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A.  Abstract  

 

We present a simple sieving methodology to aid the recovery of large cultigen pollen grains, such as 

maize (Zea mays L.), manioc (Manihot esculenta Crantz), and sweet potato (Ipomoea batatas L.), 

among others, for the detection of food production using fossil pollen analysis of lake sediments in the 

tropical Americas. The new methodology was tested on three large study lakes located next to known 

and/or excavated pre-Columbian archaeological sites in South and Central America. Five paired 

samples, one treated by sieving, the other prepared using standard methodology, were compared for 

each of the three sites. Using the new methodology, chemically-digested sediment samples were 

passed through a 53 µm sieve, and the residue was retained, mounted in silicone oil, and counted for 

large cultigen pollen grains. The filtrate was mounted and analysed for pollen according to standard 

palynological procedures. Zea mays (L.) was recovered from the sediments of all three study lakes 

using the sieving technique, where no cultigen pollen had been previously recorded using the standard 



methodology. Confidence intervals demonstrate there is no significant difference in pollen 

assemblages between the sieved versus unsieved samples. Equal numbers of exotic Lycopodium 

spores added to both the filtrate and residue of the sieved samples allow for direct comparison of 

cultigen pollen abundance with the standard terrestrial pollen count. Our technique enables the 

isolation and rapid scanning for maize and other cultigen pollen in lake sediments, which, in 

conjunction with charcoal and pollen records, is key to determining land-use patterns and the 

environmental impact of pre-Columbian societies. 

 

Key words; Palynology, Pollen preparation techniques, Cultigen pollen, Zea mays, Pre-Columbian 

Archaeology, Pre-Columbian agriculture 



A. Introduction 

The pollen of domesticated plants, including maize (Zea mays L.), are key indicators of pre- and post-

Columbian food production in palaeoecological records throughout South and Central America (Bush 

et al., 1989, 2007a,b; Islebe et al., 1996; Northrop and Horn, 1996; Behling et al., 1998; Clement and 

Horn, 2001; Berrio et al., 2000, 2002; Piperno, 2006; Kennedy and Horn, 2008; Niemann and Behling, 

2010; Gessert et al., 2011). Maize pollen is particularly advantageous for the detection of food 

production in the palaeorecord because, although it has been shown to overlap in morphology, notably 

size, with its ancestor, Balsas teosinte (Zea mays subsp. parviglumis) (Matsuoka et al., 2002; Holst et 

al., 2007; Piperno et al., 2009; van Heerwaarden et al., 2011), maize pollen can be readily separated 

from that of other wild grasses by its size, surface sculpturing and exine structure (Holst et al., 2007). 

However, maize pollen is poorly dispersed from the source plants because of its large size (55 – 120 

m), as shown in both field and laboratory settings (Raynor, 1972; Jarosz et al., 2003), as well as in 

modern lacustrine environments (Lane et al., 2010). Additional staple food crops common to the 

Neotropics, such as manioc (Manihot esculenta Crantz), sweet potato (Ipomoea batatas L.), and 

squash (Cucurbita spp.) can also be useful indicators of food production, although, at present, 

insufficient studies have been conducted to distinguish the pollen of these domesticated varieties from 

their wild relatives. Similar to maize, Ipomoea batatas, Cucurbita spp., and Manihot esculenta 

produce large pollen grains (80 – 250 µm) (Herrera and Urrego, 1996), and because they are insect-

pollinated (Rogers, 1965; Hurd, 1971; Real, 1981; Rival and McKey, 2008), these crops also yield low 

quantities of pollen. 

 

Thus, key indicators of cultivation are generally rare within lacustrine fossil pollen records (Bush et 

al., 1989; Behling et al., 1998; Niemann and Behling, 2009), often represented by single grains in non-

contiguous horizons, but because of their poor dispersal, large cultigen pollen are considered to be 

strong indicators of local food production (Bryant and Hall 1993; Jones, 1994; Islebe et al., 1996; Pohl 

et al., 1996; Bush et al., 2007a; Lane et al., 2010). Palaeoecologists and archaeologists have therefore 

inferred cultivation from simple presence/absence of these rare pollen grains, rather than quantified 

variations in abundance afforded by more common pollen types.  



