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SUMMARY 
The classical problem of the response of a balanced, axisymmetric vortex to thermal and mechanical 

forcing is re-examined, paying special attention to the lower boundary condition. The correct condition is 
DCP/Dt = 0, where CP is the geopotential and D/Dt the material derivative, which explicitly accounts for a mass 
redistribution as part of the mean-flow response. This redistribution is neglected when using the boundary 
condition Dp/Dt = 0, which has conventionally been applied in this problem. It is shown that applying the 
incorrect boundary condition, and thereby ignoring the surface pressure change, leads to a zonal wind 
acceleration that is too strong, especially near the surface. The effect is significant for planetary-scale 
forcing even when applied at tropopause level. 

A comparison is made between the mean-flow evolution in a baroclinic life-cycle, as simulated in a fully 
nonlinear, primitive-equation model, and that predicted by using the simulated eddy fluxes in the zonally- 
symmetric response problem. Use of the correct lower boundary condition is shown to lead to improved 
agreement. 

1. INTRODUCTION 

In the classical theory of a balanced, axisymmetric vortex (Eliassen 1951), the 
application of a zonally-symmetric thermal or mechanical force induces a response that 
acts to keep the vortex in a state of balance. The response consists of both an adjustment 
of the wind and temperature fields of the vortex, as well as an induced circulation in the 
meridional plane. This viewpoint has proved to be of great utility in understanding the 
effects of eddy transports and of friction on the zonally-symmetric circulation (Eliassen 
1951; Kuo 1956; Dickinson 1969; Andrews and McIntyre 1976; Pfeffer 1981, 1987; 
Crawford and Sasamori 1981; Plumb 1982; Hayashi 1985; Palmer el al. 1986), including 
the important question of the ‘maintenance of the westerlies’. 

The mathematical structure of the quasi-geostrophic response problem is that of a 
Poisson equation, namely of the form 3(@) = 9, where @ is a mean-flow variable (for 
example, the zonal wind acceleration aE/af), 9 is a forcing term, and 3 is an elliptic 
operator. For given 3, the operator 3 must be inverted to find the response @. In solving 
such an inversion problem, appropriate boundary conditions must be imposed. In the 
meteorological context one usually considers a semi-infinite atmosphere, either in a 
zonally-symmetric channel or on the sphere. While the upper and lateral boundary 
conditions are then straightforward (no vertical mass flux, and no meridional flow, 
respectively), the lower boundary condition is more problematical. The correct condition 
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is that there be no flow across the lower boundary. If the boundary is a (horizontal) 
geopotential surface, then in geometrical coordinates the vertical velocity must vanish 
there, equivalently D@/Dt = 0 where @ is the geopotential and D/Dt the material 
derivative. It does not follow that the vertical velocity in pressure coordinates, 
o = Dp/Dt,  or that in log-pressure coordinates, w = Dz/Dt = - H o / p  need vanish, even 
in the absence of topography. 

Nonetheless, for reasons of computational simplicity, or otherwise, it has been 
conventional to solve the inversion problem under the assumption that the lower bound- 
ary be a streamline for the induced meridional circulation in pressure or log-pressure 
coordinates, equivalently that 0 or W must vanish there. The defence of this procedure 
has presumably been that the effect of a surface pressure tendency would be small. The 
effect is frequently neglected in quasi-geostrophic theory, but this cannot be justified on 
the basis of small Rossby number alone. Rather, it requires an additional quasi-Bous- 
sinesq assumption that the density tendency ap/at can be neglected in the (geometric- 
coordinate) continuity equation (see e.g. White 1977). This assumption is invalid when- 
ever the rotational Mach number, defined by (2.19) below, is order unity or greater, 
which is certainly the case for motion of sufficiently large horizontal scale. 

Indeed, it is the purpose of this paper to point out that, in many instances, allowing 
for a surface pressure tendency as part of the inversion problem can substantially change 
the nature of the zonal-mean response at leading order. While the effects may be expected 
to be small for forcing located well above the tropopause (because the high static stability 
implies that the distance to the ground is effectively large), and for small horizontal scales 
(because the corresponding vertical scales are much less than one scale height), it will 
be seen that for planetary-scale forcing within the troposphere, even at the tropopause 
level itself, the effects can be very significant. One implication of this result is that one 
is no longer justified in viewing the meridional circulation as acting to redistribute only 
the relatioe angular momentum, as it must do when the circulation forms a closed 
meridional cell so that there is no net transport of planetary angular momentum across 
any latitude circle. 

Whilst it is clear that, in a time-averaged problem, the surface pressure tendency 
must vanish, the tendencies in zonal velocity and temperature are themselves subject to 
the same constraint. This does not prevent one from using the time-dependent problem 
to gain insight into the contribution of various forcings to the maintenance of the seasonal 
mean state. But it is essential that this problem be posed self-consistently. Just as the 
response in the tendencies of zonal velocity and temperature to the observed eddy forcing 
must, in the time mean, be cancelled by the response induced by frictional and other 
diabatic effects, so too should the response in surface pressure tendency. It is clearly 
inconsistent to assume that the surface pressure response vanishes separately for each 
component of the forcing. 

The plan of the paper is as follows. In section 2 the inversion problem on the sphere 
(including the surface pressure tendency in the lower boundary condition) is defined 
mathematically, and a solution algorithm described which follows Plumb (1982) in using 
a Hough-function decomposition of the latitudinal structure and allows for the effects of 
variable Coriolis parameter. This provides a set of ordinary differential equations which 
may be solved to obtain the vertical dependence of the Hough-function coefficients. In 
the process, the conditions under which o = 0 is a good approximation to the lower 
boundary condition are clarified. In section 3 some important effects arising from surface 
pressure changes are presented and highlighted by a set of idealized numerical and 
analytical calculations. Then in section 4 a comparison is made between the mean-flow 
evolution in a baroclinic life-cycle, as simulated in a fully nonlinear, primitive-equation 
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model, and that predicted by using the simulated eddy fluxes in the quasi-geostrophic 
inversion problem. This includes explicit consideration of the ageostrophic parts of the 
eddy forcing terms. Some implications for diagnostic studies of the general circulation 
are discussed in section 5 .  

