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Abstract It is often assumed that humans generate a 3D
reconstruction of the environment, either in egocentric or
world-based coordinates, but the steps involved are unknown.
Here, we propose two reconstruction-based models, evalu-
ated using data from two tasks in immersive virtual real-
ity. We model the observer’s prediction of landmark location
based on standard photogrammetric methods and then com-
bine location predictions to compute likelihood maps of nav-
igation behaviour. In one model, each scene point is treated
independently in the reconstruction; in the other, the per-
tinent variable is the spatial relationship between pairs of
points. Participants viewed a simple environment from one
location, were transported (virtually) to another part of the
scene and were asked to navigate back. Error distributions
varied substantially with changes in scene layout; we com-
pared these directly with the likelihood maps to quantify the
success of the models. We also measured error distributions
when participants manipulated the location of a landmark to
match the preceding interval, providing a direct test of the
landmark-location stage of the navigation models. Models
such as this, which start with scenes and end with a proba-
bilistic prediction of behaviour, are likely to be increasingly
useful for understanding 3D vision.
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1 Introduction

Many studies on 3D representation assume that the parietal
cortex generates representations of the scene in an egocentric
frame, the hippocampus does so in a world-centred frame,
and coordinate transformations account for the passage of
information from one frame to another (Andersen et al. 1997;
Burgess et al. 1999; Snyder et al. 1998; Mou et al. 2006;
Burgess 2006; O’Keefe and Nadel 1978; McNaughton et al.
2006). However, there is little evidence for a well-ordered
3D representation in cortex underlying each of these puta-
tive representations. In striate cortex, retinotopic location and
disparity tuning provide an anatomical basis for encoding
the visual direction and depth of objects relative to the fixa-
tion point, but this anatomical regularity is not found in other
parts of the cortex representing egocentric and world-centred
relationships (DeAngelis and Newsome 1999; Cumming and
DeAngelis 2001). And in relation to psychophysical data,
there have been few attempts to model and test the processes
assumed to underlie the generation of a 3D reconstruction
from images, including the distortions that would be pre-
dicted to arise from such processing, as we do here.

Of course, 3D reconstruction is not the only way that
a scene could be represented (Gillner and Mallot 1998;
Glennerster et al. 2001; Warren 2012) and more generally
there are many ways to guide actions and navigate within
a 3D environment that do not involve scene reconstruction
(Gibson 1979; Franz et al. 1998; Möller and Vardy 2006;
Stürzl et al. 2008). Together, these come under the category of
“view-based” methods of carrying out tasks. By contrast, in
the current paper, we focus on reconstruction-based hypothe-
ses for a scene-matching task and the extent to which these are
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able to account for the pattern of errors displayed by humans
faced with the same task. We have examined view-based
predictions for the same task in a previous paper (Pickup et
al. 2011), and we will present a detailed comparison of the
two approaches in a subsequent paper. Here, we focus on
the hypothesis that the visual system generates a reconstruc-
tion of the scene. If this is what the visual system does when
the observer is asked to remember their location in a scene,
then we can model the pattern of errors that we would expect
observers to make when they try to return to that location.

Using a similar “homing” task, it has often been shown that
changing or removing landmarks can bias or disrupt accu-
rate navigation of bees (Cartwright and Collett 1983), ants
(Graham and Collett 2002) and humans (Mallot and Gillner
2000; Waller et al. 2001; Foo et al. 2005). By contrast, in our
study the structure of the scene remains constant between
the reference and the homing interval, but we nevertheless
find that the pattern of errors varies systematically with the
structure of the scene. It is these systematic variations that are
informative about the nature of the representation the visual
system uses. In this paper, we attempt to reproduce a similar
pattern of errors using two variants of a reconstruction-based
algorithm.

1.1 Paper overview

In Sect. 2, we describe the psychophysical experiment mea-
suring navigation errors in a simple homing task in a virtual
environment. Sections 3 and 4 describe how a reconstruction
algorithm can be used to recover an estimate of the posi-
tions of scene landmarks in an egocentric coordinate system
and how these estimates, measured in two intervals (“refer-
ence” and “homing”), can be combined to form a probabilis-
tic map of navigation end-point locations. We call this the
“basic” reconstruction model. Section 5 describes an alter-
native way of combining the distributions of position esti-
mates that emphasizes the relative location of landmarks, so
we refer to this as the “shape-based” model.

Section 6 introduces a different type of experiment that
allows us to obtain an estimate of the distribution of errors
on participants’ representation of landmark location (rather
than their own location). We compare this to the equivalent
distribution that is inferred as part of the modelling of the first
experiment. Section 7 compares the ability of the “basic” and
“shape-based” models to account for the data, and Sect. 8
discusses our results in the context of models of spatial rep-
resentation.

2 Experiment 1: navigation to a previously viewed
location

Participants viewed a simple scene in immersive virtual real-
ity and were then teleported to a different location in the

scene from where they had to return to the original location.
The paradigm is similar to a previous experiment by Waller
et al. (2001). Waller et al. (2001) tried to distinguish differ-
ent components of the information that participants might be
using in a homing task. In their experiment, they identified
two candidate locations predicted by two simple heuristics:
first, to keep all the landmarks at the same distance from the
observer in the two intervals or, second, to keep all the angles
between landmarks constant. They found evidence in favour
of distance information being important although they admit
that the type of virtual environment they used may have con-
tributed to this outcome. Most of the time, only one landmark
was visible at a time in their experiment, so angles between
landmarks were rarely available visually, forcing participants
to rely more heavily on distance information. Unlike Waller
et al., we kept the environment the same between the learning
and test phases so there was always a correct location to which
participants could return. Naturally, this location is the most
likely one, as is confirmed by our modelling, but the distrib-
ution of navigation errors that participants make around this
point and, in particular, the variation in this distribution with
the location of the landmarks in the scene, is something we
attempt to predict using a reconstruction model. The exper-
iment and data have been presented by Pickup et al. (2011),
but are reproduced here for clarity before introducing the
modelling.