 

Given that it can be identified to species level, maize pollen is considered to be the strongest evidence 

of local food production in pre-Columbian archaeological and palaeoenvironmental studies (Clement 

and Horn, 2001). To increase the likelihood of its detection, palynologists often count outside the 

standard terrestrial pollen sum (typically 300 grains) (Bush et al., 1989; Clement and Horn, 2001; 

Anchukaitis and Horn, 2005; Horn and Kennedy, 2001, 2008), which can be a laborious and 

inefficient task. Even for a lake surrounded by cultivated maize fields, Zea pollen is either rare (< 80 

grains/cm
3
), or even absent, from standard terrestrial pollen sums (Lane et al., 2010). Also, the number 

of slides required to be scanned for maize pollen is likely to increase with lake area and distance from 

the site of cultivation, given these factors are negatively correlated with maize concentrations in 

lacustrine sedimentary environments (Lane et al., 2010).  

 

A better method that increases the probability of retrieving maize and other large cultigen pollen 

involves the concentration of these grains using a fine sieve. A detailed methodology has been 

described for the retrieval of cereal grains in northern Europe (Bowler and Hall, 1989), using a 30 µm 

aperture sieve. However, this methodology suffers from the disadvantage of requiring two sediment 

samples from a given stratigraphic horizon – one for the standard pollen preparation, and the other 

specifically for sieving for large cultigen pollen grains. Not only is this double-sample method time-

consuming compared to analysis of a single sample, it is also wasteful of sediment (a sparse 

commodity from a typical 5 cm diameter core) that could potentially be used for additional 

palaeoenvironmental proxy analyses.   

 

A.  Aims 

 

Here, we present a simple sieving methodology for detection of maize and other large cultigen pollen 

that does not suffer from the drawbacks of a double sampling protocol (Bowler and Hall, 1989). Our 

method incorporates sieving as an extra key step within a standard chemical digestion pollen protocol 



(Faegri and Iverson, 1989), which markedly increases the likelihood and ease of recovery of maize 

and other large pollen from staple crops of South and Central America from lake sediments.  

 

A.  Study sites 

 

We tested our methodology on sediments of three lakes from two distinct regions in Latin America, 

each located near to known archaeological sites (Fig. 1). Lake data are summarized in Table I.  

 

B.  Region 1: Northern Belize 

 

Belize is located in the southeastern part of the Yucatán peninsula, bordered by Mexico to the north, 

Guatemala to the south and west, and the Caribbean Sea to the east. This country is characterized by 

extensive pre-Columbian Maya occupation, including Lamanai, a site located in the north-central part 

of Belize where archaeological evidence points to continuous occupation from 300 BC to AD 1675 

AD (Pendergast, 1986; Graham, 2001, 2004). The Maya settlement at Lamanai is located on the west 

shore of our study site, New River Lagoon (NRL), a substantial open-water body 60 km from the 

estuary of New River, one of the largest rivers in northern Belize (Table I). The vegetation at Lamanai 

is characterized by lowland evergreen broad-leaved forest (Bridgewater et al., 2002). A large swathe 

of marshy vegetation forms the eastern boundary of the lagoon (Metcalfe et al., 2009; Meerman and 

Sabido, 2001). Although a lake-level reconstruction from NRL points to shifts in the late Holocene 

precipitation regime in northern Belize (Metcalfe et al., 2009), there is no archaeological or 

palaeolimnological evidence of Terminal/Late Classic collapse (ca. AD 750-1050) (Graham, 2004; 

Metcalfe et al., 2009), unlike neighbouring archaeological sites in Belize (Alcala-Herrera et al., 1994; 

Jacob and Halmark, 1996), Guatemala (Hodell et al., 2001) and Mexico (Curtis et al., 1996; Hodell et 

al., 2005). 