2. MATHEMATICAL FORMULATION 

The system under consideration is zonally-symmetric quasi-geostrophic flow driven 
by thermal and mechanical forcing, for which the governing equations may be written 

aulat - 2 8 p ~  = F 

2szpu = -a-l(i - p 2 ) @  a a / a p  

a@/ap = -RT/p 

aT/at - r w  = Q 
a am 

u-l -{(1 - p2)1/2v} + - = 0. 
acl aP 

In the above, p is pressure, I time, p = sin(latitude), u and v are the zonal and meridional 
velocities, w = Dp/Dt,  T is temperature, Q, the geopotential, a and 8 the radius and 
rotation rate of the earth, respectively, R the gas constant, r = - T a  In 8/ap  a static 
stability parameter (where 8 is the potential temperature) which is assumed to be 
independent of p,  and F and Q respectively the mechanical and thermal forcing terms 
(possibly including eddy-flux divergences). All dependent variables and parameters are 
zonally symmetric (and so overbars will not be used). Note that under the quasi- 
geostrophic approximation the mean advection terms and the horizontal variation of 
static stability are neglected in (2.1), (2.2) and (2.4), which is equivalent to a linearization 
about a state of rest, with the additional requirement that the flow remain in geostrophic 
balance. The thermal wind equation is obtained by eliminating Q, from (2.2) and (2.3), 
and takes the form 

Boundary conditions are taken to be v = 0 at p = -1 and p = 1 (the poles), w = 0 
at p = 0, and DQ,/Dt = 0 at the lower surface p = ps.  Within the quasi-geostrophic 
approximation this last condition may be applied at a constant pressure p o ;  this is 
because although the changes in surface pressure ps  are dynamically significant, they are 
nevertheless small when compared to po.  The condition may be written as 

a @ / a t  + w a a o / a p  = o at p = p o  (2.7) 
where Q0 is the geopotential in the resting basic state. While (2.7) is the proper lower 
boundary condition for the linearized problem (in the absence of topography), it is 
conventionally-and in some cases inconsistently-approximated by o = 0 (as discussed 
in the introduction). Here the full condition (2.7) is of course used. 

The above set of equations describes the balanced response of the zonally-symmetric 
flow to prescribed forcing. Its physical relevance depends on the zonal flow being stable 
to symmetric disturbances (Eliassen 1951; Kuo 1956), which is generally the case for the 
large-scale circulation. The response comes partly through time tendencies of the zonal 
wind and temperature fields, and partly through an induced circulation in the meridional 
plane. It follows in general that there is a time tendency in the geopotential at constant 
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pressure po. With the lower boundary condition (2.7), but not with w = 0, this tendency 
will be consistently reflected in a net meridional mass flux. 

The equations may be used to derive a single equation in any one of the variables 
au/at, aT/at, u or w ,  with independent variablesp and p.  For example, following Plumb 
(1982) one may eliminate all but w to obtain 

(2.8) 
corresponding to Plumb’s equation (2.10), which is an elliptic equation for r > 0 and 
may therefore be ‘inverted’ to find w from F and Q. (Note that the Q used here 
corresponds to Plumb’s Q,.) The boundary condition (2.7) may be expressed in terms 
of w alone, namely 

noting that a@,/ap = -pi1,  with po the basic-state density at p =po. It will become 
clear in section 3, once the nature of the solutions has been considered, that using (2.9) 
in place of w = 0 does not alter the uniqueness property of the solutions, and in particular 
does not allow non-trivial free solutions. Once w is determined the other response 
variables may then be found from the original set of equations. 

Again following Plumb (1982), the latitudinal structure of the dependent variables 
is expressed in terms of either zero-frequency, zonally-symmetric Hough functions O,(p),  
or the associated functions B,(p) which are related to On@) by 

(2.10) 
d 

= - { ~ n ( p ) ( l -  Y ~ ) ” ~ ) .  
dP 

W ( P ,  PI = C mnb)On(p) ;  

To wit, one introduces expansions as follows: 

n 

n j t 
n 

(2.11) 

O(P, PI = C unb)Bn(p); 

a T  au 
a t  PI = 2 Tn(p)On(p); 5 (P, Y) = C un(p)pBn(p); 

Q(P, P )  = C Qn(P)@n(P); F@, PI = C Fn(p)pBn(p). 

Note that the boundary condition for u at the poles is satisfied automatically by virtue 
of the fact that B,(? 1) = 0, which is required if B,(p) is to be regular. Substituting these 
expansions into (2.8), and using the fact that the Hough functions satisfy the eigenvalue 
equation 

(2.12) 

together with (2.10), one obtains the following set of ordinary differential equations in 
p for the expansion coefficients on: 

4Q2a2p d2wn 2Rap dF, 
R r  dp2 Rr dp 

+ E , O ,  =-- - r - l E n Q n  -- (2.13) 
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corresponding to Plumb's (5.8). (Note that the Hough-mode eigenvalues E, given by 
Plumb (1982, Table 1) are incorrect by factors of 15% or so. The correct values are given 
by Longuet-Higgins (1968, Table lo).) The set of equations (2.13) must be solved subject 
to the boundary conditions 

w , = O  at p=O (2.14a) 

~ ; ' E , w ,  - 4Q2a2(dw,/dp) = -2QaF, at p = p o  (2.14b) 

the last equation arising from substitution of the expansions (2.11) into (2.9). (These 
differ from Plumb's boundary conditions (6.2) and (6.3).) The problem defined by (2.13) 
and (2.14) can then be written in finite-difference form and solved by straightforward 
elimination for each n. 

It is convenient to assume that F,@,) = 0. This involves no loss of generality, since 
it is possible to absorb the right-hand side of (2.14b) into the right-hand side of (2.13) 
through an appropriate redefinition of the dependent variable w,. It may then be seen 
that, for each Hough mode, the relative importance of the surface pressure tendency 
may be estimated by the ratio of the second term on the left-hand side of (2.14b) to the 
first, namely by the dimensionless parameter 

(2.15) 

where To is the surface temperature, g the gravitational acceleration, H = RT,/g the 
density scale height, and where the vertical derivative has been estimated according to 

The expression (2.15) appears to depend both on the horizontal scale L = alEnl-'/2, 

and on the vertical scale which is manifested through the parameter A,. However, these 
scales are not independent, but are linked through Eq. (2.13). Using the above estimate 
for dldp, and requiring the homogeneous part of (2.13) to balance, one obtains 