2.1 Methods

Five participants took part in the experiment, all with normal
or corrected-to-normal visual acuity. Participants viewed the
virtual scene using an NVIS SX111 head-mounted display
with horizontal field of view of 102◦, vertical FOV 64◦ and
binocular overlap of 50◦. The location and orientation of the
head-mounted display were tracked at 240 Hz using a Vicon
MX3/T20S nine camera tracking system that was used to
update the binocular visual display (1,280 by 1,024 in each
eye) at 60 Hz with a latency of two frames. The calibration
procedure that allows the left and right eye’s viewing frus-
tums to be calculated from the 6 degrees of freedom track-
ing data is described by Gilson and Glennerster (2012). The
size of the physical room in which the participants could
walk was 3.5 by 3.5 m. The stimuli consisted of three very
long poles coloured red, green and blue so that they could
be easily distinguished. Other than the poles, the image was
black. The poles were designed so that the only informa-
tion about their 3D layout was the angles subtended at the
eye between pairs of poles and the change in these angles
with changes in viewpoint (either by the participant walk-
ing or from binocular viewing). The poles were always one
pixel wide (anti-aliased) for all viewing distances. The poles
extended far above and far below the participant, and when
the participant looked up or down by 35◦, the image went
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Fig. 1 Plan view of the stimulus layout. The 48 possible layouts are
shown across the three panels, each showing four possible positions
of the central pole (green dots) and four possible centres of the view-
ing zones (black circles), i.e. 16 different configurations per panel. The
“goal point”, to which the participant had to return in the second inter-

val, was always within the viewing zone. The magenta cross at the base
of each plot represents the participant’s position relative to the poles
at the start of the second interval. Versions a and b are identical up to
scale. Versions a and c differ in the spatial separation of the set of poles
(see text), but are otherwise similar

black. This prevented participants from ever seeing anything
close to a “plan view”. The purpose of this minimalist display
was to restrict the number of parameters necessary to model
the participant’s navigation errors and to allow different types
of model to be distinguished.

The layouts of the poles we used are illustrated in Fig. 1.
In each case, the red and blue poles and the centre of the
viewing zone in the first interval lie on a circle. This means
that viewed from each of the four viewing zones shown in a
panel of Fig. 1, the angle between the red and blue poles is
constant [15◦ for panels (a) and (b), 20◦ for panel (c)].

A trial would start when the participant was within a 20 cm
× 80 cm viewing zone, which was always in the same phys-
ical location within the room. It allowed the participant to
move laterally to view the stimulus with motion parallax but
without the freedom to explore further. The long axis of the
viewing zone was always at right angles to a line joining the
centre of the viewing zone and the midpoint between the red
and blue poles. The participant was instructed to remember
their location with respect to the poles. This first “reference”
interval ended when the participant pressed a button, and
after a 500 ms blank interval, the poles reappeared, but the
participant had been transported virtually (i.e. without phys-
ically moving) to a new location in the scene, shown by the
magenta cross in Fig. 1. The task was to navigate back to the
location in the scene at which they pressed the button ending
interval one, i.e. the “goal point”. When participants were
satisfied that they had reached the goal point, they pressed a
button on a hand-held device recording the location of their
cyclopean point at that moment and the trial ended. An image
then appeared showing a plan view of a schematic head show-
ing their location in the physical room and an outline of the

viewing zone to which they had to return to start the next
trial.

2.2 Results

The main results of Experiment 1 are shown at the end of
the paper in Figs. 11 and 12 where they can be interpreted
in relation to the modelling which is described in subsequent
sections. However, Fig. 2 illustrates a portion of the data
and shows what the main characteristics are that need to be
modelled. The black dot shows the goal point to which par-
ticipants had to return in the homing interval, and the crosses
show their end-points. It is clear that the spatial distribution
of end-points is affected by the layout of the poles. Figure 2c,
d are extreme examples. In (c), the spread of points is mainly
along the line joining the goal point and the central pole,
while in (d) the pattern in reversed.

In order to gather data that could be plotted in the clear way
shown here, i.e. with many trials repeated using exactly the
same goal point, we adapted the protocol slightly. Instead of
defining the goal point based on the participant’s location in
the viewing zone of interval one when they pressed the button,
we inserted an “interval 1a” during which the participant saw
a static, stereo image of the scene from a fixed viewpoint, and
this defined the goal point to which they should try to return
in the “homing” interval.

The real data (i.e. the points we analysed and which are
shown in Figs. 11) were gathered using only the original two-
interval paradigm where the goal position was never exactly
the same for different repetitions of a given condition. This
does not present any difficulty for modelling, since the goal
point was always known, but distributions of errors are more
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(a) (b) (c) (d)

Fig. 2 Four examples of navigation-error data, shown as a plan view
in a 4 m × 4 m box. The magenta pluses indicate points in the room
which subjects reported as being the same as the goal point (black dot).
The distribution of these points depends on the geometry of the condi-
tion: those with a small visual angle between poles tend to have a more

“radial” distribution, e.g. conditions a and c, where the green and blue
poles were seen as being close together when viewed from the goal
point. In conditions b and d, the poles appear more uniformly spaced,
and the recorded end-points are more dispersed

difficult to make out “by eye” when plotted on a unified coor-
dinate frame (see Fig. 12), motivating the use of illustrative
“visualization” data as shown in Fig. 2.

3 3D pole position model

If participants are to use a 3D reconstruction in order to recog-
nize a location, there are two steps that must be involved. The
first of these, which we consider in this section, is to describe
how a reconstruction from one location can be generated,
including the associated errors. The second, which applies to
interval two, is to find a location in the room for which the 3D
model of the poles generated in that location best matches the
3D model obtained in the first interval. Errors might then arise
if the reconstruction from one location is similar to the recon-
struction generated from a different location. In this section,
we describe our reconstruction model, and in Sect. 4, we will
combine multiple reconstructions from different viewpoints
in order to build probabilistic maps representing the likely
end-points in homing tasks.

