2.5)

which is presumed to be well defined for all variables.

The system described by (2.1), (2.4) possesses cer-
tain integral invariants. It is straightforward to verify,
using (2.3), that the (kinetic plus available potential )
energy

. 1
618, 31 = [ L{DVaE + DIVET

+D|F1(‘I)1 —<I>2)2}dy (2.6)

is conserved in time. The notation §[P;, 2] is short-
hand for 6 [P, P,, 29,2}, 29, 2 1] and makes explicit
the fact that & is a functional of the potential vorticity
of the flow and the circulation along the channel walls:
that is, given P;, P,, and 29, 2!, =9, =}, one can
invert the relation (2.2) to determine &,, ®,, and,
hence, the energy &. It is, furthermore, obvious from
(2.1) and (2.4a) that the spatial integral of any function
of P, or P, is also conserved in time. Together with
conservation of circulation (2.4b), this implies that
functionals €@ of the form

, 1
C[P;, 27] =J; {Ci(Py) + C(Py) }dy

+ 2%+ el + 929+ i) (2.7)

are conserved in time, for any choice of the functions
C, and C,, and for any constants ¢}. These invariants
& and € will be used in the next section to construct
the pseudoenergy relative to a steady basic state.

3. Pseudoenergy and nonlinear saturation bounds

Introduce a basic state {®;, P;, 2]} = {¥;, Q;,
) A } consisting of a steady zonal flow U;(y) = —d¥,/
dy, with associated potential vorticity
daU; .
Qi =- W + (1) Fi (¥, — ¥,) + [+ By.
Since the basic state { ¥;, O, I",: } is a steady solution
of the dynamics, it follows from (2.1) that

(3.1)
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0(¥;, 0)=0=¥, =¥, (0;); (3.2)

that is, ¥; is necessarily a function of Q;. This func-
tional dependence is rather trivial in the present case
of a zonally symmetric basic flow, because ¥; and Q;
can obviously be related to each other through their
mutual dependence on y.

Now consider a flow {(19, , P, 2 } consisting of a
disturbance {y;, g:, vi} to the above basic state,
namely

=V, +y;, =0 +q, =T+~ (3.3)
with
g = VA + (=1)'Fi(¢1 — ¥2),
;i i
v? =- i vi= & (3.4a,b,c)
g W1,

The (disturbance) pseudoenergy relative to the basic
state {¥;, Q;, I'}} is given by (Holm et al. 1985;
Mclntyre and Shepherd 1987)

AP, 24, Q;, {1 = 6[P;, 21]

- 8[Q:, TI]1 + €[P,, 211 - €[Q:, T), (3.5)
where & is given by (2.6), and @ is the specific func-
tional given by (2.7) for the choices

7
Ci(n) = D; f Y (n)dn, ¢ =—D;¥;|,-,

el = =Di¥l,m, (3.6)

with ¥, (-) denoting the two functions (for i = 1, 2)
defined by (3.2). [In contrast to the treatment in
Mclntyre and Shepherd (1987), here the possibility of
nonzero disturbance circulations v is explicitly in-
cluded; this generalization is essential for the saturation-
bound calculations.] Now, A is made up of two exact
dynamical invariants, §[P;, =%] and @[P;, Z}], and
two constants, 6[Q;, I'}] and C[Q;, I'}]; therefore,
A is itself an exact dynamical invariant:

A(t) = A(0) forall z. (3.7)

After some manipulation (see Appendix for details),
(3.5) can be cast in the form

1
A= fo [% (D1 [V 12 + DoV, |2
+ D Fi(¥; — ¥u)?)

41

[V:(O: +9) —

+ D, ¥ (Q1)]1dg

+ D, J; [¥2(Q: + ) — ‘I’z(Qz)]dti] dy.
(3.8)

The nature of the pseudoenergy construction guaran-
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tees that A is of quadratic order in disturbance am-
plitude, a fact that is made explicit in the representation
(3.8). Moreover, it is clear that if

ay;
do;

then A > 0 for all possible disturbances. Since A is a
dynamical invariant, this suggests that basic flows sat-
isfying (3.9) are stable (Holm et al. 1985; Swaters 1986;
Mclntyre and Shepherd 1987): to prove Liapunov sta-
bility d¥; /dQ; must be not only positive but bounded
away from zero and infinity. This is the well-known
extension of Arnol’d’s (1965, 1966) first stability theo-
rem to quasigeostrophic baroclinic flow. In the case of
zonally symmetric basic flows, the condition (3.9) takes
the form

>0, (3.9)

U; (y)
Q’(y)

where Q}(y) = dQ;/dy, which is recognized as Fjer-
toft’s sufficient condition for stability [e.g., Pedlosky
1987, Eq. (7.3.31a)]—though it should be emphasized
that the use of the exact (nonlinear) invariant (3.8)
demonstrates that the stability is valid for finite am-
plitude disturbances, indeed for disturbances of any
magnitude whatsoever.

The stability theorem described above will now be
used to derive rigorous saturation bounds on instabil-
ities, as in Shepherd (1988a), but here using the pseu-
doenergy rather than the pseudomomentum. To do
this we reverse the logic of the foregoing derivation and
consider the total flow rather than the basic flow as
being given. In particular, suppose we are given an ini-
tial condition at ¢ = 0, that is, {<I> P{¥, 2/}, whose
zonally averaged component is known (perhaps from
a normal-mode analysis) to be unstable. Then, for any
choice of a stable basic flow {¥;, Q;, I" } sansfymg
(3 9), the associated pseudoenergy A[P, , 24, O,
I'}] is conserved in time. Its initial value is simply

A0) = APV, 2,0, T]],  (3.11)

which is a functional of the given initial condition and
the choice of the stable basic flow. In order to derive
a bound on the amplitude of the instability, we
must bound this amplitude in terms of A(¢) and
thereby A(0).