 

B.  Region 2: Llanos de Moxos, Bolivia 

 



The Llanos de Moxos is a large hydrological basin (130,000 km
2
) in SW Amazonia, situated in the 

Beni department, lowland Bolivia. The Llanos de Moxos is characterized by a mosaic landscape that 

consists predominantly of seasonally-inundated savannahs, interspersed with forested mounds and 

river levées (Orellana et al., 2004). Large-scale pre-Columbian earthworks, including habitation 

mounds, raised fields, canals, causeways and fish weirs (Denevan, 1966; Erickson, 2000; Mann, 2008; 

Lombardo and Prümers, 2010; Lombardo et al., 2011) have been identified throughout the region. 

Approximately 50 km east of Trinidad, the capital of the Beni department, the pre-Columbian 

earthworks consist of extensive large habitation mounds (> 100), canals and causeways (Lombardo 

and Prümers, 2010). Situated among these archaeological features, Laguna San José is one of many 

flat-bottomed and shallow rectilinear lakes dispersed across the Llanos de Moxos (Clapperton, 1993). 

Two large habitation mounds, Loma Salvatierra and Loma Mendoza, lie within 2 km of Laguna San 

José, and have been extensively excavated by archaeologists (Prümers 2008, 2009a, 2009b; Lombardo 

and Prümers, 2010; Dickau et al. 2011). Several additional pre-Columbian earthworks surround the 

lake, including a canal located within 100 m of its northwestern shore (Lombardo and Prümers, 2010). 

Dominant vegetation around Laguna San José includes seasonally-inundated savannahs, some of 

which are used for cattle pasture. Forest patches are located near the lake shore. Situated 

approximately 80 km west of Trinidad, Laguna Isireri is another large, rectilinear lake adjacent to the 

town of San Ignacio de Moxos. Typical of the northern and western region of the Llanos de Moxos, 

evidence of pre-Columbian land-use in this area consists of raised field cultivation (Mann, 2008), and 

several raised fields have been identified adjacent to Laguna Isireri (Saavedra, 2009). Although the 

local vegetation has been heavily modified in recent centuries, the dominant vegetation in the region is 

seasonally-inundated savannah, with forest fringing the lake shore. 

 



 

Fig. 1. Location of (a) New River Lagoon, adjacent the Maya settlement at Lamanai, in Belize, and (b) 

Lagunas San Jose and Isireri, situated near to habitation mounds and raised fields, respectively, in the 

Beni department, lowland Bolivia. 

 

 

 

 

Table I. Site information for the three study lakes, coring location, sediment type, and key 

archaeological features 

 
 Country Core 

Location 
Area Water 

depth 
at core 
site 

Sediment 
type 

Archaeology Dist. of 
core to 
lake shore 

Dist. of shore to 
nearest 
archaeological 
feature 

Laguna 
San 
Jose 

Bolivia 14°56’58”S 
64°29’42”W 

14.4 
km

2
 

1.0 m Clay Habitation 
mounds, 
causeways, 
canals 

500 m < 100 m 

Laguna 
Isireri 

Bolivia 14°59’16”S 
65°41’04”W 
 

19.0 
km

2
 

1.5 m Clay Raised Fields 1000 m Several 
kilometres 

New 
River 
Lagoon 

Belize 17°45’09”N 
88°39’16”W 

13.5 
km

2
 

2.0 m 
 

Organics in 
carbonate 
matrix 

Maya 
Settlement 
(Lamanai) 

< 10 m < 10 m 

 



 

A.  Methods 

 

B.  Sediment collection 

 

Belize:  

The NRL core was taken in 1999 from a jetty adjacent to the Lamanai settlement using a square-rod 

modified Livingstone piston corer. Four consecutive cores, totalling 319 cm of sediment, were 

recovered. Cores were shipped in plastic piping and stored at 4°C. Details of six radiocarbon dates, 

reported in Metcalfe et al. (2009), demonstrate the core spans 1800 BC to 1500 AD. Sediments from 

the NRL core comprise organics within a calcareous matrix, with increasing abundance of silts and 

clays down core.  