(4Q2a2/N2H2)An(An - 1) + E ,  = 0 (2.16) 

relating A,, to E,. The static stability parameter r has been written in terms of the buoyancy 
frequency N as r = N2ToH/gp. Implicit in the estimate (2.16) is the assumption that T, 
and therefore N 2 ,  vary only weakly with pressure. Consideration of the solutions of 
(2.16) and substitution into (2.15) show that the changes in surface pressure must be 
properly accounted for unless 

dldp - An/P* 

(2.17) 

a condition which does not depend explicitly on A,. 
Condition (2.17) may be written in the more physically revealing form 

max(Mi, (N2H/g)1/2M,} 4 1 (2.18) 

where M, is the rotational Mach number defined by 

M i  = 4Q2a2/gHI~,I = f2L2/gH (2.19) 

taking f = 2Q. This is equivalent to the condition under which the phase speed of the 
external Rossby mode is well approximated when the w = 0 boundary condition is 
applied. It is implicit in the expression (10) of White (1978), for example, where using 
his notation the approximation would be a good one provided 

gH/f2L2 = q2 max(1, Y) = max(1, N2H/g} .  
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Under conventional 'type 1' quasi-geostrophic scaling (e.g. Pedlosky 1964), both M,, 
and VH/g are taken to be small, in which case (2.18) is satisfied. It is clear that (2.18) 
will be satisfied for sufficiently small horizontal scale L, equivalently for sufficiently large 
n ,  and it therefore may be justifiable to neglect the effect of the surface pressure tendency 
on synoptic-scale baroclinic eddies, for example (White and Gadian 1979). However, M,, 
is not particularly small for planetary-scale motions, including those induced by the 
eddies; substituting typical atmospheric values into (2.19), taking H = 8 km, yields 
M,, = 0.9 for the second Hough mode n = 2, so that (2.18) is certainly violated. 

Note that, by itself, M,, 4 1 is not enough to guarantee that (2.18) hold. Under 
tropospheric conditions, V H / g  = 0.08; for an isothermal atmosphere consisting of a 
diatomic gas, @H/g = K = R/cp = 2/7. For these cases, then, M,, G 1 is sufficient for 
(2.18) to hold. However, one could conceive of an atmosphere in which the temperature 
increased sufficiently rapidly with height that V H / g  was large, and then (2.18) would 
require that M,, G (WH/g)-'I2.  

The condition (2.17), (2.18) may be written equivalently in terms of a vertical length 
scale D for non-density-weighted velocities. Estimating d/dz - 1/D and therefore 
d/dp - H/pD = A,,/p, substitution of A,, = H/D into (2.16) yields 

L = a/lc,, 11/2 = min{ND/2Q, N(DH)'/2/2Q} 

D - maxCfL/N, f 2L2/N2H). 

(2.20) 

(2.21) 

N2D/g * 1 (2.22) 

or equivalently 

The further substitution of (2.21) into (2.18) to eliminate L then gives the requirement 

under which changes in surface pressure may be safely ignored. This is equivalent to the 
condition discussed by White (1977), and may also be derived directly by estimating the 
size of the first term in (2.7) from the hydrostatic and thermodynamic equations alone. 

Condition (2.22) is equivalent to a condition that the vertical scale D be much less 
than the potential-temperature scale height g / V .  For a weakly stratified fluid like the 
atmosphere, where g / V  is significantly greater than the density scale height H (e.g. 
g / M  = 100 km using typical tropospheric values), condition (2.22) would appear to be 
easily satisfied. It must be remembered, however, firstly that D may exceed H, and 
secondly that when D does exceed H it increases quadratically with L. Indeed, for the 
planetary-scale Hough mode n = 2 considered earlier, D - 80 km. 

3. GENERAL PROPERTIES OF THE INVERSION PROBLEM 

(a) An idealized solution 
In order to gain some insight into the effect on the inversion problem of accounting 

correctly for the surface pressure tendency, it is instructive to consider an idealized case. 
in particular, let the atmosphere be isothermal with temperature To, and suppose that 
the thermal forcing vanishes, while the mechanical forcing takes the form 

F(P7 PI  = NPBZ(P)Z exP(-Yz) = -W4B,(P) l n b / P o ) ~ / P o ) Y  (3.1) 
as shown in Fig. 1, where z = - H ln(p/po), and a and y are measures of the amplitude 
and vertical decay rate of the forcing. The meridional structure of the forcing thus consists 
of a single mode n = 2, which means that the response will also be in that mode. The 
vertical structure equation (2.13) in the isothermal case may be easily solved analytically; 
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Figure 1. The forcing function (3.1) for the case of peak forcing at 500mb. Peak forcing is 1.7 X 10% s-'. 

the coefficient w2(p)  is simply the combination of the homogeneous solution to (2.13) 
which satisfies (2.14a), namely 

(3.2a) 

and the particular solution of (2.13), namely 

which together will satisfy the lower boundary condition (2.14b). In the above A: and 
A; are respectively the positive and negative roots of the quadratic equation (2.16) with 
n = 2, noting that N 2  is constant for an isothermal atmosphere. 

This idealized case has been studied by running the spherical primitive-equation 
numerical model of Hoskins and Simmons (1975) with the forcing (3.1), from an initial 
isothermal state at rest; (Y was taken to be a smooth function of time increasing from 
zero (to maintain balance), specifically (Y a 1 - cos[n(days)/40]. The resulting evolution 
can be compared with the numerical solution of the inversion problem defined by (2.13) 
and (2.14) (which itself was checked against the analytical solution described above), 
and with the solution obtained by enforcing w = 0 at p = po  (i.e. ignoring the surface 
pressure tendency). The results for the forcing of Fig. 1 are presented in Fig. 2, which 
shows the zonal wind acceleration au/at and the streamfunction v of the induced 
meridional circulation, the latter being defined by 

v = (1 - p2)-'I2 alylap, = - ~ - l  aly/ap. (3.3) 
The most noticeable feature of the results is the fact that, in the model response, w is 
substantially non-zero at p = po;  this confirms that the surface pressure tendency is a 
leading-order part of the response. Indeed, none of the plotted streamlines are closed, 
which suggests that the conventional inversion (for which p = po  is a streamline and all 
streamlines are closed) is even qualitatively very wrong. The solution of the full inversion 
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Figure 2. Response to forcing (3.1) of the zonal wind acceleration au/ar and the meridional streamfunction 
I). (a), (b): Response from a numerical integration of the primitive equations. (c), (d): Predicted response 
from inversion problem with correct lower boundary condition. (e), ( f ) :  Predicted response from inversion 
problem with surface pressure tendency ignored. The meridional circulation is counter-clockwise in (b) and 
(d), and in the lower cell in ( f ) .  The contour interval for au/ar is 2 x 1 0 - * m ~ - ~ ;  that for is 

2.5 X W 4 m  s-' x loo0 mb. 
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problem captures the response quite accurately, as it should do since, although the 
numerical model integrates the full primitive equations in sigma coordinates, the initial 
conditions and weak amplitude of the forcing were chosen to make the flow quasi- 
geostrophic. The close agreement between these two solutions is therefore a good check 
that the linearized inversion problem is indeed self-consistently posed. The effect of the 
non-vanishing surface pressure tendency is also to alter significantly the vertical structure 
of the zonal wind tendency (the meridional structure being determined here by the modal 
nature of the forcing). The response subject to o = 0 at p = p o  is seen to be: (i) too 
strong; (ii) too barotropic (i.e. with insufficient vertical shear); and (iii) with its maximum 
too low. 