To do this, first note that since ¥;(Q;) = 0,

(3.10)

gi
3 V) lmind? < | [¥:(Qs +8) — ¥i(Q))dd,

(3.12)

where the minimum will be considered to be taken
over both layers. [In fact, (3.12) applies to each layer
separately, with the minimum taken in that layer, but
we shall be content with the global minimum.] It is
then clear from (3.8) and (3.12) that



2700

1
fo % {Di|V¢1|? + D3| Vi |* + DiFi(¥1 — ¥2)

+ V0 | min( D14} + Dagd) }dy < A(1). (3.13)

The inequality (3.13) is still not what we want, because
the definition of the disturbance ¢; depends on the
choice of the stable basic flow. However, in order to
bound the instability we seek a constraint on the non-
zonal (or eddy) component of the total flow {®;,
P;}, and evidently

®i =y, Pi=gq; (3.14)

because the stable basic flow is zonally symmetric. The
left-hand side of (3.13) is quadratic and is thus sepa-
rable into its zonally averaged and nonzonal compo-
nents, both of which are necessarily positive; hence,
using (3.14) we may write

1
1 y ’ ! ! !
[ 1109%P + DIV& T + . Fi(@ - 232

+ W5(0) | min(D1 PR + Do PR) }dy < A(1). (3.15)

Taken together with (3.7), the inequality (3.15) pro-
vides a rigorous upper bound on a weighted combi-
nation of the energy and potential enstrophy of the
nonzonal component of the flow, the upper bound
consisting of the initial pseudoenergy (3.11). This may
be turned into a bound on the eddy energy alone by
using

l D ————
[ 201V + D, [VEL T + DyFi (@~ 277)

1 - RN
Xdy<7r‘2J; %{DIP’12+D2P’22}a’y (3.16)

[cf. Shepherd 1988a, Eq. (8.2)]. Combining (3.16)
with (3.15) and (3.7) then yields

1
1 ’ 7
[ 4 (oivei? + pivesr

A(0)
(1 + 7I'2\1,;'(Qi)|min) ’
(3.17)

This is the major result of this section. The right-hand
side of (3.17) is a functional of the initial flow and the
stable basic flow; for any basic flow satisfying (3.9) it
provides a rigorous upper bound on the eddy energy,
thereby providing a bound on the nonlinear saturation
of the instability. For a given initial flow, then, one
may evaluate the right-hand side of (3.17) for a variety
of possible choices of stable basic flow and choose the
smallest such value as the optimal bound.

+ D\ Fy(®) — ®5)*}dy <

4. Application to the Phillips model

The theory of the previous section is first applied to
the specific case of the Phillips (1954) model of baro-
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clinic instability, for which the initial zonal flow has
no meridional shear. The initial condition is, thus,
taken to consist of a zonal flow of the form
a0 _ s 3
dy F2(1+6)+u0, dy
plus a nonzonal (eddy) perturbation { ®?, P{O} 1t
was shown by Phillips (1954) that the flow (4.1) is
unstable for ¢ > 0 (provided the channel is not too
narrow); we therefore refer to ¢ as the (relative) su-
percriticality, which we regard as given. In the absence
of friction the problem is Galilean invariant, so the
constant i, is arbitrary; we keep it free for the time
being. (We could equally well set 15 = 0 and use a
combined pseudoenergy-pseudomomentum invariant
to obtain the nonlinear saturation bounds; the two ap-
proaches are, for this problem, entirely equivalent.)
Now introduce a subcritical (stable) basic flow,

=2 =8)tu Us=u,
F,

= U, (4'1)

(4.2)

where § is a free parameter, with corresponding poten-
tial vorticity gradients

o,

o R dos
BB (=0,

— = 8- 6(1 —9).
dy B — B )
(4.3)
For this basic flow, we have
U, B(1 —0)+ uk,

V)= =5 T TRET AU -1
o U w
Vi) = - 5=, (4.4)

which in both cases are constants (independent of y).
It is convenient at this stage to change variables from

U to
Bl —8)+ wk

CThnrRa-o Y
in terms of which (4.4) becomes
¥vi(Q)) = ¢
, _(1—-9) Fooo V¢
v5( (D) = o + (1 + F (1 5)) 5 (4.6)

For this basic flow to be stable by the criterion (3.9),
we evidently require the free parameters 6 and £ to
satisfy

£>0, u+(1+5(1—a))§>0. (4.7)

Fy6 F,
Now we seek to determine the right-hand side of (3.17)
for the initial and basic flows described above, and
minimize it over all 8, £ being consistent with (4.7).
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Since ¥ (Q;) is a constant in each layer, the integrals
over § in (3.8) evaluate exactly to

[Mtwie + o - wianaa= L wieia. @)

At t = 0, the disturbance ({;, g;) is given by

V=0 - ¥, = — Fﬁz (e + 6)()/ - %) + 3O,
(4.92)

Vo= 85— ¥, = 940, (4.9b)

F,
g =P"— Q=5 (c+0)|y-3)+ PO,
B 2
(4.9¢)

¢ =Py = Q= —Ble+ a)(y - ;) + P, (4.9d)

after using (4.1)-(4.3). [ The integration constant in
v is chosen, as described in Shepherd (1988a, §4), in
order to obtain the tightest bounds.] We can now sub-
stitute (4.6), (4.8), and (4.9) into the expression (3.8)
for A, separating zonal mean from eddy contributions,
to determine