 

Bolivia:  

Surface-sediment coring of the two lakes was performed in June and July 2010 using a 5 cm diameter 

Perspex

 tube and piston from a floating platform. Surface cores of 31 cm (San Jose) and 51 cm 

(Isireri) were extruded in consecutive 0.5 cm increments in the field into sealed plastic bags or screw-

lid bottles, and shipped to the University of Edinburgh where they were stored at 4°C. Sediments from 

both cores are clay-rich and contain very little organic matter (< 5%), as estimated through loss-on-

ignition at 550°C. 

 

B.  Summary of Protocol 

 

For each of the three study lakes, five pairs of 1 cm
3
 sediment samples were prepared. For each pair, 

both samples received identical chemical treatments, but one sample was treated with an extra sieving 

stage (53 µm), while the other control sample, taken from the same stratigraphic horizon, was not 

sieved.  

 



Standard chemical digestion protocol was used for the preparation of all fossil pollen samples (Faegri 

and Iversen, 1989; Bennett and Willis, 2001), including hot 10% NaOH, 40% HF (with the exception 

of NRL), and acetolysis treatments. However, the lengths and types of treatment differed somewhat 

between lakes, according to differences in sediment lithology. The sequence of chemical treatments 

performed for each study lake is outlined in Fig. 2. In clayey sediments from the two Llanos de Moxos 

lakes, sample preparation began with a hot 5% sodium pyrophosphate treatment to disaggregrate clays 

(Bates et al., 1978), followed by repeated rinses with water until the supernatant became clear. 

Hydrofluoric acid and acetylosis treatments followed, after which the samples were passed through a 

53 µm sieve (details below). The predominantly calcareous sediments from NRL in Belize were 

initially treated with cold 10% HCl until the sample stopped effervescing. New River Lagoon samples 

were not treated with HF, but instead were treated with hot Calgon, and repeatedly rinsed until the 

supernatant was clear of suspended clays. Acetolysis followed the removal of clays. After the 

chemical treatments detailed above had been completed, samples from all three sites were passed 

through a 53 µm sieve, as described below, to isolate the large cultigen pollen grains.   



 

Fig. 2. Flowchart of the pollen preparation method used for each study site, and incorporating the 

sieving stage. 

 



B.  Isolation of large pollen grains 

 

We used a 53 m aperture sieve to isolate maize and other large cultigen pollen, based on the 

minimum size of maize pollen in Mesoamerica determined by Holst et al. (2007). Also, pollen of 

Cucurbita spp., Ipomoea batatas, and Manihot esculenta all have diameters > 80 µm (Herrera and 

Urrego, 1996). Preparations were begun by suspending the pellet in 10 ml of 10% NaOH, and heating 

in a boiling water bath for 5 min, stirring occasionally to disaggregate the sample. Samples were 

transferred to a small beaker, using deionized water to rinse the contents of the tube into the beaker. 

Approximately 30 ml of water was used to transfer the sample.  

 

The sample was passed through a 53 µm brass sieve with a few short blasts of deionized water from a 

wash bottle, and in doing so, we tried to keep the total volume of filtrate < 100 ml. The filtrate was 

saved for the standard terrestrial pollen count, and the residue was easily washed off the sieve into a 

15 ml centrifuge tube, reserved for large (>53 µm) pollen grains. The filtrate was concentrated by 

centrifuging in 15 ml tubes at 3500 rpm, decanting, and topping up with additional filtrate until all of 

the fine fraction was contained in the pellet. All 15 ml tubes, now double the original number, were 

centrifuged and decanted.  

 

At this stage, we checked to ensure whether the sieving had been successful (Fig. 2). Selected tubes 

containing the coarse fraction (> 53 µm) of a sample were whirly-mixed, and, using a clean pipette, a 

small aliquot of the sample was transferred onto a slide and scanned at 100x magnification to check if 

the sample contained small (< 53 µm) pollen and/or ‘clumped’ organic material which binds small 

pollen and prevents it from passing through the sieve. Although this was rarely the case, if the sieving 

stage was found to be ineffective, the coarse fraction (residue) can be re-suspended in 10% NaOH and 

re-sieved. The resulting filtrate can be concentrated as above, and combined with the fine fraction 

from the first sieving attempt. 