Various other experiments were performed with the decay parameter y adjusted to 
give the peak forcing at different levels. These experiments all confirmed that setting 
o = 0 at p = p,, in the inversion gives a response that is too strong and too barotropic, 
as in Fig. 2. The results are summarized in Table 1, which gives the relative magnitude 
of the peak response with and without the surface pressure tendency. 

TABLE 1. RATIO OF PEAK ZONAL WIND ACCELERATIONS IN THE MODEL RESPONSE TO THE FORCING (3.1) 

Pressure level of peak forcing 

200 mb 300 mb 500 mb 675 mb 

Ratio of peak zonal wind acceleration with the 0.79 0.71 0.59 0.53 
surface pressure effect to that without it 

(b )  The Green’s function 
To unravel the various elements of the response, and in particular the specific effect 

of a non-vanishing surface pressure tendency, it is instructive to examine the Green’s 
function associated with mechanical forcing. Because of the linear nature of the problem, 
one may consider the response associated with each meridional mode n separately; then 
the Green’s function for each mode is the solution of the inversion problem (2.13), (2.14) 
with F,(p) given by 

Fn(P) = d(P - P 1 )  (3.4) 
with 6( ) the Dirac delta function. 

One of the striking features seen in the idealized solution presented in Fig. 2 
concerned the effect of the surface pressure tendency on the vertical structure of the 
zonal wind acceleration. In order to focus on this effect most clearly, it is convenient to 
solve the Green’s-function problem for du/dt directly instead of for o. It may be verified 
that, after eliminating the other dependent variables from (2.1)-(2.5) in favour of 
au/at, one obtains 

P a P 2  

which is analogous to (2.8). In terms of the coefficients of the expansions (2.11), (3.5) 
may be written 



1190 P. H. HAYNES and T. G .  SHEPHERD 

d eL{E3} + E , U ,  = E,F, + 2 Q a ~ ,  -{I'-'Q,} 
R dp I-' dp dP 

which is a set of ordinary differential equations for u,(p), the Hough-function coefficients 
for au/at. The appropriate constraints on the solutions of (3.6)-no longer strictly 
boundary conditions-are 

pu,+O as p+O (3.7a) 

lo (un - ~ n ) d P  = (4~2a2po/En)Un(~o>. (3.7b) 

The set (3.6), (3.7) for u,(p) is entirely analogous to (2.13), (2.14) for o,(p), and indeed 
one may derive one from the other by using the original equations (2.1)-(2.5) together 
with the Galerkin representations (2.11). Equation (3.7b) expresses the angular momen- 
tum balance of the system. Its physical interpretation will be discussed later, but it should 
be evident from (2.15) that the right-hand side is negligible in the limit (2.17), (2.18). 

The problem at hand now concerns solving (3.6), (3.7) in an isothermal atmosphere 
with Q, = 0 and F, as defined by (3.4). As is customary, one writes u, in terms of the 
homogeneous solutions of (3.6) both above and below p = pl,  viz. 

un(P) = ui<(P/pI)-" + u;<(P/pl)-'' for p (3.8a) 

u,(P) = G > ( P / P l ) - A i  + d > ( P / P J A i  for P >PI (3.8b) 

where A; and A; are respectively the positive and negative roots of the quadratic (2.16). 
Now, (3.7a) implies that u;< = 0. The other three coefficients are determined by solving 
the three equations (3.6) (after integrating acrosspl), (3.7b), and continuity of the zonal 
wind tendency 

u, = u&,) = u, + u;>. 

For example, it is readily found from (3.6) and (3.9) that 
(3.9) 

which is positive since the eigenvalues E, are always negative. Note that (3.7b) is not 
needed to obtain (3.10). Considering the case where the forcing is far removed from the 
lower boundary, namely the limit p1 + 0, one expects u;> = 0 (i.e. no upwards-decaying 
part to u, below p = pl)  and u;< = ul>; thus u,@) simply falls off algebraically from 
p = pl ,  though more quickly for p > p1 than for p < p1 since the modulus of 2; always 
exceeds that of A;. For a general vertical distribution of F,(p),  when a number of such 
solutions, with different values of pl, are superposed, there will be a tendency for the 
response to peak above the level of peak forcing. 

In order to consider the effect of the lower boundary, it is convenient to divide the 
response into three different parts: (1) that which would be obtained in the limit p1 + 0, 
where the choice of the lower boundary condition is immaterial; (2) that due to the finite 
value ofpl  (i.e. allowing an upwards-decaying part to u, belowp = pl), but with w(po) = 
0 instead of the proper boundary condition; and (3) that due to the surface pressure 
tendency. These solution components shall be denoted by the associated numbers as 
arguments, for example 

u;> = u;>(l) + uL(2) + u;>(3)7 un(P) =un(l;p) + Un(2;p) + un(3;p). 
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As already discussed, 

- E , N ~ H ~  > 0, u,t(2) = 0, u,t(3) = 0. (3.11a) 
4Q2a2pl(A,+ - A ; )  U,+>(l) = 

Solving the system of three equations as described above, and taking the relevant limits 
to obtain the different components (1)-(3), the other components are found to be 

@$-,I-) + (3.1 lb) A,+ 
ui>(l)  = 0, ~;>(2)  = - - - ( p l / ~ o )  n un>(1) > 0 

A;  

u,(l) = d > ( l ) ,  u,(2) = G > ( 2 ) ,  u,(3) = U,>(3). (3.11d) 

(Note that it is the fact that the denominator of (3.11~) cannot vanish that rules out the 
possibility of a non-trivial free solution arising as a result of using the boundary condition 
(2.9) rather than a@,) = 0.) Thus the correction due to finite p l ,  denoted (2), is always 
such as to add a positive upwards-decaying part to u,(p) ,  and thereby to make the 
response both stronger and more barotropic; whereas the correction due to the proper 
lower boundary condition, denoted (3), is to add a negative upwards-decaying part, and 
thus to weaken the response and make it more baroclinic. This accounts, at least 
qualitatively, for the features remarked on concerning Fig. 2. The various effects of these 
contributions are indicated schematically in Fig. 3. 

0 -  

PI . 

P 

Figure 3. Schematic of the vertical profiles of the Hough-function coefficients u,(p) of the zonal wind 
acceleration, corresponding to the different solution components: (1) no lower-boundary effects; (2) finite p, 
but no surface pressure effect; and (3) surface pressure effect. It is evident that (1) + (2) is too strong and too 

barotropic when compared with the correct profile (1) + (2) + (3). 