Our starting assumption for a reconstruction-based model
is that at each point in the virtual reality space, a participant
has access to a reconstruction of the scene which they have
built up using stereopsis and motion parallax. Both provide
information about the 3D layout of the scene from multi-
ple viewpoints. In the derivation below, we assume that the
observer is able to move from side to side, i.e. in a direction
perpendicular to the line of sight. This is a good approxima-
tion to their movements in the first interval, since the viewing
zone was narrow and oriented in this direction, but, of course,
we had no control over the participant’s movement in the sec-
ond interval. We discuss reasons why the model is likely to be
robust to a fairly wide range of paths taken by the observer.
The following section derives an expression for the expected
mean and covariance of the distribution of errors for the three
poles for each interval.

3.1 Deriving the distribution over pole positions

The model builds up a reconstruction of the 3-pole scene in
an egocentric coordinate frame by assuming there is a set of
N cameras all pointing at the central (green) pole and the
cameras lie in a strip that extends a distance ±w along the x-
axis (where here w = 40 cm), as shown in Fig. 3. N and w are
free parameters in the model. This mirrors the configuration
of the “start zone” in interval one which allowed for 80 cm of
free motion left and right along an axis perpendicular to the
direction in which the green (central) pole lay, while allowing
minimal motion in depth (up to ±10 cm). Participants were
asked to step side to side within the start zone. We used the
above parameters in the reconstruction model. Since all the
information about the 3D room can be captured in its 2D plan
view, we consider 1D images of this 2D space, instead of 2D
images of the whole 3D virtual environment. The “image
noise” on any one of these hypothetical 1D measurements is
taken to be Gaussian with a standard deviation of σ , i.i.d. for
each measurement.

The reconstruction we carry out is in an “egocentric” coor-
dinate frame centred on the middle of the start zone, with the
line drawn from there to the central pole taken to define the
depth axis. This defines the coordinate frame within which
the position of each hypothetical camera is specified, as
described below. The pole position distributions we obtain as(
M j , C j

)
are therefore defined within this egocentric coor-

dinate system.
Assume the poles are X j (3-vectors representing 2D points

x j ), and mi j is the image of the j th point in the i th cam-
era. Let the projection matrix for the i th camera be Pi ; this
is a 2 × 3 matrix with focal length one unit, aligned on
the viewing strip facing the central pole. This operates on
the 2D homogeneous coordinates of the egocentric coordi-
nate system (i.e. 3-vectors representing a 2D pole location)
and transforms them into 1D homogeneous coordinates (2-
vectors) representing image coordinates. An excellent intro-
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(a) (b) (c) (d)

Fig. 3 Four examples of the pole-position models, corresponding to
the four sets of pole and goal positions in Fig. 2. The shapes represent
the hypothesized uncertainties over pole locations. Note that the covari-
ances vary according to the distance from the pole to the viewing strip

(heavy magenta line). In each model, the pole positions are recorded
in egocentric coordinates, here represented by the thin x- and y-axis,
so the coordinate frame is independent of the coordinate frame of the
room for each condition

duction to multi-view geometry and working with homoge-
neous coordinates can be found in Hartley and Zisserman
(2004).

For a single imaged point, mi j , the likelihood of obtaining
this image point, conditioned on the pole position, is

p
(
mi j |X j

) = 1

σ
√

2π
exp

{

−
(
mi j − d

(
Pi X j

))2

2σ 2

}

, (1)

where d(.) is the de-homogenizing operation, which turns
homogeneous 2-vectors representing 1D image points into
scalar values. Assuming the noise is independent, the neg-
ative log likelihood of multiple imaged points in multiple
cameras can therefore be represented as

−log {p (m|Y)} =
K∑

i=1

N∑

j=1

1

2σ 2

(
mi j − d

(
Pi X j

))2

+K N log
{
σ
√

2π
}
, (2)

where there are N poles and K cameras, and Y is the stack
of pole locations, i.e. a 6-vector representing the three 2D
points.

To obtain a basic estimate of the distribution of the poles
given a set of images, we assume there are no interesting pri-
ors on Y and obtain a maximum likelihood estimate, i.e. find
values of X j for each j so as to minimize the negative log
likelihood.

The non-linearities introduced by the projective operation
make it difficult to obtain a closed-form solution for the dis-
tribution over Y . In order to keep further computations with
these distributions tractable, we fit Gaussian approximations
to each one, so that each pole has a 2-vector mean, M j (its
true location), and 2 × 2 covariance matrix, C j . The distrib-
ution over Y is simply made up of these three, so there will
be a 6-vector mean and a block-diagonal 6 × 6 covariance
matrix. The three 2D Gaussians are obtained by first consid-
ering that the negative log likelihood above can be separated

out into three components (one per pole) plus a constant
term

−log {p (m|Y)} = ν1 (X1) + ν2 (X2) + ν3 (X3)

+3K log
{
σ
√

2π
}

(3)

where

ν j
(
X j

) =
N∑

i=1

1

σ 2

(
mi j − d

(
Pi X j

))2
. (4)

Note that the contribution to the negative log likelihood that
comes from each pole’s position X j is independent of the
other poles.

We then take the Taylor expansion of ν j by treating it as
a function of x j and y j (the x- and y-components of the j th
pole, X j ) and expanding about the true pole location, M j .
The definition of a Taylor expansion in two variables up to
the second-order term is

f (x0 + δx, y0 + δy) = f (x0, y0) + [δx, δy]

[
∂ f
∂x
∂ f
∂y

]

+ [δx, δy]

⎡

⎣
∂2 f
∂x2

∂2 f
∂y∂x

∂2 f
∂x∂y

∂2 f
∂y2

⎤

⎦
[

δx
δy

]
.

(5)

If the true pole position is M = [x0, y0, 1]T , then a general
point X can be represented as

X = [x0 + δx, y0 + δy, 1]T , (6)

and substituting this into (5) gives

f (X) = ν j
(
M j

) + 0 + (
X − M j

)T B j
(
X − M j

)
. (7)

The first term of the RHS is a constant with respect to X,
and the zero comes from taking the gradient at the true pole
position M j , which should be the maximum of ν j . B is the
matrix of second-order partial derivatives of ν j evaluated at
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M j , and the overall distribution is therefore approximated as
a Gaussian with

ν j
(
X j

) ≈ N (
M j , C j

)
(8)

C j = 2B−1
j . (9)

This means that for a pole at M j , the uncertainty in its
location is described by the covariance matrix C j . The matrix
B j from which C j is found can be found analytically from (4)
by taking the partial second derivatives with respect to X j and
evaluating it at the pole’s location.