 



After the sieving stage, an equal number of Lycopodium tablets (Stockmarr, 1971) were added to each 

tube containing the residue and filtrate. The separated coarse and fine fractions were then dehydrated 

in tertiary-butyl alcohol and mounted in silicone oil for analysis. 

 

B.  Pollen Identification and Counting 

 

The separated coarse and fine fractions were both mounted on slides for analysis. Identifications of all 

pollen types were made according to published tropical pollen floras (Roubik and Moreno, 1991; 

Herrera and Urrego, 1996; Colinvaux et al., 1999), a digital tropical pollen database (Bush and Weng, 

2007), and a Neotropical pollen reference collection consisting of > 1000 specimens (collected from 

herbaria at the ‘Noel Kempff Mercado’ Natural History Museum in Santa Cruz, Bolivia, and the Royal 

Botanic Garden Edinburgh (RBGE)), held at the School of Geosciences, The University of Edinburgh. 

Additional reference literature (Palacios-Chávez et al., 1991) was used for the identification of pollen 

from Belizean samples, as well as an additional 60 reference specimens of common pollen types of the 

Yucatán peninsula prepared from herbarium material collected from the RBGE, and held in the School 

of Geography, the University of Nottingham. The identification of Zea mays was confirmed using the 

criteria outlined in Holst et al. (2007), including analysis of the distribution of exine intertectile 

columnellae using phase contrast at 1000x magnification, to distinguish it from the large grains of the 

genus Tripsacum (Poaceae).  

 

Fine fractions (< 53 µm) were counted at 400x magnification for the standard terrestrial pollen count 

of 300 grains, and coarse fractions (> 53 µm) were counted at 100x magnification for large cultigen 

pollen grains, in particular, Zea mays (maize), Cucurbita (squash), Manihot (manioc) and Ipomoea 

batatas-type (sweet potato). Results of cultigen pollen counts from each sample are presented in Table 

II. Counting the coarse fraction also allowed us to determine the number and type of small (< 53 µm) 

pollen grains caught on the sieve that should have been washed through the sieve into the filtrate. This 

was calculated using the Lycopodium counts of each fraction to relate the standard terrestrial pollen 



count (fine fraction) to the coarse fraction count. However, we found that only a negligible number of 

small pollen grains were inadvertently caught in the coarse fraction (Table II).  

 

Table II.  Results of the coarse (> 53 µm) fraction for each sample analyzed including number 

of slides scanned for cultigen pollen, the proportion of small (< 53 µm) pollen grains 

inadvertently retained within the coarse fractions, and number and type of cultigen pollen 

recovered. The equivalent terrestrial pollen count refers to the number of pollen grains that the 

volume of residue scanned would have contained were it unsieved. See ‘statistics’ for further 

details. 

 

Sample 

No. of 
slides 
scanned for 
cultigen 
pollen 

Equivalent 
terrestrial 
pollen 
count  

No. of small (< 
53 µm) pollen 
counted on 
slides from 
coarse fraction 

% small pollen 
on coarse 
fraction slides, 
relative to 
standard count 

No. of 
cultigen 
pollen grains 
recovered 

NRL      

1 2 1096 2 0.2 % nil 

2 1 640 0 0 7 x Z. mays 

3 2 1116 5 0.4 % nil 

4 1 505 4 0.8 % 5 x Z. mays 

5 2 776 8 1.0 % 16 x Z. mays 

L. San Jose 

6 3 2876 2 0.07 % nil 

7 3 16168 10 0.06 % 2 x Z. mays 

8 2 14202 29 0.20 % 3 x Z. mays 

9 3 23519 8 0.03 % 2 x Z. mays 

10 3 33672 31 0.09 % 1 x Z. mays 

L. Isireri 

11 3 788 4 0.5 % nil 

12 6 6382 2 0.03 % nil 

13 3 4943 7 0.1 % nil 

14 3 2986 4 0.1 % nil 

15 7 1891 4 0.2 % 1 x Z. mays 

 