1 2 2
.;4(0)=f0 %{Dl%(ew)%plﬂ%(ew)z
2 FZ 2
x(y—g) +Dlsﬁ2F—§(e+6>2(y—§)

(1~6))§]

2
X B%(e + 5)2(y - %) ]dy + Eo+ EZ 5,

(1-3) Fo V£,
+[~—————+(1+E(1 6))5]20,2,

(1-39)
Fyb

£
F,

+D2[ +(1+

Fy
(4.10)
where
1
£y = [ L {DIVEPT + DIva
0
+ D F (219 — @59)21dy  (4.11)
is the initial eddy energy, and
1
zy= [ 1D PVay @)
0

are the initial eddy potential enstrophies in each layer.
After performing the integration in y, the expression
(4.10) reduces to

SHEPHERD
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B(e + 8)?
24 F3

(1-9) Fooo S \ENL -
b +(1+F2(1 5))5]}+E0

. [ =9) F o \£],,
+£Zo,1+[ b +(1+F2(1 6))6]20’2'

(4.13)

Finally, it can be seen from (4.6) that, since £ = 0, we
have ¥ (Q,) < ¥5((Q,), unless > 1. No useful bound
is possible for 6 > 1; so we simply take

Wi(Q) min = ¥1(Q) = & (4.14)

The expressions (4.13) and (4.14) can then be substi-
tuted into the right-hand side of (3.17) to determine
an upper bound on the eddy energy, which is a function
of 6 and .

The goal is now to minimize this bound over all §
and £, consistent with (4.7). It turns out that the §
dependence is easy to deal with: unless § = O(1) in
which case—as we shall see—no useful constraint is
possible, it is straightforward to show that the right-
hand side of (3.17) is an increasing function of £. Hence
we take £ = 0, which is the minimum consistent with
(4.7). This choice corresponds to U; = 0. The range
of & consistent with (4.7) is then

0<s<L. (4.15)

With £ = 0, the right-hand side of (3.17) is just A(0),

which simplifies to

B(e +8)°
24 F}3

+ D,F3 [

(1—-9)

D\ F,
+ ==+ Ep+
(12D1 5 ) 0 an

VA 6,27

(4.16)

after using (2.3). Seeking the local minimum of (4.16),
setting d.A4(0)/38 = 0 leads to the cubic equation

24D,6% + D,(24¢ + F,)8% — D, Fi€é?

24 F.
- _62_2 Z4,=0.
One can then substitute the root of (4.17) that gives
the minimum of (4.16).
An important special case occurs when the initial
eddy amplitude is infinitesimal; this is the limit Ep —
0, Z5; = 0. In this limit the cubic (4.17) factors to

(e + 8)(24D,8% + D\ Fi6 — D, Fie) = 0, (4.18)

F 96¢\!/?
=_"]—-14+ s
é 48[ l__(1+ ) ] (4.19)

1

(4.17)

with roots
0= —g¢,

It can be seen that the root in (4.19) coﬁesponding to
the local minimum of (4.16) is the largest one, which
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is the one corresponding to the positive square root in
the second choice. Ideally one would substitute this
root into (4.16). However, it is clear that for e < F,/
96 this root is well approximated by § ~ ¢, and since
we are only interested in rough bounds this will suffice
in the present context, [ Recall that the bound is valid
for any choice of 6 satisfying (4.15), not just the optimal
choice.] So taking & = € across the full range, we obtain

’ 1 D,F 12
—#32(1 +—e)e,

6 2 7, (4.20)

which represents a rigorous upper bound on the eddy
energy for all ¢ < 1. Note in particular that the bound
goes to zero like € as the supercriticality e goes to zero.

The above bound can only be considered nontrivial
if it is less than the total amount of energy in the system,
which is clearly also a rigorous upper bound on the
eddy energy. For the limit Ej —> 0, Z ¢, — O the total
energy at ¢t = 0 is given by

~(0 ' ' B8 2
g:g[p§),2’,]=f “{D| = (1 +e)+ uy
o 2 Fz
2 B’ 2 1\
+D2M0+D1F1_2(1+€) y—= dy
F3 2

N -

((D; + Dz)uﬁ + 2D1 —Fﬂ— uo(l + E)
2

il aror+tor gty
lF% 12 i IF% .

However, this is not a Galilean-invariant quantity,
being dependent on gy, so we ought to choose 1, to
give the lowest value of total energy. This choice is
evidently uy = —BD;(1 + €)/F,(D, + D,), for which

_ 1 Dg? D, F

=3 +~). (4.21)

é" —_—
D+ D, 12

(1 +e)2(

This total energy (4.21) is to be compared with the
upper bound (4.20) on the eddy energy. Certainly for
sufficiently small ¢, (4.20) will be much smaller; while
for e = O(1), the two expressions will be of comparable
magnitude.

It is also of interest to compare (4.20) with the bound
on the eddy energy that is derivable from Shepherd’s
(1988a) bound on the eddy potential enstrophy. The
latter was obtained in the special case F; = F, = F, D;
= D, = 1, and is [cf. Shepherd 1988a, Eqs. (8.2) and
(5.5)]

1 B2
3

71'2

: (4.22)

valid for ¢ < 1. The ratio of the two in this case is

(4.20)=1rj(l 12

2
9
(422) ~ 2F +F€)—>E-I;, as e¢— 0. (4.23)
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For instability to be possible at all, 72> < 2F; so the
new bound based on pseudoenergy conservation is ev-
idently superior to the old one. In the “wide jet” limit
F — oo (where the deformation radius is much less
than the channel width), the new bound becomes in-
creasingly more powerful compared with (4.22).