An example of the types of models this gives for the pole
position uncertainty is given in Fig. 3. In Sect. 6, we will
compare this to pole position uncertainty data from human
subjects, but first we will consider how to combine these
pole-position-reconstruction models to form likelihood maps
predicting navigation errors.

4 Combining models to form maps

We now have the foundation of a reconstruction-based model,
but still need additional steps in order to explain the homing
behaviour of participants. The problem of a human recog-
nizing an exact location in interval two can be viewed as the
task of finding a location in the room for which the 3D model
of the poles best matches that obtained in the first interval.
Navigation errors then arise when the current pole position
model is sufficiently similar to the “template” or “goal-point”
model generated in interval one.

Using the Gaussian model described in Sect. 3.1, we com-
pute an egocentric pole-position model for every location
(putative end-point) in a wide region around the poles. We
then compare each model to the one computed at the goal
point. End-points for which the model agrees well with the
goal-point model should be assigned a higher likelihood in
our map than end-points at which the appearance of the poles
is less similar. Overall, high likelihoods in this map mean that
we expect participants to press the button more often at this
location. A map like this is desirable because the probabilities
can be compared directly with observed data for any number
of configurations and with other similar models (e.g. Pickup
et al. 2011).

A likelihood map over the 2D plane is built up one point
at a time by considering the distances between two probabil-
ity distributions: the model is built with a coordinate frame
based around the centre of the viewing strip in interval one,
and a second model is built using the current point under
consideration at the centre of the viewing strip. The y-axis is
aligned with the green pole and the x-axis is perpendicular to
this (see Fig. 3). This means that at each point, two egocentric
maps of the world are compared. The comparison is made
using the probability distributions on the pole positions, as
follows.

The distance between probability distributions can be
taken in a number of ways, e.g. the KL divergence of one
distribution with respect to the other, or the Mahalanobis
distance of one set of pole means with respect to the dis-
tribution from the goal location. The measure we use is the
Bhattacharyya distance between the two maps, because it is
symmetric and has a simple Gaussian form, although using
measures such as the others, above, makes little difference
to the resulting maps. The Bhattacharyya distance between
two Gaussians with means M1 and M2 and covariances C1

and C2 is given by

D = 1

8
(M1 − M2)

T C−1 (M1 − M2)

+1

2
log

( |C|√|C1| |C2|
)

(10)

C = C1 + C2

2
. (11)

The distance between the two distributions is taken to
be proportional to the negative log of the likelihood of the
observer being at the same location. So, in our task, for some
location X, the likelihood of matching the goal point is

L (X) = 1

Z
exp {−λD} (12)

where λ is included as a free parameter determining how
quickly the likelihood should decay with the magnitude of
the Bhattacharyya distance, D; it is analogous to a precision
(i.e. 1/variance) term in a Gaussian. The normalizing factor
Z is the integral of the exponent over the whole of the 2D
plane and thus is also a function of λ and the other parameters
of the reconstruction procedure. This allows us to calculate,
for any point X on the ground plane, the positions of the
three poles in camera (egocentric) coordinates as M R, MG

and M B with uncertainties over pole positions given by the
covariances CR, CG and CB .

Taking the set of poles as a single six-dimensional
Gaussian distribution with a block-diagonal covariance
matrix (i.e. by stacking the three mean vectors and arranging
the three 2 × 2 covariances along the diagonal of a larger
6 × 6 covariance matrix), we get a single Gaussian repre-
senting the three pole locations as seen from a single point.
The likelihood L for any point X on the ground plane can
then be found using the Bhattacharyya distance between the
6D Gaussian for the view centred on the goal point, and the
Gaussian centred on the point X.

4.1 Example maps

Figure 4 illustrates the generation of end-point likelihood
maps using the data shown in Fig. 2. The model parameters
were set to plausible values: 20 cameras spaced along a line
80 cm in length (i.e. matching the width of the viewing zone),
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(d)(c)

(b)(a)

Fig. 4 Likelihood maps for the four example conditions of Fig. 2, made
using the “basic” map model of Sect. 4. Condition d, with particularly
high angular uncertainty, is well captured by this model, but the more
“radial” distributions of a and c are poorly explained

and an “image noise” standard deviation of 0.05 given a focal
length of 1m. 480 data points (10 from each of the 48 condi-
tions described in Fig. 1) from a single participant were used
to learn an optimal value for the λ parameter determining
“decay rate” in the Bhattacharyya distance comparison. How
well the model fitted these data is described later (Fig. 11), but
for illustrative purposes, the fitted model is shown in Fig. 4
in the example conditions from Fig. 2. Our assumption in
using the example points for illustration is that both these and
the main set of 480 data points are sampled from the same
underlying distribution. Note that the elongated “radial” dis-
tributions of end-points for cases (a) and (c) are not captured
well by this model, though the more loosely clustered points
in the other two cases are better explained. In Sect. 5, we will
explore a modified version of the 3D model that is better able
to account for this pattern of errors.

4.2 Normalization

In order to be able to compare the performance of various
maps and to evaluate how well they explain the observed data,
it is necessary to turn them into fully normalized probability
distributions. We do this by finding the value of Z in Eq. (12),
where one distribution is taken to be the reference distribution
learnt over the poles in interval one, described by the mean

and covariance M0 and C0, while the other distribution varies
across the plane. Specifically,

Z =
∫∫

exp

{−λ

8
δT Σ−1δ+ −λ

2
log

(
Σ

S

)}
dxdy, (13)

where

δ = M0(φ) − M(x, y,φ) (14)

Σ = 1

2
(C0(φ) + C (x, y,φ)) (15)

S = √|C0(φ)||C (x, y,φ) |, (16)

and where φ denotes the set of free parameters in the 3D
model of Sect. 3. Thus, the normalizing constant Z depends
on the values of the parameters φ, and on λ, which is the
free parameter introduced in Sect. 4. It also depends on the
reference model (M0, C0), so it must be re-calculated for
each different configuration of the experiment, in terms of
locations of the poles relative to the goal point.