(c )  Characterization of the effects due to surface pressure changes 
When the condition w@,) = 0 is imposed in the response problem, it follows that 

the mean meridional circulation forms a closed cell and the net meridional mass flux 
across any latitude circle must vanish. This means that, at each latitude, the net relative 
angular momentum tendency must equal the net forcing, as is evident from the vertical 
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integral of (2.1). The sum of contributions (1) and (2) above is subject to this constraint, 
and one may indeed verify from (3.8) and (3.11) that 

(3.12) 

By allowing w(po) to be non-zero, however, a net meridional mass flux becomes possible 
and the net relative angular momentum tendency can differ from the net forcing. By 
(3.12), this difference is entirely contained in the vertical integral of un(3;p); by using 
(3.8) and (3.11) it is found to be 

which is negative and has a modulus less than unity. Table 2 gives the ratio of the 
vertically-integrated mean-flow acceleration with the surface pressure effect, (3.12) plus 
(3.13), to that without it, (3.12) (which is unity). 

TABLE 2. SOME MEASURES OFTHE MAGNITUDE AND VERTICAL STRUCTURE OFTHE ZONAL WIND ACCELERATTON 
IN RESPONSE TO THE FORCING (3.4), MODE 2 

Pressure level of forcing 

200mb 300mb 500mb 675mb 800mb 

Ratio of vertically-integrated accelerations 0.61 0.58 0.53 0.49 0.47 
Eqs. (3.12) + (3.13) 
Ratio of peak accelerations 
Eq. (3.20) 

0.78 0.69 0.57 0.51 0.48 

Vertical variation without the 1.73 1.33 1.09 1.03 1.01 
surface pressure effect Eq. (3.21) 

Vertical variation with the surface 3.01 2.05 1.38 1.16 1.08 
pressure effect Eq. (3.22) 

The above demonstrates that 

(3.14) 

a result which generalizes (by linear superposition) to arbitrary positive forcing profiles 
Fn(p),  with the obvious counterpart for negative forcing. The physical content of (3.14) 
is that only part of the mechanical forcing goes into mean-flow acceleration, the rest 
generating an increase in planetary angular momentum through a net equatorward 
meridional mass flux. Similar comments apply to the condition (3.7b) discussed earlier. 

The negative root A; of (2.16) may be written as 

(3.15) 

with Mn given by (2.19), where the fact that @ H / g  = K =  R/cp for an isothermal 
atmosphere has been used. It follows from (3.15) that 

(3.16) 
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In the quasi-Boussinesq limit (2.18), one has 

max{M2,, K 1 / 2 ~ , }  G 1 

and so combining (3.16) and (3.17) yields 

whence 
N ~ H ~  - - 1 - r n i n [ l , L } G l  

N 2 H 2  - RToA, 1 - K - ~ A ;  -1, 

1193 

(3.17) 

(3.18) 

(3.19) 

using H = RTo/g. So in this limit the change due to the surface pressure tendency, (3.13), 
is negligible when compared with (3.12), as expected. On the other hand, when (2.18) 
is not satisfied, then - K - ~ A ;  = 0(1 )  and whether the ratio of (3.13) to (3.12) is small 
or not, is determined by the height of the forcing, (p1/p0)-". Taking K = 2/7 and 
M,, = 0.9 for typical atmospheric values and the n = 2 mode, as before, one finds 
A ,  = -0.23 and (1 - K- 'A; ) - '  = 0.55, suggesting a very strong effect, with only a very 
slow reduction as p1 + 0. For a forcing centred at 200 mb, (3.13) is then approximately 
one third. This implies that only two thirds of the forcing goes into mean-flow acceleration, 
the other third being expended in driving a net meridional mass flux. 

As is evident from Fig. 3, the surface pressure effect reduces not only the vertically- 
integrated du/af, but also its peak value. The ratio of the peak values, with and without 
the surface pressure effect, is given by the ratio of the relevant u,s at p =pl ,  namely 

Since u,+,(l) and u;>(2) are positive and u;>(3) is negative, the ratio (3.20) is always 
less than unity. Values of this ratio are given in Table 2 for various values of pl.  The 
extent to which these are less than unity is a measure of the importance of the surface 
pressure effect. The ratios of the peak accelerations may be compared with those in 
Table 1 for the idealized solution of section 3(a), and are seen to be very similar. 

The solutions found thus far also point to an important effect on the vertical structure, 
namely that the mean-flow acceleration is too barotropic when the surface pressure 
tendency is ignored. A measure of the vertical variation is given by the ratio of the peak 
acceleration to its value at the surface. Without the surface pressure effect, this ratio is 
given by 

whereas with the surface pressure effect, the ratio is 

It may be checked from (3.11) that, as expected, (3.22) approaches (3.21) in the quasi- 
Boussinesq limit (2.18), and both ratios increase without bound in the limit p1 + 0. The 
ratios (3.21) and (3.22) are always greater than unity; the closer they are to unity, the 
more barotropic is the response. Table 2 displays the ratios for various values of pl; as 
anticipated, (3.21) is always closer to unity than is (3.22). 
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TABLE 3. SOME MEASURES OF THE MAGNITUDE AND VERTICAL STRUCTURE OFTHE ZONAL WIND ACCELERATION 
IN RESPONSE TO THE FORCING (3.4), MODE 5 

Pressure level of forcing 

200mb 300mb 500mb 675mb 800mb 

Ratio of vertically-integrated accelerations 0.95 0.93 0.88 0 4 4  0.81 
Eqs. (3.12) + (3.13) 

Ratio of peak accelerations 0.99 0.98 0-93 0.86 0.82 
Eq. (3.20) 

surface pressure effect Eq. (3.21) 

Vertical variation with the surface 10.04 4.67 1.95 1.31 1.12 
pressure effect Eq. (3.22) 

Vertical variation without the 7.77 3.67 1-62 1.17 1.05 
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Figure 4. Vertical profiles of the Hough-function coefficients u.(p) of the zonal wind acceleration cor- 
responding to the forcing (3.4), for various forcing levels p ,  and horizontal mode numbers n,  as indicated. The 
solid line is with the surface pressure effect, the dashed line is without. Units are arbitrary but are the same 
for all cases shown, and so the vertical integral of the dashed line (which equals the net forcing) is a constant. 
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On the basis of (2.17), oneexpects the surface pressure effect to decrease rapidly 
with increasing mode index n. This is confirmed by Table 3, which shows the same 
information as Table 2 but for n = 5 rather than n = 2. 