5. Comparison with weakly nonlinear theory

When the supercriticality e is not too large, an explicit
nonlinear theory for the time evolution of a baroclinic
wave in the Phillips model can be constructed using a
perturbation expansion based on the supercriticality
as the small parameter. It is clearly of interest to com-
pare the saturation amplitudes predicted by this weakly
nonlinear theory with the rigorous bounds derived in
the previous section. Because the nonlinear theory takes
full account of the wave-mean interaction, it should
be compatible with the rigorous bounds, so long as the
perturbation expansion on which the theory is based
remains valid.

The original theory for the Phillips model was
worked out by Pedlosky (1970) based on single-wave
equilibration. It turns out that the single-wave analysis
breaks down at the point of minimum critical shear;
the correct theory at that point was derived by Pedlosky
(1982b), and later solved in an elegant analytical fash-
ion by Warn and Gauthier (1989). As one “de-tunes”
the system away from the resonance that occurs at
minimum critical shear, either by increasing the su-
percriticality or by changing the zonal wavenumber,
the single-wave theory becomes relevant (Pedlosky
1982a; Gauthier 1990). In Part I of this study (Shep-
herd 1988a, section 7), rigorous saturation bounds on
the eddy potential enstrophy were seen to compare fa-
vorably with the amplitudes predicted by Pedlosky’s
1970 theory. Here we compare the new energy bounds
derived in the previous section with the weakly non-
linear theories of Pedlosky (1970) and Warn and Gau-
thier (1989).

The weakly nonlinear theories treat the case of equal
layer depths, whence we take

D, =D, =1,

Fy=F,=F. (5.1)

Now, consider the evolution of the most unstable wave,
with total wavenumber « satisfying k2 = V2 F. Follow-
ing Pedlosky (1970), we write the marginal wave as

@) = AR {de" sin(my) },

@y = AVIR{ AFe" sin(7y)}, (5.2)
where A = B¢/ F is the absolute supercriticality, § is the
phase, ¥ = V2 — 1 for this case, and 4 is an am-
plitude that varies on the slow (nonlinear) time scale.
Note that there is no phase shift between ®' and ®5
to leading order. The corresponding wave energy is
then
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Be| A|>.

(5.3)

Pedlosky (1970) predicts, for inviscid evolution, a
maximum amplitude of

E'= 3 A1+ 32 + F(1 = 7)2]1417 =5

of 2N
Al = S84 2 (1 + 34

2
4
N N % ) + 4o, (54)

where 4o = |A(t = 0)]; the general expressions for ¢,;
and_N are given by Pedlosky (1970), but for «2
=V2F they take the values

2 - )=
cgi=__6___, =£___)7r_’ (5_5)
22 4+ 1)?F 42+ 1)

in which case
283 w2 FA} wiFA3\'/?
Pax = 1+ +{1+ .
Al = 1 T (10 )

(5.6)

To obtain the maximum wave energy we simply sub-
stitute (5.6) into (5.3).

Consider first the case where the initial wave am-
plitude is small, that is,

T2FA}
= < 1. .
[ 28 < (5.7)
Then, substituting (5.6) into (5.3) yields
’ B 2
Emax = =571+ p+ 0] (5.8)
T F

We wish to compare (5.8) with the rigorous bound
(4.16). From (5.3), it is evident that
Ey = Bed3, (5.9)
while P5 = 0 to leading order (see Pedlosky 1970), so
we may set Z o, = 0. This suggests that the smallest
value of (4.16) is well approximated by taking 6 = ¢
note that this would not be true for finite Z ;,. Taking
6 = ¢, then, and substituting (5.9), (4.16) implies the
rigorous upper bound
ﬂ2 2

F\ 1
E'<c 0 (12+€)+4;66Ao

2 12
=6—f[1 +—‘+%‘2-]. (5.10)

The ratio of the weakly nonlinear prediction to the
rigorous bound is then given by

(58) 6 1+ 5
(5.10) 7214 12F e+ 3z 2 2

as u—0,e— 0.511)
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Thus, in the limit 4 < 1 (infinitesimal initial wave am-
plitude) and € < 1 (weak supercriticality ), the rigorous
upper bound on the eddy energy is 72/6 ~ 1.65 times
the maximum eddy energy predicted by Pedlosky’s
(1970) single-wave theory. This ratio is independent
of F, ¢, or B3, indicating that the rigorous bound has
captured the essential scaling of the saturation ampli-
tude of the instability. As the initial wave amplitude
increases, the ratio (5.11) increases towards unity.