The value of Z is calculated numerically out to a distance
of several metres (e.g. 10 m) from the poles in the x and y
directions, beyond which point it is assumed to be virtually
zero. The integral is performed using four calls thedblquad
function from Matlab: since the best match is expected to be
at the location where the point X coincides exactly with the
goal point, this point is included explicitly in the integral by
splitting the region into four rectangles such that the central
corner shared by all four regions is the goal location. This
prevents the numerical integral routine missing particularly
narrow peaky distributions.

4.3 Assumptions used in the interval-two model

In the computations described above, for every point on the
end-point likelihood map (such as Fig. 4) the pole loca-
tion probabilities are calculated in exactly the same way as
they are at the goal location, i.e. using a viewing strip. In
the experiments, the participants were free to walk around
the virtual reality area in interval two, so no such restric-
tion was made on the space of views of the poles available
to them in this interval. In particular, all the views lead-
ing up to a candidate end-point could have been integrated
together, potentially, into a single pole-position likelihood
distribution in the current egocentric coordinates. Assum-
ing, instead, that participants restricted their movement to
a narrow viewing strip similar to interval one is clearly an
approximation.

The consequences of this approximation are minimized by
three factors. First, anecdotally, the participants did indeed
often stand still at an end-point and make the same side-to-
side stepping motions as they had been instructed to make
in interval one, in order to decide whether they really had
reached their goal point although they were not instructed
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(a) (b) (c)

Fig. 5 Three egocentric models of pole position, built using variations
on the positioning and number of cameras used. In each case, the overall
shape of the covariances is the same, though in the case with more cam-
eras, the extent shrinks noticeably. a The standard viewing strip, as used

in our model; b the viewing strip with standard width, but incorporat-
ing views from closer or further away; c a viewing strip with additional
views from behind, as one might expect if a participant has approached
the goal location from the starting point

to behave in any particular way in interval two. Second, the
starting point for interval two was always farther away from
the poles than the goal point was (as shown in Fig. 1). Because
the uncertainty on pole location in the reconstruction model
is assumed to arise originally from image noise, views from
farther away have less influence on the overall distribution for
estimating pole position than views closer up, so integrating
views along this walking path would have less influence on
the distribution than if, for example, participants had walked
right up to the poles then backed away to the correct distance.
None of the participants did this. Finally, the addition of a
small number of extra hypothetical views does not change
the pole position model drastically. In Fig. 5, we show the
pole distribution for some alternative configurations of the
hypothetical cameras. In the case where there are additional
views considered—eight instead of four—a general shrink-
ing of the uncertainty is of course seen. If it was the case
that all the interval-two covariances were in fact smaller, the
maps themselves would not change much because when the
models are learnt, this tightening of the distribution is com-
pensated for by a change in the fitted λ value.

5 Shape-based map

The model described above forms an account of a “basic”
photogrammetric reconstruction followed by comparison of
two reconstructions from separate intervals. In this section,
we explore a variation in the model that incorporates an ele-
ment of sensitivity to relative positions, since this is known
to be important in human vision (e.g.Westheimer 1979).

We can see that with the “basic” 3D model, defined above,
the condition on which its predictions looked least convinc-
ing was Fig. 4c, where the green pole appeared much closer

to the blue pole than the red one. For all participants, errors
tended to show a greater spread in depth for this condition
and a smaller spread laterally, whereas the “basic” model
does not show this pattern. An alternative model in which the
relative positions of the poles are the pertinent piece of infor-
mation remembered from interval one might fare better. We
explored a model that computed a distribution over e.g. the
red-to-green vector recorded in egocentric coordinates (and
the same for the other two possible pole pairs). In this formu-
lation, for a given pole configuration, the red-to-green vector
will then be identical for any position of the viewing point
along a line from the green pole, since this line defines the
orientation of the coordinate frame. Figure 6 illustrates this,
showing how two viewing points along one such line give
rise to similar means but different covariances in the estimate
of relative pole positions, while unrelated viewing positions
give rise to quite different estimates of relative pole position.

The algorithm for creating a shape-based description of
this type is

1. Find a description of landmarks from the goal point
in egocentric coordinates: (M R, CR) , (MG , CG) and
(M B, CB) (see Sect. 3).

2. Transform these means into relative-location means by
taking pairwise differences (red-to-green, blue-to-green,
red-to-blue), i.e.

Mα = MG − M R, (17)

Mβ = MG − M B, (18)

Mγ = M B − M R . (19)

3. Transform the associated covariance for each mean,
remembering that the uncertainty adds, e.g.:
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’Shape’ RepresentationEgocentric CoordinatesRoom Coordinates

Fig. 6 Illustrations of components of the “shape” model. The left col-
umn shows the room with three poles and two viewpoint (pluses). The
magenta viewpoint, used for reference, is the same on the top and bot-
tom rows. The middle column shows the pole locations, with associated
uncertainties (at three standard deviations); the reference view ellipses
are thick, and the second view of each is drawn in thinner ellipses, with
colours matched to their respective poles. The third column shows the
pole-position-difference distributions, where each difference is taken

in the egocentric coordinate frame. From left to right, the three ellipses
represent the blue-to-green vector,

(
Mβ, Cβ

)
, the red-to-green vector,

(Mα, Cα), and the red-to-blue vector,
(
Mγ , Cγ

)
. Again, the thin ellipses

represent the views from locations marked in black in the room-space
plot, and the thick ellipses mark the views from the reference location.
Notice that on the top row, where the two viewpoints (pluses) and the
green pole are co-linear, the shape model descriptions align, whereas
on the bottom row where the viewing angles are different, they do not

Cα = CG + CR . (20)

4. Stack the three 2D Gaussians to give a single 6D shape-
based description of the view of the landmarks from this
goal location.