Vertical profiles of zonal wind acceleration, u,@), are shown in Fig. 4 for various 
values of the forcing level p1 and the mode index n. In each case the profile is shown 
both with and without the surface pressure effect. The various effects discussed already 
are exhibited quite clearly. As n increases, the response becomes more strongly confined 
in the vertical. Hence for moderate n the surface pressure effect is unimportant except 
for low-level forcing. But for n = 2, the vertical confinement is so weak that the response 
is strongly affected by surface pressure changes, even for forcing at upper levels. 

It should be noted that the exponent - A ; ,  given by (3.15), which characterizes the 
vertical confinement of the response, depends on the static stability N 2 .  For the isothermal 
basic state considered in this section, N 2  = Kg/H = 3.6 X 10-4s-2. A more realistic 
tropospheric value of is using this would reduce -A; and therefore weaken 
the vertical confinement. Particularly for the higher-n modes, then, Fig. 4 would represent 
an underestimate of the importance of surface pressure changes associated with tropo- 
spheric forcing. 

4. MEAN-FLOW CHANGES IN A BAROCLINIC LIFE-CYCLE 

The previous section has explored the nature of the mean-flow response to idealized 
forms of mechanical forcing. In this section the inversion algorithm is applied to the 
important (albeit still somewhat idealized) case of the forcing associated with a baroclinic 
life-cycle. An understanding of mean-flow changes induced by baroclinic eddies is 
essential to an understanding of the general circulation itself. 

Attention is restricted here to a single case study, using the fully nonlinear, primitive- 
equation spherical model of Hoskins and Simmons (1975) (with imposed wave-6 and 
hemispheric symmetry), starting with a zonal-mean state corresponding to the basic 
case of Simmons and Hoskins (1980), together with a wave-6 initial disturbance, and 
integrating for 15 days. Details of such baroclinic life-cycles may be found in Simmons 
and Hoskins (1978,1980); briefly, the disturbance grows exponentially at first, much like 
a Charney baroclinic mode, until it saturates (about day 6 in this case), after which time 
it decays barotropically (see also the discussion in Hoskins 1983). The Eliassen-Palm 
flux divergence is shown in Figs. 5(a), (b) for the two periods 0-6 days and 6-12 days, 
and is associated with the by-now-familiar upwards and then equatorwards flux of E-P 
wave activity. The associated mechanical and thermal forcings 

are also shown in Fig. 5. 
Note that F and Q contain all the forcing information, and appear separately as 

forcings on the right-hand side of the momentum and heat equations (2.1) and (2.4). 
One may, however, adopt the transformed Eulerian-mean (TEM) approach (Andrews 
and McIntyre 1976), in which case the two forcing terms are combined in the E-P flux 
divergence, but it is important to remember that the lower boundary condition on the 
meridional circulation then depends on the value of Q at the surface. This inhomogeneous 
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Figure 5 .  Forcing terms produced by a numerical simulation of a baroclinic life-cycle using a primitive- 
equation model, for the two periods 0-6 days and 6-12 days. (a), (b): Eliassen-Palm flux divergence, divided 
by cos(latitude), which gives an equivalent force per unit mass, contour interval 2 X lO-'ms-*. (c), (d): 
Mechanical forcing F a s  defined by (4.1), contour interval lO-'m s-*. (e). (f): Thermal forcing Q as defined by 
(4.2), contour interval K s-I. The zero contours are dashed. The E-P flux divergence is mainly negative 
except at the lower boundary; F is positive in the principal region around 50"N; and Q is positive on the 

poleward side and negative on the equatorward side. 
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boundary condition itself represents part Qf the forcing in the TEM formulation (and 
thereby renders it slightly less attractive for tropospheric studies). 

It may be seen from Fig. 5 that it is perhaps somewhat of an oversimplification to 
characterize the growth and decay stages of the life-cycle as being baroclinic and 
barotropic respectively. The thermal and mechanical forcings both seem to be fairly 
significant during each stage. It is possible that taking a shorter time period for the growth 
stage might reduce the role of the mechanical forcing, but it appears difficult to remove 
the contribution of the thermal forcing to the second stage. This is manifested in the 
E-P flux arrows for day 8 shown in Fig. 7.5(c) of Hoskins (1983), which are far from 
horizontal. 

The meridional circulations and mean-flow tendencies may now be calculated using 
the algorithm set out in section 2, subject to imposed hemispheric symmetry as in the 
model. The inversion is done for each day of the model integration, using the forcings 
(4.1) and (4.2), and taking the static stability parameter T ( p )  to be the globally-averaged 
r on each pressure level for that day. Figures 6-8 show the results for the three time 
periods 0-6 days, 6-12 days and 0-15 days, respectively. Each figure shows the time- 
averaged zonal wind acceleration and meridional circulation as produced by the model, 
and as predicted by the quasi-geostrophic response algorithm both with and without the 
surface pressure effect. 

Looking first at Fig. 6, it is evident from Fig. 6(a) that the effects of F and Q on 
d u / d t  tend to cancel each other to a certain extent in the upper half of the atmosphere. 
One may understand this cancellation by noting that, from ( 3 . 9 ,  the local maximum in 
F at 300 mb seen in Fig. 5(c) is opposed, in its effect on au/at, by the thermal forcing 
Q, the meridional gradient of which is decreasing with height (Fig. 5(e)). (Note that the 
same cancellation does not necessarily hold as far as the other response variables are 
concerned; contrast the right-hand sides of (3.5) and (2.8), for instance.) The main 
response in d u / d t  is at the surface, and is evidently associated with the strong low-level 
heat flux; its rapid decay with height is consistent with the nature of the vertical profiles 
above the forcing levels in Fig. 4. The meridional circulation exhibits the three-cell 
structure, with an indirect cell in the unstable region, that is characteristic of linear 
baroclinic instability (e.g. Phillips 1954). 

Comparing Figs. 6(c), (e) with 6(a), and 6(d), (f) with 6(b), it may be seen that the 
quasi-geostrophic inversion captures the gross features of the model response quite well. 
The main difference in the du/dt fields is that the inversions overestimate the strength 
of the response; the maximum is too large by about 10% with the correct lower boundary 
condition (Fig. 6(c)), and by about 30% with the surface pressure tendency neglected 
(Fig. 6(e)). Clearly, then, inclusion of the surface pressure effect is crucial if one is to 
have any hope of getting the correct answer. The major systematic discrepancy in the 
meridional circulation is that the inversions give a more asymmetric pattern, with the 
tropical cell significantly stronger than the polar one, whereas in the model the outer 
cells are more nearly equal. The extent of the net equatorwards mass flux over the 
unstable region seems to be well captured by the correct inversion (Figs. 6(b), (d)); and 
is of course completely absent in the other inversion (Fig. 6( f)). 