In the case u > 1, the maximum wave energy pre-
dicted by Pedlosky (1970) is, from (5.3) and (5.6),

max ~ ﬁEAZ
while the rigorous bound (4.16) is also approximately
given by Ej; thus both theories give the same value.
The fact that E’ is bounded by Ej is not trivial in the
sense that the total amount of energy contained in the
initial flow, which is given by Ej plus (4.21), may be
much larger than Ej for small Ej,

We now compare the bounds with the results of
Warn and Gauthier (1989). They use the form (5.2)
with A'/? replaced by ¢ (not to be confused with e used
above), for which the corresponding wave energy is
then

E' =

Fe?|4)%. (5.12)

4
In the inviscid case, Warn and Gauthier obtain an ex-
plicit solution for the wave amplitude as a function of
time. When the initial wave amplitude is small (the
case u < 1 considered above), they show that the wave
equilibrates with amplitude given by

18A 1 B%
2
' B 5 '1
| 4leq 3 Fe? 3 F?%? (5.13)
whence
ﬁZ
Eeq—m (e<1,u<1). (5.14)

This is one-half the rigorous bound (5.10) in the same
limit, and has the same dependence on 3, ¢, and F. Of
course, (5.14) is the equilibrated wave energy, not its
maximum value. Although Warn and Gauthier (1989)
do not provide an analytical expression for | A|max,
based on their Fig. 3 one can estimate

[ Ao 13 3

| A|2, TR
whence
B
Ela =~ —. 5.15
3F ( )

[ This estimate is also consistent with Fig. 2 of Gauthier
(1990).] The maximum wave energy (5.15) is larger
than the single-wave prediction (5.8) by a factor of
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7%/8 = 1.3, which is consistent with the early nu-
merical findings of Boville (1981), and it comes within
a factor of 6/8 = 0.75 of the rigorous upper bound
(5.10).

Although Warn and Gauthier (1989) treat the case
of finite u, they did not present a simple expression for
the maximum amplitude (or numerical results), which
could be compared with (5.10) in this case.

In summary, then, the rigorous upper bound on the
wave energy derived in section 4 captures the essential
scaling (in terms of 3, ¢, and F) of the maximum wave
energy predicted by the weakly nonlinear theories of
Pedlosky (1970) and Warn and Gauthier (1989) and
is, moreover, in remarkable quantitative agreement
with those predictions.

6. Comparison with baroclinic adjustment estimates

A popular approach to estimating the amplitude of
an unstable wave is to assume that it will grow until it
renders the zonal flow neutral to (normal mode) in-
stability: in the present context this is usually referred
to as the baroclinic adjustment hypothesis (Stone 1978;
Lindzen and Farrell 1980). Of course, there are many
difficulties with this sort of “quasilinear” argument,
not the least being that it is flatly contradicted by weakly
nonlinear theory: according to Pedlosky (1970), the
zonal flow becomes subcritical (not just neutral ) by an
amount equal to the initial supercriticality before the
wave stops growing. Numerical evidence from fully
developed nonlinear simulations is also not supportive
of the baroclinic adjustment hypothesis (e.g., Salmon
1980; Vallis 1988).

Nevertheless, the concept of baroclinic adjustment
provides a heuristic and easily calculated estimate of
wave amplitude, and it is instructive to work out its
implications in the present context. The hypothesis is
exceedingly simple to implement: the zonal flow is
presumed to adjust from its initial unstable configu-
ration (4.1) to a neutral configuration. One has merely
to be careful about the choice of the reference frame,
as this will affect the estimate of the energy released in
the adjustment process. A little thought suggests that
the correct estimate is the minimum one, which is ob-
tained on supposing opposite flows in the two layers:
thus, the zonal flow is presumed to adjust from an
initial configuration

. B _ g
-t B ——t = (1 +
2 ZF(1+6), & 2F( €),
(6.1)
to a final (neutral) configuration
() 3 (/)
_di‘__=_@_, _&:—_ﬁ_' (6.2)
dy 2F dy 2F

The energy released thereby can be shown to be given
by (4.21) less the same expression with ¢ = 0 [under
the condition (5.1)]; namely,
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B 6 €

le(l +F)(1 + 2).
Since certainly F > 6 for instability to be possible at
all, it is clear that the estimate (6.3) is consistent with
the rigorous upper bound (5.10). For F > 6 and ¢
< 1, (6.3) is equal to Warn and Gauthier’s (1989)
equilibrated energy (5.14). This is not at all surprising:
in the regime where (5.14) is valid, the flow evolves to
a state where the potential vorticity is homogenized in
a coarse-grain sense (see section 6 of Warn and Gau-
thier 1989), which upon inversion yields the zonal flow
(6.2).! This also explains why the baroclinic adjust-
ment hypothesis generally provides an underestimate
of the maximum amplitude, since during the equili-
bration process the flow initially “overmixes” the po-
tential vorticity, producing virtually a reversal of the
potential vorticity gradient in the lower layer (see Warn
and Gauthier 1989, Fig. 2b).

(6.3)

7. Bounds for general profiles

In this section an upper bound on the eddy energy
is worked out for a general class of unstable westerly
jets. The point is not so much to produce quantitatively
accurate bounds—experience (cf. Shepherd 1988a,b)
suggests this is usually best done on a case-by-case ba-
sis—but rather just to demonstrate that the method is
fully general, and to obtain the scaling dependencies
of the bounds.

The initial condition is therefore supposed to consist
of a zonal flow of the form

a3
-

aey)
== (1+ + - = u,
Fz( €)g(y) + o, dy

(7.1)

plus a nonzonal (eddy) perturbation { &%, Pi(®},
Apart from the constant 4, and the allowance for dif-
ferent layer depths, this is the same class of unstable
flows considered by Shepherd (1988a, section 4) in
obtaining bounds on the eddy potential enstrophy. As
in Shepherd, we take g(y) positive with a maximum
of unity (to give a westerly jet), and presume that g”(y)
< F,/(1 + ¢) so that the initial upper-layer zonal flow
is barotropically stable (in the sense that dp\” /dy is
single signed). The parameter 1 is arbitrary since the
problem is Galilean invariant, so we keep it free for
the time being. The potential vorticity gradients asso-
ciated with (7.1) are given by