 
Large non-cultigen pollen grains that palaeoecologists would usually include as components 

of the standard terrestrial pollen count, for example Inga spp. and Annona spp., are also concentrated 

in the coarse fraction. These grains usually comprise a very low proportion of the pollen sum, but their 

presence can be of high ecological value for the interpretation of the pollen signal. An exception, 

however, is Pinus pollen (> 53 µm), which are highly abundant in pollen assemblages from the 

Yucatan (Bhattacharya et al. 2011), where Pinus caribaea is an ecological dominant of Belizean 

lowland savannahs. In samples from NRL, this taxon comprises a significant proportion of the 

terrestrial pollen sum. However, here we included Pinus in the main sum by scanning the coarse 

fraction for Pinus until the number of Lycopodium spores encountered on the slide was equal to the 



number counted in the fine fraction for the standard terrestrial pollen count. Given that we found an 

equal count of Lycopodium spores was usually encountered in the first few transects across the 

coverslip, this is not a time-consuming task. Percent abundance of Pinus determined using this 

methodology for the sieved NRL samples are compared with standard non-sieved counts in Fig. 3. 



 

Fig. 3. Bar plots with 95% confidence intervals comparing sieved and unsieved percent abundances of 

key taxa found in each study site.  Pinus is only present in assemblages from NRL, and Cyperaceae 

was excluded from the terrestrial sum at NRL because of the abundance of emergent aquatic 

vegetation at the site.   

 



B.  Statistics 

 

Confidence intervals (95%) were calculated using the modification of Maher’s lognormal distributions 

method in Psimpoll (Maher, 1972; Bennett, 2007). To relate the volume of sample analyzed from the 

coarse fraction to that of the standard terrestrial pollen count, or the ‘count equivalent’ (Table II), the 

number of Lycopodium spores found on the coarse fraction slide was expressed as a proportion of the 

Lycopodium count of the main pollen sum. For example, if 100 Lycopodium spores were encountered 

in the standard terrestrial pollen count and 1000 spores were counted on the coarse fraction slide, then 

the volume of material on the coarse fraction slide represents 10x the amount of sample analyzed for 

the standard terrestrial pollen count. 

 

To determine what proportion of small pollen grains (< 53 µm) were unintentionally retained in the 

coarse fraction (sieve residue) during preparation, the number of small grains that were encountered in 

the coarse fraction slide were expressed as a percentage of the main pollen sum using the 

aforementioned ‘count equivalent’. Expanding on the above example, and assuming a standard count 

of 300 grains, the amount of residue scanned in the coarse fraction is equivalent to a count of 3000 

pollen grains. Thus, if 30 small pollen grains were found on the coarse fraction slide, we can estimate 

that this equates to approximately 1% of the 300-grain standard pollen sum (Table II).  

 

A.  Results and Analysis 

 

Our results demonstrate that sieving at 53 µm successfully isolates large cultigen pollen grains such as 

Zea mays (Table II). Although this is the only cultigen pollen type found in the test samples, 

subsequent use of this technique has yielded Cucurbita (squash) pollen at NRL, and Manihot (manioc) 

and Ipomoea batatas-type (sweet potato) pollen grains in sediments from an additional study site in 

French Guiana (unpublished data).  

 



All three study sites are substantial water bodies and cores from Lagunas Isireri and San José were 

taken 1000 m and 500 m from the lake shore, respectively, to ensure the recovery of a continuous 

sediment sequence in case of lower lake levels due to past drought (the NRL core was taken within a 

few metres of the shore, adjacent to the Maya settlement Lamanai). Despite the considerable distance 

of the core location from shore, which is shown to reduce maize pollen concentrations in the sediment 

(Lane et al., 2010), we found maize pollen in all samples analyzed from the San José core. 

Furthermore, the concentration of large pollen (> 53 µm) by sieving was particularly successful for 

this site, where in some horizons, the proportion of 1 cm
3
 sediment sample examined for the coarse 

fraction equated to over 100x the proportion of the sample examined for the standard terrestrial pollen 

sum (Table II).  It follows then, that even if the samples were scanned outside the standard terrestrial 

pollen sum, it is highly improbable that any Zea mays grains would have been found at Lagunas San 

José and Isireri if this additional sieving stage had not been employed. 