The mean-flow response during days 6-12 is markedly different from that during 
days 0-6. The zonal wind acceleration is much less baroclinic, and now extends through 
the depth of the troposphere (Fig. 7(a)), while the meridional circulation has two cells 
instead of three (Fig. 7(b)). Examination of the relevant forcing fields for this period 
(Figs. 5(d), (f)) reveals that there is no particular cancellation at the tropopause level, 
as there was during days 0-6, and that the bulk of the forcing is in fact concentrated 
there. The agreement in the au/dt fields between the inversions and the model is rather 
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Figure 6. Mean-flow response to a baroclinic life-cycle during the growth stage, days 0-6. showing zonal wind 
acceleration du/ar and meridional streamfunction q. (a), (b): Model response. (c), (d): Predicted response 
from inversion problem with correct lower boundary condition. (e), ( f): Predicted response from inversion 
problem with o = 0 at the lower boundary. The contour interval for au/ar is 5 x 1 0 - h ~ - ~ ;  that for q is 
10-2m s-lx lo00 mb. Stippled regions represent au/at greater than 2x l 0 - h  s - ~  and q less than 
-7x10-*m s-lxlOOOmb. The central extremum of au/ar at the ground is positive, and the central cell for q~ 

is counter-clockwise. 



ATMOSPHERIC RESPONSE TO ZONALLY-SYMMETRIC FORCING 1199 

au/at 
---___-, 

b e  

200 

400 - n 
a 

- n 
a 

v v 

600 

800 

1000 
0 30 60 90 0 30 60 90 

LATITUDE LATITUDE 

d 0  
200 

400 
n n 

n a 
v - 

680 

800 

1000 
8 30 60 90 0 38 60 90 

LATITUDE LATITUDE 

- n 
a 
v 

0 30 60 90 0 30 60 90 

LATITUDE LATITUDE 

Figure 7.  rn s-* for au/ar 
and 2x 10-'rn S - I X  lo00 rnb for I/J. Stippled regions represent du/dt greater than 5x 10-%n s - ~  and I/J less than 

-1.2~10-'rn s-lxlOOO rnb. 

As in Fig. 6, but for the decay stage, days 6-12, and with contour intervals of 
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less close here than in Fig. 6; the inversion again overestimates the strength of the 
response, more so without the surface pressure effect than with it, but the structure of 
the response is also more different. The principal maximum, at 300 mb and SON, is too 
large by about 35% with the surface pressure effect, and by about 65% without it. The 
meridional circulation, on the other hand, is remarkably good (particularly the one with 
the surface pressure effect, of course), although, as in Fig. 6, the strength of the tropical 
cell is relatively exaggerated in the inversion. The importance of the surface pressure 
effect (as reflected in the difference in magnitude between Figs. 7(c) and (e), and in the 
number of contours intersecting the ground in Fig. 7(d)) is perhaps surprising, at first 
sight, given the fact that the forcing is concentrated at tropopause level (Figs. 5(d), (f)), 
but is understandable in view of the results presented in section 3. 

For completeness, the same set of diagnostics is presented for the full run, days 
0-15, in Fig. 8. The picture is rather similar to that from days 6-12, and so no further 
comments are necessary. 

It has been argued above that inclusion of the surface pressure effect is essential in 
order to predict the mean-flow response to a baroclinic life-cycle with any accuracy. On 
the other hand, the discrepancies between Figs. 8(a) and (c), for example, show that the 
effects considered thus far are not sufficient to obtain complete agreement. There are 
potentially many reasons for this. Some involve the mean flow itself, such as the fact that 
it may not be in a state of exact balance, and-perhaps more importantly-that it is not 
the state of rest that has been assumed in the preceding inversion problem. Another is 
that the eddy forcings (4. l ) ,  (4.2) assume quasi-geostrophic scaling for the eddies, which 
is not necessarily valid. 

The latter assumption may be tested rather easily, by using the full expressions for 
the eddy flux convergences 

These have been evaluated from the life-cycle simulation, and are shown in Fig. 9 for 
the periods 0-6 days and 6-12 days. Comparison with Fig. 5 shows that the extra 
(ageostrophic) terms make a considerable difference to the eddy forcing, particularly to 
the thermal forcing Q, where they add a substantial low-level cooling during both periods. 
The mechanical forcing F is also noticeably changed in the period 6-12 days, where the 
extra terms are associated with shallow westerly forcing aloft and a deeper, but weaker, 
easterly forcing below. 

The response to the modified forcing over the period 0-6 days, as predicted by the 
inversions with the two different lower boundary conditions, is shown in Fig. 10. The 
most striking change in the mean-flow response is the improvement in the prediction of 
the strength of the equatorward meridional cell. This occurs almost entirely as a result 
of the changed thermal forcing, and experiments in which the extra terms in the thermal 
forcing were used as the sole forcing showed that in the associated adjustment the surface 
pressure change was very small. It is therefore not surprising that the improvement is 
seen with both boundary conditions, although, as expected, the predicted circulation 
with the correct lower boundary condition is closer to that in Fig. 6(b). There is little 
change in the low-level acceleration as a result of the extra forcing terms; at upper levels 
the negative-positive pattern is enhanced. This leaves the predicted negative acceleration 
too strong, but the predicted positive acceleration much improved. 
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Figure 9. Full ageostrophic forcing terms produced by the life-cycle simulation for the periods 0-6 and 6-12 
days. (a), (b) Mechanical forcing F as defined by (4.3), contour interval lO-’m s-’. (c). (d): Thermal forcing 

Q as defined by (4.4), contour interval lO-’K s-I. The zero contours are dashed. Compare Fig. 5. 

In the period 6-12 days, for which the response is shown in Fig. 11, it is more 
difficult to identify any specific improvements in au/at and I/I. The overprediction of 
upper-level accelerations (of both signs) seen in Fig. 7 has, if anything, been made worse 
by including the ageostrophic terms. Examination of the response to the extra terms 
alone shows that, as for the growth period, the response to the extra thermal forcing is 
not associated with a large surface pressure change, and is therefore insensitive to the 
lower boundary condition. On the other hand the response to the extra mechanical 
forcing is sensitive to the boundary condition, since the extra forcing is relatively broad, 
and the associated accelerations are larger with the w = 0 boundary condition. However, 
when included in the response to the forcing as a whole, as is the case in Fig. 11, these 
differences are virtually undetectable. 