! It is relevant in this respect that although the equilibrated zonal
flow generally differs from the neutral configuration (6.2), the dif-
ference vanishes in the limit F — oo (see Gauthier 1990, appendix
A).
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dpP” BF, 8 s B - _
20 421 - a+ "(y), =z — (1 —-48) and up = 0. (7.7)
& B8 7, (1+e)g(y) 7 (1+6e)g"(y) F,
ap® Thus, we may consider all #, and é consistent with
d2 =8-B(1 + e)g(y). (7.2) (7.7), in order to evaluate the right-hand side of (3.17)
Y

By hypothesis, dP\’/dy > 0; and evidently
dP®/dy < 0 for at least some y when ¢ > 0. Since
the upper-layer velocity is always larger (more westerly)
than the lower-layer velocity, it follows that the stability
criterion (3.10) can never be satisfied for the initial
flow (7.1), (7.2) when ¢ > 0. We, therefore, restrict
attention to such cases, referring to them as supercrit-
ical, even though they may not actually be subject to
an instability in every case.
Now introduce a subcritical (stable) basic flow,

=L (1= 0500 + w0, Ur=wo, (73)
2

where 6 is a free parameter, with corresponding poten-
tial-vorticity gradients

a0 _ g B
dy —ﬁ+ﬁF2(1 0)g(y) Fz(l 0)g"(y),

D2 _ 5 — 501 - )8(0). (7.4)
Y
For this basic flow, we have

, -__U

M= =50

_ —B(1 —0)g(y) — uF, (1.5)
BIE + Fi(1-0)g(y) —(1-0)g W]
TYQ) = — =22 %o (7.6)

T0) B -( -0’

Unlike the case with (4.4), these expressions are func-
tions of y. It is evident that dQ, / dy > 0 for both layers
(for 6 > 0), so in order to satisfy the stability criterion
(3.9) it is clearly sufficient if

1

.ﬂ(O)SL !

and obtain an upper bound on the eddy energy. Note
that (7.7) suggests we keep ¢ < 1.

It is clear that an explicit evaluation of A(0), as
was done for the case of the Phillips model (section
4), is not possible for general g(y). Instead, we must
make do with the fact that

gi

) [¥:(Q + §) — ¥i(0:)1dG < 5 ¥i(Qi) | maxd?
(7.8)

which is the counterpart to (3.12). From (7.8), (3.8),
and (3.11), it follows that

A0) < J;
+ DIFIW + ‘I’II(QI)ImaxDl(qg()))z

+ ¥5(Q2) [ max D2(95”)? }dy, (7.9)

where the initial disturbance {y/\”

1
2

1

SADIVYO P + Dy VYD 2

, g\ } is given by

Vi =2l - v, = - 1@ (e +8)G(y) + &,
2
(7.10a)

P =8 — ¥, = &40, (7.10b)

2
F
gﬁ‘l (e+8)G(y) + P{¥, (7.10c)
2
g = Py = 0y = —f(e + 9)G(y) + PAV; (7.10d)

here G(y) = f g(y)dy + A, with X a (as yet arbitrary)
constant of integration.

Substituting (7.10) into (7.9), and separating zonal-
mean and eddy contributions, yields

+

51D éi(e +8)’[g(»]* + DI F, g (e +8)’)[GNI* + ¥i(Q1) | maxD 6—2(6 +4)?
2 IF% IIF% 1 1) [ max IF%

2
X [g'(¥) = FIG(»)]? + ¥2(Q2) | max D2 f,—% (e + 5)2[F2G(y)]2}dy

where Fpand Z ; are given by (4.11) and (4.12). We
now must determine (or at least bound) the factors

+ Eo + V'i(Q)maxZ 01 + ¥2(Q) | maxZ 02, (7.11)

W'} (Q:)! max- Using the hypothesized properties of g(y),
note from (7.5) that
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vi(Q1)

< —B(1 — 8)g(y) — >
BILF; + Fi(1 —8)g(y) — F(1 —8)(1 +¢)7']

—B(1 — 6)g(y) — uF> Tt

BlF26 + Fi(1 —8)g(y)]  Bo

[it does not seem possible to do better than this without
knowledge of the minimum value of g(y)]; while like-
wise, from (7.6)

(7.12)

—Uo
v <—.
2(Q2) 8o
One may therefore take ¥ (Q;)|max < —Uo/ B0 [recall
this is positive, by condition (7.7)] in (7.11), which
gives

B2 (e + 8)? -
A0 =g [ ()]

(7.13)

Zto
Bé
[after using (2.3)], where Zp=Z0, + Z 2 and

+ Ep+ ( )zz,, (7.14)

D 1
A=A = '?lf [gz + Fle]dy,
0
Az = Ax(N)
D\ F, J“ 1
=S - &
2F2 0 F]
It seems clear that the right-hand side of (7.14) will be

minimized by making —u, as small as possible consis-
tent with (7.7), namely by taking

2 —2Gg' + (Fi + Fz)Gz]dy.

B
—up = — (1 —9). 7.15
to = ( ) (7.15)
It then follows from (7.6) that ¥;(Q;)|min = 0, so the
rigorous upper bound on the eddy energy—the right-
hand side of (3.17)—is simply given by (7.14) above,
with the substitution (7.15): that is,

32(6+5)2[ (1—-19)

72 A,+—6—-A2]+Eb+

(1-39)
F>6

Zy.