Once the description has been found for the goal point, the
Bhattacharyya difference between this and the descriptions
calculated for other points on the 2D ground plane can be
found exactly as for the “basic” model.

The shape-based model predictions for the navigation data
are shown in Fig. 7 for our four example conditions. This
gives the model much better power to explain elongated con-
ditions like those of Fig. 2c, but at a cost, because now the
more radially distributed data are less well described than in
the basic map, i.e. Fig. 4d shows a better fit than Fig. 7d.

In some ways, the “relative” or “shape-based” model
described here is a minor extra step added to the basic model
and we are deliberately treating it as such in this paper. This
means that the uncertainty that arises, for example, in esti-
mating the location of a pole in the basic model will propagate
through and affect the predictions of the shape-based model.

That is what makes this a type of reconstruction-based model.
However, in another sense, because it is starting to use rel-
ative rather than absolute position information, this model
is a step down a quite different road, ultimately leading to
the abandonment of any type of reconstruction. For exam-
ple, one could use the relative image locations of pairs of
poles as input features to the model and consider indepen-
dent noise on each of these input measurements. That would
be an entirely different, view-based approach, as raised in the
Introduction and discussed in a previous paper (Pickup et al.
2011).

The reconstruction model suggests that observers are sub-
stantially less sensitive to variations in the depth of a pole
than they are to variations in lateral position (Fig. 3). This
would, at first sight, seem to run counter to evidence from
stereoscopic experiments (e.g. Westheimer and McKee 1979)
which suggest the reverse ratio. However, the more relevant
data for this experiment are probably those using stimuli with
a large disparity pedestal between the reference and the tar-
get (McKee et al. 1990) where stereo thresholds can be sub-
stantially poorer than those for lateral deviations. Here, we
designed a method to measure the sensitivity of observers to
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(d)(c)

(b)(a)

Fig. 7 Likelihood maps for the four example conditions of Fig. 2, made
using the shape-based map model of Sect. 5. This model assumes that
participants remember the layout of the poles relative to one another.
A remembered layout from a particular angle therefore matches well
to a similar layout seen from slightly farther away, allowing the model
to explain the elongated distributions of points in a and c much better
than the basic model of Fig. 4

variations in the position of a given pole in our experiment
and so provide a direct empirical test of the distribution of
uncertainties over pole position calculated using the recon-
struction algorithm, as shown in Fig. 3. The results allowed us
to modify the reconstruction stage of the model, as described
in the next section.

6 Experiment 2: verifying one component
of the reconstruction model

In the model presented so far, we set all the parameters in
one go; that is, we chose the “decay” parameter, λ (Sect. 4)
for the model-comparison step at the same time as “internal”
parameters, φ, for the reconstruction part of the model. In
this section, we describe a new experiment that allowed us
to separate out the reconstruction parameters and fit them
separately, leaving λ as a free parameter to be learnt in a
subsequent step.

There are two arguments for doing this. First, the recon-
struction step itself can be validated in isolation. Second,
learning fewer parameters at once reduces the danger of over-
fitting and leads to better generalization for the model as a

whole. Briefly, the experiment allowed us to probe the under-
lying shape of the human uncertainty function over pole loca-
tion. We used the data to fit the standard deviation, σ , of the
noise assumed on the images of the poles, the focal length of
the cameras, the number of cameras used, and the width of
the strip of cameras (see Sect. 6.3).

6.1 Methods

Participants were shown the three poles from a viewing zone,
exactly as in interval one of the trials in Experiment 1, and
were asked to remember the layout of the poles. Once par-
ticipants had memorized the layout, they pressed a button,
which led to a 0.5 s blank inter-stimulus interval.

In the second interval, the participant remained in the same
location in the virtual scene (unlike Experiment 1) and two
of the poles remained in the same place while the third pole
was displaced. It was always the same pole that was dis-
placed throughout a whole run although the displacement
varied from trial to trial. Participants were told in advance
which pole would be displaced. The participant’s task was
to move the shifted pole back to the location it had occu-
pied during the first interval. They did this using a hand-held
pointing device with which they could “push” or “drag” the
pole in two dimensions while pressing a button on the device.
Participants indicated that they were satisfied that the loca-
tion of the pole matched that in the first interval by pressing
a different button on the device, advancing them to the next
trial. The moving pole always remained vertical, so partic-
ipants could only manipulate its (x, y) coordinate and, like
the other poles, its width in the image was always one pixel
(anti-aliased).

6.2 Results

Examples of the data gathered from Experiment 2 are shown
in Fig. 8. This figure includes 80 points from one partici-
pant across 16 conditions; in total five subjects completed
the task, each providing between 288 and 640 separate pole-
position estimates across 32 different conditions. Across the
whole dataset, the errors are greater in depth than in a lat-
eral direction. For the green-pole conditions (384 trials in
total), the standard deviation projected onto the y-axis was
27.2 cm whereas for the x-axis it was just 11.7 cm. Similarly,
for the 80 points of Fig. 8, which includes all three colours of
pole, the x-axis standard deviation is 11.9 cm and the y-axis
standard deviation is 25.2 cm.

In general, this pattern of position uncertainty fits the pre-
dictions of the reconstruction model described in Sect. 3 and
illustrated in Fig. 3, i.e. elongated in the depth direction. More
than this, however, the data allow us to revise the basic and
shape models using parameters derived from this uncertainty
distribution, as described in the next section.
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(h)(g)(f)(e)

(d)(c)(b)(a)

Fig. 8 Eight examples from Experiment 2 for one of the participants.
The open circles represent the correct location of each pole, and the
filled dots represents the locations at which the participants placed the
pole. The horizontal and vertical axes of the plots correspond to the x-
and y-axis of the egocentric coordinate system shown in Fig. 3. Magenta
lines join the true and estimated pole locations. Grey lines link the ran-

domly drawn start location of each pole to the estimated location. Each
plot shows results from three separate experiments, in which either the
red, green or blue pole was movable. Plots a–h show results for eight
different configurations of the three poles. Note that in each case, the
participant’s own location is not marked because it lies below the bottom
of the plots

6.3 Fixing the free parameters, φ, using data
from Experiment 2

The free parameters, φ, in the reconstruction model are: the
number of assumed cameras, N , image noise standard devi-
ation, σ , and camera strip half-width, w (see Sect. 3). The
model predicts a Gaussian distribution of position errors for
each pole, {M, C}, for which we now have a direct estimate.
Hence, we were able learn values for each of these parame-
ters.