There is a much more obvious improvement in the temperature tendency, a T/ar, as 
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a result of including the ageostrophic terms. This is evident from Fig. 12, which shows 
the time-averaged dT/dt in the life-cycle, and as predicted by the inversion (with 
the correct lower boundary condition) with both geostrophic and full, ageostrophic 
expressions for the eddy fluxes, for the periods 0-6 days and 6-12 days. Not least, the 
improvement gives confidence that the ageostrophic terms have been included correctly, 
and that they are vital to the improvement of the inversion as a whole. The continuing 
disagreement between simulated and predicted upper-level accelerations may well be an 
indication that the non-resting basic state must be accounted for to obtain further 
improvement. 
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Figure 10. Predicted response to a baroclinic life-cycle during the growth stage, days 0-6, using the full 
expressions for mechanical and thermal forcing, showing zonal wind acceleration Ju/Jt and meridional 
streamfunction v .  (a), (b): Correct lower boundary condition. (c), (d): w = 0 at lower boundary. Contour 

intervals and stippling as in Fig. 6. 
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Figure 11. As Fig. 10, but for the decay stage, days 6-12. Contour intervals and stippling as in Fig. 7. 

5 .  DISCUSSION 

In quasi-geostrophic theory, it is commonplace to impose the lower boundary 
condition that, in the absence of topography, Dp/Dr = w = 0 on the lowest pressure 
surface p = p o  (e.g. Pedlosky 1979, 0 6.3; Gill 1982, p.185). This is an approximation to 
the correct condition of no flow across the lower boundary. The validity of this approxi- 
mation does not follow simply from the assumption of small Rossby number, but requires 
the additional assumption (2.18)-a condition which depends on the horizontal scale of 
the motion, and which is certainly questionable for planetary scales. The importance of 
using the correct lower boundary condition in studies of free long waves is widely 
appreciated, and has been highlighted by Wiin-Nielsen (1971) and White (1978), among 
others. 
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Figure 12. Temperature tendency aT/ar in the model (a) averaged over 0-6 days and (b) over 6-12 days; as 
predicted by the inversion with geostrophic eddy fluxes (c) 0-6 days and (d) 6-12 days; and as predicted by 
the inversion with full ageostrophic eddy fluxes (e) 0-6 days and (f) 6-12 days. Contour interval 10-SK s-*. 
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In this paper the question of the lower boundary condition has been addressed 
within the context of the classical problem of. the response of a balanced vortex to zonally- 
symmetric forcing. Starting with Eliassen (1951), this problem has traditionally been 
solved in pressure or log-pressure coordinates, subject to the approximate condition 
o = 0 at p = po ,  and therefore assuming that the mass in each vertical column remains 
constant. Use of the correct lower boundary condition removes this constraint, and 
explicitly allows a meridional redistribution of mass as part of the response. In contrast 
to the classical response problem, therefore, part of the applied torque may appear as a 
change in the planetary angular momentum. The results presented in section 3 show that 
this fraction may be quite considerable: one half, for example, for mid-tropospheric 
mechanical forcing of the planetary-scale n = 2 Hough mode (Table 2). The response in 
the relative angular momentum is correspondingly weaker. Because the size of the 
difference increases downwards (Fig. 3), the vertical structure of the response is also 
affected (see Fig. 2 and Table 2). 

As the horizontal scale decreases, so too does the sensitivity of the response to the 
lower boundary condition. The response as a whole also becomes more strongly confined 
in the vertical, which means that the surface pressure effect can be significant only for 
low-level forcing. But for planetary-scale forcing, the vertical confinement is so weak 
that the response is strongly affected even for forcing at tropopause level. These features 
may be clearly seen in the vertical profiles of au/13t shown in Fig. 4. 

The significance of these effects in a realistic context has been illustrated by studying 
the zonal-mean response during a baroclinic life-cycle in a primitive-equation model 
(section 4). There is, in fact, a significant meridional redistribution of mass (and con- 
comitant change in the surface pressure distribution) during the course of the life-cycle. 
Solution of the classical quasi-geostrophic response problem, with the surface pressure 
tendency neglected, overpredicts the zonal wind acceleration for the complete life-cycle 
by about 50-60%, although the structure of the response is fairly close to that observed 
in the model. Use of the correct lower boundary condition reduces this difference to 
about 1530%. 

While the surface pressure effect is evidently an important part of time-dependent 
problems, one might be tempted to ignore it when considering time-averaged problems 
such as the maintenance of the general circulation. However, it is essential to be quite 
clear about what one is doing when the response problem is applied in a time-averaged 
context. In trying to deduce the role of the eddies in the general circulation, for example, 
the simplest diagnostic approach is presumably that of examining the budgets implied by 
the time-averaged versions of (2.1)-(2.5). The difficulty with this is that it provides no 
causal information; rather, through the continuity equation (2.5) one simply obtains a 
consistency condition on the forcings F and Q. There may be circumstances where this 
seems appropriate; for instance, in the middle atmosphere one might imagine the 
dynamical forcing associated with wave breaking as working against a ‘radiative spring’ 
(e.g. Fels 1985; Andrews 1987). In the troposphere, on the other hand, the range of 
mechanical and thermal forcing mechanisms is so complex (including those associated 
with the planetary boundary layer) that it is difficult to make any clear arguments 
concerning which are ‘cause’ and which are ‘effect’. 

This dilemma has encouraged a return to the time-dependent response problem in 
order to make causal deductions about the role of various phenomena in the maintenance 
o1 the general circulation. In such an approach the zonal wind tendencies associated 
with distinct physical processes are identified by solving the inversion problem using, 
separately, the forcing due to each of those processes. The sum of the resulting tendencies 
must then be equivalent to the time-averaged zonal-mean momentum equation, viz. 
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aii aii aii + .  . . e t c . .  . = O  {%I eddies + friction + moisture 

for example, but it is the nature of the individual, non-zero contributions to the left-hand 
side which gives insight, rather than the fact that their sum must vanish. This is the 
philosophy adopted in studies such as those of Crawford and Sasamori (1981) and Pfeffer 
(1981, 1987). However, these authors have solved inversion problems in which the 
surface pressure tendency is neglected, which seems inconsistent insofar as surface 
pressure and zonal velocity should be treated on the same footing. Thus there is an 
equation for the surface pressure which is equivalent to (5 .  l),  and again it is the individual 
contributions to the left-hand side of that equation which are of interest. As has been 
shown here, accounting for surface pressure changes as part of the response is not only 
required for reasons of consistency, but can make a substantial difference to the rest of 
the response. This suggests that in future such observational studies, it might be advisable 
to apply the correct lower boundary condition in the inversion problem. 
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