(7.16)

1
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The expression (7.16) is the counterpart to (4.16) for
the general class of unstable profiles (7.1), (7.2), and
it evidently bears a fair degree of resemblance. Apart
from the obvious dependence on 6, (7.16) also depends
on the free parameter A\. Without more information
on g(»), it is not possible to determine the optimal
choice of A. For fixed A\, however, the choice of é that
yields the minimum value of (7.16) will be one of the
roots of the cubic equation

2(e+ 8)[A18% + 8(1 — 8)A;]

F.
—(e+8)%A, — ﬂ—j Zh=0. (7.17)

In the special case of infinitesimal initial eddy am-
plitudes, Z ;, — 0, and the cubic (7.17) factors to yield

(e + 8)(2(A; — A)8% + Ad — Aye) =0, (7.18)
with roots

1
T 4(A, — Ay)
X (—Ay = VA2 + 8(A, — Ax)Aze). (7.19)

6= —¢ 0

The root in (7.19) corresponding to the local minimum
of (7.16) is the one corresponding to the positive square
root in the second choice. For ¢ < 1, this root can be
seen to be well approximated by 6 ~ e. Since we are
only interested in rough bounds anyway, we therefore
take & = ¢ across the full range of ¢, whereupon (7.16)
takes the form

46°

—5 (Ax + (A — Az)e)e (7.20)
F3

(valid in the limit Ey = 0, Z 5 — 0). The expression
(7.20) represents a rigorous upper bound on the eddy
energy for all € < 1 (since we have the restriction &
< 1). Note in particular that the bound goes to zero
like € as the supercriticality € goes to zero.

It is of interest to compare the rigorous bound (7.20)
with the total amount of energy in the system. In the
limit Ey — 0, Z 5 — O the total energy at ¢t = 0 is given
by

_ X 1 2 2
&= &P, 2',-]=f —{D1[§(1+e)g+ uo] +D2u5+D,F1%(l+e)2G2}dy
0 2 2

2

l 1
=3 ((Dl + Dy)ud + 2D, -l% up(1 + e)[L gdy]

2 1 62 1
+D1%(1 +e)2[J; gzdy]+D1F1Fg(l +e)2U0 szy]).
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As in section 4, we choose 1y to give the lowest value
of total energy. This choice is evidently

8D (1 + e)“o gdy]

Fy(Dy + Ds) ’

1

Uy = —

for which

D 2 t
é =% ;%3 (1+ e)z([J; gzdy]

N [ R

For sufficiently small ¢, the rigorous upper bound (7.20)
is much smaller than the total energy (7.21) and is
therefore providing a nontrivial constraint on the dy-
namics. For e = O(1), however, the two expressions
will be of comparable magnitude.

We may also compare (7.20) with the bound on the
eddy energy that is derivable from Shepherd’s (1988a)
bound on the eddy potential enstrophy for the initial
flow (7.1), (7.2) in the special case F, = F, = F, D,
= D, = 1. From Eqgs. (8.2) and (4.17) of Shepherd
(1988a), this bound is

-7% 4B2A(2 + v — (1 + ¥)e)e

4BZA26

1
2 F

Q2+v—-(1+7v)e), (7.22)

valid for e < (5 + 4y) ™!, where y = F ' max{—g"(»)}.
[1t should be pointed out that the footnote on p. 2017
of Shepherd (1988a) is incorrect (A. A. White, personal
communication): no such assumption is required in
order to obtain Eq. (4.5a).] Note that A, in the present
paper is identical (for the case of equal layer depths)
to F times A in the earlier paper. The ratio of the two
bounds in this case is

(7.20)=7r_2 Ay + (A — Ar)e
(7.22) F Ay2+v—(1+7v)e)
2
u ! as e—>0. (7.23)

T2F1+ (v/2)

As with the Phillips model (section 4), the new bound
is evidently generally superior to the old one, becoming
increasingly so in the wide-jet limit F — oo. When
F — oo or the horizontal curvature g”(y) is small, vy
becomes negligible, and the ratios (7.23) and (4.23)
are seen to be identical (in the limit € = 0).
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8. Discussion

In this paper, rigorous upper bounds have been de-
rived on the nonlinear saturation of baroclinic insta-
bility in the two-layer model. The bounds apply to the
eddy energy, and are obtained by appealing to the con-
servation of disturbance pseudoenergy (Mclntyre and
Shepherd 1987) relative to some stable basic flow. This
stable basic flow has no intrinsic physical significance,
but is simply a mathematical device: by considering a
family of basic flows, and minimizing the upper bound
over this family, an optimal (least) bound is obtained.

The present work is an extension of Part I of this
study (Shepherd 1988a), which employed pseudomo-
mentum conservation to derive upper bounds on the
eddy potential enstrophy for the same system. Since
energy and potential enstrophy do not provide equiv-
alent norms, it is of intrinsic interest to obtain bounds
on both quantities. For a bounded domain (like the
channel considered here), a potential enstrophy bound
leads immediately to an energy bound, after using a
Poincaré inequality [Shepherd 1988a, Eq. (8.2)], but
it is shown here that the energy bounds derived in this
manner are much weaker (less constraining) than those
obtainable from a direct appeal to pseudoenergy con-
servation, especially so in the wide-jet limit ¥ — oo.