 

Zea mays pollen recovery was higher for sediments from NRL, which is unsurprising given the 

proximity of the core to Lamanai.  However, analysis of previously unsieved preparations from NRL 

revealed no cultigen pollen within the standard terrestrial pollen count, which meant that additional 

steps were necessary to isolate Zea mays from this site. This could have been achieved by scanning the 

unsieved preparations outside the pollen sum, but this too would have been very time-consuming, 

requiring the scanning of numerous additional pollen slide preparations.  In contrast, maize pollen was 

encountered in the first coarse-fraction slide analyzed in our new sieving methodology, thereby 

considerably reducing the amount of time an analyst needs to invest in searching for evidence of pre-

Columbian cultivation. 

 

Confidence intervals calculated for the paired samples (Bennett, 2007) demonstrate that the added 

sieving stage does not concentrate small pollen grains such as Cecropia or reduce the relative 

abundance of larger grains such as Poaceae. Furthermore, whatever small (< 53 µm) grains are caught 

in the coarse fraction, they are not disproportionately-represented by any particular pollen type. 

However, the number of small grains trapped in the coarse fraction is negligible (< 1%) if care is taken 



to properly digest the sediments prior to sieving. Moreover, the 95% confidence intervals show tight 

overlap among the sieved and unsieved pollen percentage values for Pinus in the NRL record, which 

means that large (> 53 µm) pollen grains can be confidently incorporated into the terrestrial sum using 

equivalent Lycopodium counts on both fine and coarse fraction slides. 

 

A further key advantage to including our coarse-sieving stage is that the pollen assemblages in the fine 

fraction are more concentrated, and comprise ‘cleaner’ preparations, than those for non-sieved 

samples, making the process of pollen counting significantly faster and easier. To reach a count of 300 

terrestrial grains can be relatively time-consuming in the analysis of largely inorganic sediments from 

large lakes in the Bolivian lowlands where pollen concentrations are often relatively low. Analysis of 

unsieved samples from NRL was particularly laborious (HF was not used in the preparation of these 

samples), and in most horizons, an average of seven slides were required to achieve a sum of near to 

300 terrestrial grains. However, incorporating our sieving stage (53 µm) concentrated the samples 

such that full counts were reached in only two slides. 

 

A.  Recommendations for best sieving practice 

 

The most important factors in ensuring a good recovery of small (< 53 µm) pollen grains in the filtrate 

were: (i) choosing the appropriate chemical treatments for each sediment type, and (ii) sufficient 

rinsing with deionized water to remove chemical residues after each treatment, particularly HF. 

Standard chemical digestion protocol (Faegri and Iversen, 1989; Bennett and Willis, 2001) describes a 

set sequence of stages for the preparation of fossil pollen, often beginning preparations with the hot 

NaOH (or KOH) treatment. Although this sequence works well for organic samples, such as peat and 

gyttja, in the case of tropical sediments containing high proportions of clays and silts, the analyst is 

best served by first tackling the removal of inorganic matter to facilitate further chemical treatments. 

Secondly, intensive HF treatments (two treatments of 40% HF for 30 minutes in a hot water bath) are 

frequently required for lake sediments from tropical regions where the abundance of very small pollen 

(e.g. Cecropia and Mimosa, < 5 µm diameter) precludes the possibility of fine sieving (Cwynar et al., 



1979) for the removal of clays and fine silts. However, the chemical residues from the digestion of 

silica (fluorosilicates), resulting from intensive HF treatment, often create a sticky black pellet that 

does not easily disperse in liquid. Although a common solution to the problem of fluorosilicate build-

up is the use of a hot 10% HCl treatment (Bennett and Willis, 2001), we found that 3-4 rinses in 

deionized water following the HF treatment removed the chemical residues and allowed the pellet to 

disperse in liquid. Further care was taken to ensure that all chemical residues were removed after each 

treatment, thereby ensuring the pellet was not clumped before we proceeded with the sieving step. 