In optimizing the data likelihood with respect to these
parameters, we found slightly higher likelihoods for the
observed data when w was allowed to be a little larger than
its veridical value of 0.4 m, which was the half-width of the
starting box in the actual navigation experiment. This may
be the result of people paying more attention to views at the
edges of the viewing space than intermediate views. In our
modelling, we limited the width to ±0.4 m in order to reflect
the ground truth width of the viewing box.

With the viewing-strip width fixed, σ and N were opti-
mized. The latter is a discrete value greater than one, so opti-
mal likelihoods were found for each N as σ varied, then the
results were compared against each other to find the (N , σ )

pair maximizing the overall likelihood across the data from
Experiment 2. This led to a model using just two cameras, and
a noise standard deviation of 0.0128 m when a focal length of

1 m is assumed for the purposes of building up the imaging
parameters of the hypothetical cameras. Together with the
strip half-width (w = 0.4 m), these create the reconstruction
model which best described human uncertainty in the pole
locations in our experiment. Using these same parameters,
φ, for this stage of the model and for all participants, we can
now return to the second layer of the 3D-based navigation
models.

6.4 Revised navigation predictions

Figure 9 shows the updated predictions for our original nav-
igation data These come from re-running the “basic” and
“shape” models described in Sects. 4 and 5 but now using
the parameters, φ obtained in Sect. 6.3 from Experiment 2.
Values for the free parameter, λ (Sect. 4), are given in Table 1.
The shapes of the distributions have changed little compared
to the plots of Figs. 4 and 7 and the basic 3D model still fails
to provide a good account of conditions like Fig. 9c while the
shape-based model provides a better account for conditions
like Fig. 9h.

It is not inevitable that the agreement between the two
approaches should be so close (i.e. with and without incorpo-
rating parameters derived from the data from Experiment 2).
For example, if the covariance matrices for the pole positions
are rotated by 90◦, so that each one describes a data distribu-
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(h)(g)(f)(e)

(d)(c)(b)(a)

Fig. 9 Likelihood maps for end-point location using the optimized 3D pole-position model (with parameters found in Sect. 6) for four example
conditions out of the 48 conditions used in the experiment (see Fig. 2 for raw data). a–d Maps using the basic 3D model; e–h Maps using the
shape-based model

Table 1 Weight values, given as log10(λ), for the five participants
(P1–P5) on each of the two types of reconstruction-based model

Type P1 P2 P3 P4 P5

Basic −0.10 −0.22 −0.31 −0.17 −0.03

Shape 0.94 0.46 0.39 0.49 0.80

These, along with the parameter values φ obtained in Sect. 6.3 com-
pletely specify each of the models

tion that is elongated in the lateral direction and narrowed in
the depth direction, the consequences are quite different, as
Fig. 10 illustrates. The prediction of navigation performance
is much worse in this case for both the “basic” and the “shape-
based” models. This suggests that the data on sensitivity to
pole position from Experiment 2 is at least compatible with
the navigation data we have observed.

7 “Basic” and “shape” reconstruction models compared

We have discussed the visual comparison of the two mod-
els provided in Fig. 9, i.e. the “basic” and “shape” models
from Sects. 4 and 5, but in this section, we compare the like-
lihoods of the whole data set under the two models. We do
this by computing a likelihood map for the particular pole
locations and goal point in any trial and then normalizing
it to produce a probability distribution on the 2D plane as
described in Sect. 4.2. The probability of the observed end-
point for that particular trial under the model can then be read

off this map, and compared to the probability of that same
data point under the competing model. We carried out this
procedure for all 1,776 separate human trials in the navigation
dataset (5 participants, each providing between 48 and 480
data points). The overall likelihood of the data under a given
model is taken to be the product of all these probabilities,
plotted in Fig. 11 as a sum of negative log likelihoods, where
low numbers indicate that the data are well explained by the
model.

Figure 11 shows the two models compared in this way.
Three of the 48 conditions are highlighted using coloured
symbols: in the red case, the data are better explained by the
shape model than the basic one, but the converse is true in
the blue case. The data in each of these three coloured con-
ditions come from different participants and different trials:
so, clearly condition is a crucial factor. The red condition is
similar to that illustrated in Figs. 2c and 7c, i.e. one in which
two poles were close to being aligned at the goal location and
so the data had a tendency to be elongated in this direction.
The shape model does a much better job of accounting for
this pattern of navigation errors, as can be seen in Fig. 7c
and confirmed by the red triangles in Fig. 11. Conversely,
the blue triangles in Fig. 11 correspond to a condition that
is more like that shown in Figs. 2d and 7d where the data
form more of a crescent shape and the “basic” model does
a better job of explaining this pattern. Figure 12 shows the
37 data points corresponding to each of these three condi-
tions, but for practical reasons, these are harder to interpret
than Figs. 2 and 7. This is because the goal point could be
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(h)(g)(f)(e)

(d)(c)(b)(a)

Fig. 10 Likelihood maps for end-point location using an implausible pole-position model in which the covariance ellipses were rotated through
90◦. These provide an unconvincing account of the navigation experiment data compared to Fig. 9
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Fig. 11 Scatter plot comparing the negative log likelihood (a measure
of error) of each data point under the 3D-basic and 3D-shape models.
Each point represents one trial; data are plotted together for 5 subjects
across 48 different conditions. Three particular conditions are high-
lighted using colours; these are drawn in the navigation-room space in
Fig. 12. In the red case, behaviour follows the shape model; in the blue
case, the basic model. The green points belong to a condition on which
participants tended to perform well and was explained equally well by
each model

selected anywhere in the 20 cm × 80 cm starting zone, which
was not the case for the example conditions shown in Figs. 2
and 7 (see Sect. 2.1). Note that this smearing only affects the
illustrations in Fig. 12, and it does not affect the modelling
in any way, since each of the 1,776 trials’ probability maps
was calculated separately.