Bounds on the energy have been worked out for the
special case of the Phillips (1954) model of baroclinic
instability (section 4). When the initial eddy amplitude
is infinitesimal, and in the special case of equal layer
depths, the bound takes the form

1,
1 ! A
[ ver + Wesr

+F(<1>'1-<I>’2)2}dy<6—2 1+£ee (8.1)
6F F

[a combination of (3.17) and (4.20) with (5.1)], where
e = (U — Ugit)/ Uqyt is the (relative) supercriticality.
This bound captures the essential dynamical scalings
(i.e., the dependence on ¢, 3, and F) of the saturation
amplitudes predicted by weakly nonlinear theory, as
well as exhibiting remarkable quantitative agreement
with those predictions (section 5), and is also consistent
with heuristic baroclinic adjustment estimates (section
6). For e < 1, the bound (8.1) is significant in the sense
that it is much smaller than the total amount of energy
in the system (which provides an obvious bound on
the eddy energy). In fact, (8.1) is smaller than the total
energy [given by (4.21) in the case (5.1)] for all ¢ sat-

isfying
12 42\ , 6
(2-——1?)6 (I—F)e <(1+}),
hence, in practice for e € O(1).
It is instructive to write the bounds (8.1) and (4.21)
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in terms of the initial vertical shear, U = (1 + ¢)/F.
This gives the combined bound

1
[ (701 + W& + F@i =257y

B 12
g;[l +6—F(UF—B)](UF—B)
UF(,8

w (147)

(8.2)

The upper of the two bounds in (8.2) corresponds to
(8.1) and applies for 1 < UF/B < 2, roughly; whereas
the lower of the two bounds corresponds to (4.21) and
represents the total amount of energy in the system: it
applies for UF /8 = 2, roughly. It is clear that in the
limit 8 — 0, the lower of the two bounds always applies,
and the nonlinear stability constraints are therefore
giving no useful information.

In terms of dimensional variables, the bound (8.1)
takes the form

B(Z)NZD3L3 (

12N?D?
673 €le,

(eddy energy) < 73L°
(8.3)

where (8, and f; are the dimensional 8 and fparameters,
D is the depth of each layer, L is the channel width,
and N? = g'/D where g’ is the reduced gravity. The
interesting thing to note about (8.3) is that it scales
like L3. The bound can thus be expected to be an over-
~ estimate of actual eddy amplitudes in the wide-jet limit,
where the eddy statistics are independent of L and the
spatially integrated eddy energy should therefore scale
like L (Haidvogel and Held 1980).

It has been pointed out to the author (P. H. Stone,
personal communication ) that the rigorous bounds on
the eddy potential enstrophy derived previously for the
Charney problem of baroclinic instability in a semi-
infinite, continuously stratified fluid (Shepherd 1989)
are consistent with conventional energy equipartition
arguments: to wit, upon taking the zonal length scale
_of the eddies to be the deformation radius, and their

meridional length scale to be the jet scale, one can show
that the saturation bounds, if attained, allow the eddy
kinetic energy to be of the same order of magnitude
as the mean (zonal) available potential energy. How-
ever, a little thought quickly shows that this will not
be the case with the two-layer model. As the super-
criticality e approaches zero, the bound on the eddy
energy likewise approaches zero; yet there remains
plenty of available potential energy in the zonal flow.

The theory in this paper has been derived under the
assumption of conservative (inviscid, unforced) flow.
Perhaps surprisingly, it turns out that the results go
through for a certain kind of forced-dissipative prob-
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lem, namely, where the potential vorticity is relaxed
back to the initial unstable state. The governing equa-
tion (2.1) is then replaced by

D, P;

o = TP P,

(3.4)
where r is the dissipation coefficient. This sort of system
was considered by Pedlosky (1982b), for example. The
pseudoenergy conservation law (3.7) is of course no
longer valid, but although one cannot show that d.A/
dt < 0 in general, it is nevertheless possible to establish
that

A(t) < A(0), (8.5)

from which the principal inequality (3.17) follows di-
rectly. The proof of (8.5) for the system (8.4) is given
for the case of two-dimensional (barotropic) flow in
Shepherd (1988b, section 4.2), where P = V@ + f
+ Gy rather than (2.2). It is a straightforward exercise
to verify that it goes through in the present case.
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APPENDIX

Derivation of (3.8) from (3.5)
From the definition (2.6), it follows that
[P, 27— 6[Qi, T']

1
I T2 +Llpive.?
-[ [§D1|V¢1|2+D1V‘I’1°V¢l+§D2|V‘!’2|2

+ D,VY,-Vi, + = DF1(¢1 (¥ — )2

+ D Fi (Y, — ) (¢ — lﬁz)]

1 I
ZJ; %{D11V¢1|2+D2[V\//2|2
— ¢1 =t
+ D Fi(¥1 —¥2)}dy + | DY — 3y

y=0

y=1
[Dz‘l’z %ﬁz] f {D\¥ VA, + D,V 2N
+ D\, F\(2 — ¥1) + D2V B (Y — ¥2) }dy,
(A1)

where (2.3) has been used. From the definition (2.7)
together with (3.6), it follows that
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elP, 21— €lQ, ']
1 Y P
- [D, ¥,(9)dd + D, \I’z(ci)dci}dy
0 o1 [e)

- DY, |y=0‘Y(1) — DY, |y=l'Y{
— DYV ly-0vd — DY ymivh

1 g1
= f [Dl ¥, (O + ci)dti
0 0

7
+ D, V(2 + Ci)dli]dy
a_ y=1 a' y=1
—[Dmg‘”—‘] —[Dzwzﬁ] . (A2)
y y=0 3y y=0

where (3.4b,c) have been used. We now use (3.4a) to
note that the integrand in the second y integral of (A1)
may be rewritten as

D\V,q, + D, ¥.q;
a g2

=Dy | Vi(Q)di+ D, | W(Q2)dg. (A3)

Substituting (A3) in the aforementioned integral in
(A1), and combining (A]) with (A2)asin (3.5), then
yields (3.8).
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