 

We advise against the use of 50 ml centrifuge tubes for concentrating the filtrate without further 

experimentation to adjust the speed and/or time of centrifugation. Initially, we sieved at 53 µm using 

generous volumes of water (400 – 500 ml) to get the best pollen recovery in the fine fraction, but this 

practise diluted the fine fraction to such an extent that concentrating the pellet was difficult. After 

several rounds of centrifugation in 50 ml tubes, the fine organic material (and with it, small pollen) 

gathered on the angled sides at the bottom of the tube instead of forming a discrete pellet. This made 

decanting very difficult, and we lost a sizeable proportion of fine pollen grains, in particular, 

Cecropia, experimenting with this method. Instead, we found the judicious use of ~ 100 ml of water, 

which resulted in a volume of filtrate that can be reasonably concentrated in 15 ml tubes, gave the best 

results. Also, increasing the centrifuge speed from 3000 to 3500 rpm ensured a better recovery of 

small grains in the filtrate. 

 

A.  Implications for palaeoecology and archaeology in the Americas 

 

Where palaeoecological studies rely on terrestrial pollen and charcocal records from lake and bog 

sediments to demonstrate evidence of past land-use practices in archaeological contexts, changing 

climate can present a complicating story, particularly in regions like the Yucatan peninsula, which has 

experienced large shifts in its precipitation regime over the past few millennia (Hodell, 1995, 2001; 

Curtis et al., 1996; Metcalfe et al., 2009), and in the southern hemisphere tropics of South America, 

where rising precipitation in the late Holocene (Baker et al., 2001; Mayle and Power, 2008) has 



resulted in shifting Amazon forest-savannah boundaries (Mayle et al., 2000; Burbridge et al., 2004). 

Thus, disentangling the relative impacts of changes in human land-use, climate, and fire regime, upon 

past vegetation can prove problematic. Crucially, direct evidence of crop cultivation is required to 

unequivocally demonstrate human land-use in the palaeorecord, but the recovery of large cultigen 

pollen has often proved difficult due to its rarity in pollen assemblages. Starch grain and phytolith 

analyses from selected archaeological features and residues from food containers (ceramics, bottle 

gourds) and plant processing tools (manos, edge ground cobbles, ceramic graters), in addition to 

combined analysis of phytoliths, pollen and charcoal from lake and wetland sediments, have been 

successful in addressing this issue (Pearsall et al., 2003; Iriarte et al., 2004; Piperno et al., 2007, 2009; 

Duncan et al., 2009; Dickau et al., 2011). However, some important food crops, notably Manihot 

esculenta and Ipomoea batatas, do not produce diagnostic phytoliths (Piperno, 2006). The 

combination of all three techniques from archaeological contexts and lake sediments provides the most 

complete picture of the natural environments and plant associations in which the first farming arose 

(Piperno et al. 2007, 2009; Denham et al., 2003; Ranere et al. 2009) and assessing pre-Columbian land 

use in palaeoenvironmental studies (Pearsall, 2000), particularly as a lack of comparative pollen 

morphology studies means that at present, cultivated varieties of domesticated plants (Ipomoea 

batatas, Manihot esculenta) are palynologically indistinguishable from some of their wild relatives. 

However, in the absence of these multiproxy analyses, cultigen pollen types in conjunction with 

evidence of forest clearance and/or disturbance, along with charcoal evidence for anthropogenic fires, 

is strong evidence of local human activities. Among many research topics, this improved technique for 

recovering cultigen pollen will allow palaeoecologists and archaeologists alike to maximize their 

chances of detecting early food-production and assess past human impact on the Neotropics, even in 

regions where archaeology and archaeobotany are at a very early stage of development. Similarly, it 

will prove crucial to documenting the practice of early slash-and-burn agriculture (e.g., Piperno et al. 

1991), which unlike irrigation canals, raised fields, and agricultural terraces, does not leave visible 

imprints on landscapes. Lastly, it will help better understand arguably the most dramatic changes in 

land-use practices since the Pleistocene-Holocene transition brought by the 1492 Columbian 

Encounter (Turner and Butzer, 1992).  
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