What is clear from Fig. 11 is that while both reconstruc-
tion-based models provide an explanation for a good deal
of the variation observed in the human navigation error
dataset, neither model is able to outperform the other consis-
tently, and overall they have a tendency to complement one
another.

8 Discussion

We have demonstrated the extent to which a reconstruc-
tion algorithm can account for participants’ performance
in a simple navigation task. Any algorithm that is to pre-
dict human behaviour successfully in this case must vary its
output according to changes in the visual scene and make
explicit the way that noise at various stages in the recon-
struction process will affect the predicted spatial distribution
of errors in the task. We are not aware of algorithms that ful-
fil these criteria other than those based on the principles of
photogrammetry, as we have used here.

Many papers have assumed that the brain generates a
3D reconstruction of the scene without providing a model
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(a) Errors follow 3D−Shape pattern (b) Errors follow 3D−Basic pattern (c) Errors similar under both models

Fig. 12 Three example conditions from the navigation experiment
illustrated in Fig. 11 using corresponding colours. Each end-point is
linked by a black line to its corresponding goal point (black circle);
these goals are not exactly coincident because each participant was
able to select a goal from anywhere within the viewing box of interval
one. The three coloured dots to the left of each box show the locations of
the poles, and each box is 4 m × 4 m in size. a The red condition is well

explained with a radial distribution, and so favours the shape model;
b the blue condition shows a high uncertainty laterally and so favours
the basic 3D model with its crescent-like distributions; c participants
performed consistently and well on this condition, and end-points lay
close to the means of both models without much spread, so both models
performed well

of the process underlying its construction in the way that
we have done here (Luneburg 1950; Blank 1958; Indow
1995; Tolman 1948; Mou et al. 2006; Burgess 2006; Maguire
et al. 1999; Gallistel 1989). While often being quite math-
ematical in their description, these models are nonetheless
descriptions of empirical results fitted post-hoc rather than
describing a reconstruction process and the noise associated
with its different stages. For example, Foley (1991) presents
a description of distortions in perceived distance and direc-
tion based on psychophysical experiments. However, he pro-
vides only a minimal hypothesis about the processes that
might underlie these distortions. In particular, he suggests
that the compression of visual space may be explained by
vergence adaptation occurring over many seconds or minutes
in his experiments. By compression of visual space he means
that “effective binocular parallax”, a value derived from psy-
chophysical judgements, changes over a small range relative
to actual binocular parallax (vergence angle). This hypothe-
sis turns out to be contradicted by more recent data: visual
space “compression” measured using a related paradigm has
been shown to be very similar for long and short periods of
fixation, e.g. 2 s periods of fixation interspersed with large
changes in vergence so that vergence adaptation could not
occur (Glennerster et al. 1996). A more important criticism,
however, is that Foley’s hypothesis about the cause of a
compression in visual space relies on changes in vergence
to different targets. It is mainly an account that explains
the distance estimate of fixated targets rather than being
designed to explain distortions across a whole scene at once
(without vergence changes). If it is true that information
is passed from V1 to parietal cortex to hippocampus and
that these representations underlie our perception of space,
then the modelling of such transformations should refer to

more than a single point at the fovea. In that sense, there
is a large gap between descriptions of visual space such as
Foley’s and current physiological hypotheses about spatial
presentation.

The distortions of space that these models describe
(Luneburg 1950; Blank 1958; Indow 1995; Foley 1991) do
not predict any shift in the peak of the distribution of errors in
our task: it remains the case that the most likely location for
participants to choose in interval two would be the correct one
because the same distortion would apply in both intervals.
Others have discussed whether the notion of a distorted visual
space remains tenable in the face of increasing psychophysi-
cal evidence against the hypothesis (Glennerster et al. 1996;
Koenderink et al. 2002; Smeets et al. 2002; Cuijpers et al.
2003; Svarverud et al. 2010). Independent of that debate, the
important point here is that for our task, no distortions of the
type described by Luneburg and others would be expected.

Navigation often involves proprioception and vestibular
cues in addition to vision (Foo et al. 2005; Campos et al.
2010; Tcheang 2010), but in our experiments, these cues on
their own were of no value in carrying out the task. The
reconstruction model we have applied does assume some
nonvisual information is available, but this is for the purpose
of fixing the scale of the visual reconstruction, for example
from vergence or proprioception. These provide information
about the length of the baseline (distance between the optic
centres of a pair of cameras), but otherwise proprioception
does not contribute to the process of comparing the stimuli
in interval one and two. Any model that tried to integrate
proprioceptive information in this matching process would
need to be quite complicated, involving a subtraction of two
coordinates from visual reconstructions generated at the start
of the first and second intervals to get a “homing vector”
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across the two intervals, and a conversion of this visual vector
into proprioceptive coordinates. It is not easy to see how a
component derived in this way would add to the explanatory
power of the model.

Instead, our model relies on matching of representations
generated from visual data. In the end, a full description of
human navigation will have to account for multiple sources
of sensory information and show how these are integrated.
This process will almost certainly incorporate a mecha-
nism for weighting different cues according to their relia-
bility (Landy et al. 1995; Ernst and Banks 2002; Svarverud
et al. 2010; Butler et al. 2010) but this does not neces-
sarily mean that the optimal coordinate frame in which to
carry out such integration is necessarily a 3D one, as we
have discussed elsewhere (Svarverud et al. 2010). Indeed,
in relation to the data we have presented here, some of the
conditions were best explained by a “shape” model which
concentrates on the 3D relationship between pairs of fea-
tures. This approach no longer uses a full reconstruction
of the scene using a single coordinate frame and could
be regarded as one step towards abandoning 3D frames
altogether.

As we raised in the Introduction, reconstruction models
are not the only approach to explaining 3D representation
and performance in our scene-matching task. In a subsequent
paper, we will compare directly the performance of a recon-
struction algorithm with that of a quite different, view-based
approach.
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